51
|
Faure P, Oziol L, Artur Y, Chomard P. Thyroid hormone (T3) and its acetic derivative (TA3) protect low-density lipoproteins from oxidation by different mechanisms. Biochimie 2005; 86:411-8. [PMID: 15283976 DOI: 10.1016/j.biochi.2004.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Accepted: 04/23/2004] [Indexed: 10/26/2022]
Abstract
Triiodothyronine (T3) and triiodothyroacetic acid (TA3) are thyroid compounds that similarly protect low-density lipoprotein (LDL) against oxidation induced by the free radical generator 2,2'-azobis-[2-amidinopropane] dihydrochloride (AAPH). However, TA3 is more antioxidant than T3 on LDL oxidation induced by copper ions (Cu2+), suggesting that these compounds act by different mechanisms. Here we measured conjugated diene production kinetics during in vitro human LDL (50 mg LDL-protein per l) oxidation induced by various Cu2+ (0.5-4 microM) or AAPH (0.25-2 mM) concentrations in the presence of T3, TA3, butylated hydroxytoluene (BHT) (a free radical scavenger) or ethylenediaminetetracetic acid (EDTA) (a metal chelator). From the kinetics were estimated: length of the lag phase (Tlag), maximum velocity of conjugated diene production (Vmax), and maximum amount of generated dienes (Dmax). Thyroid compound effects on these oxidation parameters were compared to those of the controls BHT and EDTA. In addition we measured by atomic absorption spectrometry copper remaining in LDL after a 30 min incubation of LDL with Cu2+ and the compounds followed by extensive dialysis, i.e. copper bound to LDL. As expected, LDL-copper was decreased by EDTA in a concentration-dependent manner, whereas it was not affected by BHT. T3 increased LDL-copper whereas TA3 slightly decreased it. The whole data suggest that T3 and TA3 are free radical scavengers that also differently disturb LDL-copper binding, an essential step for LDL lipid peroxidation. The most likely mechanisms are that T3 induces new copper binding sites inside the LDL particle, increasing the LDL-copper amount but in a redox-inactive form, whereas TA3 blocks some redox-active copper binding sites highly implicated in the initiation and the propagation of lipid peroxidation. Alternatively, we also found that a little amount of copper is tightly bound in LDL, which may be essential for the propagation of lipid peroxidation induced by free radical generators.
Collapse
Affiliation(s)
- Philippe Faure
- Unité de Biochimie, Pharmacologie et Toxicologie, UFR des Sciences Pharmaceutiques et Biologiques, 7, Boulevard Jeanne d'Arc, BP 87 900, 21079 Dijon, France
| | | | | | | |
Collapse
|
52
|
Hirunpanich V, Utaipat A, Morales NP, Bunyapraphatsara N, Sato H, Herunsalee A, Suthisisang C. Antioxidant Effects of Aqueous Extracts from Dried Calyx of Hibiscus sabdariffa LINN. (Roselle) in Vitro Using Rat Low-Density Lipoprotein (LDL). Biol Pharm Bull 2005; 28:481-4. [PMID: 15744073 DOI: 10.1248/bpb.28.481] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study quantitatively investigated the antioxidant effects of the aqueous extracts from dried calyx of Hibiscus sabdariffa LINN. (roselle) in vitro using rat low-density lipoprotein (LDL). Formations of the conjugated dienes and thiobarbituric acid reactive substances (TBARs) were monitored as markers of the early and later stages of the oxidation of LDL, respectively. Thus, we demonstrated that the dried calyx extracts of roselle exhibits strong antioxidant activity in Cu(2+)-mediated oxidation of LDL (p<0.05) in vitro. The inhibitory effect of the extracts on LDL oxidation was dose-dependent at concentrations ranging from 0.1 to 5 mg/ml. Moreover, 5 mg/ml of roselle inhibited TBARs-formation with greater potency than 100 microM of vitamin E. In conclusion, this study provides a quantitative insight into the potent antioxidant effect of roselle in vitro.
Collapse
Affiliation(s)
- Vilasinee Hirunpanich
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Rajadhevi, Bangkok, Thailand
| | | | | | | | | | | | | |
Collapse
|
53
|
Hendrickson A, McKinstry LA, Lewis JK, Lum J, Louie A, Schellenberg GD, Hatsukami TS, Chait A, Jarvik GP. Ex vivo measures of LDL oxidative susceptibility predict carotid artery disease. Atherosclerosis 2004; 179:147-53. [PMID: 15721021 DOI: 10.1016/j.atherosclerosis.2004.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 08/26/2004] [Accepted: 09/24/2004] [Indexed: 11/27/2022]
Abstract
AIM The purpose of the study was to assess whether ex vivo measures of low-density lipoprotein (LDL) oxidation improved prediction of carotid artery disease (CAAD) case-control status compared to standard lipid and smoking measures. METHODS One hundred and forty cases with a high degree of carotid artery stenosis aged 40-83 years and an equal number of controls without stenosis or other vascular disease were matched by censored age within 2 years. Matched logistic regression evaluated the significance of copper-induced oxidative measures with and without covariates. The relationship of LDL oxidation measures with statin use and current smoking was also evaluated. RESULTS Logistic regression demonstrated a significant effect of the three correlated measures of oxidative susceptibility (lag time, oxidation rate and maximal rate of oxidation) separately on disease prediction (all p<0.05). These oxidative measures remained significant predictors of case-control status when other cardiovascular disease predictors (age; LDL-C, HDL-C and ApoAI levels; current smoking, ever smoking and pack-years smoked) were jointly considered. This relationship was not attributable to the effects of statin use on LDL oxidation. CONCLUSIONS Ex vivo measures of oxidation improved the prediction of carotid artery disease status, suggesting that this is an important determinant of atherosclerotic risk in this older population.
Collapse
Affiliation(s)
- Audrey Hendrickson
- Division of Medical Genetics, The University of Washington Department of Medicine, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Yeum KJ, Russell RM, Krinsky NI, Aldini G. Biomarkers of antioxidant capacity in the hydrophilic and lipophilic compartments of human plasma. Arch Biochem Biophys 2004; 430:97-103. [PMID: 15325916 DOI: 10.1016/j.abb.2004.03.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 02/27/2004] [Indexed: 01/03/2023]
Abstract
Antioxidants located in both the hydrophilic and lipophilic compartments of plasma are actively involved as a defense system against reactive oxygen species (ROS), which are continuously generated in the body due to both normal metabolism and disease. However, when the production of ROS is not controlled, it leads to cellular lipid, protein, and DNA damage in biological systems. Several assays to measure 'total' antioxidant capacity of plasma have been developed to study the involvement of oxidative stress in pathological conditions and to evaluate the functional bioavailability of dietary antioxidants. Conventional assays to determine antioxidant capacity primarily measure the antioxidant capacity in the aqueous compartment of plasma. Consequently, water-soluble antioxidants such as ascorbic acid, uric acid and protein thiols mainly influence these assays, whereas fat-soluble antioxidants such as tocopherols and carotenoids play only a minor role. However, there are active interactions among antioxidants located in the hydrophilic and lipophilic compartments of plasma. Therefore, new approaches to define the 'true' total antioxidant capacity of plasma should reflect the antioxidant network between water- and fat-soluble antioxidants in plasma. Revelation of the mechanism of action of antioxidants and their true antioxidant potential will help us to optimize the antioxidant defenses in the body.
