51
|
Mehner C, Müller D, Kehraus S, Hautmann S, Gütschow M, König GM. New peptolides from the cyanobacterium Nostoc insulare as selective and potent inhibitors of human leukocyte elastase. Chembiochem 2009; 9:2692-703. [PMID: 18924217 DOI: 10.1002/cbic.200800415] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Eight new cyanopeptolins (insulapeptolides A-H) were obtained from the cyanobacterium Nostoc insulare. Their isolation was guided by their bioactivity toward the target enzyme human leukocyte elastase, molecular biological investigations, and MALDI-TOF analysis. These peptides are selective inhibitors of human leukocyte elastase with activities in the nanomolar range. Insulapeptolide D was the most potent compound with an IC(50) value of 85 nM (K(i) value of 36 nM).
Collapse
Affiliation(s)
- Christian Mehner
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
52
|
Structure elucidation and biosynthesis of fuscachelins, peptide siderophores from the moderate thermophile Thermobifida fusca. Proc Natl Acad Sci U S A 2008; 105:15311-6. [PMID: 18832174 DOI: 10.1073/pnas.0805451105] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria belonging to the order Actinomycetales have proven to be an important source of biologically active and often therapeutically useful natural products. The characterization of orphan biosynthetic gene clusters is an emerging and valuable approach to the discovery of novel small molecules. Analysis of the recently sequenced genome of the thermophilic actinomycete Thermobifida fusca revealed an orphan nonribosomal peptide biosynthetic gene cluster coding for an unknown siderophore natural product. T. fusca is a model organism for the study of thermostable cellulases and is a major degrader of plant cell walls. Here, we report the isolation and structure elucidation of the fuscachelins, siderophore natural products produced by T. fusca. In addition, we report the purification and biochemical characterization of the termination module of the nonribosomal peptide synthetase. Biochemical analysis of adenylation domain specificity supports the assignment of this gene cluster as the producer of the fuscachelin siderophores. The proposed nonribosomal peptide biosynthetic pathway exhibits several atypical features, including a macrocyclizing thioesterase that produces a 10-membered cyclic depsipeptide and a nonlinear assembly line, resulting in the unique heterodimeric architecture of the siderophore natural product.
Collapse
|
53
|
Rounge TB, Rohrlack T, Kristensen T, Jakobsen KS. Recombination and selectional forces in cyanopeptolin NRPS operons from highly similar, but geographically remote Planktothrix strains. BMC Microbiol 2008; 8:141. [PMID: 18727817 PMCID: PMC2533009 DOI: 10.1186/1471-2180-8-141] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Accepted: 08/26/2008] [Indexed: 11/20/2022] Open
Abstract
Background Cyanopeptolins are nonribosomally produced heptapetides showing a highly variable composition. The cyanopeptolin synthetase operon has previously been investigated in three strains from the genera Microcystis, Planktothrix and Anabaena. Cyanopeptolins are displaying protease inhibitor activity, but the biological function(s) is (are) unknown. Cyanopeptolin gene cluster variability and biological functions of the peptide variants are likely to be interconnected. Results We have investigated two cyanopeptolin gene clusters from highly similar, but geographically remote strains of the same genus. Sequencing of a nonribosomal peptide synthetase (NRPS) cyanopeptolin gene cluster from the Japanese strain Planktothrix NIES 205 (205-oci), showed the 30 kb gene cluster to be highly similar to the oci gene cluster previously described in Planktothrix NIVA CYA 116, isolated in Norway. Both operons contained seven NRPS modules, a sulfotransferase (S) and a glyceric acid loading (GA)-domain. Sequence analyses showed a high degree of conservation, except for the presence of an epimerase domain in NIES 205 and the regions around the epimerase, showing high substitution rates and Ka/Ks values above 1. The two strains produce almost identical cyanopeptolins, cyanopeptolin-1138 and oscillapeptin E respectively, but with slight differences regarding the production of minor cyanopeptolin variants. These variants may be the result of relaxed adenylation (A)-domain specificity in the nonribosomal enzyme complex. Other genetic markers (16S rRNA, ntcA and the phycocyanin cpcBA spacer) were identical, supporting that these geographically separated Planktothrix strains are closely related. Conclusion A horizontal gene transfer event resulting in exchange of a whole module-encoding region was observed. Nucleotide statistics indicate that both purifying selection and positive selection forces are operating on the gene cluster. The positive selection forces are acting within and around the epimerase insertion while purifying selection conserves the remaining (major) part of the gene cluster. The presence of an epimerase in the gene cluster is in line with the D-configuration of Htyr, determined experimentally in oscillapeptin E in a previous study.
Collapse
Affiliation(s)
- Trine B Rounge
- University of Oslo, Department of Biology, Centre for Ecological and Evolutionary Synthesis, 0316 Oslo,
| | | | | | | |
Collapse
|
54
|
Wase NV, Wright PC. Systems biology of cyanobacterial secondary metabolite production and its role in drug discovery. Expert Opin Drug Discov 2008; 3:903-29. [DOI: 10.1517/17460441.3.8.903] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nishikant V Wase
- The University of Sheffield, Biological and Environmental Systems Group, Department of Chemical and Process Engineering, Mappin St., Sheffield, S1 3JD, UK ;
| | - Phillip C Wright
- The University of Sheffield, Biological and Environmental Systems Group, Department of Chemical and Process Engineering, Mappin St., Sheffield, S1 3JD, UK ;
| |
Collapse
|
55
|
Matthew S, Schupp PJ, Luesch H. Apratoxin E, a cytotoxic peptolide from a guamanian collection of the marine cyanobacterium Lyngbya bouillonii. JOURNAL OF NATURAL PRODUCTS 2008; 71:1113-1116. [PMID: 18461997 DOI: 10.1021/np700717s] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A collection of the marine cyanobacterium Lyngbya bouillonii from Guam afforded apratoxin E (1), a new peptide-polyketide hybrid of the apratoxin class of cytotoxins. The planar structure of 1 was elucidated by NMR spectroscopic analysis and mass spectrometry. Configurational assignments of stereocenters in the peptide portion were made by chiral HPLC analysis of the acid hydrolysate. The relative configuration in the polyketide moiety was assigned by comparison of NMR data including proton-proton coupling constants with those of the known analogues. Apratoxin E (1) displayed strong cytotoxicity against several cancer cell lines derived from colon, cervix, and bone, ranging from 21 to 72 nM, suggesting that the alpha,beta-unsaturation of the modified cysteine residue is not essential for apratoxin activity. The 5- to 15-fold reduced activity compared with apratoxin A (2) is attributed to the dehydration in the long-chain polyketide unit, which could affect the conformation of the molecule.
