51
|
Watson PMD, Humphries MJ, Relton J, Rothwell NJ, Verkhratsky A, Gibson RM. Integrin-binding RGD peptides induce rapid intracellular calcium increases and MAPK signaling in cortical neurons. Mol Cell Neurosci 2007; 34:147-54. [PMID: 17150373 DOI: 10.1016/j.mcn.2006.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 10/12/2006] [Accepted: 10/17/2006] [Indexed: 10/23/2022] Open
Abstract
Integrins mediate cell adhesion to the extracellular matrix and initiate intracellular signaling. They play key roles in the central nervous system (CNS), participating in synaptogenesis, synaptic transmission and memory formation, but their precise mechanism of action remains unknown. Here we show that the integrin ligand-mimetic peptide GRGDSP induced NMDA receptor-dependent increases in intracellular calcium levels within seconds of presentation to primary cortical neurons. These were followed by transient activation and nuclear translocation of the ERK1/2 mitogen-activated protein kinase. RGD-induced effects were reduced by the NMDA receptor antagonist MK801, and ERK1/2 signaling was specifically inhibited by ifenprodil and PP2, indicating a functional connection between integrins, Src and NR2B-containing NMDA receptors. GRGDSP peptides were not significantly neuroprotective against excitotoxic insults. These results demonstrate a previously undescribed, extremely rapid effect of RGD peptide binding to integrins on cortical neurons that implies a close, functionally relevant connection between adhesion receptors and synaptic transmission.
Collapse
Affiliation(s)
- P Marc D Watson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
52
|
Webb DJ, Zhang H, Majumdar D, Horwitz AF. alpha5 integrin signaling regulates the formation of spines and synapses in hippocampal neurons. J Biol Chem 2007; 282:6929-35. [PMID: 17213186 PMCID: PMC2750863 DOI: 10.1074/jbc.m610981200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The actin-based dynamics of dendritic spines play a key role in synaptic plasticity, which underlies learning and memory. Although it is becoming increasingly clear that modulation of actin is critical for spine dynamics, the upstream molecular signals that regulate the formation and plasticity of spines are poorly understood. In non-neuronal cells, integrins are critical modulators of the actin cytoskeleton, but their function in the nervous system is not well characterized. Here we show that alpha5 integrin regulates spine morphogenesis and synapse formation in hippocampal neurons. Knockdown of alpha5 integrin expression using small interfering RNA decreased the number of dendritic protrusions, spines, and synapses. Expression of constitutively active or dominant negative alpha5 integrin also resulted in alterations in the number of dendritic protrusions, spines, and synapses. alpha5 integrin signaling regulates spine morphogenesis and synapse formation by a mechanism that is dependent on Src kinase, Rac, and the signaling adaptor GIT1. Alterations in the activity or localization of these molecules result in a significant decrease in the number of spines and synapses. Thus, our results point to a critical role for integrin signaling in regulating the formation of dendritic spines and synapses in hippocampal neurons.
Collapse
Affiliation(s)
- Donna J Webb
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | |
Collapse
|
53
|
Lynch G, Rex CS, Gall CM. LTP consolidation: Substrates, explanatory power, and functional significance. Neuropharmacology 2007; 52:12-23. [PMID: 16949110 DOI: 10.1016/j.neuropharm.2006.07.027] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 07/05/2006] [Accepted: 07/17/2006] [Indexed: 12/18/2022]
Abstract
Long-term potentiation (LTP) resembles memory in that it is initially unstable and then, over about 30 min, becomes increasingly resistant to disruption. Here we present an hypothesis to account for this initial consolidation effect and consider implications that follow from it. Anatomical studies indicate that LTP is accompanied by changes in spine morphology and therefore likely involves cytoskeletal changes. Accordingly, theta bursts initiate calpain-mediated proteolysis of the actin cross-linking protein spectrin and trigger actin polymerization in spine heads, two effects indicative of cytoskeletal reorganization. Polymerization occurs within 2 min, has the same threshold as LTP, is dependent on integrins, and becomes resistant to disruption over 30 min. We propose that the stabilization of the new cytoskeletal organization, and thus of a new spine morphology, underlies the initial phase of LTP consolidation. This hypothesis helps explain the diverse array of proteins and signaling cascades implicated in LTP, as well as the often-contradictory results about contributions of particular molecules. It also provides a novel explanation for why LTP is potently modulated by factors likely to be released during theta trains (e.g., BDNF). Finally, building on evidence that normal patterns of activity reverse LTP, we suggest that consolidation provides a delay that allows brain networks to sculpt newly formed memories.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, Gillespie Neuroscience Research Facility, University of California, Irvine, CA 92697-4292, USA.
| | | | | |
Collapse
|
54
|
Huang Z, Shimazu K, Woo NH, Zang K, Müller U, Lu B, Reichardt LF. Distinct roles of the beta 1-class integrins at the developing and the mature hippocampal excitatory synapse. J Neurosci 2006; 26:11208-19. [PMID: 17065460 PMCID: PMC2693048 DOI: 10.1523/jneurosci.3526-06.2006] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Integrins are a large family of cell adhesion receptors involved in a variety of cellular functions. To study their roles at central synapses, we used two cre recombinase lines to delete the Itgb1 beta1 integrin gene in forebrain excitatory neurons at different developmental stages. Removal of the beta1 integrins at an embryonic stage resulted in severe cortical lamination defects without affecting the cellular organization of pyramidal neurons in the CA3 and CA1 regions of the hippocampus. Whereas the hippocampal neurons underwent normal dendritic and synaptic differentiation, the adult synapses exhibited deficits in responses to high-frequency stimulation (HFS), as well as in long-term potentiation (LTP). Deletion of beta1 integrin at a later postnatal stage also impaired LTP but not synaptic responses to HFS. Thus, the beta1-class integrins appear to play distinct roles at different stages of synaptic development, critical for the proper maturation of readily releasable pool of vesicles during early development but essential for LTP throughout adult life.
Collapse
Affiliation(s)
| | - Kazuhiro Shimazu
- Section on Neural Development and Plasticity, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, and
| | - Newton H. Woo
- Section on Neural Development and Plasticity, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, and
| | - Keling Zang
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California 94143
| | - Ulrich Müller
- The Scripps Research Institute, Department of Cell Biology, Institute for Childhood and Neglected Disease, La Jolla, California 92037
| | - Bai Lu
- Section on Neural Development and Plasticity, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, and
| | - Louis F. Reichardt
- Department of Physiology and
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
55
|
Abstract
Experience can alter synaptic connectivity throughout life, but the degree of plasticity present at each age is regulated by mechanisms that remain largely unknown. Here, we demonstrate that Paired-immunoglobulin-like receptor B (PirB), a major histocompatibility complex class I (MHCI) receptor, is expressed in subsets of neurons throughout the brain. Neuronal PirB protein is associated with synapses and forms complexes with the phosphatases Shp-1 and Shp-2. Soluble PirB fusion protein binds to cortical neurons in an MHCI-dependent manner. In mutant mice lacking functional PirB, cortical ocular-dominance plasticity is more robust at all ages. Thus, an MHCI receptor is expressed in central nervous system neurons and functions to limit the extent of experience-dependent plasticity in the visual cortex throughout life. PirB is also expressed in many other regions of the central nervous system, suggesting that it may function broadly to stabilize neural circuits.