Collapse
Affiliation(s)
- Kyung-Jin Yeum
- The Jean Mayer USDA-Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | | | | | | |
Collapse
|
55
|
Herak JN, Stojanović N, Krilov D. Probabilistic kinetic model of slow oxidation of low-density lipoprotein: I. Theory. Chem Phys Lipids 2004; 129:63-74. [PMID: 14998728 DOI: 10.1016/j.chemphyslip.2003.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2003] [Revised: 12/02/2003] [Accepted: 12/08/2003] [Indexed: 11/16/2022]
Abstract
The microscopic probabilistic model has been introduced to explain the kinetics of very slow oxidation of low-density lipoprotein (LDL) from human plasma. The LDL oxidation, carried out in very unfavorable conditions, is assumed to be initiated by the traces of the transition-metal ions associated with the lipoprotein. The substrates for the metal-ion attack are alpha-tocopherol and the pre-formed lipid hydroperoxide. The theory assumes oscillation of the metal ions and alpha-tocopherol from the oxidized to the reduced states. In this model alpha-tocopherol acts as a pro-oxidant. The entire oxidation process consists of rare bursts of events in individual LDL particles. The reactions within the particles are treated in terms of probabilities of individual active species to participate in a specified reaction. The circular flow of the radical reactions could be visualized as circular flow of microscopic probabilities. The empirical, macroscopic quantities are quantitatively related with the microscopic probabilities, determined by a set of five adjustable parameters. The differential equations describing the initial radical generation rate and the rates of change of concentration of oxygen, hydroperoxide, co-antioxidant and trapped radicals in an LDL system are numerically solved in a finite difference approach.
Collapse
Affiliation(s)
- Janko N Herak
- Division of Biophysics, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovacića 1, P.O. Box 156, Zagreb 10000, Croatia.
| | | | | |
Collapse
|
56
|
Vanco J, Svajlenová O, Ramanská E, Muselík J, Valentová J. Antiradical activity of different copper(II) Schiff base complexes and their effect on alloxan-induced diabetes. J Trace Elem Med Biol 2004; 18:155-61. [PMID: 15646262 DOI: 10.1016/j.jtemb.2004.07.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Considering the important role of antioxidants in biological systems, the group of copper(II) complexes derived from salicylaldehyde and alpha- or beta-alanine and its thiourea derivative and copper(II) complexes derived from pyruvic acid and beta-alanine were studied. The antiradical activity of the tested compounds was studied by both in vitro and in vivo methods. The chemical methods based on inhibition of INT-formazane or 3-nitrotyrosine formation were used for the evaluation of SOD-mimic and antiperoxynitrite activity, respectively. In the case of in vivo activity evaluation, an alloxan-induced diabetes mellitus model in mice was used, the mechanism of action of alloxan being closely connected with the formation of free radicals selectively damaging the pancreatic beta-cells. Since all the substances studied showed different positive effects, it is obvious that they have not acted only as a source of copper(II) ions but their effect is related to their specific chelate structure. The obtained results are a contribution to the knowledge of copper(II) Schiff base complexes with ligands of aldimine or ketimine type and form the basis for further preclinical tests of these bioactive agents in biological models of oxidative stress.
Collapse
Affiliation(s)
- Ján Vanco
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho, Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
57
|
Zarev S, Bonnefont-Rousselot D, Jedidi I, Cosson C, Couturier M, Legrand A, Beaudeux JL, Thérond P. Extent of copper LDL oxidation depends on oxidation time and copper/LDL ratio: chemical characterization. Arch Biochem Biophys 2003; 420:68-78. [PMID: 14622976 DOI: 10.1016/j.abb.2003.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The aim of our study was to determine, as a function of [Cu(2+)]/[LDL] ratios (0.5 and 0.05) and of oxidation phases, the extent of LDL oxidation by assessing the lipid and apo B oxidation products. The main results showed that: (i) kinetics of conjugated diene formation presented four phases for Cu(2+)/LDL ratio of 0.5 and two phases for [Cu(2+)]/[LDL] ratio of 0.05; (ii) oxidation product formation (cholesteryl ester and phosphatidylcholine hydroperoxides, apo B carbonyl groups) occurred early in the presence of endogenous antioxidants, under both copper oxidation conditions; (iii) apo B carbonylated fragments appeared when antioxidants were totally consumed at [Cu(2+)]/[LDL] ratio of 0.5; and (iv) antioxidant concentrations were stable, oxysterol formation was negligible, and no carbonylated fragment was detected at [Cu(2+)]/[LDL] ratio of 0.05. Depending on the copper/LDL ratio, oxidized LDL differ greatly in the nature of lipid peroxidation product and the degree of apo B fragmentation.
Collapse
Affiliation(s)
- Stéphanie Zarev
- Laboratoire de Biochimie Métabolique et Clinique, Faculté de Pharmacie, 4, avenue de l'Observatoire, 75270 Paris Cedex 06, France.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Kayali HA, Tarhan L. Influence of zinc and copper ions on metals transport, antioxidant system responses and membrane LPO levels of F. equiseti and F. acuminatum. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(03)00250-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
59
|
Asatryan L, Ziouzenkova O, Duncan R, Sevanian A. Heme and lipid peroxides in hemoglobin-modified low-density lipoprotein mediate cell survival and adaptation to oxidative stress. Blood 2003; 102:1732-9. [PMID: 12750169 DOI: 10.1182/blood-2003-01-0293] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Low-density lipoprotein (LDL) oxidation mediated by a variety of catalysts in atherosclerotic lesions plays a crucial role in the genesis and evolution of atherosclerotic plaques. In this study we focused on oxidative properties of hemoglobin (Hb)-modified LDL because Hb is present in atherosclerotic lesions. Under low oxygen tensions Hb was previously found to modify apolipoprotein B100 with covalent binding of Hb fragments and formation of electronegative LDL particles (LDL-). Here we show that HbLDL is highly susceptible to oxidation, but is not cytotoxic to vascular cells, as was found for LDL- isolated from human plasma. HbLDL and LDL- have similar levels of oxidized lipid products and low uptake rates; however, the virtual absence of HbLDL-induced toxicity depends on a marked adaptive oxidative stress response. This was evidenced by a time- and dose-dependent induction of heme oxygenase (HO-1). Cell survival was significantly decreased in the presence of HO-1 inhibitor, tin protoporphyrin (SnPPIX). HO-1 induction by HbLDL increased resistance of cells to toxic doses of hemin or t-BuOOH. The high sensitivity to oxidation and HO-1 induction was largely dependent on lipid hydroperoxides and heme associated with HbLDL. Reduction of pre-existing lipid peroxides using ebselen delayed HbLDL kinetics and inhibited HO-1 induction. Moreover, heme inactivation or its degradation inhibited HO-1 induction and provided an additive inhibitory effect to ebselen. We conclude that Hb-catalyzed reactions may modulate vascular cell survival and oxidative stress adaptation due to the presence of peroxides and heme, thus providing a possible mechanism for the evolution of atherosclerotic and hemorrhagic lesions.
