51
|
Can AT, Mitchell JS, Dutton M, Bennett M, Hermens DF, Lagopoulos J. Insights into the neurobiology of suicidality: explicating the role of glutamatergic systems through the lens of ketamine. Psychiatry Clin Neurosci 2023; 77:513-529. [PMID: 37329495 DOI: 10.1111/pcn.13572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/16/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
Suicidality is a prevalent mental health condition, and managing suicidal patients is one of the most challenging tasks for health care professionals due to the lack of rapid-acting, effective psychopharmacological treatment options. According to the literature, suicide has neurobiological underpinnings that are not fully understood, and current treatments for suicidal tendencies have considerable limitations. To treat suicidality and prevent suicide, new treatments are required; to achieve this, the neurobiological processes underlying suicidal behavior must be thoroughly investigated. Although multiple neurotransmitter systems, particularly serotonergic systems, have been studied in the past, less has been reported in relation to disruptions in glutamatergic neurotransmission, neuronal plasticity, and neurogenesis that result from stress-related abnormalities of the hypothalamic-pituitary-adrenal system. Informed by the literature, which reports robust antisuicidal and antidepressive properties of subanaesthetic doses of ketamine, this review aims to provide an examination of the neurobiology of suicidality (and relevant mood disorders) with implications of pertinent animal, clinical, and postmortem studies. We discuss dysfunctions in the glutamatergic system, which may play a role in the neuropathology of suicidality and the role of ketamine in restoring synaptic connectivity at the molecular levels.
Collapse
Affiliation(s)
- Adem Tevfik Can
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Jules Shamus Mitchell
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Megan Dutton
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Maxwell Bennett
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | | | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| |
Collapse
|
52
|
Nagao M, Hatae A, Mine K, Tsutsumi S, Omori H, Hirata M, Arimatsu M, Taniguchi C, Watanabe T, Kubota K, Katsurabayashi S, Iwasaki K. The Effects of Ninjinyoeito on Impaired Spatial Memory and Prefrontal Cortical Synaptic Plasticity through α-Amino-3-hydroxy-5-4-isoxazole Propionic Acid Receptor Subunit in a Rat Model with Cerebral Ischemia and β-Amyloid Injection. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:6035589. [PMID: 37808130 PMCID: PMC10560115 DOI: 10.1155/2023/6035589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 08/05/2023] [Accepted: 09/02/2023] [Indexed: 10/10/2023]
Abstract
Ninjinyoeito (NYT), a traditional Japanese medicine, is effective for improving physical strength and treating fatigue and anorexia. Recently, a clinical report revealed that NYT ameliorates cognitive dysfunction in Alzheimer's disease (AD) patients, although the mechanisms remain unclear. AD is a neurodegenerative disorder accompanied by a progressive deficit in memory. Current therapeutic agents are largely ineffective in treating cognitive dysfunction in AD patients. In this study, we investigated the effects of NYT on spatial memory impairment in a rat model of dementia. Rats were prepared with transient cerebral ischemia and intraventricular injection of β-amyloid1-42 for 7 days (CI + Aβ). NYT was orally administered for 7 days after cerebral ischemia. We evaluated spatial memory using the Morris water maze and investigated the expression of α-amino-3-hydroxy-5-4-isoxazole propionic acid receptor subunits, the phosphorylation level of glutamate receptor A (GluA)1 at serine sites S831 and S845, and the Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the hippocampus and prefrontal cortex of CI + Aβ rats. In the CI + Aβ rats, NYT treatment shortened the extended time to reach the platform. However, NYT did not restore the decrease in the hippocampal GluA1, GluA2, or CaMKII expression but increased prefrontal cortical phosphorylation levels of S845-GluA1 and CaMKII. Therefore, NYT may alleviate spatial memory impairment by promoting glutamatergic transmission involved in the phosphorylation of S845-GluA1 and CaMKII in the prefrontal cortex of CI + Aβ rats. Our results suggest that NYT is a valuable treatment for AD patients.
Collapse
Affiliation(s)
- Masaki Nagao
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Akinobu Hatae
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Kazuma Mine
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Soichiro Tsutsumi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Hiroya Omori
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Marika Hirata
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Maaya Arimatsu
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Chise Taniguchi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Takuya Watanabe
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka 814-0180, Japan
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Kaori Kubota
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka 814-0180, Japan
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Shutaro Katsurabayashi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Katsunori Iwasaki
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka 814-0180, Japan
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
53
|
Kalkman HO. Activation of σ1-Receptors by R-Ketamine May Enhance the Antidepressant Effect of S-Ketamine. Biomedicines 2023; 11:2664. [PMID: 37893038 PMCID: PMC10604479 DOI: 10.3390/biomedicines11102664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Ketamine is a racemic mixture composed of two enantiomers, S-ketamine and R-ketamine. In preclinical studies, both enantiomers have exhibited antidepressant effects, but these effects are attributed to distinct pharmacological activities. The S-enantiomer acts as an NMDA-channel blocker and as an opioid μ-receptor agonist, whereas the R-enantiomer binds to σ1-receptors and is believed to act as an agonist. As racemate, ketamine potentially triggers four biochemical pathways involving the AGC-kinases, PKA, Akt (PKB), PKC and RSK that ultimately lead to inhibitory phosphorylation of GSK3β in microglia. In patients with major depressive disorder, S-ketamine administered as a nasal spray has shown clear antidepressant activity. However, when compared to intravenously infused racemic ketamine, the response rate, duration of action and anti-suicidal activity of S-ketamine appear to be less pronounced. The σ1-protein interacts with μ-opioid and TrkB-receptors, whereas in preclinical experiments σ1-agonists reduce μ-receptor desensitization and improve TrkB signal transduction. TrkB activation occurs as a response to NMDA blockade. So, the σ1-activity of R-ketamine may not only enhance two pathways via which S-ketamine produces an antidepressant response, but it furthermore provides an antidepressant activity in its own right. These two factors could explain the apparently superior antidepressant effect observed with racemic ketamine compared to S-ketamine alone.