Collapse
Affiliation(s)
- Susan Matthew
- Department of Medicinal Chemistry, University of Florida, 1600 SW Archer Road, GainesVille, Florida 32610, USA
| | | | | |
Collapse
|
56
|
Mußmann M, Hu FZ, Richter M, de Beer D, Preisler A, Jørgensen BB, Huntemann M, Glöckner FO, Amann R, Koopman WJH, Lasken RS, Janto B, Hogg J, Stoodley P, Boissy R, Ehrlich GD. Insights into the genome of large sulfur bacteria revealed by analysis of single filaments. PLoS Biol 2007; 5:e230. [PMID: 17760503 PMCID: PMC1951784 DOI: 10.1371/journal.pbio.0050230] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 06/26/2007] [Indexed: 11/19/2022] Open
Abstract
Marine sediments are frequently covered by mats of the filamentous Beggiatoa and other large nitrate-storing bacteria that oxidize hydrogen sulfide using either oxygen or nitrate, which they store in intracellular vacuoles. Despite their conspicuous metabolic properties and their biogeochemical importance, little is known about their genetic repertoire because of the lack of pure cultures. Here, we present a unique approach to access the genome of single filaments of Beggiatoa by combining whole genome amplification, pyrosequencing, and optical genome mapping. Sequence assemblies were incomplete and yielded average contig sizes of approximately 1 kb. Pathways for sulfur oxidation, nitrate and oxygen respiration, and CO2 fixation confirm the chemolithoautotrophic physiology of Beggiatoa. In addition, Beggiatoa potentially utilize inorganic sulfur compounds and dimethyl sulfoxide as electron acceptors. We propose a mechanism of vacuolar nitrate accumulation that is linked to proton translocation by vacuolar-type ATPases. Comparative genomics indicates substantial horizontal gene transfer of storage, metabolic, and gliding capabilities between Beggiatoa and cyanobacteria. These capabilities enable Beggiatoa to overcome non-overlapping availabilities of electron donors and acceptors while gliding between oxic and sulfidic zones. The first look into the genome of these filamentous sulfur-oxidizing bacteria substantially deepens the understanding of their evolution and their contribution to sulfur and nitrogen cycling in marine sediments.
Collapse
Affiliation(s)
- Marc Mußmann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- * To whom correspondence should be addressed. E-mail: (MM); (FOG); (GDE)
| | - Fen Z Hu
- Center for Genomic Sciences, Allegheny General Hospital/Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Michael Richter
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- School of Engineering and Sciences, Jacobs University Bremen, Bremen, Germany
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - André Preisler
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Bo B Jørgensen
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Marcel Huntemann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- School of Engineering and Sciences, Jacobs University Bremen, Bremen, Germany
| | - Frank Oliver Glöckner
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- School of Engineering and Sciences, Jacobs University Bremen, Bremen, Germany
- * To whom correspondence should be addressed. E-mail: (MM); (FOG); (GDE)
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Werner J. H Koopman
- Department of Membrane Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Roger S Lasken
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Benjamin Janto
- Center for Genomic Sciences, Allegheny General Hospital/Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Justin Hogg
- Center for Genomic Sciences, Allegheny General Hospital/Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Paul Stoodley
- Center for Genomic Sciences, Allegheny General Hospital/Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Robert Boissy
- Center for Genomic Sciences, Allegheny General Hospital/Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Garth D Ehrlich
- Center for Genomic Sciences, Allegheny General Hospital/Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail: (MM); (FOG); (GDE)
| |
Collapse
|
57
|
Tooming-Klunderud A, Rohrlack T, Shalchian-Tabrizi K, Kristensen T, Jakobsen KS. Structural analysis of a non-ribosomal halogenated cyclic peptide and its putative operon from Microcystis: implications for evolution of cyanopeptolins. MICROBIOLOGY-SGM 2007; 153:1382-1393. [PMID: 17464052 DOI: 10.1099/mic.0.2006/001123-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The structure of the major peptide produced by Microcystis cf. wesenbergii NIVA-CYA 172/5, the halogenated heptapeptide cyanopeptolin-984, was determined using LC/MS/MS. A gene cluster encoding a peptide synthetase putatively producing a cyanopeptolin was cloned from the same strain and sequenced. The cluster consists of four genes encoding peptide synthetases and one gene encoding a halogenase. Two additional ORFs transcribed in the opposite direction were found in the 5' flanking sequence; one of these encodes an ABC transporter. The overall organization of the cyanopeptolin synthetase operon (mcn) resembles a previously analysed anabaenopeptilide synthetase operon (apd) from Anabaena strain 90. Phylogenetic analyses of the individual domains from Mcn, Apd and other cyanobacterial peptide synthetases showed clustering of the adenylation domains according to function irrespective of operon origin - indicating strong functional constraints across peptide synthetases. In contrast, the condensation and thiolation domains to a large extent grouped according to operon affiliation or position in the respective operons. Phylogenetic analyses of condensation domains indicated that N-terminal domains and domains that condense L-amino acids and D-amino acids, respectively, form three separate groups. Although recombination events are likely to be involved in the evolution of mcn, no clear evidence of genetic recombination between the two cyanopeptolin gene clusters was found. Within the genus Microcystis, microcystin and cyanopeptolin synthetases have an evolutionary history of genomic coexistence. However, the data indicated that the two classes of peptide synthetase gene clusters have evolved independently.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/genetics
- Anabaena/genetics