Collapse
Affiliation(s)
- Liana Asatryan
- University of Southern California, School of Pharmacy, Department of Molecular Pharmacology and Toxicology, 1985 Zonal Ave, PSC 622, Los Angeles, CA 90089, USA
| | | | | | | |
Collapse
|
60
|
Patterson RA, Lamb DJ, Leake DS. Mechanisms by which cysteine can inhibit or promote the oxidation of low density lipoprotein by copper. Atherosclerosis 2003; 169:87-94. [PMID: 12860254 DOI: 10.1016/s0021-9150(03)00154-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Oxidised low density lipoprotein (LDL) may play a role in atherogenesis. We have investigated some of the mechanisms by which the thiol cysteine and the disulphide cystine can influence the oxidation of LDL by copper ions. Cysteine or cystine (100 microM) inhibited the oxidation of native LDL by copper in a simple phosphate buffer. One of the mechanisms by which cysteine (or more likely its oxidation products in the presence of copper) and cystine inhibited LDL oxidation was by decreasing the binding of copper to LDL (97% inhibition). Cysteine, but not cystine, rapidly reduced Cu(2+) to Cu(+). This may help to explain the antioxidant effect of cysteine as it may limit the amount of Cu(2+) that is available to convert alpha-tocopherol in LDL into the prooxidant alpha-tocopherol radical. Cysteine (but not cystine) had a prooxidant effect, however, toward partially oxidised LDL in the presence of a low copper concentration, which may have been due to the rapid breakdown of lipid hydroperoxides in partially oxidised LDL by Cu(+) generated by cysteine. To prove that cysteine can cause the rapid breakdown of lipid hydroperoxides in LDL, we enriched LDL with lipid hydroperoxides using an azo initiator in the absence of copper. Cysteine, but not cystine, increased the rate of lipid hydroperoxide decomposition to thiobarbituric acid-reactive substances (TBARS) in the presence of copper.
Collapse
Affiliation(s)
- Rebecca A Patterson
- Cardiovascular Research Group, Cell and Molecular Biology Research Division, School of Animal and Microbial Sciences, The University of Reading, Whiteknights, PO Box 228, Reading Berkshire RG6 6AJ, UK
| | | | | |
Collapse
|
61
|
Ferraro B, Galli F, Frei B, Kingdon E, Canestrari F, Rice-Evans C, Buoncristiani U, Davenport A, Moore KP. Peroxynitrite-induced oxidation of plasma lipids is enhanced in stable hemodialysis patients. Kidney Int 2003; 63:2207-13. [PMID: 12753309 DOI: 10.1046/j.1523-1755.2003.00008.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The relationship between end-stage renal disease (ESRD), hemodialysis, and oxidative stress is controversial. To determine whether ESRD causes oxidative stress, we measured basal levels of plasma F2-isoprostanes as a marker of lipid peroxidation in vivo, and peroxynitrite-stimulated formation of F2-isoprostanes, as a marker of the oxidizibility of plasma lipids in vitro, before and after routine hemodialysis. METHODS Total plasma F2-isoprostanes were measured by gas chromatography-mass spectrometry (GC-MS) before and after the oxidation of plasma lipids with the peroxynitrite-generating compound, 3-morpholino-sydnonimine (SIN-1), in 23 patients with ESRD patients undergoing regular hemodialysis, and 14 controls. Plasma vitamin E concentrations were measured by high-performance liquid chromatography (HPLC). RESULTS There was no difference in basal plasma concentrations of F2-isoprostanes in the ESRD group prior to hemodialysis, 246 +/- 20 pg/mL, compared to controls, 252 +/- 28 pg/mL, or immediately on completion of hemodialysis, 236 +/- 14 pg/mL. Incubation of control plasma with SIN-1 caused the formation of F2-isoprostanes with plasma concentrations increasing to 987 +/- 54 pg/mL at 6 hours. The formation of F2-isoprostanes stimulated by SIN-1 was markedly enhanced in the plasma obtained from patients undergoing hemodialysis at 1861 +/- 174 pg/mL, P < 0.001, and SIN-1-induced formation of F2-isoprostanes was further increased in plasma obtained immediately after hemodialysis at 2437 +/- 168 pg/mL, P < 0.001. Incubation of plasma with SIN-1 resulted in the net consumption of vitamin E. CONCLUSION Although basal plasma F2-isoprostanes were similar in patients with ESRD compared with controls, the presence of oxidative stress in patients with ESRD was unmasked when the plasma was stressed by peroxynitrite generated from SIN-1, and this was enhanced further by hemodialysis.
Collapse
Affiliation(s)
- Barbara Ferraro
- Centre for Hepatology, Royal Free & University College Medical School, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Patterson RA, Horsley ETM, Leake DS. Prooxidant and antioxidant properties of human serum ultrafiltrates toward LDL: important role of uric acid. J Lipid Res 2003; 44:512-21. [PMID: 12562831 DOI: 10.1194/jlr.m200407-jlr200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxidized LDL is present within atherosclerotic lesions, demonstrating a failure of antioxidant protection. A normal human serum ultrafiltrate of Mr below 500 was prepared as a model for the low Mr components of interstitial fluid, and its effects on LDL oxidation were investigated. The ultrafiltrate (0.3%, v/v) was a potent antioxidant for native LDL, but was a strong prooxidant for mildly oxidized LDL when copper, but not a water-soluble azo initiator, was used to oxidize LDL. Adding a lipid hydroperoxide to native LDL induced the antioxidant to prooxidant switch of the ultrafiltrate. Uric acid was identified, using uricase and add-back experiments, as both the major antioxidant and prooxidant within the ultrafiltrate for LDL. The ultrafiltrate or uric acid rapidly reduced Cu2+ to Cu+. The reduction of Cu2+ to Cu+ may help to explain both the antioxidant and prooxidant effects observed. The decreased concentration of Cu2+ would inhibit tocopherol-mediated peroxidation in native LDL, and the generation of Cu+ would promote the rapid breakdown of lipid hydroperoxides in mildly oxidized LDL into lipid radicals. The net effect of the low Mr serum components would therefore depend on the preexisting levels of lipid hydroperoxides in LDL. These findings may help to explain why LDL oxidation occurs in atherosclerotic lesions in the presence of compounds that are usually considered to be antioxidants.