Collapse
Affiliation(s)
- Hans O Kalkman
- Retired Pharmacologist, Gänsbühlgartenweg 7, 4132 Muttenz, Switzerland
| |
Collapse
|
54
|
Burke CT, Vitko I, Straub J, Nylund EO, Gawda A, Blair K, Sullivan KA, Ergun L, Ottolini M, Patel MK, Perez-Reyes E. EpiPro, a Novel, Synthetic, Activity-Regulated Promoter That Targets Hyperactive Neurons in Epilepsy for Gene Therapy Applications. Int J Mol Sci 2023; 24:14467. [PMID: 37833914 PMCID: PMC10572392 DOI: 10.3390/ijms241914467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Epileptogenesis is characterized by intrinsic changes in neuronal firing, resulting in hyperactive neurons and the subsequent generation of seizure activity. These alterations are accompanied by changes in gene transcription networks, first with the activation of early-immediate genes and later with the long-term activation of genes involved in memory. Our objective was to engineer a promoter containing binding sites for activity-dependent transcription factors upregulated in chronic epilepsy (EpiPro) and validate it in multiple rodent models of epilepsy. First, we assessed the activity dependence of EpiPro: initial electrophysiology studies found that EpiPro-driven GFP expression was associated with increased firing rates when compared with unlabeled neurons, and the assessment of EpiPro-driven GFP expression revealed that GFP expression was increased ~150× after status epilepticus. Following this, we compared EpiPro-driven GFP expression in two rodent models of epilepsy, rat lithium/pilocarpine and mouse electrical kindling. In rodents with chronic epilepsy, GFP expression was increased in most neurons, but particularly in dentate granule cells, providing in vivo evidence to support the "breakdown of the dentate gate" hypothesis of limbic epileptogenesis. Finally, we assessed the time course of EpiPro activation and found that it was rapidly induced after seizures, with inactivation following over weeks, confirming EpiPro's potential utility as a gene therapy driver for epilepsy.
Collapse
Affiliation(s)
- Cassidy T. Burke
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Iuliia Vitko
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Justyna Straub
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Elsa O. Nylund
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Agnieszka Gawda
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Kathryn Blair
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Kyle A. Sullivan
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Lara Ergun
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Matteo Ottolini
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA (M.K.P.)
| | - Manoj K. Patel
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA (M.K.P.)
- UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
- UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
55
|
Nolze A, Matern S, Grossmann C. Calcineurin Is a Universal Regulator of Vessel Function-Focus on Vascular Smooth Muscle Cells. Cells 2023; 12:2269. [PMID: 37759492 PMCID: PMC10528183 DOI: 10.3390/cells12182269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Calcineurin, a serine/threonine phosphatase regulating transcription factors like NFaT and CREB, is well known for its immune modulatory effects and role in cardiac hypertrophy. Results from experiments with calcineurin knockout animals and calcineurin inhibitors indicate that calcineurin also plays a crucial role in vascular function, especially in vascular smooth muscle cells (VSMCs). In the aorta, calcineurin stimulates the proliferation and migration of VSMCs in response to vascular injury or angiotensin II administration, leading to pathological vessel wall thickening. In the heart, calcineurin mediates coronary artery formation and VSMC differentiation, which are crucial for proper heart development. In pulmonary VSMCs, calcineurin/NFaT signaling regulates the release of Ca2+, resulting in increased vascular tone followed by pulmonary arterial hypertension. In renal VSMCs, calcineurin regulates extracellular matrix secretion promoting fibrosis development. In the mesenteric and cerebral arteries, calcineurin mediates a phenotypic switch of VSMCs leading to altered cell function. Gaining deeper insights into the underlying mechanisms of calcineurin signaling will help researchers to understand developmental and pathogenetical aspects of the vasculature. In this review, we provide an overview of the physiological function and pathophysiology of calcineurin in the vascular system with a focus on vascular smooth muscle cells in different organs. Overall, there are indications that under certain pathological settings reduced calcineurin activity seems to be beneficial for cardiovascular health.
Collapse
Affiliation(s)
| | | | - Claudia Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| |
Collapse
|
56
|
Sohaei D, Thebault S, Avery LM, Batruch I, Lam B, Xu W, Saadeh RS, Scarisbrick IA, Diamandis EP, Prassas I, Freedman MS. Cerebrospinal fluid camk2a levels at baseline predict long-term progression in multiple sclerosis. Clin Proteomics 2023; 20:33. [PMID: 37644477 PMCID: PMC10466840 DOI: 10.1186/s12014-023-09418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/28/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) remains a highly unpredictable disease. Many hope that fluid biomarkers may contribute to better stratification of disease, aiding the personalisation of treatment decisions, ultimately improving patient outcomes. OBJECTIVE The objective of this study was to evaluate the predictive value of CSF brain-specific proteins from early in the disease course of MS on long term clinical outcomes. METHODS In this study, 34 MS patients had their CSF collected and stored within 5 years of disease onset and were then followed clinically for at least 15 years. CSF concentrations of 64 brain-specific proteins were analyzed in the 34 patient CSF, as well as 19 age and sex-matched controls, using a targeted liquid-chromatography tandem mass spectrometry approach. RESULTS We identified six CSF brain-specific proteins that significantly differentiated MS from controls (p < 0.05) and nine proteins that could predict disease course over the next decade. CAMK2A emerged as a biomarker candidate that could discriminate between MS and controls and could predict long-term disease progression. CONCLUSION Targeted approaches to identify and quantify biomarkers associated with MS in the CSF may inform on long term MS outcomes. CAMK2A may be one of several candidates, warranting further exploration.
Collapse
Affiliation(s)
- Dorsa Sohaei
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Simon Thebault
- Department of Medicine, The Ottawa Hospital, 01 Smyth Road, Box 601, Ottawa, ON, K1H 8L6, Canada
- The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Lisa M Avery
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Department of Biostatistics, The Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Ihor Batruch
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Brian Lam
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, United States of America
| | - Wei Xu
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Department of Biostatistics, The Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Rubah S Saadeh
- Department of Physical Medicine and Rehabilitation, Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Isobel A Scarisbrick
- Department of Physical Medicine and Rehabilitation, Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Ioannis Prassas
- Mount Sinai Hospital, Joseph & Wolf Lebovic Ctr, 60 Murray St [Box 32]; Flr 6 - Rm L6-201, Toronto, ON, M5T 3L9, Canada.