Collapse
MESH Headings
- Aging
- Animals
- Brain/metabolism
- Cells, Cultured
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Dominance, Ocular/physiology
- Histocompatibility Antigens Class I/metabolism
- In Situ Hybridization
- Intracellular Signaling Peptides and Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mutation
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neuronal Plasticity
- Neurons/metabolism
- Phosphorylation
- Protein Binding
- Protein Structure, Tertiary
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- Recombinant Fusion Proteins/metabolism
- Synapses/metabolism
- Synapses/physiology
- Visual Cortex/physiology
Collapse
Affiliation(s)
- Josh Syken
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
56
|
Lynch G, Rex CS, Gall CM. Synaptic plasticity in early aging. Ageing Res Rev 2006; 5:255-80. [PMID: 16935034 DOI: 10.1016/j.arr.2006.03.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 03/30/2006] [Indexed: 01/25/2023]
Abstract
Studies of how aging affects brain plasticity have largely focused on old animals. However, deterioration of memory begins well in advance of old age in animals, including humans; the present review is concerned with the possibility that changes in synaptic plasticity, as found in the long-term potentiation (LTP) effect, are responsible for this. Recent results indicate that impairments to LTP are in fact present by early middle age in rats but only in certain dendritic domains. The search for the origins of these early aging effects necessarily involves ongoing analyses of how LTP is induced, expressed, and stabilized. Such work points to the conclusion that cellular mechanisms responsible for LTP are redundant and modulated both positively and negatively by factors released during induction of potentiation. Tests for causes of the localized failure of LTP during early aging suggest that the problem lies in excessive activity of a negative modulator. The view of LTP as having redundant and modulated substrates also suggests a number of approaches for reversing age-related losses. Particular attention will be given to the idea that induction of brain-derived neurotrophic factor, an extremely potent positive modulator, can be used to provide long periods of normal plasticity with very brief pharmacological interventions. The review concludes with a consideration of how the selective, regional deficits in LTP found in early middle age might be related to the global phenomenon of brain aging.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, Gillespie Neuroscience Research Facility, University of California at Irvine, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
57
|
Yang P, Baker KA, Hagg T. The ADAMs family: coordinators of nervous system development, plasticity and repair. Prog Neurobiol 2006; 79:73-94. [PMID: 16824663 DOI: 10.1016/j.pneurobio.2006.05.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 05/18/2006] [Accepted: 05/23/2006] [Indexed: 10/24/2022]
Abstract
A disintegrin and metalloprotease (ADAM) transmembrane proteins have metalloprotease, integrin-binding, intracellular signaling and cell adhesion activities. In contrast to other metalloproteases, ADAMs are particularly important for cleavage-dependent activation of proteins such as Notch, amyloid precursor protein (APP) and transforming growth factor alpha (TGFalpha), and can bind integrins. Not surprisingly, ADAMs have been shown or suggested to play important roles in the development of the nervous system, where they regulate proliferation, migration, differentiation and survival of various cells, as well as axonal growth and myelination. On the eleventh anniversary of the naming of this family of proteins, the relatively unknown ADAMs are emerging as potential therapeutic targets for neural repair. For example, over-expression of ADAM10, one of the alpha-secretases for APP, can prevent amyloid formation and hippocampal defects in an Alzheimer mouse model. Another example of this potential neural repair role is the finding that ADAM21 is uniquely associated with neurogenesis and growing axons of the adult brain. This comprehensive review will discuss the growing literature about the roles of ADAMs in the developing and adult nervous system, and their potential roles in neurological disorders. Most excitingly, the expanding understanding of their normal roles suggests that they can be manipulated to promote neural repair in the degenerating and injured adult nervous system.
Collapse
Affiliation(s)
- Peng Yang
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, Louisville, KY 40292, USA
| | | | | |
Collapse
|
58
|
Dityatev A, Frischknecht R, Seidenbecher CI. Extracellular matrix and synaptic functions. Results Probl Cell Differ 2006; 43:69-97. [PMID: 17068968 DOI: 10.1007/400_025] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Comprehensive analysis of neuromuscular junction formation and recent data on synaptogenesis and long-term potentiation in the central nervous system revealed a number of extracellular matrix (ECM) molecules regulating different aspects of synaptic differentiation and function. The emerging mechanisms comprise interactions of ECM components with their cell surface receptors coupled to tyrosine kinase activities (agrin, integrin ligands, and reelin) and interactions with ion channels and transmitter receptors (Narp, tenascin-R and tenascin-C). These interactions may shape synaptic transmission and plasticity of excitatory synapses either via regulation of Ca2+ entry and postsynaptic expression of transmitter receptors or via control of GABAergic inhibition. The ECM molecules, derived from both neurons and glial cells and secreted into the extracellular space in an activity-dependent manner, may also shape synaptic plasticity through setting diffusion constraints for neurotransmitters, trophic factors and ions.
Collapse
Affiliation(s)
- Alexander Dityatev
- Institut für Neurophysiologie und Pathophysiologie, Universitätsklinikum Hamburg-Eppendorf, Germany.
| | | | | |
Collapse
|
59
|
Dityatev A, Schachner M. The extracellular matrix and synapses. Cell Tissue Res 2006; 326:647-54. [PMID: 16767406 DOI: 10.1007/s00441-006-0217-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 04/20/2006] [Indexed: 11/27/2022]
Abstract
Extracellular matrix (ECM) molecules, derived from both neurons and glial cells, are secreted and accumulate in the extracellular space to regulate various aspects of pre- and postsynaptic differentiation, the maturation of synapses, and their plasticity. The emerging mechanisms comprise interactions of agrin, integrin ligands, and reelin, with their cognate cell-surface receptors being coupled to tyrosine kinase activities. These may induce the clustering of postsynaptic receptors and changes in their composition and function. Furthermore, direct interactions of laminins, neuronal pentraxins, and tenascin-R with voltage-gated Ca(2+) channels, alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA), and gamma-aminobutyric acid(B) (GABA(B)) receptors, respectively, shape the organization and function of different subsets of synapses. Some of these mechanisms significantly contribute to the induction of long-term potentiation in excitatory synapses, either by the regulation of Ca(2+) entry via N-methyl-D-aspartate receptors or L-type Ca(2+) channels, or by the control of GABAergic inhibition.
Collapse
Affiliation(s)
- Alexander Dityatev
- Institut für Neurophysiologie und Pathophysiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | | |
Collapse
|
60
|
Ma QL, Lim GP, Harris-White ME, Yang F, Ambegaokar SS, Ubeda OJ, Glabe CG, Teter B, Frautschy SA, Cole GM. Antibodies against beta-amyloid reduce Abeta oligomers, glycogen synthase kinase-3beta activation and tau phosphorylation in vivo and in vitro. J Neurosci Res 2006; 83:374-84. [PMID: 16385556 DOI: 10.1002/jnr.20734] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although active and passive immunization against the beta-amyloid peptide (Abeta) of amyloid plaque-bearing transgenic mice markedly reduces amyloid plaque deposition and improves cognition, the mechanisms of neuroprotection and impact on toxic oligomer species are not understood. We demonstrate that compared to control IgG2b, passive immunization with intracerebroventricular (icv) anti-Abeta (1-15) antibody into the AD HuAPPsw (Tg2576) transgenic mouse model reduced specific oligomeric forms of Abeta, including the dodecamers that correlate with cognitive decline. Interestingly, the reduction of soluble Abeta oligomers, but not insoluble Abeta, significantly correlated with reduced tau phosphorylation by glycogen synthase kinase-3beta (GSK-3beta), a major tau kinase implicated previously in mediating Abeta toxicity. A conformationally-directed antibody against amyloid oligomers (larger than tetramer) also reduced Abeta oligomer-induced activation of GSK3beta and protected human neuronal SH-SY5Y cells from Abeta oligomer-induced neurotoxicity, supporting a role for Abeta oligomers in human tau kinase activation. These data suggest that antibodies that are highly specific for toxic oligomer subspecies may reduce toxicity via reduction of GSK-3beta, which could be an important strategy for Alzheimer's disease (AD) therapeutics.