Collapse
Affiliation(s)
- Rebecca A Patterson
- Cell and Molecular Biology Research Division, School of Animal and Microbial Sciences, The University of Reading, Whiteknights, PO Box 228, Reading, Berkshire, RG6 6AJ, United Kingdom
| | | | | |
Collapse
|
63
|
Shafiee M, Carbonneau MA, d'Huart JB, Descomps B, Léger CL. Synergistic antioxidative properties of phenolics from natural origin toward low-density lipoproteins depend on the oxidation system. J Med Food 2003; 5:69-78. [PMID: 12487753 DOI: 10.1089/109662002760178140] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using an approach in line with that of a previous report, we assessed the antioxidant activity of several natural, polyphenol- or tocotrienol-rich mixtures: extracts from Elaesis Guineensis oil (A) and Vitis vinifera (B), a Coffea robusta powder (C), and extracts from Olea europea mill wastewaters (D), Solanum melongena (E), and Lycopersicon esculentum (F). The copper- and 2-2'-azobis(2-amidinopropane) hydrochloride (AAPH)-oxidation systems were used in the presence of low-density lipoprotein. For comparison, antioxidant activities of chlorogenic acid and catechin, as archetypes of molecules highly efficient with the copper- and the AAPH-oxidation system, respectively, were assessed. The aim was to establish the occurrence of synergistic antioxidant actions among some of these natural mixtures. On a molar basis, the highest specific antioxidant activities (SAA) were found for B, chlorogenic acid, and C in the copper system, and for A, catechin, and B in the AAPH system. On a mass basis, the highest SAA were found, respectively, for chlorogenic acid, B, and catechin, and for catechin, chlorogenic acid, and B. These results show that large discrepancies take place in the evaluations between the two systems. B and C exhibited a synergistic antioxidant efficiency, in the presence or absence of A, but only with the copper system. This was also true for the two types of A+B+C mixture that were tested. It is thought that this association might provide an ideal combination, incorporating both the radical scavenger and the transition-metal ion chelation properties of B and C.
Collapse
Affiliation(s)
- Manijeh Shafiee
- Laboratoire de Nutrition Humaine et Athérogénèse, UPRES-EA 2033, Faculté de Médecine, Université de Montpellier I, F-34060, Montpellier, France
| | | | | | | | | |
Collapse
|
64
|
Bonnefont-Rousselot D, Chevé G, Gozzo A, Tailleux A, Guilloz V, Caisey S, Teissier E, Fruchart JC, Delattre J, Jore D, Lesieur D, Duriez P, Gardès-Albert M. Melatonin related compounds inhibit lipid peroxidation during copper or free radical-induced LDL oxidation. J Pineal Res 2002; 33:109-17. [PMID: 12153445 DOI: 10.1034/j.1600-079x.2002.02911.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study was designed to evaluate the protective effect of two melatonin related compounds towards low density lipoproteins (LDL) oxidation initiated in vitro either by defined free radicals [i.e. superoxide anion (O2*-) and ethanol-derived peroxyl radicals (RO(2)(*))] produced by gamma radiolysis or by copper ions. The compounds studied were N-[2-(5-methoxy-1H-indol-3-yl)ethyl]-3,5-di-tert-butyl-4-hydroxybenzamide (DTBHB) and (R,S)-1-(3-methoxyphenyl)-2-propyl-1,2,3,4-tetrahydro-beta-carboline (GWC20) which is a pinoline derivative. Their effects were compared with those of melatonin at the same concentration (100 micromol/L). None of the three tested compounds protected endogenous LDL alpha-tocopherol from oxidation by RO(2)(*)/O(2)(*)- free radicals. By contrast, they all protected beta-carotene from the attack of these free radicals with GWC20 being the strongest protector. Moreover, melatonin and DTBHB partially inhibited the formation of products derived from lipid peroxidation (conjugated dienes and thiobarbituric acid-reactive substances or TBARS) while GWC20 totally abolished this production. As previously shown, melatonin (at the concentration used) inhibited copper-induced LDL oxidation by increasing 1.60-fold the lag phase duration of conjugated diene formation over the 8 hr of the experimental procedure, however, DTBHB and GWC20 were much more effective, because they totally prevented the initiation of the propagation phase of LDL oxidation. It would be interesting to test in vivo if DTBHB and GWC20 which exhibit a strong capacity to inhibit in vitro LDL oxidation would reduce or not atherosclerosis in animals susceptible to this pathology.
Collapse
|
65
|
Zarev S, Bonnefont-Rousselot D, Cosson C, Beaudeux JL, Delattre J, Gardès-Albert M, Legrand A, Thérond P. In vitro low-density lipoprotein oxidation by copper or *OH/O*(2)(-): new features on carbonylation and fragmentation of apolipoprotein B during the lag phase. Arch Biochem Biophys 2002; 404:10-7. [PMID: 12127064 DOI: 10.1016/s0003-9861(02)00230-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aim of our study was to evaluate the carbonylation and the carbonylated fragmentation of apolipoprotein B upon low-density lipoprotein (LDL) oxidation induced in vitro by copper and *OH/O*(2)(-) free radicals generated by gamma-radiolysis. Therefore, we developed a very sensitive Western blot immunoassay using 2,4-dinitrophenylhydrazine which allows the revelation of the apolipoprotein B carbonylation and its carbonylated fragmentation. The main results of this study show that (i) apolipoprotein B carbonylation is present during the lag phase of LDL oxidation in the two oxidative processes and (ii) apolipoprotein B carbonylated fragmentation was not detected during the lag phase of copper-oxidized LDL but was detected during the propagation phase. By contrast, apolipoprotein B carbonylated fragmentation was detected in the lag phase of *OH/O*(2)(-) oxidized LDL.
Collapse
Affiliation(s)
- Stéphanie Zarev
- Laboratoire de Biochimie Métabolique et Clinique, Faculté de Pharmacie, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Pinchuk I, Lichtenberg D. The mechanism of action of antioxidants against lipoprotein peroxidation, evaluation based on kinetic experiments. Prog Lipid Res 2002; 41:279-314. [PMID: 11958813 DOI: 10.1016/s0163-7827(01)00026-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peroxidation of blood lipoproteins is regarded as a key event in the development of atherosclerosis. Hence, attenuation of the oxidative modification of lipoproteins by natural and synthetic antioxidants in vivo is considered a possible way of prevention of cardiovascular disorders. The assessment of the susceptibility of lipoproteins to oxidation is commonly based on in vitro oxidation experiments. Monitoring of oxidation provides the kinetic profile characteristic for the given lipoprotein preparation. The kinetic profile of peroxidation is characterized by three major parameters: the lag preceding rapid oxidation, the maximal rate of oxidation (V(max)) and the maximal accumulation of oxidation products (OD(max)). Addition of antioxidants alters this pattern, affecting the kinetic parameters of oxidation. In particular, antioxidants may prolong the lag and/or decrease the V(max) and/or decrease the OD(max). Such specific variation of the set of kinetic parameters may provide important information on the mechanism of the inhibitory action of a given antioxidant (scavenging free radicals, metal-binding or other mechanisms). Numerous natural and synthetic compounds were reported to inhibit oxidation of lipoproteins. Based on the analysis of reported effects and theoretical considerations, we propose a simple protocol that relates the kinetic effects of a given antioxidant to the mechanism of its action.