- Laboratory Medicine Program, University Health Network, Toronto, Canada.
| | - Mark S Freedman
- Department of Medicine, The Ottawa Hospital, 01 Smyth Road, Box 601, Ottawa, ON, K1H 8L6, Canada.
- The Ottawa Hospital Research Institute, Ottawa, Canada.
| |
Collapse
|
57
|
Costa GA, de Gusmão Taveiros Silva NK, Marianno P, Chivers P, Bailey A, Camarini R. Environmental Enrichment Increased Bdnf Transcripts in the Prefrontal Cortex: Implications for an Epigenetically Controlled Mechanism. Neuroscience 2023; 526:277-289. [PMID: 37419403 DOI: 10.1016/j.neuroscience.2023.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Environmental enrichment (EE) is a condition characterized by its complexity regarding social contact, exposure to novelty, tactile stimuli and voluntary exercise, also is considered as a eustress model. The impact of EE on brain physiology and behavioral outcomes may be at least partly underpinned by mechanisms involving the modulation of the brain-derived neurotrophic factor (BDNF), but the connection between specific Bdnf exon expression and their epigenetic regulation remain poorly understood. This study aimed to dissect the transcriptional and epigenetic regulatory effect of 54-day exposure to EE on BDNF by analysing individual BDNF exons mRNA expression and the DNA methylation profile of a key transcriptional regulator of the Bdnf gene, exon IV, in the prefrontal cortex (PFC) of C57BL/6 male mice (sample size = 33). Bdnf exons II, IV, VI and IX mRNA expression were upregulated and methylation levels at two CpG sites of exon IV were reduced in the PFC of EE mice. As deficit in exon IV expression has also been causally implicated in stress-related psychopathologies, we also assessed anxiety-like behavior and plasma corticosterone levels in these mice to determine any potential correlation. However, no changes were observed in EE mice. The findings may suggest an EE-induced epigenetic control of BDNF exon expression via a mechanism involving exon IV methylation. The findings of this study contribute to the current literature by dissecting the Bdnf gene topology in the PFC where transcriptional and epigenetic regulatory effect of EE takes place.
Collapse
Affiliation(s)
- Gabriel Araújo Costa
- Pharmacology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Priscila Marianno
- Pharmacology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Priti Chivers
- School of Biosciences & Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Alexis Bailey
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, London, UK.
| | - Rosana Camarini
- Pharmacology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
58
|
Lo TY, Chan ASL, Cheung ST, Yung LY, Leung MMH, Wong YH. Multi-target regulatory mechanism of Yang Xin Tang - a traditional Chinese medicine against dementia. Chin Med 2023; 18:101. [PMID: 37587513 PMCID: PMC10428601 DOI: 10.1186/s13020-023-00813-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Yang Xin Tang (YXT) is a traditional Chinese herbal preparation which has been reported to improve cognitive function and memory in patients with dementia. As the underlying mechanism of action of YXT has not been elucidated, we examined the effects of YXT and its major herbal components in regulating gene transcription and molecular targets related to Alzheimer's disease (AD). METHODS Aqueous and ethanol extracts of YXT and selected herbal components were prepared and validated by standard methods. A series of biochemical and cellular assays were employed to assess the ability of the herbal extracts to inhibit acetylcholinesterase, reduce β-amyloid aggregation, stimulate the differentiation of neural progenitor cells, suppress cyclooxygenase, and protect neurons against β-amyloid or N-methyl-D-aspartate-induced cytotoxicity. The effects of YXT on multiple molecular targets were further corroborated by a panel of nine reporter gene assays. RESULTS Extracts of YXT and two of its constituent herbs, Poria cocos and Poria Sclerotium pararadicis, significantly inhibited β-amyloid aggregation and β-amyloid-induced cytotoxicity. A protective effect of the YXT extract was similarly observed against N-methyl-D-aspartate-induced cytotoxicity in primary neurons, and this activity was shared by extracts of Radix Astragali and Rhizoma Chuanxiong. Although the YXT extract was ineffective, extracts of Poria cocos, Poria Sclerotium pararadicis and Radix Polygalae inhibited acetylcholine esterase, with the latter also capable of upregulating choline acetyltransferase. YXT and its components significantly inhibited the activities of the pro-inflammatory cyclooxygenases. Additionally, extracts of YXT and several of its constituent herbs significantly stimulated the phosphorylation of extracellular signal-regulated kinases and cAMP-responsive element binding protein, two molecular targets involved in learning and memory, as well as in the regulation of neurogenesis. CONCLUSIONS Several constituents of YXT possess multiple regulatory effects on known therapeutic targets of AD that range from β-amyloid to acetylcholinesterase. The demonstrated neuroprotective and neurogenic actions of YXT lend credence to its use as an alternative medicine for treating AD.
Collapse
Affiliation(s)
- Tung Yan Lo
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Anthony Siu Lung Chan
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Suet Ting Cheung
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Lisa Ying Yung
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Manton Man Hon Leung
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Yung Hou Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China.
- State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Hong Kong University of Science and Technology, Hong Kong, China.
- Center for Aging Science, Hong Kong University of Science and Technology, Hong Kong, China.
- Hong Kong Center for Neurodegenerative Diseases, Units 1501-1502, 17 Science Park West Avenue, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
59
|
Drexler R, Khatri R, Sauvigny T, Mohme M, Maire CL, Ryba A, Zghaibeh Y, Dührsen L, Salviano-Silva A, Lamszus K, Westphal M, Gempt J, Wefers AK, Neumann J, Bode H, Hausmann F, Huber TB, Bonn S, Jütten K, Delev D, Weber KJ, Harter PN, Onken J, Vajkoczy P, Capper D, Wiestler B, Weller M, Snijder B, Buck A, Weiss T, Keough MB, Ni L, Monje M, Silverbush D, Hovestadt V, Suvà ML, Krishna S, Hervey-Jumper SL, Schüller U, Heiland DH, Hänzelmann S, Ricklefs FL. Epigenetic neural glioblastoma enhances synaptic integration and predicts therapeutic vulnerability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552017. [PMID: 37609137 PMCID: PMC10441357 DOI: 10.1101/2023.08.04.552017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is nascent. We present an epigenetically defined neural signature of glioblastoma that independently affects patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals high abundance of stem cell-like malignant cells classified as oligodendrocyte precursor and neural precursor cell-like in high-neural glioblastoma. High-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature associates with decreased survival as well as increased functional connectivity and can be detected via DNA analytes and brain-derived neurotrophic factor in plasma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant.