Collapse
Affiliation(s)
- Qiu-Lan Ma
- Department of Medicine, University of California, Los Angeles, California 91343, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Gui P, Wu X, Ling S, Stotz SC, Winkfein RJ, Wilson E, Davis GE, Braun AP, Zamponi GW, Davis MJ. Integrin Receptor Activation Triggers Converging Regulation of Cav1.2 Calcium Channels by c-Src and Protein Kinase A Pathways. J Biol Chem 2006; 281:14015-25. [PMID: 16554304 DOI: 10.1074/jbc.m600433200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
L-type, voltage-gated Ca2+ channels (CaL) play critical roles in brain and muscle cell excitability. Here we show that currents through heterologously expressed neuronal and smooth muscle CaL channel isoforms are acutely potentiated following alpha5beta1 integrin activation. Only the alpha1C pore-forming channel subunit is critical for this process. Truncation and site-directed mutagenesis strategies reveal that regulation of Cav1.2 by alpha5beta1 integrin requires phosphorylation of alpha1C C-terminal residues Ser1901 and Tyr2122. These sites are known to be phosphorylated by protein kinase A (PKA) and c-Src, respectively, and are conserved between rat neuronal (Cav1.2c) and smooth muscle (Cav1.2b) isoforms. Kinase assays are consistent with phosphorylation of these two residues by PKA and c-Src. Following alpha5beta1 integrin activation, native CaL channels in rat arteriolar smooth muscle exhibit potentiation that is completely blocked by combined PKA and Src inhibition. Our results demonstrate that integrin-ECM interactions are a common mechanism for the acute regulation of CaL channels in brain and muscle. These findings are consistent with the growing recognition of the importance of integrin-channel interactions in cellular responses to injury and the acute control of synaptic and blood vessel function.
Collapse
Affiliation(s)
- Peichun Gui
- Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Shi Y, Ethell IM. Integrins control dendritic spine plasticity in hippocampal neurons through NMDA receptor and Ca2+/calmodulin-dependent protein kinase II-mediated actin reorganization. J Neurosci 2006; 26:1813-22. [PMID: 16467530 PMCID: PMC6793632 DOI: 10.1523/jneurosci.4091-05.2006] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The formation of dendritic spines during development and their structural plasticity in the adult brain are critical aspects of synaptogenesis and synaptic plasticity. Many different factors and proteins have been shown to control dendritic spine development and remodeling (Ethell and Pasquale, 2005). The extracellular matrix (ECM) components and their cell surface receptors, integrins, have been found in the vicinity of synapses and shown to regulate synaptic efficacy and play an important role in long-term potentiation (Bahr et al., 1997; Chavis and Westbrook, 2001; Chan et al., 2003; Lin et al., 2003; Bernard-Trifilo et al., 2005). Although molecular mechanisms by which integrins affect synaptic efficacy have begun to emerge, their role in structural plasticity is poorly understood. Here, we show that integrins are involved in spine remodeling in cultured hippocampal neurons. The treatment of 14 d in vitro hippocampal neurons with arginine-glycine-aspartate (RGD)-containing peptide, an established integrin ligand, induced elongation of existing dendritic spines and promoted formation of new filopodia. These effects were also accompanied by integrin-dependent actin reorganization and synapse remodeling, which were partially inhibited by function-blocking antibodies against beta1 and beta3 integrins. This actin reorganization was blocked with the NMDA receptor (NMDAR) antagonist MK801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate]. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93 (N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide) also suppressed RGD-induced actin reorganization and synapse remodeling. Our findings show that integrins control ECM-mediated spine remodeling in hippocampal neurons through NMDAR/CaMKII-dependent actin reorganization.
Collapse
|
63
|
Nagy V, Bozdagi O, Matynia A, Balcerzyk M, Okulski P, Dzwonek J, Costa RM, Silva AJ, Kaczmarek L, Huntley GW. Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. J Neurosci 2006; 26:1923-34. [PMID: 16481424 PMCID: PMC4428329 DOI: 10.1523/jneurosci.4359-05.2006] [Citation(s) in RCA: 385] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are extracellular proteases that have well recognized roles in cell signaling and remodeling in many tissues. In the brain, their activation and function are customarily associated with injury or pathology. Here, we demonstrate a novel role for MMP-9 in hippocampal synaptic physiology, plasticity, and memory. MMP-9 protein levels and proteolytic activity are rapidly increased by stimuli that induce late-phase long-term potentiation (L-LTP) in area CA1. Such regulation requires NMDA receptors and protein synthesis. Blockade of MMP-9 pharmacologically prevents induction of L-LTP selectively; MMP-9 plays no role in, nor is regulated during, other forms of short-term synaptic potentiation or long-lasting synaptic depression. Similarly, in slices from MMP-9 null-mutant mice, hippocampal LTP, but not long-term depression, is impaired in magnitude and duration; adding recombinant active MMP-9 to null-mutant slices restores the magnitude and duration of LTP to wild-type levels. Activated MMP-9 localizes in part to synapses and modulates hippocampal synaptic physiology through integrin receptors, because integrin function-blocking reagents prevent an MMP-9-mediated potentiation of synaptic signal strength. The fundamental importance of MMP-9 function in modulating hippocampal synaptic physiology and plasticity is underscored by behavioral impairments in hippocampal-dependent memory displayed by MMP-9 null-mutant mice. Together, these data reveal new functions for MMPs in synaptic and behavioral plasticity.
Collapse
|
64
|
Bauer R, Humphries M, Fässler R, Winklmeier A, Craig SE, Bosserhoff AK. Regulation of Integrin Activity by MIA. J Biol Chem 2006; 281:11669-77. [PMID: 16517605 DOI: 10.1074/jbc.m511367200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MIA (melanoma inhibitory activity) has been identified as a small protein secreted from malignant melanoma cells, which interacts with extracellular matrix proteins including fibronectin. Here, we show that MIA negatively regulates the activity of the mitogen-activated protein kinase pathway in malignant melanoma. Using far Western blotting and co-immunoprecipitation we searched for MIA-binding cell surface proteins. We found that MIA interacts with integrin alpha4beta1 and alpha5beta1, leading to down-regulation of integrin activity and reduction of mitogen-activated protein kinase signaling. These findings also suggest that MIA may play a role in tumor progression and the spread of malignant melanomas via mediating detachment of cells from extracellular matrix molecules by modulating integrin activity. Inhibiting MIA functions in vivo may therefore provide a novel therapeutic strategy for metastatic melanoma disease.
Collapse
Affiliation(s)
- Richard Bauer
- University of Regensburg Medical School, Institute of Pathology, D-93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
65
|
Chan CS, Weeber EJ, Zong L, Fuchs E, Sweatt JD, Davis RL. Beta 1-integrins are required for hippocampal AMPA receptor-dependent synaptic transmission, synaptic plasticity, and working memory. J Neurosci 2006; 26:223-32. [PMID: 16399691 PMCID: PMC2408376 DOI: 10.1523/jneurosci.4110-05.2006] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Integrins comprise a large family of cell adhesion receptors that mediate diverse biological events through cell-cell and cell-extracellular matrix interactions. Recent studies have shown that several integrins are localized to synapses with suggested roles in synaptic plasticity and memory formation. We generated a postnatal forebrain and excitatory neuron-specific knock-out of beta1-integrin in the mouse. Electrophysiological studies demonstrated that these mutants have impaired synaptic transmission through AMPA receptors and diminished NMDA receptor-dependent long-term potentiation. Despite the impairment in hippocampal synaptic transmission, the mutants displayed normal hippocampal-dependent spatial and contextual memory but were impaired in a hippocampal-dependent, nonmatching-to-place working memory task. These phenotypes parallel those observed in animals carrying knock-outs of the GluR1 (glutamate receptor subunit 1) subunit of the AMPA receptor. These observations suggest a new function of beta1-integrins as regulators of synaptic glutamate receptor function and working memory.
Collapse
Affiliation(s)
- Chi-Shing Chan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
66
|
Kramár EA, Lin B, Rex CS, Gall CM, Lynch G. Integrin-driven actin polymerization consolidates long-term potentiation. Proc Natl Acad Sci U S A 2006; 103:5579-84. [PMID: 16567651 PMCID: PMC1459396 DOI: 10.1073/pnas.0601354103] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long-term potentiation (LTP), like memory, becomes progressively more resistant to disruption with time after its formation. Here we show that threshold conditions for inducing LTP cause a rapid, long-lasting increase in polymerized filamentous actin in dendritic spines of adult hippocampus. Two independent manipulations that reverse LTP disrupted this effect when applied shortly after induction but not 30 min later. Function-blocking antibodies to beta1 family integrins selectively eliminated both actin polymerization and stabilization of LTP. We propose that the initial stages of consolidation involve integrin-driven events common to cells engaged in activities that require rapid morphological changes.