- Bacterial Proteins/genetics
- Chromatography, Liquid
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Evolution, Molecular
- Gene Order
- Mass Spectrometry
- Microcystis/genetics
- Microcystis/metabolism
- Molecular Sequence Data
- Molecular Structure
- Multigene Family
- Oligopeptides/biosynthesis
- Oligopeptides/chemistry
- Oligopeptides/genetics
- Open Reading Frames
- Operon
- Oxidoreductases/genetics
- Peptide Synthases/genetics
- Peptides, Cyclic/biosynthesis
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/genetics
- Phylogeny
- Protein Structure, Tertiary/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
| | - Thomas Rohrlack
- NIVA, Norwegian Institute for Water Research, 0411 Oslo, Norway
| | - Kamran Shalchian-Tabrizi
- Department of Biology, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, 0316 Oslo, Norway
| | - Tom Kristensen
- Department of Molecular Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Kjetill S Jakobsen
- Department of Biology, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
58
|
Comparison of cyanopeptolin genes in Planktothrix, Microcystis, and Anabaena strains: evidence for independent evolution within each genus. Appl Environ Microbiol 2007; 73:7322-30. [PMID: 17921284 DOI: 10.1128/aem.01475-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major cyclic peptide cyanopeptolin 1138, produced by Planktothrix strain NIVA CYA 116, was characterized and shown to be structurally very close to the earlier-characterized oscillapeptin E. A cyanopeptolin gene cluster likely to encode the corresponding peptide synthetase was sequenced from the same strain. The 30-kb oci gene cluster contains two novel domains previously not detected in nonribosomal peptide synthetase gene clusters (a putative glyceric acid-activating domain and a sulfotransferase domain), in addition to seven nonribosomal peptide synthetase modules. Unlike in two previously described cyanopeptolin gene clusters from Anabaena and Microcystis, a halogenase gene is not present. The three cyanopeptolin gene clusters show similar gene and domain arrangements, while the binding pocket signatures deduced from the adenylation domain sequences and the additional tailoring domains vary. This suggests loss and gain of tailoring domains within each genus, after the diversification of the three clades, as major events leading to the present diversity. The ABC transporter genes associated with the cyanopeptolin gene clusters form a monophyletic clade and accordingly are likely to have evolved as part of the functional unit. Phylogenetic analyses of adenylation and condensation domains, including domains from cyanopeptolins and microcystins, show a closer similarity between the Planktothrix and Microcystis cyanopeptolin domains than between these and the Anabaena domain. No clear evidence of recombination between cyanopeptolins and microcystins could be detected. There were no strong indications of horizontal gene transfer of cyanopeptolin gene sequences across the three genera, supporting independent evolution within each genus.
Collapse
|
59
|
Zhao J, Yang N, Zeng R. Phylogenetic analysis of type I polyketide synthase and nonribosomal peptide synthetase genes in Antarctic sediment. Extremophiles 2007; 12:97-105. [PMID: 17726573 DOI: 10.1007/s00792-007-0107-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 08/01/2007] [Indexed: 11/26/2022]
Abstract
The modular polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) have been found to be involved in natural product synthesis in many microorganisms. Study on their diversities in natural environment may provide important ecological insights, in addition to opportunities for antibacterial drugs development. In this study, the PKS and NRPS gene diversities in two coast sediments near China Zhongshan Station were studied. The phylogenetic analysis of amino acid (AA) sequences indicated that the identified ketosynthase (KS) domains were clustered with those from diverse bacterial groups, including Proteobacteria, Firmicutes, Planctomycetes, Cyanobacteria, Actinobacteria, and some uncultured symbiotic bacteria. One new branch belonging to hybrid PKS/NRPS enzyme complexes and five independent clades were found on the phylogenetic tree. The obtained adenylation (A) domains were mainly clustered within the Cyanobacteria and Proteobacteria group. Most of the identified KS and A domains showed below 80 and 60% identities at the AA level to their closest matches in GenBank, respectively. The diversities of both KS and A domains in natural environmental sample were different from those in sewage-contaminated sample. These results revealed the great diversity and novelty of both PKS and NRPS genes in Antarctic sediment.
Collapse
Affiliation(s)
- Jing Zhao
- School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | | |
Collapse
|
60
|
Roongsawang N, Washio K, Morikawa M. In vivo characterization of tandem C-terminal thioesterase domains in arthrofactin synthetase. Chembiochem 2007; 8:501-12. [PMID: 17328008 DOI: 10.1002/cbic.200600465] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Macrocyclization of a peptide or a lipopeptide occurs at the last step of synthesis and is usually catalyzed by a single C-terminal thioesterase (Te) domain. Arthrofactin synthetase (Arf) from Pseudomonas sp. MIS38 represents a novel type of nonribosomal peptide synthetase that contains unique tandem C-terminal Te domains, ArfC_Te1 and ArfC_Te2. In order to analyze their function in vivo, site-directed mutagenesis was introduced at the putative active-site residues in ArfC_Te1 and ArfC_Te2. It was found that both Te domains were functional. Peaks corresponding to arthrofactin and its derivatives were absent in ArfC_Te1:S89A, ArfC_Te1:S89T, and ArfC_Te1:E26G/F27A mutants, and the production of arthrofactin by ArfC_Te2:S92A, ArfC_Te2:S92A/D118A, and ArfCDeltaTe2 was reduced by 95 % without an alteration of the cyclic lipoundecapeptide structure. These results suggest that Ser89 in ArfC_Te1 is essential for the completion of macrocyclization and the release of product. Glu26 and Phe27 residues are also part of the active site of ArfC_Te1. ArfC_Te2 might have been added during the evolution of Arf in order to improve macrocyclization efficiency.