Collapse
Affiliation(s)
- Ilya Pinchuk
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, PO Box 39040, 69978, Tel Aviv, Israel
| | | |
Collapse
|
67
|
Abstract
Consumption of a meal containing oxidized and oxidizable lipids gives rise to an increased plasma concentration of lipid hydroperoxides, detectable by a sensitive chemiluminescence procedure. This is associated with increased susceptibility of LDL to oxidation, apparently due a structural perturbation at the particle surface brought about by lipid oxidation products. The postprandial modification of LDL is at least partially accounted for by an increase of LDL-, a subfraction containing lipid oxidation products where apoprotein-B-100 (apoB-100) is denatured. Consuming the meal with a suitable source of antioxidants, such as those found in red wine, minimizes this postprandial oxidative stress. The inhibition of peroxidation of lipids present in the meal during digestion is a possible mechanism for the observed protection of LDL. The in vivo oxidatively modified LDL- has numerous features that correspond to the atherogenic minimally modified LDL produced in vitro. These modified particles could account for a relevant link between nutrition and early biological processes that foster the development of atherosclerosis.
Collapse
Affiliation(s)
- Fulvio Ursini
- Department of Biological Chemistry, University of Padova, Italy
| | | |
Collapse
|
68
|
Weinberg RB, VanderWerken BS, Anderson RA, Stegner JE, Thomas MJ. Pro-oxidant effect of vitamin E in cigarette smokers consuming a high polyunsaturated fat diet. Arterioscler Thromb Vasc Biol 2001; 21:1029-33. [PMID: 11397715 DOI: 10.1161/01.atv.21.6.1029] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dietary polyunsaturated fats and vitamin E are associated with reduced risk for atherosclerosis, but in smokers, they could promote lipid oxidation. Therefore, we examined the effects of a high polyunsaturated fat diet and vitamin E supplementation on measures of lipid oxidation in cigarette smokers. Ten subjects who smoked >1 pack of cigarettes per day were sequentially fed the following: a baseline diet in which the major fat source was olive oil, a diet in which the major fat source was high-linoleic safflower oil, and finally, the safflower oil diet plus 800 IU vitamin E per day. LDL oxidation lag time and rate and plasma total F(2)-isoprostanes and prostaglandin F(2alpha) (PGF(2alpha)) were determined after 3 weeks on each diet. The safflower oil diet increased total F(2)-isoprostanes from 53.0+/-7.2 to 116.2+/-11.2 nmol/L and PGF(2alpha) from 3.5+/-0.2 to 5.5+/-0.5 nmol/L, without changing LDL oxidation parameters. Addition of vitamin E prolonged mean LDL oxidation lag time but, paradoxically, further increased F(2)-isoprostanes to 188.2+/-10.9 nmol/L and PGF(2alpha) to 7.8+/-0.4 nmol/L. These data suggest that vitamin E may function as a pro-oxidant in cigarette smokers consuming a high polyunsaturated fat diet.
Collapse
Affiliation(s)
- R B Weinberg
- Department of Internal Medicine, Section of Gastroenterology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
69
|
Roland A, Patterson RA, Leake DS. Measurement of copper-binding sites on low density lipoprotein. Arterioscler Thromb Vasc Biol 2001; 21:594-602. [PMID: 11304478 DOI: 10.1161/01.atv.21.4.594] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Copper is often used to oxidize low density lipoprotein (LDL) in experiments in vitro and is a candidate for oxidizing LDL in atherosclerotic lesions. The binding of copper ions to LDL is usually thought to be a prerequisite for LDL oxidation by copper, although estimates of LDL copper binding vary widely. We have developed and validated an equilibrium dialysis assay in a MOPS-buffered system to measure copper binding to LDL and have found 38.6+/-0.7 (mean+/-SEM, n=25) copper binding sites on LDL. The binding was saturated at a copper concentration of 10 micromol/L at LDL concentrations of up to 1 mg protein/mL. Copper-binding capacity increased progressively and markedly when LDL was oxidized to increasing extents. Chemical modification of histidyl and lysyl residues on apolipoprotein B-100 reduced the number of binding sites by 56% and 23%, respectively. As an example of the potential of this method to assess the effects of antioxidants on copper binding to LDL, we have shown that the flavonoids myricetin, quercetin, and catechin (but not epicatechin, kaempferol, or morin), at concentrations equimolar to the copper present (10 micromol/L), significantly decreased copper binding to LDL by 82%, 56%, and 20%, respectively.
Collapse
Affiliation(s)
- A Roland
- Cell and Molecular Biology Research Division, School of Animal and Microbial Sciences, The University of Reading, Reading, Berkshire, UK.
| | | | | |
Collapse
|
70
|
Cartron E, Carbonneau MA, Fouret G, Descomps B, Léger CL. Specific antioxidant activity of caffeoyl derivatives and other natural phenolic compounds: LDL protection against oxidation and decrease in the proinflammatory lysophosphatidylcholine production. JOURNAL OF NATURAL PRODUCTS 2001; 64:480-486. [PMID: 11325231 DOI: 10.1021/np000421u] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Specific antioxidant activity (SAA) (i.e., activity related to the molar or gallic acid equivalent amount of antioxidant) of natural polyphenolic mixtures or pure phenolic compounds was studied using their capacity to delay the conjugated diene production brought about by in vitro LDL copper-mediated or AAPH-mediated oxidation. The cinnamic acid series (caffeic, sinapic, ferulic acids) displayed a constant SAA over a large range of concentrations, whereas the benzoic acid series (gallic and protocatechuic acids) showed much higher SAA at low concentrations. The natural phenolic mixtures had a constant SAA. The highest SAA was obtained with caffeoyl esters (caffeoylquinic, rosmarinic, and caffeoyltartaric acids) and catechin for the copper-oxidation and the AAPH-oxidation system, respectively. Phenolic mixtures and acids delayed vitamin E depletion and decreased proinflammatory lysophosphatidylcholine production. As with polyphenols, probucol delayed lysophosphatidylcholine and conjugated dienes production, at higher concentrations, but was not effective at preventing vitamin E depletion. Polyphenols prevent the oxidation of LDL and its constituents (vitamin E, phosphatidylcholine), which is compatible with an antiinflammatory and antiatherosclerotic role in pathophysiological conditions.