Collapse
Affiliation(s)
| | - Bin Lin
- Departments of *Psychiatry and Human Behavior
| | | | - Christine M. Gall
- Anatomy and Neurobiology, and
- Neurobiology and Behavior, University of California, Irvine, CA 92697
- To whom correspondence should be addressed. E-mail:
| | - Gary Lynch
- Departments of *Psychiatry and Human Behavior
| |
Collapse
|
67
|
Sinagra M, Verrier D, Frankova D, Korwek KM, Blahos J, Weeber EJ, Manzoni OJ, Chavis P. Reelin, very-low-density lipoprotein receptor, and apolipoprotein E receptor 2 control somatic NMDA receptor composition during hippocampal maturation in vitro. J Neurosci 2006; 25:6127-36. [PMID: 15987942 PMCID: PMC6725049 DOI: 10.1523/jneurosci.1757-05.2005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reelin is a secreted protein that regulates brain layer formation during embryonic development. Reelin binds several receptors, including two members of the low-density lipoprotein (LDL) receptor family, the apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR). Despite the high level of expression of Reelin and ApoER2 in the postnatal brain, their functions in the adult CNS remain elusive. Here, using electrophysiological, immunocytochemical, and biochemical approaches in cultured postnatal hippocampal neurons, we show that Reelin controls the change in subunit composition of somatic NMDA glutamate receptors (NMDARs) during maturation. We found that maturation is characterized by the gradual decrease of the participation of NR1/2B receptors to whole-cell NMDAR-mediated currents. This maturational change was mirrored by a timely correlated increase of both Reelin immunoreactivity in neuronal somata and the amount of secreted Reelin. Chronic blockade of the function of Reelin with antisense oligonucleotides or the function-blocking antibody CR-50 prevented the decrease of NR1/2B-mediated whole-cell currents. Conversely, exogenously added recombinant Reelin accelerated the maturational changes in NMDA-evoked currents. The maturation-induced change in NMDAR subunits also was blocked by chronic treatment with an inhibitor of the Src kinase signaling pathway or an antagonist of the LDL receptors, but not by inhibitors of another class of Reelin receptor belonging to the integrin family. Consistent with these results, immunocytochemistry revealed that NR1-expressing neurons also expressed ApoER2 and VLDLR. These data reveal a new role for Reelin and LDL receptors and reinforce the idea of a prominent role of extracellular matrix proteins in postnatal maturation.
Collapse
Affiliation(s)
- Mélanie Sinagra
- Institut F. Magendie des Neurosciences, 33077 Bordeaux Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Lin B, Kramár EA, Bi X, Brucher FA, Gall CM, Lynch G. Theta stimulation polymerizes actin in dendritic spines of hippocampus. J Neurosci 2005; 25:2062-9. [PMID: 15728846 PMCID: PMC6726058 DOI: 10.1523/jneurosci.4283-04.2005] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It has been proposed that the endurance of long-term potentiation (LTP) depends on structural changes entailing reorganization of the spine actin cytoskeleton. The present study used a new technique involving intracellular and extracellular application of rhodamine-phalloidin to conventional hippocampal slices to test whether induction of LTP by naturalistic patterns of afferent activity selectively increases actin polymerization in juvenile to young adult spines. Rhodamine-phalloidin, which selectively binds to polymerized actin, was detected in perikarya and proximal dendrites of CA1 pyramidal cells that received low-frequency afferent activity but was essentially absent in spines and fine dendritic processes. Theta pattern stimulation induced LTP and caused a large (threefold), reliable increase in labeled spines and spine-like puncta in the proximal dendritic zone containing potentiated synapses. The spines frequently occurred in the absence of labeling to other structures but were also found in association with fluorescent dendritic processes. These effects were replicated (>10-fold increase in labeled spines) using extracellular applications of rhodamine-phalloidin. Increases in labeling appeared within 2 min, were completely blocked by treatments that prevent LTP induction, and occurred in slices prepared from young adult rats. These results indicate that near-threshold conditions for inducing stable potentiation cause the rapid polymerization of actin in mature spines and suggest that the effect is both sufficiently discrete to satisfy the synapse-specificity rule of LTP as well as rapid enough to participate in the initial stages of LTP consolidation.
Collapse
Affiliation(s)
- Bin Lin
- Department of Psychiatry and Human Behavior, University of California, Irvine, California 92617-1695, USA
| | | | | | | | | | | |
Collapse
|
69
|
Abstract
Fragile X syndrome (FXS) is caused by the transcriptional silencing of the Fmr1 gene, which encodes a protein (FMRP) that can act as a translational suppressor in dendrites, and is characterized by a preponderance of abnormally long, thin and tortuous dendritic spines. According to a current theory of FXS, the loss of FMRP expression leads to an exaggeration of translation responses linked to group I metabotropic glutamate receptors. Such responses are involved in the consolidation of a form of long-term depression that is enhanced in Fmr1 knockout mice and in the elongation of dendritic spines, resembling synaptic phenotypes over-represented in fragile X brain. These observations place fragile X research at the heart of a long-standing issue in neuroscience. The consolidation of memory, and several distinct forms of synaptic plasticity considered to be substrates of memory, requires mRNA translation and is associated with changes in spine morphology. A recent convergence of research on FXS and on the involvement of translation in various forms of synaptic plasticity has been very informative on this issue and on mechanisms underlying FXS. Evidence suggests a general relationship in which the receptors that induce distinct forms of efficacy change differentially regulate translation to produce unique spine shapes involved in their consolidation. We discuss several potential mechanisms for differential translation and the notion that FXS represents an exaggeration of one 'channel' in a set of translation-dependent consolidation responses.
Collapse
Affiliation(s)
- P W Vanderklish
- Department of Neurobiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
70
|
Gibson RM, Craig SE, Heenan L, Tournier C, Humphries MJ. Activation of integrin alpha5beta1 delays apoptosis of Ntera2 neuronal cells. Mol Cell Neurosci 2005; 28:588-98. [PMID: 15737747 DOI: 10.1016/j.mcn.2004.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 10/28/2004] [Accepted: 11/03/2004] [Indexed: 10/25/2022] Open
Abstract
Integrins are dynamic membrane proteins that mediate adhesion of cells to the extracellular matrix. Integrins initiate signal transduction, alone and cooperatively with growth factor receptors, and regulate many aspects of cell behavior. We report here that alpha5beta1-mediated adhesion of Ntera2 neuronal cells to fibronectin decreased apoptosis in response to serum withdrawal. Adhesion induced phosphorylation of FAK, and strongly increased the AKT phosphorylation induced by growth factors, demonstrating for the first time in neuronal cells that integrin-mediated adhesion and growth factors cooperate to regulate AKT activity. Integrins exist on cells in different activation states, and cell survival on fibronectin was enhanced by the antibody 12G10, that modulates the conformation of beta1 in favor of its active form. The antibody 12G10 specifically delayed loss of phosphorylation of AKT on serine 473, and GSK-3beta on serine 9, induced by serum withdrawal, suggesting that these kinases are critical sensors of integrin activation on neuronal cells.