Collapse
Affiliation(s)
- Richard Drexler
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | - Robin Khatri
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cecile L. Maire
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alice Ryba
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yahya Zghaibeh
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Amanda Salviano-Silva
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Gempt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika K. Wefers
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children’s Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Helena Bode
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Jütten
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
| | - Daniel Delev
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
| | - Katharina J. Weber
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- University Cancer Center (UCT) Frankfurt, Frankfurt am Main, Germany
| | - Patrick N. Harter
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- Institute of Neuropathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Switzerland. Department of Neurology, University of Zürich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Alicia Buck
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Switzerland. Department of Neurology, University of Zürich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Switzerland. Department of Neurology, University of Zürich, Switzerland
| | - Michael B. Keough
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | - Lijun Ni
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | | | | | - Mario L. Suvà
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Saritha Krishna
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Shawn L. Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children’s Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Dieter H. Heiland
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franz L. Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
60
|
Guo G, Yang J, Guo W, Deng H, Yu H, Bai S, Li G, Tang Y, Zhang P, Xu Y, Pan C, Tang Z. Homocysteine impedes neurite outgrowth recovery after intracerebral haemorrhage by downregulating pCAMK2A. Stroke Vasc Neurol 2023; 8:335-348. [PMID: 36854487 PMCID: PMC10512087 DOI: 10.1136/svn-2022-002165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) is independently associated with poorer long-term prognosis in patients with intracerebral haemorrhage (ICH); however, the effect and mechanisms of HHcy on ICH are still unclear. Here, we evaluated neurite outgrowth and neurological functional recovery using simulated models of ICH with HHcy in vitro and in vivo. We found that the neurite outgrowth velocity and motor functional recovery in the ICH plus HHcy group were significantly slower than that in the control group, indicating that homocysteine (Hcy) significantly impedes the neurite outgrowth recovery after ICH. Furthermore, phosphoproteomic data and signalome analysis of perihematomal brain tissues suggested that calmodulin-dependent protein kinases 2 (CAMK2A) kinase substrate pairs were significantly downregulated in ICH with HHcy compared with autologous blood injection only, both western blot and immunofluorescence staining confirmed this finding. Additionally, upregulation of pCAMK2A significantly increased neurite outgrowth recovery in ICH with HHcy. Collectively, we clarify the mechanism of HHcy-hindered neurite outgrowth recovery, and pCAMK2A may serve as a therapeutic strategy for promoting neurological recovery after ICH.
Collapse
Affiliation(s)
- Guangyu Guo
- Department of Neurology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingfei Yang
- Department of Neurology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenliang Guo
- Department of Neurology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong Deng
- Department of Neurology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haihan Yu
- Department of Neurology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuang Bai
- Department of Neurology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gaigai Li
- Department of Neurology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yingxin Tang
- Department of Neurology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Zhang
- Department of Neurology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
61
|
Nelson ML, Pfeifer JA, Hickey JP, Collins AE, Kalisch BE. Exploring Rosiglitazone's Potential to Treat Alzheimer's Disease through the Modulation of Brain-Derived Neurotrophic Factor. BIOLOGY 2023; 12:1042. [PMID: 37508471 PMCID: PMC10376118 DOI: 10.3390/biology12071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/24/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that debilitates over 55 million individuals worldwide. Currently, treatments manage and alleviate its symptoms; however, there is still a need to find a therapy that prevents or halts disease progression. Since AD has been labeled as "type 3 diabetes" due to its similarity in pathological hallmarks, molecular pathways, and comorbidity with type 2 diabetes mellitus (T2DM), there is growing interest in using anti-diabetic drugs for its treatment. Rosiglitazone (RSG) is a peroxisome proliferator-activated receptor-gamma agonist that reduces hyperglycemia and hyperinsulinemia and improves insulin signaling. In cellular and rodent models of T2DM-associated cognitive decline and AD, RSG has been reported to improve cognitive impairment and reverse AD-like pathology; however, results from human clinical trials remain consistently unsuccessful. RSG has also been reported to modulate the expression of brain-derived neurotrophic factor (BDNF), a protein that regulates neuroplasticity and energy homeostasis and is implicated in both AD and T2DM. The present review investigates RSG's limitations and potential therapeutic benefits in pre-clinical models of AD through its modulation of BDNF expression.
Collapse
Affiliation(s)
- Mackayla L Nelson
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Julia A Pfeifer
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jordan P Hickey
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Andrila E Collins
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bettina E Kalisch
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
62
|
Parrado Fernandez C, Juric S, Backlund M, Dahlström M, Madjid N, Lidell V, Rasti A, Sandin J, Nordvall G, Forsell P. Neuroprotective and Disease-Modifying Effects of the Triazinetrione ACD856, a Positive Allosteric Modulator of Trk-Receptors for the Treatment of Cognitive Dysfunction in Alzheimer's Disease. Int J Mol Sci 2023; 24:11159. [PMID: 37446337 DOI: 10.3390/ijms241311159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The introduction of anti-amyloid monoclonal antibodies against Alzheimer's disease (AD) is of high importance. However, even though treated patients show very little amyloid pathology, there is only a modest effect on the rate of cognitive decline. Although this effect can possibly increase over time, there is still a need for alternative treatments that will improve cognitive function in patients with AD. Therefore, the purpose of this study was to characterize the triazinetrione ACD856, a novel pan-Trk positive allosteric modulator, in multiple models to address its neuroprotective and potential disease-modifying effects. The pharmacological effect of ACD856 was tested in recombinant cell lines, primary cortical neurons, or animals. We demonstrate that ACD856 enhanced NGF-induced neurite outgrowth, increased the levels of the pre-synaptic protein SNAP25 in PC12 cells, and increased the degree of phosphorylated TrkB in SH-SY5Y cells. In primary cortical neurons, ACD856 led to increased levels of phospho-ERK1/2, showed a neuroprotective effect against amyloid-beta or energy-deprivation-induced neurotoxicity, and increased the levels of brain-derived neurotrophic factor (BDNF). Consequently, administration of ACD856 resulted in a significant increase in BDNF in the brains of 21 months old mice. Furthermore, repeated administration of ACD856 resulted in a sustained anti-depressant effect, which lasted up to seven days, suggesting effects that go beyond merely symptomatic effects. In conclusion, the results confirm ACD856 as a cognitive enhancer, but more importantly, they provide substantial in vitro and in vivo evidence of neuroprotective and long-term effects that contribute to neurotrophic support and increased neuroplasticity. Presumably, the described effects of ACD856 may improve cognition, increase resilience, and promote neurorestorative processes, thereby leading to a healthier brain in patients with AD.