Collapse
Affiliation(s)
- Niran Roongsawang
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | |
Collapse
|
61
|
Martens T, Gram L, Grossart HP, Kessler D, Müller R, Simon M, Wenzel SC, Brinkhoff T. Bacteria of the Roseobacter clade show potential for secondary metabolite production. MICROBIAL ECOLOGY 2007; 54:31-42. [PMID: 17351813 DOI: 10.1007/s00248-006-9165-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 08/04/2006] [Accepted: 09/06/2006] [Indexed: 05/14/2023]
Abstract
Members of the Roseobacter clade are abundant and widespread in marine habitats and have very diverse metabolisms. Production of acylated homoserine lactones (AHL) and secondary metabolites, e.g., antibiotics has been described sporadically. This prompted us to screen 22 strains of this group for production of signaling molecules, antagonistic activity against bacteria of different phylogenetic groups, and the presence of genes encoding for nonribosomal peptide synthetases (NRPS) and polyketide synthases (PKS), representing enzymes involved in the synthesis of various pharmaceutically important natural products. The screening approach for NRPS and PKS genes was based on polymerase chain reaction (PCR) with degenerate primers specific for conserved sequence motifs. Additionally, sequences from whole genome sequencing projects of organisms of the Roseobacter clade were considered. Obtained PCR products were cloned, sequenced, and compared with genes of known function. With the PCR approach genes showing similarity to known NRPS and PKS genes were found in seven and five strains, respectively, and three PKS and NRPS sequences from genome sequencing projects were obtained. Three strains exhibited antagonistic activity and also showed production of AHL. Overall production of AHL was found in 10 isolates. Phylogenetic analysis of the 16S rRNA gene sequences of the tested organisms showed that several of the AHL-positive strains clustered together. Three strains were positive for three or four categories tested, and were found to be closely related within the genus Phaeobacter. The presence of a highly similar hybrid PKS/NRPS gene locus of unknown function in sequenced genomes of the Roseobacter clade plus the significant similarity of gene fragments from the strains studied to these genes argues for the functional requirement of the encoded hybrid PKS/NRPS complex. Our screening results therefore suggest that the Roseobacter clade is indeed employing PKS/NRPS biochemistry and should thus be further studied as a potential and largely untapped source of secondary metabolites.
Collapse
Affiliation(s)
- Torben Martens
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, PO Box 2503, D-26111 Oldenburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Nishizawa A, Arshad AB, Nishizawa T, Asayama M, Fujii K, Nakano T, Harada KI, Shirai M. Cloning and characterization of a new hetero-gene cluster of nonribosomal peptide synthetase and polyketide synthase from the cyanobacterium Microcystis aeruginosa K-139. J GEN APPL MICROBIOL 2007; 53:17-27. [PMID: 17429158 DOI: 10.2323/jgam.53.17] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Two nonribosomal peptide synthetase genes responsible for the biosynthesis of microcystin and micropeptin in Microcystis aeruginosa K-139 have been identified. A new nonribosomal peptide synthetase gene, psm3, was identified in M. aeruginosa K-139. The gene is a cluster extending 30 kb and comprising 13 bidirectionally transcribed open reading frames arranged in two putative operons. psm3 encodes four adenylation proteins, one polyketide synthase, and several unique proteins, especially Psm3L consisting of halogenase, acyl-CoA binding protein-like protein, and acyl carrier protein. Alignment of the binding pocket of the adenylation domain and an ATP-PPi exchange analysis using a recombinant protein with the adenylation domain of Psm3B showed that Psm3G and Psm3B activate aspartic acid and tyrosine, respectively. Although disruption of psm3 did not reveal the product produced by Psm3, we identified microviridin B and aeruginosin K139 in the cells of M. aeruginosa K-139. The above-mentioned results indicated that M. aeruginosa possesses at least five nonribosomal peptide synthetase gene clusters.
Collapse
Affiliation(s)
- Akito Nishizawa
- Laboratory of Molecular Genetics, College of Agriculture, Ibaraki University, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Barrios-Llerena ME, Burja AM, Wright PC. Genetic analysis of polyketide synthase and peptide synthetase genes in cyanobacteria as a mining tool for secondary metabolites. J Ind Microbiol Biotechnol 2007; 34:443-56. [PMID: 17457628 DOI: 10.1007/s10295-007-0216-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 03/06/2007] [Indexed: 11/26/2022]
Abstract
Molecular screening using degenerate PCR to determine the presence of secondary metabolite genes in cyanobacteria was performed. This revealed 18 NRPS and 19 PKS genes in the 21 new cyanobacterial strains examined, representing three families of cyanobacteria (Nostocales, Chroococales and Oscillatoriales). A BLAST analysis shows that these genes have similarities to known cyanobacterial natural products. Analysis of the NRPS adenylation domain indicates the presence of novel features previously ascribed to both proteobacteria and cyanobacteria. Furthermore, binding-pocket predictions reveal diversity in the amino acids used during the biosynthesis of compounds. A similar analysis of the PKS ketosynthase domain shows significant structural diversity and their presence in both mixed modules with NRPS domains and individually as part of a PKS module. We have been able to classify the NRPS genes on the basis of their binding-pockets. Further, we show how this data can be used to begin to link structure to function by an analysis of the compounds Scyptolin A and Hofmannolin from Scytonema sp. PCC 7110.
Collapse
Affiliation(s)
- Martin E Barrios-Llerena
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | | | | |
Collapse
|
64
|
Copp JN, Roberts AA, Marahiel MA, Neilan BA. Characterization of PPTNs, a cyanobacterial phosphopantetheinyl transferase from Nodularia spumigena NSOR10. J Bacteriol 2007; 189:3133-9. [PMID: 17307858 PMCID: PMC1855846 DOI: 10.1128/jb.01850-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphopantetheinyl transferases (PPTs) are a superfamily of essential enzymes required for the synthesis of a wide range of compounds, including fatty acids, polyketides, and nonribosomal peptide metabolites. These enzymes activate carrier proteins in specific biosynthetic pathways by transfer of a phosphopantetheinyl moiety. The diverse PPT superfamily can be divided into two families based on specificity and conserved sequence motifs. The first family is typified by the Escherichia coli acyl carrier protein synthase (AcpS), which is involved in fatty acid synthesis. The prototype of the second family is the broad-substrate-range PPT Sfp, which is required for surfactin biosynthesis in Bacillus subtilis. Most cyanobacteria do not encode an AcpS-like PPT, and furthermore, some of their Sfp-like PPTs belong to a unique phylogenetic subgroup defined by the PPTs involved in heterocyst differentiation. Here, we describe the first functional characterization of a cyanobacterial PPT based on a structural analysis and subsequent functional analysis of the Nodularia spumigena NSOR10 PPT. Southern hybridizations suggested that this enzyme may be the only PPT encoded in the N. spumigena NSOR10 genome. Expression and enzyme characterization showed that this PPT was capable of modifying carrier proteins resulting from both heterocyst glycoplipid synthesis and nodularin toxin synthesis. Cyanobacteria are a unique and vast source of bioactive metabolites; therefore, an understanding of cyanobacterial PPTs is important in order to harness the biotechnological potential of cyanobacterial natural products.