Collapse
Affiliation(s)
- Rosemary M Gibson
- Faculty of Life Sciences, University of Manchester, 1.124 Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| | | | | | | | | |
Collapse
|
71
|
Bernard-Trifilo JA, Kramár EA, Torp R, Lin CY, Pineda EA, Lynch G, Gall CM. Integrin signaling cascades are operational in adult hippocampal synapses and modulate NMDA receptor physiology. J Neurochem 2005; 93:834-49. [PMID: 15857387 DOI: 10.1111/j.1471-4159.2005.03062.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Integrin class adhesion proteins are concentrated at adult brain synapses. Whether synaptic integrins engage kinase signaling cascades has not been determined, but is a question of importance to ideas about integrin involvement in functional synaptic plasticity. Accordingly, synaptoneurosomes from adult rat brain were used to test if matrix ligands activate integrin-associated tyrosine kinases, and if integrin signaling targets include NMDA-class glutamate neurotransmitter receptors. The integrin ligand peptide Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP) induced rapid (within 5 min) and robust increases in tyrosine phosphorylation of focal adhesion kinase, proline-rich tyrosine kinase 2 and Src family kinases. Increases were similarly induced by the native ligand fibronectin, blocked with neutralizing antibodies to beta1 integrin, and not obtained with control peptides, indicating that kinase activation was integrin-mediated. Both GRGDSP and fibronectin caused rapid Src kinase-dependent increases in tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B in synaptoneurosomes and acute hippocampal slices. Tests of the physiological significance of the latter result showed that ligand treatment caused a rapid and beta1 integrin-dependent increase in NMDA receptor-mediated synaptic responses. These results provide the first evidence that, in adult brain, synaptic integrins activate local kinase cascades with potent effects on the operation of nearby neurotransmitter receptors implicated in synaptic plasticity.
Collapse
|
72
|
Lin CY, Lynch G, Gall CM. AMPA receptor stimulation increases alpha5beta1 integrin surface expression, adhesive function and signaling. J Neurochem 2005; 94:531-46. [PMID: 16000124 PMCID: PMC2366053 DOI: 10.1111/j.1471-4159.2005.03203.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Integrin proteins are critical for stabilization of hippocampal long-term potentiation but the mechanisms by which integrin activities are involved in synaptic transmission are not known. The present study tested whether activation of alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionate (AMPA) class glutamate receptors increases surface expression of alpha5beta1 integrin implicated in synaptic potentiation. Surface protein biotinylation assays demonstrated that AMPA treatment of COS7 cells expressing GluR1 homomeric AMPA receptors increased membrane insertion and steady-state surface levels of alpha5 and beta1 subunits. Treated cells exhibited increased adhesion to fibronectin- and anti-alpha5-coated substrates and tyrosine kinase signaling elicited by fibronectin-substrate adhesion, as expected if new surface receptors are functional. Increased surface expression did not occur in calcium-free medium and was blocked by the protein kinase C inhibitor chelerythrine chloride and the exocytosis inhibitor brefeldin A. AMPA treatment similarly increased alpha5 and beta1 surface expression in dissociated neurons and cultured hippocampal slices. In both neuronal preparations AMPA-induced integrin trafficking was blocked by combined antagonism of NMDA receptor and L-type voltage-sensitive calcium channel activities but was not induced by NMDA treatment alone. These results provide the first evidence that glutamate receptor activation increases integrin surface expression and function, and suggest a novel mechanism by which synaptic activity can engage a volley of new integrin signaling in coordination with, and probably involved in, stabilization of synaptic potentiation.
Collapse
Affiliation(s)
- Ching-Yi Lin
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-4292, USA
| | | | | |
Collapse
|
73
|
Ethell IM, Pasquale EB. Molecular mechanisms of dendritic spine development and remodeling. Prog Neurobiol 2005; 75:161-205. [PMID: 15882774 DOI: 10.1016/j.pneurobio.2005.02.003] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 01/28/2005] [Accepted: 02/22/2005] [Indexed: 12/19/2022]
Abstract
Dendritic spines are small protrusions that cover the surface of dendrites and bear the postsynaptic component of excitatory synapses. Having an enlarged head connected to the dendrite by a narrow neck, dendritic spines provide a postsynaptic biochemical compartment that separates the synaptic space from the dendritic shaft and allows each spine to function as a partially independent unit. Spines develop around the time of synaptogenesis and are dynamic structures that continue to undergo remodeling over time. Changes in spine morphology and density influence the properties of neural circuits. Our knowledge of the structure and function of dendritic spines has progressed significantly since their discovery over a century ago, but many uncertainties still remain. For example, several different models have been put forth outlining the sequence of events that lead to the genesis of a spine. Although spines are small and apparently simple organelles with a cytoskeleton mainly composed of actin filaments, regulation of their morphology and physiology appears to be quite sophisticated. A multitude of molecules have been implicated in dendritic spine development and remodeling, suggesting that intricate networks of interconnected signaling pathways converge to regulate actin dynamics in spines. This complexity is not surprising, given the likely importance of dendritic spines in higher brain functions. In this review, we discuss the molecules that are currently known to mediate the exquisite sensitivity of spines to perturbations in their environment and we outline how these molecules interface with each other to mediate cascades of signals flowing from the spine surface to the actin cytoskeleton.
Collapse
Affiliation(s)
- Iryna M Ethell
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA 92521, USA
| | | |
Collapse
|
74
|
Gall CM, Lynch G. Integrins, synaptic plasticity and epileptogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 548:12-33. [PMID: 15250583 DOI: 10.1007/978-1-4757-6376-8_2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A number of processes are thought to contribute to the development of epilepsy including enduring increases in excitatory synaptic transmission, changes in GABAergic inhibition, neuronal cell death and the development of aberrant innervation patterns in part arising from reactive axonal growth. Recent findings indicate that adhesion chemistries and, most particularly, activities of integrin class adhesion receptors play roles in each of these processes and thereby are likely to contribute significantly to the cell biology underlying epileptogenesis. As reviewed in this chapter, studies of long-term potentiation have shown that integrins are important for stabilizing activity-induced increases in synaptic strength and excitability. Other work has demonstrated that seizures, and in some instances subseizure neuronal activity, modulate the expression of integrins and their matrix ligands and the activities of proteases which regulate them both. These same adhesion proteins and proteases play critical roles in axonal growth and synaptogenesis including processes induced by seizure in adult brain. Together, these findings indicate that seizures activate integrin signaling and induce a turnover in adhesive contacts and that both processes contribute to lasting changes in circuit and synaptic function underlying epileptogenesis.
Collapse
Affiliation(s)
- Christine M Gall
- Department of Anatomy and Neurobiology, University of California at Irvine, USA
| | | |
Collapse
|
75
|
Abstract
The establishment of memory requires coordinated signaling between presynaptic and postsynaptic terminals in the CNS. The integrins make up a large family of cell adhesion receptors that are known to mediate bidirectional signaling between cells or between cells and their external environment. We show here that many different integrins, including alpha3 and alpha5, are expressed broadly in the adult mouse brain and are associated with synapses. Mice with genetically reduced expression of alpha3 integrin fail to maintain long-term potentiation (LTP) generated in hippocampal CA1 neurons. Mice with reduced expression of the alpha3 and alpha5 integrins exhibit a defect in paired-pulse facilitation. Mice with reduced expression of alpha3, alpha5, and alpha8 are defective in hippocampal LTP and spatial memory in the water maze but have normal fear conditioning. These results demonstrate that several different integrins are involved in physiological plasticity and provide the first evidence of their requirement for behavioral plasticity in vertebrates.
Collapse
|
76
|
Gall CM, Pinkstaff JK, Lauterborn JC, Xie Y, Lynch G. Integrins regulate neuronal neurotrophin gene expression through effects on voltage-sensitive calcium channels. Neuroscience 2003; 118:925-40. [PMID: 12732238 DOI: 10.1016/s0306-4522(02)00990-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Integrin adhesion receptors regulate gene expression during growth and differentiation in various cell types. Recent work, implicating integrins in functional synaptic plasticity, suggest they may have similar activities in adult brain. The present study tested if integrins binding the arginine-glycine-aspartate (RGD) matrix sequence regulate neurotrophin and neurotrophin receptor gene expression in cultured hippocampal slices. The soluble RGD-containing peptide glycine-arginine-glycine-aspartate-serine-proline (GRGDSP) increased neurotrophin mRNA levels in transcript- and subfield-specific fashions. Integrin ligand effects were greatest for brain-derived neurotrophic factor transcripts I and II and barely detectable for transcript III. In accordance with increased nerve growth factor mRNA levels, GRGDSP increased c-fos expression as well. In contrast, growth-associated protein-43, amyloid precursor protein and fibroblast growth factor-1 mRNAs were not elevated. Ligand effects on brain-derived neurotrophic factor transcript II and c-fos mRNA did not depend on the integrity of the actin cytoskeleton, neuronal activity, or various signaling pathways but were blocked by L-type voltage-sensitive calcium-channel blockers. These results indicate that in mature hippocampal neurons integrin engagement regulates expression of a subset of growth-related genes at least in part through effects on calcium influx. Accordingly, these synaptic adhesion receptors may play the same role in maintaining an adult, differentiated state in brain as they do in other tissues and changes in integrin activation and/or engagement may contribute to dynamic changes in neurotrophin expression and to neuronal calcium signaling.