Collapse
Affiliation(s)
- Cristina Parrado Fernandez
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden
- Division of Neuroscience, Care and Society, Department of Neurogeriatrics, Karolinska Institutet, 171 77 Solna, Sweden
| | - Sanja Juric
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden
| | - Maria Backlund
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden
| | | | - Nather Madjid
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden
| | | | - Azita Rasti
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden
| | - Johan Sandin
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden
- Division of Neuroscience, Care and Society, Department of Neurogeriatrics, Karolinska Institutet, 171 77 Solna, Sweden
| | - Gunnar Nordvall
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden
- Division of Neuroscience, Care and Society, Department of Neurogeriatrics, Karolinska Institutet, 171 77 Solna, Sweden
| | - Pontus Forsell
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden
- Division of Neuroscience, Care and Society, Department of Neurogeriatrics, Karolinska Institutet, 171 77 Solna, Sweden
| |
Collapse
|
63
|
Tzeng CP, Whitwam T, Boxer LD, Li E, Silberfeld A, Trowbridge S, Mei K, Lin C, Shamah R, Griffith EC, Renthal W, Chen C, Greenberg ME. Activity-Induced MeCP2 Phosphorylation Regulates Retinogeniculate Synapse Refinement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547549. [PMID: 37461668 PMCID: PMC10349931 DOI: 10.1101/2023.07.03.547549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Mutations in MECP2 give rise to Rett syndrome (RTT), an X-linked neurodevelopmental disorder that results in broad cognitive impairments in females. While the exact etiology of RTT symptoms remains unknown, one possible explanation for its clinical presentation is that loss of MeCP2 causes miswiring of neural circuits due to defects in the brain's capacity to respond to changes in neuronal activity and sensory experience. Here we show that MeCP2 is phosphorylated at four residues in the brain (S86, S274, T308, and S421) in response to neuronal activity, and we generate a quadruple knock-in (QKI) mouse line in which all four activity-dependent sites are mutated to alanines to prevent phosphorylation. QKI mice do not display overt RTT phenotypes or detectable gene expression changes in two brain regions. However, electrophysiological recordings from the retinogeniculate synapse of QKI mice reveal that while synapse elimination is initially normal at P14, it is significantly compromised at P20. Notably, this phenotype is distinct from that previously reported for Mecp2 null mice, where synapses initially refine but then regress after the third postnatal week. We thus propose a model in which activity-induced phosphorylation of MeCP2 is critical for the proper timing of retinogeniculate synapse maturation specifically during the early postnatal period. SIGNIFICANCE STATEMENT Rett syndrome (RTT) is an X-linked neurodevelopmental disorder that predominantly affects girls. RTT is caused by loss of function mutations in a single gene MeCP2. Girls with RTT develop normally during their first year of life, but then experience neurological abnormalities including breathing and movement difficulties, loss of speech, and seizures. This study investigates the function of the MeCP2 protein in the brain, and how MeCP2 activity is modulated by sensory experience in early life. Evidence is presented that sensory experience affects MeCP2 function, and that this is required for synaptic pruning in the brain. These findings provide insight into MeCP2 function, and clues as to what goes awry in the brain when the function of MeCP2 is disrupted.
Collapse
|
64
|
Qiu F, He S, Zhang Z, Dai S, Wang J, Liu N, Li Z, Hu X, Xiang S, Wei C. MiR-93 alleviates DEHP plasticizer-induced neurotoxicity by negatively regulating TNFAIP1 and inhibiting ubiquitin-mediated degradation of CK2β. Food Chem Toxicol 2023:113888. [PMID: 37302538 DOI: 10.1016/j.fct.2023.113888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/28/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a plasticizer that is widely used in various products, such as plastic packaging in food industries. As an environmental endocrine disruptor, it induces adverse effects on brain development and function. However, the molecular mechanisms by which DEHP induces learning and memory impairment remain poorly understood. Herein, we found that DEHP impaired learning and memory in pubertal C57BL/6 mice, decreased the number of neurons, downregulated miR-93 and the β subunit of casein kinase 2 (CK2β), upregulated tumor necrosis factor-induced protein 1 (TNFAIP1), and inhibited Akt/CREB pathway in mouse hippocampi. Coimmunoprecipitation and western blotting assays revealed that TNFAIP1 interacted with CK2β and promoted its degradation by ubiquitination. Bioinformatics analysis showed a miR-93 binding site in the 3'-untranslated region of Tnfaip1. A dual-luciferase reporter assay revealed that miR-93 targeted TNFAIP1 and negatively regulated its expression. MiR-93 overexpression prevented DEHP-induced neurotoxicity by downregulating TNFAIP1 and then activating CK2/Akt/CREB pathway. These data indicate that DEHP upregulates TNFAIP1 expression by downregulating miR-93, thus promoting ubiquitin-mediated degradation of CK2β, subsequently inhibiting Akt/CREB pathway, and finally inducing learning and memory impairment. Therefore, miR-93 can relieve DEHP-induced neurotoxicity and may be used as a potential molecular target for prevention and treatment of related neurological disorders.