Collapse
Affiliation(s)
- J N Copp
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Kensington NSW 2052, Sydney, Australia
| | | | | | | |
Collapse
|
65
|
Van Wagoner RM, Drummond AK, Wright JLC. Biogenetic Diversity of Cyanobacterial Metabolites. ADVANCES IN APPLIED MICROBIOLOGY 2007; 61:89-217. [PMID: 17448789 DOI: 10.1016/s0065-2164(06)61004-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ryan M Van Wagoner
- Center for Marine Science, University of North Carolina at Wilmington, Wilmington, NC 28409, USA
| | | | | |
Collapse
|
66
|
|
67
|
Rachid S, Krug D, Kunze B, Kochems I, Scharfe M, Zabriskie TM, Blöcker H, Müller R. Molecular and biochemical studies of chondramide formation-highly cytotoxic natural products from Chondromyces crocatus Cm c5. ACTA ACUST UNITED AC 2006; 13:667-81. [PMID: 16793524 DOI: 10.1016/j.chembiol.2006.06.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 02/16/2006] [Accepted: 03/20/2006] [Indexed: 10/24/2022]
Abstract
The jaspamide/chondramide family of depsipeptides are mixed PKS/NRPS natural products isolated from marine sponges and a terrestrial myxobacterium that potently affect the function of the actin cytoskeleton. As a first step to improve production in heterologous host cells and permit genetic approaches to novel analogs, we have cloned and characterized the chondramide biosynthetic genes from the myxobacterium Chondromyces crocatus Cm c5. In addition to the expected PKS and NRPS genes, the cluster encodes a rare tyrosine aminomutase for beta-tyrosine formation and a previously unknown tryptophan-2-halogenase. Conditions for gene transfer into C. crocatus Cm c5 were developed, and inactivation of several genes corroborated their proposed function and served to define the boundaries of the cluster. Biochemical characterization of the final NRPS adenylation domain confirmed the direct activation of beta-tyrosine, and fluorinated chondramides were produced through precursor-directed biosynthesis.
Collapse
Affiliation(s)
- Shwan Rachid
- Pharmaceutical Biotechnology, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
Cyanobacterial secondary metabolites have attracted increasing scientific interest due to bioactivity of many compounds in various test systems. Among the known structures, oligopeptides are often found with many congeners sharing conserved substructures, while being highly variable in others. A major part of known oligopeptides are of non-ribosomal origin and can be grouped into classes with conserved structural properties. Thus, the overall structural diversity of cyanobacterial oligopeptides only seemingly suggests an equally high diversity of biosynthetic pathways and respective genes. For each class of peptides, some of which have been found in all major branches of the cyanobacterial evolutionary tree, homologous synthetases and genes can be inferred. This implies that non-ribosomal peptide synthetase genes are a very ancient part of the cyanobacterial genome and presumably have evolved by recombination and duplication events to reach the present structural diversity of cyanobacterial oligopeptides. In addition, peptide synthetases would appear to be an essential part of the cyanobacterial evolution and physiology. The present review presents an overview of the biosynthesis of cyanobacterial peptides and corresponding gene clusters, the structural diversity of structural types and structural variations within peptide classes, and implications for the evolution and plasticity of biosynthetic genes and the potential function of cyanobacterial peptides.
Collapse
Affiliation(s)
- Martin Welker
- Technische Universität Berlin, Institut für Chemie, AG Biochemie, Berlin, Germany.
| | | |
Collapse
|
69
|
Matsunaga T, Takeyama H, Miyashita H, Yokouchi H. Marine microalgae. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006; 96:165-88. [PMID: 16566091 DOI: 10.1007/b135784] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Marine microalgae, the largest primary biomass, have been attracting attention as resources for new metabolites and biotechnologically useful genes. The diversified marine environment harbors a large variety of microalgae. In this paper, the biotechnological aspects and fundamental characteristics of marine microalgae are reviewed.
Collapse
Affiliation(s)
- Tadashi Matsunaga
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, 184-8588 Tokyo, Japan.
| | | | | | | |
Collapse
|
70
|
Johnson MA, Peti W, Herrmann T, Wilson IA, Wüthrich K. Solution structure of Asl1650, an acyl carrier protein from Anabaena sp. PCC 7120 with a variant phosphopantetheinylation-site sequence. Protein Sci 2006; 15:1030-41. [PMID: 16597827 PMCID: PMC2242512 DOI: 10.1110/ps.051964606] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cyanobacteria, such as Anabaena, produce a variety of bioactive natural products via polyketide synthases (PKS), nonribosomal peptide synthetases (NRPS), and hybrid peptide/polyketide pathways. The protein Asl1650, which is a member of the acyl carrier protein family from the cyanobacterium Anabaena sp. PCC 7120, is encoded in a region of the Anabaena genome that is rich in PKS and NRPS genes. To gain new insight into the physiological role of acyl carriers in Anabaena, the solution structure of Asl1650 has been solved by NMR spectroscopy. The protein adopts a twisted antiparallel four-helix bundle fold, with a variant phosphopantetheine-attachment motif positioned at the start of the second helix. Structure comparisons with proteins from other organisms suggest a likely physiological function as a discrete peptidyl carrier protein.
Collapse
Affiliation(s)
- Margaret A Johnson
- The Scripps Research Institute (TSRI), Department of Molecular Biology and Joint Center for Structural Genomics (JCSG), La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
71
|
Preussel K, Stüken A, Wiedner C, Chorus I, Fastner J. First report on cylindrospermopsin producing Aphanizomenon flos-aquae (Cyanobacteria) isolated from two German lakes. Toxicon 2006; 47:156-62. [PMID: 16356522 DOI: 10.1016/j.toxicon.2005.10.013] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 10/12/2005] [Accepted: 10/15/2005] [Indexed: 11/19/2022]
Abstract
Three single-filament isolates of Aphanizomenon flos-aquae from two German lakes were found to produce remarkable amounts of the cyanobacterial hepatotoxin cylindrospermopsin (CYN). CYN-synthesis of the strains were evidenced both by LC-MS/MS analysis and detection of PCR products of gene fragments which are implicated in the biosynthesis of the toxin. The strains contain CYN in the range of 2.3-6.6 mg g(-1) of cellular dry weight. To our knowledge this is the first report of CYN in A. flos-aquae.