Collapse
MESH Headings
- Anesthetics, Local/pharmacology
- Animals
- Animals, Newborn
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channels/physiology
- Carbazoles/pharmacology
- Cytochalasin D/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Enzyme Inhibitors/pharmacology
- Exons/drug effects
- Exons/genetics
- Gene Expression Regulation
- Genes, fos/drug effects
- Glycoproteins/pharmacology
- Hippocampus/cytology
- Hippocampus/drug effects
- Hippocampus/metabolism
- Immunohistochemistry/methods
- In Situ Hybridization/methods
- In Vitro Techniques
- Indole Alkaloids
- Integrins/physiology
- Neurotrophin 3/metabolism
- Nifedipine/pharmacology
- Nimodipine/pharmacology
- Nucleic Acid Synthesis Inhibitors/pharmacology
- Oligopeptides/classification
- Oligopeptides/pharmacology
- RNA Precursors/metabolism
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptor, trkB/genetics
- Receptor, trkB/metabolism
- Receptor, trkC/genetics
- Receptor, trkC/metabolism
- Sesterterpenes
- Terpenes/pharmacology
- Tetrodotoxin/pharmacology
- Time Factors
- Transcription, Genetic/drug effects
- Trifluoperazine/analogs & derivatives
- Trifluoperazine/pharmacology
Collapse
Affiliation(s)
- C M Gall
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA 92697-4292, USA.
| | | | | | | | | |
Collapse
|
77
|
Kramár EA, Lynch G. Developmental and regional differences in the consolidation of long-term potentiation. Neuroscience 2003; 118:387-98. [PMID: 12699775 DOI: 10.1016/s0306-4522(02)00916-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The alpha5beta1 integrin is present in high concentrations in the apical dendrites of pyramidal neurons in adult rats but is virtually absent in the basal dendrites. Moreover, alpha5beta1 does not appear in apical dendritic branches until the third post-natal week. Given that integrins contribute to the consolidation of synaptic plasticity, these results raise the possibility of developmental and regional differences in the stability of long-term potentiation (LTP). The present study tested this point using a LTP reversal paradigm in field CA1 of hippocampal slices. In accord with earlier reports, low-frequency afferent stimulation (5 Hz) introduced 30 s after theta burst stimulation (TBS) completely reversed LTP but was ineffective 30 min and 60 min later in slices from adult rats. The same low-frequency trains caused a partial reversal of LTP when applied 30 and 60 min post-TBS in slices from 21-day-old rats and a complete reversal at all time points in slices from 10-day-old rats. LTP in the basal dendrites of adult rats did not fully consolidate; i.e. potentiation was partially reversed by low-frequency stimulation even after delays of 30 or 60 min. Moreover, spaced (10 min) applications of 5- Hz pulses beginning at 30 min post-TBS completely erased LTP. The reversal effect in both apical and basal dendrites was blocked by N-methyl-D-aspartic acid receptor antagonists but an integrin antagonist had differential effects across the two dendritic domains. These results constitute evidence that the stability of LTP increases with age in the apical dendrites but remains incomplete even in adulthood in the basal dendrites. The possibilities that the developmental and regional variations in LTP consolidation are correlated with integrin expression and linked to different types of memory processing are discussed.
Collapse
Affiliation(s)
- E A Kramár
- Department of Psychiatry and Human Behavior, 101 Theory Drive, #250 Research Park, University of California, Irvine, CA 92612-1695, USA.
| | | |
Collapse
|
78
|
Affiliation(s)
- Alexander Dityatev
- Zentrum für Molekulare Neurobiologie, University of Hamburg, Martinistr. 52, 20246 Hamburg, Germany.
| | | |
Collapse
|
79
|
Lin B, Arai AC, Lynch G, Gall CM. Integrins regulate NMDA receptor-mediated synaptic currents. J Neurophysiol 2003; 89:2874-8. [PMID: 12740418 DOI: 10.1152/jn.00783.2002] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synapses contain high concentrations of integrins, adhesion receptors known to influence the operation of neighboring transmembrane proteins. Evidence that integrins are important for consolidation of long-term potentiation suggests that these adhesion proteins may modulate activities of synaptic glutamate receptors. The present study provides a first test of the possibility that integrins modulate synaptic N-methyl-d-aspartate (NMDA)-type glutamate receptor activities. Excitatory postsynaptic currents (EPSCs) were recorded with whole cell clamp from hippocampal slices in which AMPA-type glutamate receptors and GABA(A) receptors were pharmacologically blocked. Microperfusion of the peptide integrin ligand gly-arg-gly-asp-ser-pro (GRGDSP) caused an approximately twofold increase in the amplitude and duration of NMDA receptor-gated synaptic currents. Control peptides had no effect. Paired-pulse facilitation was unchanged, indicating that the ligand did not modify neurotransmitter release probabilities. Infusion of the Src kinase antagonist PP2 but not the control drug 4-amino-7-phenylpyrazolo[3,4-d]pyrimidine eliminated the enhancing effect of GRGDSP. Integrins regulate Src kinases that are known to phosphorylate NMDA receptors. It is concluded that integrins act through this route to exert potent modulatory effects on the operation of NMDA receptors.
Collapse
Affiliation(s)
- Bin Lin
- Department of Psychiatry and Human Behavior, University of California, Irvine 92612-1695, USA.
| | | | | | | |
Collapse
|
80
|
Renden RB, Broadie K. Mutation and activation of Galpha s similarly alters pre- and postsynaptic mechanisms modulating neurotransmission. J Neurophysiol 2003; 89:2620-38. [PMID: 12611964 DOI: 10.1152/jn.01072.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Constitutive activation of Galphas in the Drosophila brain abolishes associative learning, a behavioral disruption far worse than that observed in any single cAMP metabolic mutant, suggesting that Galphas is essential for synaptic plasticity. The intent of this study was to examine the role of Galphas in regulating synaptic function by targeting constitutively active Galphas to either pre- or postsynaptic cells and by examining loss-of-function Galphas mutants (dgs) at the glutamatergic neuromuscular junction (NMJ) model synapse. Surprisingly, both loss of Galphas and activation of Galphas in either pre- or postsynaptic compartment similarly increased basal neurotransmission, decreased short-term plasticity (facilitation and augmentation), and abolished posttetanic potentiation. Elevated synaptic function was specific to an evoked neurotransmission pathway because both spontaneous synaptic vesicle fusion frequency and amplitude were unaltered in all mutants. In the postsynaptic cell, the glutamate receptor field was regulated by Galphas activity; based on immunocytochemical studies, GluRIIA receptor subunits were dramatically downregulated (>75% decrease) in both loss and constitutive active Galphas genotypes. In the presynaptic cell, the synaptic vesicle cycle was regulated by Galphas activity; based on FM1-43 dye imaging studies, evoked vesicle fusion rate was increased in both loss and constitutively active Galphas genotypes. An important conclusion of this study is that both increased and decreased Galphas activity very similarly alters pre- and postsynaptic mechanisms. A second important conclusion is that Galphas activity induces transynaptic signaling; targeted Galphas activation in the presynapse downregulates postsynaptic GluRIIA receptors, whereas targeted Galphas activation in the postsynapse enhances presynaptic vesicle cycling.