Collapse
Affiliation(s)
- Feng Qiu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Simei He
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Zilong Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Siyu Dai
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jin Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ning Liu
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Zhiwei Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiang Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Shuanglin Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Chenxi Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
65
|
Tao W, Yao G, Yue Q, Xu C, Hu Y, Cheng X, Zhao T, Qi M, Chen G, Zhao M, Yu Y. 14-3-3ζ Plays a key role in the modulation of neuroplasticity underlying the antidepressant-like effects of Zhi-Zi-Chi-Tang. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154888. [PMID: 37257329 DOI: 10.1016/j.phymed.2023.154888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/15/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Zhi-Zi-Chi-Tang (ZZCT) is an effective traditional Chinese medicinal formula. ZZCT has been used for the treatment of depression for centuries. Its clinical efficacy in relieving depression has been confirmed. However, the molecular mechanisms of ZZCT regarding neuroplasticity in the pathogenesis of depression have not yet been elucidated. PURPOSE The present study aimed to examine the effects of ZZCT on neuroplasticity in mice exposed to chronic unpredictable mild stress (CUMS), and to explore the underlying molecular mechanisms. METHODS For this purpose, a murine model of depression was established using the CUMS procedure. Following the intragastric administration of ZZCT or fluoxetine, classic behavioral experiments were performed to observe the efficacy of ZZCT as an antidepressant. Immunofluorescence was used to label and quantify microtubule-associated protein (MAP2) and postsynaptic density protein (PSD95) in the hippocampus. Golgi staining was applied to visualize the dendritic spine density of neurons in the hippocampi. Isolated hippocampal slices were prepared to induce long-term potentiation (LTP) in the CA1 area. The hippocampal protein expression levels of glycogen synthase kinase-3β (GSK-3β), p-GSK-3β (Ser9), cAMP response element binding protein (CREB), p-CREB (Ser133), brain-derived neurotrophic factor (BDNF) and 14-3-3ζ were detected using western blot analysis. The interaction of 14-3-3ζ and p-GSK-3β (Ser9) was examined using co-immunoprecipitation. LV-shRNA was used to knockdown 14-3-3ζ by an intracerebroventricular injection. RESULTS ZZCT (6 g/kg) and fluoxetine (20 mg/kg) alleviated depressive-like behavior, restored hippocampal MAP2+ PSD95+ intensity, and reversed the dendritic spine density of hippocampal neurons and LTP in the CA1 region of mice exposed to CUMS. Both low and high doses of ZZCT (3 and 6 g/kg) significantly promoted the binding of 14-3-3ζ to p-GSK-3β (Ser9) in the hippocampus, and ZZCT (6 g/kg) significantly promoted the phosphorylation of GSK-3β Ser9 and CREB Ser133 in the hippocampus. ZZCT (3 and 6 g/kg) upregulated hippocampal BDNF expression in mice exposed to CUMS. LV-sh14-3-3ξ reduced the antidepressant effects of ZZCT. CONCLUSION ZZCT exerted antidepressant effects against CUMS-stimulated depressive-like behavior mice. The knockdown of 14-3-3ζ using lentivirus confirmed that 14-3-3ζ was involved in the ZZCT-mediated antidepressant effects through GSK-3β/CREB/BDNF signaling. On the whole, these results suggest that the antidepressant effects of ZZCT are attributed to restoring damage by neuroplasticity enhancement via the 14-3-3ζ/GSK-3β/CREB/BDNF signaling pathway.
Collapse
Affiliation(s)
- Weiwei Tao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Neurology Department, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, China
| | - Guangda Yao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiyu Yue
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chunyan Xu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue Hu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - XiaoLan Cheng
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tong Zhao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mingming Qi
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, and Research Center for Formula and Patterns, Jinan University, Guangzhou, China
| | - Min Zhao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yue Yu
- Neurology Department, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, China.
| |
Collapse
|
66
|
Nakayama H, Ihara D, Fukuchi M, Toume K, Yuri C, Tsuda M, Shibahara N, Tabuchi A. The extract based on the Kampo formula daikenchuto (Da Jian Zhong Tang) induces Bdnf expression and has neurotrophic effects in cultured cortical neurons. J Nat Med 2023; 77:584-595. [PMID: 37148454 DOI: 10.1007/s11418-023-01703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
Reductions in brain-derived neurotrophic factor (BDNF) expression levels have been reported in the brains of patients with neurological disorders such as Alzheimer's disease. Therefore, upregulating BDNF and preventing its decline in the diseased brain could help ameliorate neurological dysfunctions. Accordingly, we sought to discover agents that increase Bdnf expression in neurons. Here, we screened a library of 42 Kampo extracts to identify those with the ability to induce Bdnf expression in cultured cortical neurons. Among the active extracts identified in the screen, we focused on the extract based on the Kampo formula daikenchuto. The extract of daikenchuto in the library used in this study was prepared using the mixture of Zingiberis Rhizoma Processum (ZIN), Zanthoxyli Piperiti Pericarpium (ZAN), and Ginseng Radix (GIN) without Koi. In this study, we defined DKT as the mixture of ZIN, ZAN, and GIN without Koi (DKT extract means the extract prepared from the mixture of ZIN, ZAN, and GIN without Koi). DKT extract significantly increased endogenous Bdnf expression by mediated, at least in part, via Ca2+ signaling involving L-type voltage-dependent Ca2+ channels in cultured cortical neurons. Furthermore, DKT extract significantly improved the survival of cultured cortical neurons and increased neurite complexity in immature neurons. Taken together, our findings suggest that DKT extract induces Bdnf expression and has a neurotrophic effect in neurons. Because BDNF inducers are expected to have therapeutic potential for neurological disorders, re-positioning of Kampo formulations such as daikenchuto may lead to clinical application in diseases associated with reduced BDNF in the brain.
Collapse
Affiliation(s)
- Hironori Nakayama
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Daisuke Ihara
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Mamoru Fukuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan.