Collapse
Affiliation(s)
- Karina Preussel
- Federal Environmental Agency, FG II 3.3, Corrensplatz 1, 14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
72
|
Dorrestein PC, Kelleher NL. Dissecting non-ribosomal and polyketide biosynthetic machineries using electrospray ionization Fourier-Transform mass spectrometry. Nat Prod Rep 2006; 23:893-918. [PMID: 17119639 DOI: 10.1039/b511400b] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many virulence factors and bioactive compounds with antifungal, antimicrobial, and antitumor properties are produced via the non-ribosomal peptide synthetase (NRPS) or polyketide synthase(PKS) paradigm. During the biosynthesis of these natural products, substrates, intermediates and side products are covalently tethered to the NRPS or PKS catalyst, introducing mass changes, making these biosynthetic systems ideal candidates for interrogation by large molecule mass spectrometry. This review serves as an introduction into the application of electrospray ionization Fourier-Transform massspectrometry (ESI-FTMS) to investigate NRPS and PKS systems. ESI-FTMS can be used to understand substrate tolerance, timing of covalent linkages, timing of tailoring reactions and the transfer of substrates and biosynthetic intermediates from domain to domain. Therefore we not only highlight key mechanistic insights for thiotemplate systems as found on the enterobactin,yersiniabactin, epothilone, clorobiocin, coumermycin, pyoluteorin, gramicidin, mycosubtilin, C-1027,6-deoxyerythronolide B and FK520 biosynthetic pathways, but we also explain the approaches taken to identify active sites from complex digests and compare the FTMS based assay to traditional assays and other mass spectrometric techniques. Although mass spectrometry was introduced over two decades ago to investigate NRPS and PKS biosynthetic systems, this is the first review devoted to this methodology.
Collapse
Affiliation(s)
- Pieter C Dorrestein
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
73
|
Ehrenreich IM, Waterbury JB, Webb EA. Distribution and diversity of natural product genes in marine and freshwater cyanobacterial cultures and genomes. Appl Environ Microbiol 2005; 71:7401-13. [PMID: 16269782 PMCID: PMC1287672 DOI: 10.1128/aem.71.11.7401-7413.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural products are a functionally diverse class of biochemically synthesized compounds, which include antibiotics, toxins, and siderophores. In this paper, we describe both the detection of natural product activities and the sequence identification of gene fragments from two molecular systems that have previously been implicated in natural product production, i.e., nonribosomal peptide synthetases (NRPSs) and modular polyketide synthases (PKSs), in diverse marine and freshwater cyanobacterial cultures. Using degenerate PCR and the sequencing of cloned products, we show that NRPSs and PKSs are common among the cyanobacteria tested. Our molecular data, when combined with genomic searches of finished and progressing cyanobacterial genomes, demonstrate that not all cyanobacteria contain NRPS and PKS genes and that the filamentous and heterocystous cyanobacteria are the richest sources of these genes and the most likely sources of novel natural products within the phylum. In addition to validating the use of degenerate primers for the identification of PKS and NRPS genes in cyanobacteria, this study also defines numerous gene fragments that will be useful as probes for future studies of the synthesis of natural products in cyanobacteria. Phylogenetic analyses of the cyanobacterial NRPS and PKS fragments sequenced in this study, as well as those from the cyanobacterial genome projects, demonstrate that there is remarkable diversity and likely novelty of these genes within the cyanobacteria. These results underscore the potential variety of novel products being produced by these ubiquitous organisms.
Collapse
Affiliation(s)
- Ian M Ehrenreich
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | | |
Collapse
|
74
|
Ginolhac A, Jarrin C, Robe P, Perrière G, Vogel TM, Simonet P, Nalin R. Type I polyketide synthases may have evolved through horizontal gene transfer. J Mol Evol 2005; 60:716-25. [PMID: 15909225 DOI: 10.1007/s00239-004-0161-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 02/02/2005] [Indexed: 11/30/2022]
Abstract
Type I polyketide synthases (PKSI) are modular multidomain enzymes involved in the biosynthesis of many natural products of industrial interest. PKSI modules are minimally organized in three domains: ketosynthase (KS), acyltransferase (AT), and acyl carrier protein. The KS domain phylogeny of 23 PKSI clusters was determined. The results obtained suggest that many horizontal transfers of PKSI genes have occurred between actinomycetales species. Such gene transfers may explain the homogeneity and the robustness of the actinomycetales group since gene transfers between closely related species could mimic patterns generated by vertical inheritance. We suggest that the linearity and instability of actinomycetales chromosomes associated with their large quantity of genetic mobile elements have favored such horizontal gene transfers.
Collapse
Affiliation(s)
- Aurélien Ginolhac
- LibraGen S.A., Bâtiment Canal Biotech 1, 3 rue des Satellites, 31400, Toulouse, France.
| | | | | | | | | | | | | |
Collapse
|
75
|
Wenzel SC, Kunze B, Höfle G, Silakowski B, Scharfe M, Blöcker H, Müller R. Structure and Biosynthesis of Myxochromides S1-3 in Stigmatella aurantiaca: Evidence for an Iterative Bacterial Type I Polyketide Synthase and for Module Skipping in Nonribosomal Peptide Biosynthesis. Chembiochem 2005; 6:375-85. [PMID: 15651040 DOI: 10.1002/cbic.200400282] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The myxobacterium Stigmatella aurantiaca DW4/3-1 harbours an astonishing variety of secondary metabolic gene clusters, at least two of which were found by gene inactivation experiments to be connected to the biosynthesis of previously unknown metabolites. In this study, we elucidate the structures of myxochromides S1-3, novel cyclic pentapeptide natural products possessing unsaturated polyketide side chains, and identify the corresponding biosynthetic gene locus, made up of six nonribosomal peptide synthetase modules. By analyzing the deduced substrate specificities of the adenylation domains, it is shown that module 4 is most probably skipped during the biosynthetic process. The polyketide synthase MchA harbours only one module and is presumably responsible for the formation of the variable complete polyketide side chains. These data indicate that MchA is responsible for an unusual iterative polyketide chain assembly.