Collapse
Affiliation(s)
- E Cartron
- Laboratoire de Nutrition Humaine et Athérogenese, UPRES-EA 2993, Faculté de Médecine, Université de Montpellier I, F-34060, France
| | | | | | | | | |
Collapse
|
71
|
Exner M, Alt E, Hermann M, Hofbauer R, Kapiotis S, Quehenberger P, Speiser W, Minar E, Gmeiner B. p-Hydroxyphenylacetaldehyde, the major product of tyrosine oxidation by the activated myeloperoxidase system can act as an antioxidant in LDL. FEBS Lett 2001; 490:28-31. [PMID: 11172805 DOI: 10.1016/s0014-5793(01)02131-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The oxidative modification of low density lipoprotein (LDL) may play a significant role in atherogenesis. HOCl generated by the myeloperoxidase/H2O2/Cl- system of activated neutrophils may be operative in vivo making LDL atherogenic. Tyrosine has been found to be oxidized by HOCl to p-hydroxyphenylacetaldehyde (p-HA) capable of modifying phospholipid amino groups in LDL. As an amphiphatic phenolic compound, p-HA may have the potential to act as an antioxidant in the lipid phase of LDL. The present results show that (a) tyrosine exerts a protective effect on LDL modification by HOCl, (b) p-HA could act as antioxidant associated with the lipoprotein preventing cell- and transition metal ion-mediated LDL oxidation and (c) p-HA was able to scavenge free radicals.
Collapse
Affiliation(s)
- M Exner
- Department of Laboratory Medicine, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Khalil A, Fülöp T. A comparison of the kinetics of low-density lipoprotein oxidation induced by copper or by γ-rays: Influence of radiation dose-rate and copper concentration. Can J Physiol Pharmacol 2001. [DOI: 10.1139/y00-080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The oxidation of low-density lipoproteins is the first step in the complex process leading to atherosclerosis. The aim of our study was to compare the kinetics of low density lipoprotein oxidation induced by copper ions or by oxygen free radicals generated by60Co γ-rays. The effects of copper concentration and irradiation dose-rate on LDL peroxidation kinetics were also studied. The oxidation of LDL was followed by the measurement of conjugated diene, hydroperoxides, and thiobarbituric acid reactive substance formation as well as α-tocopherol disappearance. In the case of gamma irradiation, the lag-phase before the onset of lipid peroxidation was inversely correlated to the radiation dose-rate. The radiation chemical rates (v) increased with increasing dose-rate. Copper-induced LDL peroxidation followed two kinetic patterns: a slow kinetic for copper concentrations between 520 µM, and a fast kinetic for a copper concentration of 40 µM. The concentration-dependent oxidation kinetics suggest the existence of a saturable copper binding site on apo-B. When compared with γ-rays, copper ions act as drastic and powerful oxidants only at higher concentrations ([Formula: see text]40 µM).Key words: LDL, peroxidation, kinetics, copper, γ-radiolysis, dose-rate.
Collapse
|
73
|
Batthyány C, Santos CX, Botti H, Cerveñansky C, Radi R, Augusto O, Rubbo H. Direct Evidence for apo B-100-Mediated Copper Reduction: Studies with Purified apo B-100 and Detection of Tryptophanyl Radicals. Arch Biochem Biophys 2000; 384:335-40. [PMID: 11368321 DOI: 10.1006/abbi.2000.2102] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Copper binding to apolipoprotein B-100 (apo B-100) and its reduction by endogenous components of low-density lipoprotein (LDL) represent critical steps in copper-mediated LDL oxidation, where cuprous ion (Cu(I)) generated from cupric ion (Cu(II)) reduction is the real trigger for lipid peroxidation. Although the copper-reducing capacity of the lipid components of LDL has been studied extensively, we developed a model to specifically analyze the potential copper reducing activity of its protein moiety (apo B-100). Apo B-100 was isolated after solubilization and extraction from size exclusion-HPLC purified LDL. We obtained, for the first time, direct evidence for apo B-100-mediated copper reduction in a process that involves protein-derived radical formation. Kinetics of copper reduction by isolated apo B-100 was different from that of LDL, mainly because apo B-100 showed a single phase-exponential kinetic, instead of the already described biphasic kinetics for LDL (namely alpha-tocopherol-dependent and independent phases). While at early time points, the LDL copper reducing activity was higher due to the presence of alpha-tocopherol, at longer time points kinetics of copper reduction was similar in both LDL and apo B-100 samples. Electron paramagnetic resonance studies of either LDL or apo B-100 incubated with Cu(II), in the presence of the spin trap 2-methyl-2-nitroso propane (MNP), indicated the formation of protein-tryptophanyl radicals. Our results supports that apo B-100 plays a critical role in copper-dependent LDL oxidation, due to its lipid-independent-copper reductive ability.
Collapse
Affiliation(s)
- C Batthyány
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay
| | | | | | | | | | | | | |
Collapse
|
74
|
Sevanian A, Shen L, Ursini F. Inhibition of LDL oxidation and oxidized LDL-induced cytotoxicity by dihydropyridine calcium antagonists. Pharm Res 2000; 17:999-1006. [PMID: 11028948 DOI: 10.1023/a:1007539607613] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE The antioxidant activity of dihydropyridine calcium channel antagonists was evaluated based on LDL oxidation kinetics, oxidative cell injury associated with reactive species generation, and increases in free intracellular calcium (Ca2+) levels. Interactions with ascorbic acid were studied under conditions representative of LDL oxidation in plasma and tissue. METHODS Analysis of antioxidant activity utilized measurements of one-electron oxidation potentials and scavenging of peroxy radical-mediated oxidation. LDL antioxidant potency was determined spectrophotometrically using copper-mediated oxidation kinetics in the absence and presence of 100 microM ascorbic acid. Prevention of oxidant-induced endothelial cell injury was determined from the formation of reactive oxygen species generation and increases in intracellular free calcium concentrations following addition of oxidized LDL or linoleic acid hydroperoxide. RESULTS Felodipine and amlodipine effectively inhibit peroxyl radical-mediated oxidation in lipoproteins and cells that is markedly enhanced in the presence of ascorbic acid. In the presence of ascorbic acid, inhibition of LDL oxidation is over four times greater than in LDL treated without antioxidants, and oxidized LDL and linoleic acid hydroperoxide-induced reactive oxygen species formation is effectively suppressed in cells. Inhibition of intracellular calcium increases was achieved using nM concentrations of felodipine or amlodipine. CONCLUSIONS The additive effect for ascorbic acid and the calcium channel antagonist is postulated to involve a combination of peroxide-degrading and peroxyl radical scavenging reactions, demonstrating the importance of lipid peroxides during LDL oxidation and oxidized LDL-induced cytotoxicity. Cytoprotection is associated with inhibition of oxidant-induced increases in intracellular free calcium. Both the cytoprotective and LDL antioxidant activity for these compounds is manifested at concentrations approaching the therapeutic levels found in plasma.