| | - Kazufumi Toume
- Department of Medicinal Resources Management, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Chisato Yuri
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Masaaki Tsuda
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Naotoshi Shibahara
- Kampo Education and Training Center, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Akiko Tabuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
67
|
Choi J, Choi SY, Hong Y, Han YE, Oh SJ, Lee B, Choi CW, Kim MS. The central administration of vitisin a, extracted from Vitis vinifera, improves cognitive function and related signaling pathways in a scopolamine-induced dementia model. Biomed Pharmacother 2023; 163:114812. [PMID: 37148861 DOI: 10.1016/j.biopha.2023.114812] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023] Open
Abstract
Neurodegenerative disorders, such as Alzheimer's disease (AD), are characterized by cognitive function loss and progressive memory impairment. Vitis vinifera, which is consumed in the form of fruits and wines in various countries, contains several dietary stilbenoids that have beneficial effects on neuronal disorders related to cognitive impairment. However, few studies have investigated the hypothalamic effects of vitisin A, a resveratrol tetramer derived from V. vinifera stembark, on cognitive functions and related signaling pathways. In this study, we conducted in vitro, ex vivo, and in vivo experiments with multiple biochemical and molecular analyses to investigate its pharmaceutical effects on cognitive functions. Treatment with vitisin A increased cell viability and cell survival under H2O2-exposed conditions in a neuronal SH-SY5 cell line. Ex vivo experiments showed that vitisin A treatment restored the scopolamine-induced disruption of long-term potentiation (LTP) in the hippocampal CA3-CA1 synapse, indicating the restoration of synaptic mechanisms of learning and memory. Consistently, central administration of vitisin A ameliorated scopolamine-induced disruptions of cognitive and memory functions in C57BL/6 mice, as evidenced by Y-maze and passive avoidance tests. Further studies showed that vitisin A upregulates BDNF-CREB signaling in the hippocampus. Together, our findings suggest that vitisin A exhibits neuroprotective effects, at least partially, by upregulating BDNF-CREB signaling and LTP.
Collapse
Affiliation(s)
- Jeongyoon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Sung-Yun Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yuni Hong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Young-Eun Han
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Chun Whan Choi
- Natural Product Research Team, Gyeonggi Biocenter, Gyeonggido Business and Science Accelerator, Suwon, Republic of Korea.
| | - Min Soo Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| |
Collapse
|
68
|
Arévalo JC, Deogracias R. Mechanisms Controlling the Expression and Secretion of BDNF. Biomolecules 2023; 13:biom13050789. [PMID: 37238659 DOI: 10.3390/biom13050789] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Brain-derived nerve factor (BDNF), through TrkB receptor activation, is an important modulator for many different physiological and pathological functions in the nervous system. Among them, BDNF plays a crucial role in the development and correct maintenance of brain circuits and synaptic plasticity as well as in neurodegenerative diseases. The proper functioning of the central nervous system depends on the available BDNF concentrations, which are tightly regulated at transcriptional and translational levels but also by its regulated secretion. In this review we summarize the new advances regarding the molecular players involved in BDNF release. In addition, we will address how changes of their levels or function in these proteins have a great impact in those functions modulated by BDNF under physiological and pathological conditions.
Collapse
Affiliation(s)
- Juan Carlos Arévalo
- Department of Cell Biology and Pathology, Institute of Neurosciences of Castille and Leon (INCyL), University of Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Rubén Deogracias
- Department of Cell Biology and Pathology, Institute of Neurosciences of Castille and Leon (INCyL), University of Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
69
|
Li M, Wang X, Yang L, Jiang Y, Xie Y, Li K. Acupuncture improves learning and memory ability of posttraumatic stress disorder model rats through epigenetic regulation of microglial phosphatidylinositol 3-kinase pathway. Technol Health Care 2023; 31:409-421. [PMID: 37066940 DOI: 10.3233/thc-236035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND Microglia express phosphatidylinositol 3-kinase (PI3K) has been implicated in the induction and maintenance of long-term potentiation (LTP) and in hippocampal synaptic plasticity. However, there are few studies on the interference of PI3K signal pathway in microglia. OBJECTIVE The study goal is to gain a better understanding of the mechanism by which EA affects synapses provides insights into how electroacupuncture (EA) modulates synaptic plasticity in learning and memory. METHODS Rat models of posttraumatic stress disorder (PTSD) were used to explore the effects of EA on microglial PI3K pathway, brain-derived neurotrophic factor (BDNF) and LTP, and the target and mechanism underlying the effects of EA on PI3K from the perspective of protein ubiquitination. RESULTS EA induced microglial BDNF expression by activating the PI3K-AKT pathway, thereby facilitating LTP and synaptic plasticity. EA inhibited lincRNA 02023 to rescue the binding of WWP2 to PTEN, thereby promoting PTEN ubiquitination and degradation. CONCLUSION The mechanism of EA improving the learning and memory ability of PTSD rats may be that it can promote the competitive combination of WWP2 and PTEN by inhibiting Linc RNA02023, and then lead to microglial PI3K and its pathway activation, BDNF up-regulation, and finally induce LTP and repair damaged synaptic plasticity.
Collapse
Affiliation(s)
- Mi Li
- College of Chinese Medicine, Hai Nan Medical University, Haikou, Hainan, China
- College of Chinese Medicine, Hai Nan Medical University, Haikou, Hainan, China
| | - Xian Wang
- College of Chinese Medicine, Hai Nan Medical University, Haikou, Hainan, China
- College of Chinese Medicine, Hai Nan Medical University, Haikou, Hainan, China
| | - Lijie Yang
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yong Jiang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yiqiang Xie
- College of Chinese Medicine, Hai Nan Medical University, Haikou, Hainan, China
| | - Kai Li
- College of Chinese Medicine, Hai Nan Medical University, Haikou, Hainan, China
| |
Collapse
|
70
|
You H, Lu B. Diverse Functions of Multiple Bdnf Transcripts Driven by Distinct Bdnf Promoters. Biomolecules 2023; 13:655. [PMID: 37189402 PMCID: PMC10135494 DOI: 10.3390/biom13040655] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
The gene encoding brain-derived neurotrophic factor (Bdnf) consists of nine non-coding exons driven by unique promoters, leading to the expression of nine Bdnf transcripts that play different roles in various brain regions and physiological stages. In this manuscript, we present a comprehensive overview of the molecular regulation and structural characteristics of the multiple Bdnf promoters, along with a summary of the current knowledge on the cellular and physiological functions of the distinct Bdnf transcripts produced by these promoters. Specifically, we summarized the role of Bdnf transcripts in psychiatric disorders, including schizophrenia and anxiety, as well as the cognitive functions associated with specific Bdnf promoters. Moreover, we examine the involvement of different Bdnf promoters in various aspects of metabolism. Finally, we propose future research directions that will enhance our understanding of the complex functions of Bdnf and its diverse promoters.