Collapse
Affiliation(s)
- Robert B Renden
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City 84112-0840, USA
| | | |
Collapse
|
81
|
Becker T, McLane MA, Becker CG. Integrin antagonists affect growth and pathfinding of ventral motor nerves in the trunk of embryonic zebrafish. Mol Cell Neurosci 2003; 23:54-68. [PMID: 12799137 DOI: 10.1016/s1044-7431(03)00018-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Integrins are thought to be important receptors for extracellular matrix (ECM) components on growing axons. Ventral motor axons in the trunk of embryonic zebrafish grow in a midsegmental pathway through an environment rich in ECM components. To test the role of integrins in this process, integrin antagonists (the disintegrin echistatin in native and recombinant form, as well as the Arg-Gly-Asp-Ser peptide) were injected into embryos just prior to axon outgrowth at 14-16 h postfertilization (hpf). All integrin antagonists affected growth of ventral motor nerves in a similar way and native echistatin was most effective. At 24 hpf, when only the three primary motor axons per trunk hemisegment had grown out, 80% (16 of 20) of the embryos analyzed had abnormal motor nerves after injection of native echistatin, corresponding to 19% (91 of 480) of all nerves. At 33 hpf, when secondary motor axons were present in the pathway, 100% of the embryos were affected (24 of 24), with 20% of all nerves analyzed (196 of 960) being abnormal. Phenotypes comprised abnormal branching (64% of all abnormal nerves) and truncations (36% of all abnormal nerves) of ventral motor nerves at 24 hpf and mostly branching of the nerves at 33 hpf (94% of all abnormal nerves). Caudal branches were at least twice as frequent as rostral branches. Surrounding trunk tissue and a number of other axon fascicles were apparently not affected by the injections. Thus integrin function contributes to both growth and pathfinding of axons in ventral motor nerves in the trunk of zebrafish in vivo.
Collapse
Affiliation(s)
- Thomas Becker
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Martinistrasse 52, Germany.
| | | | | |
Collapse
|
82
|
Dong E, Caruncho H, Liu WS, Smalheiser NR, Grayson DR, Costa E, Guidotti A. A reelin-integrin receptor interaction regulates Arc mRNA translation in synaptoneurosomes. Proc Natl Acad Sci U S A 2003; 100:5479-84. [PMID: 12707415 PMCID: PMC154370 DOI: 10.1073/pnas.1031602100] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reelin is synthesized and secreted into extracellular matrix by cortical gamma-aminobutyric acid (GABA)ergic interneurons and binds with high affinity to the extracellular domain of integrin receptors expressed in dendritic shaft and spine postsynaptic densities (DSPSD) of pyramidal neurons. In heterozygous reeler mice, reelin bound to DSPSD, and the expression of Arc (activity-regulated cytoskeletal protein) is lower than in wild-type mice. We studied the effect of reelin on Arc and total protein synthesis in synaptoneurosomes (SNSs) prepared from mouse neocortex. Recombinant full-length mouse reelin displaces the high affinity (K(D) = 60 fM) binding of [(125)I]echistatin (a competitive integrin receptor antagonist) to integrin receptors with a K(i) of 22 pM and with a Hill slope close to 1. Echistatin (50-100 nM) competitively antagonizes and abates reelin binding. The addition of reelin (2-40 pM) to SNSs enhances the incorporation of [(35)S]methionine into Arc and other rapidly translated proteins in a concentration-dependent manner. This incorporation is virtually abolished by 50-100 nM echistatin or by 5-10 nM rapamycin, a blocker of the mammalian target of rapamycin kinase. We conclude that reelin binds with high affinity to integrin receptors expressed in SNSs and thereby activates Arc protein synthesis.
Collapse
Affiliation(s)
- Erbo Dong
- Psychiatric Institute, Department of Psychiatry, University of Illinois, College of Medicine, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
LeBaron RG, Hernandez RV, Orfila JE, Martinez JL. An integrin binding peptide reduces rat CA1 hippocampal long-term potentiation during the first few minutes following theta burst stimulation. Neurosci Lett 2003; 339:199-202. [PMID: 12633887 DOI: 10.1016/s0304-3940(03)00037-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The integrin binding peptide GRGDSP was tested on Schaffer to CA1 (Sch-CA1) long-term potentiation (LTP) in the rat hippocampal slice. Experiments in which GRGDSP was bath applied for 50 min, beginning 10 min before theta burst stimulation (TBS), reduced LTP of the field excitatory post synaptic potential in a concentration dependent manner, with 250 microM producing a significant decrease. However, LTP was not affected when 250 microM GRGDSP was applied 30 min post-TBS, nor when applied as soon as 5 min post-TBS. When 250 microM GRGDSP was applied for only 10 min pre- to 5 min post-TBS, this brief application was sufficient in reducing LTP similar to the extended 50 min application. We conclude that RGD-binding integrins involved in LTP are only momentarily responsive to peptide-mediated antagonism in the first few minutes following TBS.
Collapse
Affiliation(s)
- Richard G LeBaron
- Department of Biology, The University of Texas at San Antonio, 6900 North Loop 1604 West, San Antonio, TX 78249, USA.
| | | | | | | |
Collapse
|
84
|
Kramár EA, Bernard JA, Gall CM, Lynch G. Integrins modulate fast excitatory transmission at hippocampal synapses. J Biol Chem 2003; 278:10722-30. [PMID: 12524441 DOI: 10.1074/jbc.m210225200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The present study provides the first evidence that adhesion receptors belonging to the integrin family modulate excitatory transmission in the adult rat brain. Infusion of an integrin ligand (the peptide GRGDSP) into rat hippocampal slices reversibly increased the slope and amplitude of excitatory postsynaptic potentials. This effect was not accompanied by changes in paired pulse facilitation, a test for perturbations to transmitter release, or affected by suppression of inhibitory responses, suggesting by exclusion that alterations to alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-type glutamate receptors cause the enhanced responses. A mixture of function-blocking antibodies to integrin subunits alpha(3), alpha(5), and alpha(v) blocked ligand effects on synaptic responses. The ligand-induced increases were (i) blocked by inhibitors of Src tyrosine kinase, antagonists of N-methyl-d-aspartate receptors, and inhibitors of calcium calmodulin-dependent protein kinase II and (ii) accompanied by phosphorylation of both the Thr(286) site on calmodulin-dependent protein kinase II and the Ser(831) site on the GluR1 subunit of the AMPA receptor. N-Methyl-d-aspartate receptor antagonists blocked the latter two phosphorylation events, but Src kinase inhibitors did not. These results point to the conclusion that synaptic integrins regulate glutamatergic transmission and suggest that they do this by activating two signaling pathways directed at AMPA receptors.
Collapse
Affiliation(s)
- Enikö A Kramár
- Department of Psychiatry and Human Behavior, University of California, Irvine 92612-1695, USA.
| | | | | | | |
Collapse
|
85
|
Gary DS, Milhavet O, Camandola S, Mattson MP. Essential role for integrin linked kinase in Akt-mediated integrin survival signaling in hippocampal neurons. J Neurochem 2003; 84:878-90. [PMID: 12562530 DOI: 10.1046/j.1471-4159.2003.01579.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Activation of integrin receptors in neurons can promote cell survival and synaptic plasticity, but the underlying signal transduction pathway(s) is unknown. We report that integrin signaling prevents apoptosis of embryonic hippocampal neurons by a mechanism involving integrin-linked kinase (ILK) that activates Akt kinase. Activation of integrins using a peptide containing the amino acid sequence EIKLLIS derived from the alpha chain of laminin protected hippocampal neurons from apoptosis induced by glutamate or staurosporine, and increased Akt activity in a beta1 integrin-dependent manner. Transfection of neurons with a plasmid encoding dominant negative Akt blocked the protective effect of the integrin-activating peptide, as did a chemical inhibitor of Akt. Although inhibitors of phosphoinositide-3 (PI3) kinase blocked the protective effect of the peptide, we found no increase in PI3 kinase activity following integrin stimulation suggesting that PI3 kinase was necessary for Akt activity but was not sufficient for the increase in Akt activity following integrin activation. Instead, we show a requirement for ILK in integrin receptor-induced Akt activation. ILK was activated following integrin stimulation and dominant negative ILK blocked integrin-mediated Akt activation and cell survival. Activation of ILK and Akt were also required for neuroprotection by substrate-associated laminin. These results establish a novel pathway that signals cell survival in neurons in response to integrin receptor activation.