Collapse
Affiliation(s)
- A Sevanian
- University of Southern California, School of Pharmacy, Dept. Molecular Pharmacology & Toxicology, Los Angeles 90033, USA.
| | | | | |
Collapse
|
75
|
Raveh O, Pinchuk I, Schnitzer E, Fainaru M, Schaffer Z, Lichtenberg D. Kinetic analysis of copper-induced peroxidation of HDL, autoaccelerated and tocopherol-mediated peroxidation. Free Radic Biol Med 2000; 29:131-46. [PMID: 10980402 DOI: 10.1016/s0891-5849(00)00332-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Comparison of the kinetic profiles of copper-induced peroxidation of HDL and LDL at different copper concentrations reveals that under all the studied experimental conditions HDL is more susceptible to oxidation than LDL. The mechanism responsible for HDL oxidation is a complex function of the copper/HDL ratio and of the tocopherol content of the HDL. At high copper concentrations, the kinetic profiles were similar to those observed for LDL oxidation, namely, relatively rapid accumulation of oxidation products, via an autoaccelerated, noninhibited mechanism, was preceded by an initial "lag phase." Under these conditions, the maximal peroxidation rate (V(max)) of HDL and LDL depended similarly on the molar ratio of bound copper/lipoprotein. Analysis of this dependency in terms of the binding characteristics of copper to lipoprotein, yielded similar dissociation constant (K = 10(-6) M) but different maximal binding capacities for the two lipoproteins (8 Cu(+2)/HDL as compared to 17 Cu(+2)/LDL). Given the size difference between HDL and LDL, these results imply that the maximal surface density of bound copper is at least 2-fold higher for HDL than for LDL. This difference may be responsible for the higher susceptibility of HDL to copper-induced oxidation in the presence of high copper concentrations. At relatively low copper concentrations, the kinetic profile of HDL oxidation was biphasic, similar to but more pronounced than the biphasic kinetics observed for the oxidation of LDL lipids at the same concentration of copper. Our results are consistent with the hypothesis that the first phase of rapid oxidation occurs via a tocopherol-mediated-peroxidation (TMP) mechanism. Accordingly, enrichment of HDL with tocopherol resulted in enhanced accumulation of hydroperoxides during the first phase of copper-induced oxidation. Notably, the maximal accumulation during the first phase decreased upon increasing the ratio of bound copper/HDL. This behavior can be predicted theoretically for peroxidation via a TMP mechanism, in opposition to autoaccelerated peroxidation. The possible pathophysiological significance of these findings is discussed.
Collapse
Affiliation(s)
- O Raveh
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
76
|
Thomas SR, Stocker R. Molecular action of vitamin E in lipoprotein oxidation: implications for atherosclerosis. Free Radic Biol Med 2000; 28:1795-805. [PMID: 10946221 DOI: 10.1016/s0891-5849(00)00236-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The oxidation theory of atherosclerosis proposes that the oxidative modification of low-density lipoproteins (LDL) plays a central role in the disease. Although a direct causative role of LDL oxidation for atherogenesis has not been established, oxidized lipoproteins are detected in atherosclerotic lesions, and in vitro oxidized LDL exhibits putative pro-atherogenic activities. alpha-Tocopherol (alpha-TOH; vitamin E), the major lipid-soluble antioxidant present in lipoproteins, is thought to be antiatherogenic. However, results of vitamin E interventions on atherosclerosis in experimental animals and cardiovascular disease in humans have been inconclusive. Also, recent mechanistic studies demonstrate that the role of alpha-TOH during the early stages of lipoprotein lipid peroxidation is complex and that the vitamin does not act as a chain-breaking antioxidant. In the absence of co-antioxidants, compounds capable of reducing the alpha-TOH radical and exporting the radical from the lipoprotein particle, alpha-TOH exhibits anti- or pro-oxidant activity for lipoprotein lipids depending on the degree of radical flux and reactivity of the oxidant. The model of tocopherol-mediated peroxidation (TMP) explains the complex molecular action of alpha-TOH during lipoprotein lipid peroxidation and antioxidation. This article outlines the salient features of TMP, comments on whether TMP is relevant for in vivo lipoprotein lipid oxidation, and discusses how co-antioxidants may be required to attenuate lipoprotein lipid oxidation in vivo and perhaps atherosclerosis.
Collapse
Affiliation(s)
- S R Thomas
- The Biochemistry Group, The Heart Research Institute, Sydney, Australia
| | | |
Collapse
|
77
|
Albertini R, De Luca G, Palladini G, Passi A, Melzi d'Eril GV, Abuja PM. Mechanistic aspects of the relationship between low-level chemiluminescence and lipid peroxides in oxidation of low-density lipoprotein. FEBS Lett 1999; 459:47-50. [PMID: 10508915 DOI: 10.1016/s0014-5793(99)01217-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study oxidation of low-density lipoprotein (LDL) induced by different Cu2+ concentrations was investigated. Lipid peroxidation was assessed by monitoring low-level chemiluminescence (LL-CL), conjugated diene hydroperoxide (CD) and alpha-tocopherol (TocOH), the major lipophilic antioxidant in LDL. At high Cu2+ concentration, LDL oxidation was characterised by CD formation, LL-CL emission and TocOH consumption. At low Cu2+ concentration, CD formation was independent of LL-CL and occurred in the presence of TocOH. Thus, two different mechanisms lead to lipid peroxide formation in LDL. The combination of CD assay and LL-CL monitoring makes it possible to distinguish the autocatalytic mechanism of CD formation and that associated with TocOH, found at a high and a low rate of initiation, respectively.
Collapse
Affiliation(s)
- R Albertini
- Department of Experimental and Clinical Biomedical Sciences, University of Insubria, Via Dunant, 21100, Varese, Italy
| | | | | | | | | | | |
Collapse
|
78
|
Schettler V, Methe H, Staschinsky D, Schuff-Werner P, Müller GA, Wieland E. Review: the oxidant/antioxidant balance during regular low density lipoprotein apheresis. THERAPEUTIC APHERESIS : OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR APHERESIS AND THE JAPANESE SOCIETY FOR APHERESIS 1999; 3:219-26. [PMID: 10427619 DOI: 10.1111/j.1091-6660.1999.t01-3-.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Low density lipoprotein (LDL) apheresis is a safe procedure to treat severe hypercholesterolemia in patients with chronic heart disease (CHD). However, both hypercholesterolemia and extracorporeal treatment have been associated with oxidative stress. Even though LDL lowering has been proven to reduce CHD, the oxidative modification of LDL has been suggested to render these lipoproteins more atherogenic. It is therefore important to know whether LDL apheresis is safe with respect to oxidative stress including LDL oxidation. The contact of living cells such as leukocytes with artificial surfaces during extracorporeal treatment induces the liberation of various chemokines and cytokines as well as oxygen-derived radicals also known as respiratory burst. These effects justify the consideration of leukocyte activation resulting from extracorporeal treatment as an inflammatory reaction. In extracorporeal circuits such as those used for hemodialysis, the release of oxygen radicals has been shown and depends on the fiber material used in the dialyzer membranes. Reactive oxygen radicals can interact with different cell components such as carbohydrates, DNA, proteins, and lipids. Antioxidants in the form of low molecular weight molecules such as glutathione or radical scavenging enzymes such as superoxide dismutase offer protection against the damaging effects of prooxidants. The disturbed balance between prooxidants and antioxidants is considered as oxidative stress. Therefore, either an increase in oxygen radical formation or a decrease of antioxidants will lead to oxidative stress. During LDL apheresis, a decrease of low molecular weight antioxidants has been reported. In contrast, we have observed an increase in plasma glutathione concentrations but no severe reduction in the activity of antioxidant enzymes in plasma, red cells, or granulocytes, which may explain the lack of plasma lipid peroxidation shown during this kind of extracorporeal treatment. In addition, LDL isolated at the end of apheresis procedures are more resistant to oxidation. These findings suggest that LDL apheresis is safe with respect to radical mediated injury.