Collapse
Affiliation(s)
- Silke C Wenzel
- Universität des Saarlandes, Institut für Pharmazeutische Biotechnologie, Im Stadtwald, 66123 Saarbrücken, Germany
| | | | | | | | | | | | | |
Collapse
|
76
|
Pearson LA, Hisbergues M, Börner T, Dittmann E, Neilan BA. Inactivation of an ABC transporter gene, mcyH, results in loss of microcystin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Appl Environ Microbiol 2004; 70:6370-8. [PMID: 15528494 PMCID: PMC525210 DOI: 10.1128/aem.70.11.6370-6378.2004] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Accepted: 06/22/2004] [Indexed: 11/20/2022] Open
Abstract
The cyanobacterium Microcystis aeruginosa is widely known for its production of the potent hepatotoxin microcystin. Microcystin is synthesized nonribosomally by the thiotemplate function of a large, modular enzyme complex encoded within the 55-kb microcystin synthetase (mcy) gene cluster. Also encoded within the mcy gene cluster is a putative ATP binding cassette (ABC) transporter, McyH. This study details the bioinformatic and mutational analyses of McyH and offers functional predictions for the hypothetical protein. The transporter is putatively comprised of two homodimers, each with an N-terminal hydrophobic domain and a C-terminal ATPase. Phylogenetically, McyH was found to cluster with members of the ABC-A1 subgroup of ABC ATPases, suggesting an export function for the protein. Two mcyH null mutant (DeltamcyH) strains were constructed by partial deletion of the mcyH gene. Microcystin production was completely absent in these strains. While the mcyH deletion had no apparent effect on the transcription of other mcy genes, the complete microcystin biosynthesis enzyme complex could not be detected in DeltamcyH mutant strains. Finally, expression levels of McyH in the wild type and in DeltamcyA, DeltamcyB, and DeltamcyH mutants were investigated by using immunoblotting with an anti-McyH antibody. Expression of McyH was found to be reduced in DeltamcyA and DeltamcyB mutants and completely absent in the DeltamcyH mutant. By virtue of its association with the mcy gene cluster and the bioinformatic and experimental data presented in this study, we predict that McyH functions as a microcystin exporter and is, in addition, intimately associated with the microcystin biosynthesis pathway.
Collapse
Affiliation(s)
- Leanne A Pearson
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | | | | | | | | |
Collapse
|
77
|
Moffitt MC, Neilan BA. Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins. Appl Environ Microbiol 2004; 70:6353-62. [PMID: 15528492 PMCID: PMC525115 DOI: 10.1128/aem.70.11.6353-6362.2004] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 06/22/2004] [Indexed: 11/20/2022] Open
Abstract
Nodularia spumigena is a bloom-forming cyanobacterium which produces the hepatotoxin nodularin. The complete gene cluster encoding the enzymatic machinery required for the biosynthesis of nodularin in N. spumigena strain NSOR10 was sequenced and characterized. The 48-kb gene cluster consists of nine open reading frames (ORFs), ndaA to ndaI, which are transcribed from a bidirectional regulatory promoter region and encode nonribosomal peptide synthetase modules, polyketide synthase modules, and tailoring enzymes. The ORFs flanking the nda gene cluster in the genome of N. spumigena strain NSOR10 were identified, and one of them was found to encode a protein with homology to previously characterized transposases. Putative transposases are also associated with the structurally related microcystin synthetase (mcy) gene clusters derived from three cyanobacterial strains, indicating a possible mechanism for the distribution of these biosynthetic gene clusters between various cyanobacterial genera. We propose an alternative hypothesis for hepatotoxin evolution in cyanobacteria based on the results of comparative and phylogenetic analyses of the nda and mcy gene clusters. These analyses suggested that nodularin synthetase evolved from a microcystin synthetase progenitor. The identification of the nodularin biosynthetic gene cluster and evolution of hepatotoxicity in cyanobacteria reported in this study may be valuable for future studies on toxic cyanobacterial bloom formation. In addition, an appreciation of the natural evolution of nonribosomal biosynthetic pathways will be vital for future combinatorial engineering and rational design of novel metabolites and pharmaceuticals.
Collapse
Affiliation(s)
- Michelle C Moffitt
- School of Microbiology and Immunology, The University of New South Wales, Sydney, New South Wales, Australia
| | | |
Collapse
|
78
|
Bister B, Keller S, Baumann HI, Nicholson G, Weist S, Jung G, Süssmuth RD, Jüttner F. Cyanopeptolin 963A, a chymotrypsin inhibitor of Microcystis PCC 7806. JOURNAL OF NATURAL PRODUCTS 2004; 67:1755-1757. [PMID: 15497957 DOI: 10.1021/np049828f] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A new depsipeptide, cyanopeptolin 963 A (1), was isolated from an axenic strain of the toxic freshwater cyanobacterium Microcystis PCC 7806. The structure of this compound was elucidated by chemical and spectroscopic analyses, including high-resolution ESI-FTICR-MS, 2-D NMR, and GC-MS of the hydrolysate. The major structural difference compared to previously characterized cyanopeptolins of this strain is the replacement of the basic amino acid in position 3 by L-tyrosine. Compound 1 displayed inhibitory activity against chymotrypsin with an IC50 value of 0.9 microM.
Collapse
Affiliation(s)
- Bojan Bister
- Limnological Station, Institute of Plant Biology, University of Zürich, Seestrasse 187, 8802 Kilchberg, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Welker M, Christiansen G, von Döhren H. Diversity of coexisting Planktothrix (Cyanobacteria) chemotypes deduced by mass spectral analysis of microystins and other oligopeptides. Arch Microbiol 2004; 182:288-98. [PMID: 15322739 DOI: 10.1007/s00203-004-0711-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 07/02/2004] [Accepted: 07/09/2004] [Indexed: 11/24/2022]
Abstract
Cyanobacteria are reported to produce secondary metabolites of which toxic and bioactive peptides are of scientific and public interest. Many peptides are synthesized by the non-ribosomal peptide synthesis pathway and their presence is a stable feature of individual clones. We isolated 18 clonal strains of Planktothrix from a single water sample from lake Maxsee near Berlin and analyzed them by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, HPLC, and PCR for their production of peptides and the presence of microcystin synthetase genes. Microcystins could be detected in seven of the strains with considerable variability of contents and numbers of structural variants. Other known peptides like anabaenopeptins B and E/F, microviridin I, and prenylagaramide B and new variants of known peptide classes like aeruginosins and cyanopeptolins were detected in some strains while lacking in others. The 18 strains represented 15 chemotypes with respect to their peptide patterns. In contrast, all strains were morphologically very similar with respect to cell dimensions and pigmentation. Given the diversity of chemotypes among the randomly selected isolates, an immense diversity of chemotypes in the entire population can be assumed.