Collapse
Affiliation(s)
- Devin S Gary
- Laboratory of Neurosciences, National Institute on Aging, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
86
|
Martin SJ, Morris RGM. New life in an old idea: the synaptic plasticity and memory hypothesis revisited. Hippocampus 2003; 12:609-36. [PMID: 12440577 DOI: 10.1002/hipo.10107] [Citation(s) in RCA: 293] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The notion that changes in synaptic efficacy underlie learning and memory processes is now widely accepted, although definitive proof of the synaptic plasticity and memory hypothesis is still lacking. This article reviews recent evidence relevant to the hypothesis, with particular emphasis on studies of experience-dependent plasticity in the neocortex and hippocampus. In our view, there is now compelling evidence that changes in synaptic strength occur as a consequence of certain forms of learning. A major challenge will be to determine whether such changes constitute the memory trace itself or play a less specific supporting role in the information processing that accompanies memory formation.
Collapse
|
87
|
Kaczmarek L, Lapinska-Dzwonek J, Szymczak S. Matrix metalloproteinases in the adult brain physiology: a link between c-Fos, AP-1 and remodeling of neuronal connections? EMBO J 2002; 21:6643-8. [PMID: 12485985 PMCID: PMC139096 DOI: 10.1093/emboj/cdf676] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2002] [Revised: 08/23/2002] [Accepted: 10/24/2002] [Indexed: 11/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs), together with their endogenous inhibitors (TIMPs) form an enzymatic system that plays an important role in a variety of physiological and pathological conditions. These proteins are also expressed in the brain, especially under pathological conditions, in which glia as well as invading inflammatory cells provide the major source of the MMP activity. Surprisingly little is known about the MMP function(s) in adult neuronal physiology. This review describes available data on this topic, which is presented in a context of knowledge about the MMP/TIMP system in other organs as well as in brain disorders. An analysis of the MMP and TIMP expression patterns in the brain, along with a consideration of their regulatory mechanisms and substrates, leads to the proposal of possible roles of the MMP system in the brain. This analysis suggests that MMPs may play an important role in the neuronal physiology, especially in neuronal plasticity, including their direct participation in the remodeling of synaptic connections-a mechanism pivotal for learning and memory.
Collapse
Affiliation(s)
- Leszek Kaczmarek
- Department of Molecular and Cellular Neurobiology, Nencki Institute, 02-093 Warsaw, Pasteura 3, Poland.
| | | | | |
Collapse
|
88
|
Bi X, Gall CM, Zhou J, Lynch G. Uptake and pathogenic effects of amyloid beta peptide 1-42 are enhanced by integrin antagonists and blocked by NMDA receptor antagonists. Neuroscience 2002; 112:827-40. [PMID: 12088742 DOI: 10.1016/s0306-4522(02)00132-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many synapses contain two types of receptors - integrins and N-methyl-D-aspartate (NMDA) receptors - that have been implicated in peptide internalization. The present studies tested if either class is involved in the uptake of the 42-residue form of amyloid beta peptide (Abeta1-42), an event hypothesized to be of importance in the development of Alzheimer's disease. Cultured hippocampal slices were exposed to Abeta1-42 for 6 days in the presence or absence of soluble Gly-Arg-Gly-Asp-Ser-Pro, a peptide antagonist of Arg-Gly-Asp (RGD)-binding integrins, or the disintegrin echistatin. Abeta uptake, as assessed with immunocytochemistry, occurred in 42% of the slices incubated with Abeta peptide alone but in more than 80% of the slices co-treated with integrin antagonists. Uptake was also found in a broader range of hippocampal subfields in RGD-treated slices. Increased sequestration was accompanied by two characteristics of early stage Alzheimer's disease: elevated concentrations of cathepsin D immunoreactivity and activation of microglia. The selective NMDA receptor antagonist D-(-)-2-amino-5-phosphonovalerate completely blocked internalization of Abeta, up-regulation of cathepsin D, and activation of microglia. Our results identify two classes of receptors that cooperatively regulate the internalization of Abeta1-42 and support the hypothesis that characteristic pathologies of Alzheimer's disease occur once critical intraneuronal Abeta concentrations are reached.
Collapse
Affiliation(s)
- X Bi
- Psychiatry and Human Behavior, 101 Theory, Suite 250, University of California at Irvine, 92697, USA.
| | | | | | | |
Collapse
|
89
|
Kramár EA, Bernard JA, Gall CM, Lynch G. Alpha3 integrin receptors contribute to the consolidation of long-term potentiation. Neuroscience 2002; 110:29-39. [PMID: 11882370 DOI: 10.1016/s0306-4522(01)00540-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several lines of evidence suggest that integrin receptors play a pivotal role in consolidation of long-term potentiation (LTP), but which of the many integrin dimers are involved remains to be discovered. The present study used an LTP reversal paradigm to test if alpha3 integrins make an important contribution. Function blocking alpha3 monoclonal antibodies or vehicle were locally infused into recording sites in field CA1 of rat hippocampal slices and LTP induced with theta burst stimulation. Low frequency trains of pulses were applied 30 min after the theta bursts. Previous work indicates that low frequency stimulation reverses LTP when applied immediately after induction but is largely ineffective after 30-45-min delays. If the antibodies were to block consolidation, then they should extend the period over which potentiation is vulnerable to disruption. There was no detectable difference between the two groups in the initial degree of LTP or within slice decay of potentiation 1-10 min after induction; a small but reliable decay occurred from 10 to 30 min with antibody treatment (P<0.01) but not in control slices. Percent potentiation was not statistically different for vehicle (55 +/- 19%, mean +/- S.D.) and anti-alpha3 (43 +/- 21%) slices at 30 min post-theta bursts. Five-Hz stimulation ("theta pulse" stimulation) 30 min after induction caused a reduction of LTP. The percent loss of potentiation after the 1-min trains was greater in the antibody-treated slices than in controls (98 +/- 4% vs. 62 +/- 28%, P<0.01, U-test) and correlated (r=0.84, alpha3 slices) with the percent LTP present prior to low frequency stimulation, as expected if the stimulation reversed potentiation. Recovery occurred in both groups but percent LTP was significantly smaller in experimental slices at 10 min post-theta pulses (5 +/- 11% vs. 36 +/- 15%, P<0.01). Recovery continued for 20 min after theta pulses and, in accordance with earlier work, was nearly complete for the control slices (50 +/- 19% vs 55 +/- 15%, 40 min post- vs. immediately pre-theta pulses). LTP remained depressed after 40 min of recovery in the anti-alpha3 slices (23 +/- 19% vs. 43 +/- 21%) at which point it was substantially less than that found in controls (P<0.01). Western blots with anti-alpha3 antibodies identified a polypeptide with the molecular mass (155 kDa) expected for the alpha3 subunit and further showed that it is broadly distributed in brain. Subcellular fractionation experiments demonstrated that alpha3 is concentrated in synaptic membranes over homogenates to about the same degree as the GluR1 subunit of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate-type glutamate receptor. From these results we suggest that alpha3-containing integrins are localized to synapses and are needed to stabilize a slowly decaying form of LTP. The findings also show that vulnerability to reversal can be used in place of extended recording sessions in studying consolidation.
Collapse
Affiliation(s)
- E A Kramár
- Department of Psychiatry and Human Behavior, University of California-Irvine, 101 Theory, Suite #250, Research Park, Irvine, CA 92612-1695, USA.
| | | | | | | |
Collapse
|