Collapse
Affiliation(s)
- V Schettler
- Department of Nephrology and Rheumatology, Georg-August-University, Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
79
|
Upston JM, Terentis AC, Stocker R. Tocopherol-mediated peroxidation of lipoproteins: implications for vitamin E as a potential antiatherogenic supplement. FASEB J 1999; 13:977-94. [PMID: 10336881 DOI: 10.1096/fasebj.13.9.977] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The 'oxidation theory' of atherosclerosis proposes that oxidation of low density lipoprotein (LDL) contributes to atherogenesis. Although little direct evidence for a causative role of 'oxidized LDL' in atherogenesis exists, several studies show that, in vitro, oxidized LDL exhibits potentially proatherogenic activities and lipoproteins isolated from atherosclerotic lesions are oxidized. As a consequence, the molecular mechanisms of LDL oxidation and the actions of alpha-tocopherol (alpha-TOH, vitamin E), the major lipid-soluble lipoprotein antioxidant, have been studied in detail. Based on the known antioxidant action of alpha-TOH and epidemiological evidence, vitamin E is generally considered to be beneficial in coronary artery disease. However, intervention studies overall show a null effect of vitamin E on atherosclerosis. This confounding outcome can be rationalized by the recently discovered diverse role for alpha-TOH in lipoprotein oxidation; that is, alpha-TOH displays neutral, anti-, or, indeed, pro-oxidant activity under various conditions. This review describes the latter, novel action of alpha-TOH, termed tocopherol-mediated peroxidation, and discusses the benefits of vitamin E supplementation alone or together with other antioxidants that work in concert with alpha-TOH in ameliorating lipoprotein lipid peroxidation in the artery wall and, hence, atherosclerosis.
Collapse
Affiliation(s)
- J M Upston
- Biochemistry Group, The Heart Research Institute, Sydney, Australia
| | | | | |
Collapse
|
80
|
Woodside JV, Young IS, Yarnell JW, Roxborough HE, McMaster D, McCrum EE, Gey KF, Evans A. Antioxidants, but not B-group vitamins increase the resistance of low-density lipoprotein to oxidation: a randomized, factorial design, placebo-controlled trial. Atherosclerosis 1999; 144:419-27. [PMID: 10407503 DOI: 10.1016/s0021-9150(98)00334-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have conducted an intervention trial to assess the effects of antioxidants and B-group vitamins on the susceptibility of low-density lipoprotein (LDL) to oxidation. A total of 509 men aged 30-49 from a local workforce were screened for total plasma homocysteine. The 132 selected (homocysteine concentration > or = 8.34 mumol/l) men were randomly assigned, using a factorial design, to one of four groups receiving supplementation with B group vitamins alone (1 mg folic acid, 7.2 mg pyridoxine, 0.02 mg cyanocobalamin), antioxidant vitamins (150 mg ascorbic acid, 67 mg alpha-tocopherol, 9 mg beta-carotene), B vitamins with antioxidant vitamins, or placebo. Intervention was double-blind. A total of 101 men completed the 8-week study. The lag time of LDL isolated ex vivo to oxidation (induced by 2 mumol/l cupric chloride) was increased in the two groups receiving antioxidants whether with (6.88 +/- 1.65 min) or without (8.51 +/- 1.77 min) B-vitamins, compared with placebo (-2.03 +/- 1.50) or B-vitamins alone (-3.34 +/- 1.08) (Mean +/- S.E., P < 0.001). Antibodies to malondialdehyde (MDA) modified LDL were also measured, but there were no significant changes in titers of these antibodies in any group of subjects whether receiving antioxidants or not. Contrast analysis showed that there was no interaction between antioxidants and B-group vitamins. This study indicates that while B-group vitamins lower plasma homocysteine they do not have an antioxidant effect. Thus B-group vitamins and antioxidants appear to have separate, independent effects in reducing cardiovascular risk.
Collapse
Affiliation(s)
- J V Woodside
- School of Clinical Medicine, Queen's University of Belfast, Northern Ireland, UK
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Zarev S, Thérond P, Bonnefont-Rousselot D, Beaudeux JL, Gardès-Albert M, Legrand A. Major differences in oxysterol formation in human low density lipoproteins (LDLs) oxidized by *OH/O2*- free radicals or by copper. FEBS Lett 1999; 451:103-8. [PMID: 10371147 DOI: 10.1016/s0014-5793(99)00564-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of our study was to determine the oxysterol formation in low density lipoproteins (LDLs) oxidized by defined oxygen free radicals (*OH/O2*-). This was compared to the oxysterol produced upon the classical copper oxidation procedure. The results showed a markedly lower formation of oxysterols induced by *OH/O2*- free radicals than by copper and thus suggested a poor ability of these radicals to initiate cholesterol oxidation in LDLs. Moreover, the molecular species of cholesteryl ester hydroperoxides produced by LDL copper oxidation seemed more labile than those formed upon *OH/O2*(-)-induced oxidation, probably due to their degradation by reaction with copper ions.
Collapse
Affiliation(s)
- S Zarev
- Laboratoire de Biochimie Métabolique et Clinique, Faculté de Pharmacie, Paris, France
| | | | | | | | | | | |
Collapse
|
82
|
Albertini R, Abuja PM. Prooxidant and antioxidant properties of Trolox C, analogue of vitamin E, in oxidation of low-density lipoprotein. Free Radic Res 1999; 30:181-8. [PMID: 10711788 DOI: 10.1080/10715769900300201] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Trolox C (Trolox), a water-soluble analogue of vitamin E lacking the phytyl chain, was investigated with respect to its effect on the oxidation of low-density lipoprotein (LDL). Trolox was added at different time points of LDL oxidation induced by Cu2+ and aqueous peroxyl radicals. In the case of Cu2+ -induced LDL oxidation, the effect of Trolox changed from antioxidant to prooxidant when added at later time points during oxidation; this transition occurred whenever alpha-tocopherol was just consumed in oxidizing LDL. Thus, in the case of Cu2+ -dependent LDL oxidation, the presence of lipophilic antioxidants in the LDL particle is likely to be a prerequisite for the antioxidant activity of Trolox. When oxidation was induced by peroxyl radicals, as a model of metal-independent oxidation, the effect of Trolox was always antioxidant, suggesting the importance of Cu2+ /Cu+ redox-cycling in the prooxidant mechanism of Trolox. Our data suggest that, in the absence of significant amounts of lipophilic antioxidants, LDL becomes highly susceptible to oxidation induced by transition metals in the presence of aqueous reductants.
Collapse
Affiliation(s)
- R Albertini
- Institute of Biochemistry, SFB Biomembrane Research Center, University of Graz, Austria
| | | |
Collapse
|