Collapse
Affiliation(s)
- Martin Welker
- Technische Universität Berlin, Institute für Chemie, AG Biochemie, Franklinstrasse 29, Berlin, Germany.
| | | | | |
Collapse
|
80
|
Chaganty S, Golakoti T, Heltzel C, Moore RE, Yoshida WY. Isolation and structure determination of cryptophycins 38, 326, and 327 from the terrestrial cyanobacterium Nostoc sp. GSV 224. JOURNAL OF NATURAL PRODUCTS 2004; 67:1403-1406. [PMID: 15332864 DOI: 10.1021/np0499665] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cryptophycin-38 (2), -326 (3), and -327 (4) are three new trace constituents of the terrestrial cyanobacterium Nostoc sp. GSV 224. Cryptophycin-38 is a stereoisomer of cryptophycin-1 (1) and to date is the only naturally occurring analogue that possesses a S,S epoxide group in unit A. Cryptophycin-327 is a geometric isomer that differs from 1 in having a cis Delta(2)-double bond in unit A. Cryptophycin-326 is related to cryptophycin-21, but has two chlorines ortho to the methoxy group in unit B. The relative and absolute stereochemistries of 2 have been related to known cryptophycins by semisynthesis and/or spectral analysis.
Collapse
Affiliation(s)
- Sreedhara Chaganty
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | | | | | | | | |
Collapse
|
81
|
Hunsucker SW, Klage K, Slaughter SM, Potts M, Helm RF. A preliminary investigation of the Nostoc punctiforme proteome. Biochem Biophys Res Commun 2004; 317:1121-7. [PMID: 15094385 DOI: 10.1016/j.bbrc.2004.03.173] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Indexed: 10/26/2022]
Abstract
Nostoc punctiforme ATCC 29133 is a filamentous terrestrial cyanobacterium (prokaryote) that expresses several different phenotypes in response to environmental cues. When grown in nitrogen-deficient media the most abundant proteins in addition to phycobiliproteins were superoxide dismutase, ATP synthase, and peptidyl-prolyl cis-trans isomerases. A methylated peptide from an akinete marker protein was also identified, suggesting that methylation could potentially play a regulatory role through signaling. C-phycocyanin alpha-chain was methylated at the C-terminal end of the protein and tandem mass spectrometric data also identified peptides that were deamidated. Since a significant number of putative polyketide/non-ribosomal peptide synthase genes are present in the annotated genome, an analysis of a methanolic extract of whole cells was also performed, and a series of nostopeptolides were identified.
Collapse
|
82
|
Rantala A, Fewer DP, Hisbergues M, Rouhiainen L, Vaitomaa J, Börner T, Sivonen K. Phylogenetic evidence for the early evolution of microcystin synthesis. Proc Natl Acad Sci U S A 2004; 101:568-73. [PMID: 14701903 PMCID: PMC327188 DOI: 10.1073/pnas.0304489101] [Citation(s) in RCA: 290] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteria are a prolific source of secondary metabolites, including compounds with toxic and enzyme-inhibiting activities. Microcystins and nodularins are the end products of a secondary metabolic pathway comprised of mixed polyketide synthases and nonribosomal peptide synthetases. Both peptides are potent natural toxins produced by distantly related genera of cyanobacteria. Horizontal gene transfer is thought to play a role in the sporadic distribution of microcystin producers among cyanobacteria. Our phylogenetic analyses indicate a coevolution of housekeeping genes and microcystin synthetase genes for the entire evolutionary history of the toxin. Hence they do not corroborate horizontal transfer of genes for microcystin biosynthesis between the genera. The sporadic distribution of microcystin synthetase genes in modern cyanobacteria suggests that the ability to produce the toxin has been lost repeatedly in the more derived lineages of cyanobacteria. The data we present here strongly suggest that the genes encoding nodularin synthetase are recently derived from those encoding microcystin synthetase.
Collapse
Affiliation(s)
- Anne Rantala
- Department of Applied Chemistry and Microbiology, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FIN-00014, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
83
|
Becker JE, Moore RE, Moore BS. Cloning, sequencing, and biochemical characterization of the nostocyclopeptide biosynthetic gene cluster: molecular basis for imine macrocyclization. Gene 2004; 325:35-42. [PMID: 14697508 DOI: 10.1016/j.gene.2003.09.034] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nostocyclopeptides A1 and A2 are novel cyclic heptapeptides produced by the terrestrial cyanobacterium Nostoc sp. ATCC53789 that possess a unique imino linkage in the macrocyclic ring. Herein we report the cloning, sequencing, annotation, and biochemical analysis of the 33-kb nostocyclopeptide (ncp) biosynthetic gene cluster, which includes seven open reading frames predicted to be involved in the biosynthesis and transport of these natural products. The genetic architecture and domain organization of the ncpA-B nonribosomal peptide synthetase (NRPS) is co-linear in arrangement with respect to the putative order of the biosynthetic assembly of the cyclic peptide. A reductase domain identified at the C-terminal end of the NRPS NcpB is predicted to catalyze an NAD(P)H-mediated hydride transfer to the heptapeptidyl-S-enzyme intermediate NH(2)-Tyr-Gly-DGln-Ile-Ser-mPro-Leu/Phe-S-NRPS to yield a linear heptapeptide aldehyde that is subsequently captured intramolecularly with the amino group of the N-terminal amino acid residue tyrosine to form a stable imine bond. While a few C-terminal reductases associated with NRPSs have been identified, the ncp reductase is the first to mediate imine macrocyclization involving peptide N- and C-termini. Biochemical analysis of the NcpA1 and NcpB1 adenylation domains coupled with the recent characterization of the (2S,4S)-5-hydroxyleucine dehydrogenase NcpD, which is involved in the biosynthesis of the nonproteinogenic amino acid residue L-4-methylproline from L-leucine, support the involvement of this cluster in nostocyclopeptide biosynthesis.
Collapse
Affiliation(s)
- Julia E Becker
- College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | | | | |
Collapse
|