Collapse
Affiliation(s)
- He You
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China;
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China;
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Centre, 10 Marais Street, Stellenbosch 7600, South Africa
| |
Collapse
|
71
|
Pruunsild P, Bengtson CP, Loss I, Lohrer B, Bading H. Expression of the primate-specific LINC00473 RNA in mouse neurons promotes excitability and CREB-regulated transcription. J Biol Chem 2023; 299:104671. [PMID: 37019214 DOI: 10.1016/j.jbc.2023.104671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The LINC00473 (Lnc473) gene has previously been shown to be associated with cancer and psychiatric disorders. Its expression is elevated in several types of tumors and decreased in the brains of patients diagnosed with schizophrenia or major depression. In neurons, Lnc473 transcription is strongly responsive to synaptic activity, suggesting a role in adaptive, plasticity-related mechanisms. However, the function of Lnc473 is largely unknown. Here, using a recombinant adeno-associated viral vector, we introduced a primate-specific human Lnc473 RNA into mouse primary neurons. We show that this resulted in a transcriptomic shift comprising downregulation of epilepsy-associated genes and a rise in cAMP response element binding protein (CREB) activity, which was driven by augmented CREB-regulated transcription coactivator 1 (CRTC1) nuclear localization. Moreover, we demonstrate that ectopic Lnc473 expression increased neuronal excitability as well as network excitability. These findings suggest that primates may possess a lineage-specific activity-dependent modulator of CREB-regulated neuronal excitability.
Collapse
|
72
|
Franks H, Wang R, Li M, Wang B, Wildmann A, Ortyl T, O’Brien S, Young D, Liao FF, Sakata K. Heat shock factor HSF1 regulates BDNF gene promoters upon acute stress in the hippocampus, together with pCREB. J Neurochem 2023; 165:131-148. [PMID: 36227087 PMCID: PMC10097844 DOI: 10.1111/jnc.15707] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/29/2022]
Abstract
Heat shock factor 1 (HSF1) is a master stress-responsive transcriptional factor, protecting cells from death. However, its gene regulation in vivo in the brain in response to neuronal stimuli remains elusive. Here, we investigated its direct regulation of the brain-derived neurotrophic factor (BDNF) gene (Bdnf) in response to acute neuronal stress stimuli in the brain. The results of immunohistochemistry and chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) showed that administration of kainic acid (a glutamate receptor agonist inducing excitotoxity) to young adult mice induced HSF1 nuclear translocation and its binding to multiple Bdnf promoters in the hippocampus. Footshock, a physical stressor used for learning, also induced HSF1 binding to selected Bdnf promoters I and IV. This is, to our knowledge, the first demonstration of HSF1 gene regulation in response to neuronal stimuli in the hippocampus in vivo. HSF1 binding sites (HSEs) in Bdnf promoters I and IV were also detected when immunoprecipitated by an antibody of phosphorylated (p)CREB (cAMP-responsive element-binding protein), suggesting their possible interplay in acute stress-induced Bdnf transcription. Interestingly, their promoter binding patterns differed by KA and footshock, suggesting that HSF1 and pCREB orchestrate to render fine-tuned promoter control depending on the types of stress. Further, HSF1 overexpression increased Bdnf promoter activity in a luciferase assay, while virus infection of constitutively active-form HSF1 increased levels of BDNF mRNA and protein in vitro in primary cultured neurons. These results indicated that HSF1 activation of Bdnf promoter was sufficient to induce BDNF expression. Taken together, these results suggest that HSF1 promoter-specific control of Bdnf gene regulation plays an important role in neuronal protection and plasticity in the hippocampus in response to acute stress, possibly interplaying with pCREB.
Collapse
Affiliation(s)
- Hunter Franks
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Ruishan Wang
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Mingqi Li
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Bin Wang
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Ashton Wildmann
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Tyler Ortyl
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Shannon O’Brien
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Deborah Young
- Department of Pharmacology & Clinical Pharmacology, The
University of Auckland, Auckland, New Zealand
| | - Francesca-Fang Liao
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Kazuko Sakata
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| |
Collapse
|
73
|
Hassab LY, Abbas SS, Mohammed RA, Abdallah DM. Dimethyl fumarate abrogates striatal endoplasmic reticulum stress in experimentally induced late-stage Huntington’s disease: Focus on the IRE1α/JNK and PERK/CHOP trajectories. Front Pharmacol 2023; 14:1133863. [PMID: 37056990 PMCID: PMC10088517 DOI: 10.3389/fphar.2023.1133863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction: Dimethyl fumarate (DMF) is FDA-approved for use in patients with relapsing multiple sclerosis, and it processes neuroprotection in several experimental settings; however, its impact on combating Huntington’s disease (HD) remains elusive. This study aimed to explore the role of DMF post-treatment on HD mediated endoplasmic reticulum (ER) stress response in a selective striatal degeneration HD model.Methods: Rats, exposed to 3-nitropropionic acid, were either left untreated or post-treated with DMF for 14 days.Results and Discussion: DMF reduced locomotion deficits in both the open field and beam walk paradigms, boosted the striatal dopamine (DA) content, improved its architecture at the microscopic level, and hindered astrogliosis. Mechanistically, DMF limited the activation of two of the ER stress arms in the striatum by reducing p-IRE1α, p-JNK, and p-PERK protein expressions besides the CHOP/GADD153 content. Downstream from both ER stress arms’ suppression, DMF inhibited the intrinsic apoptotic pathway, as shown by the decrease in Bax and active caspase-3 while raising Bcl-2. DMF also decreased oxidative stress markers indicated by a decline in both reactive oxygen species and malondialdehyde while boosting glutathione. Meanwhile, it enhanced p-AKT to activate /phosphorylate mTOR and stimulate the CREB/BDNF/TrkB trajectory, which, in a positive feedforward loop, activates AKT again. DMF also downregulated the expression of miRNA-634, which negatively regulates AKT, to foster survival kinase activation.Conclusion: This study features a focal novel point on the DMF therapeutic ability to reduce HD motor manifestations via its ability to enhance DA and suppress the IRE1α/JNK and PERK/CHOP/GADD153 hubs to inhibit the mitochondrial apoptotic pathway through activating the AKT/mTOR and BDNF/TrkB/AKT/CREB signaling pathways and abating miRNA-634 and oxidative stress.
Collapse
Affiliation(s)
- Lina Y. Hassab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Samah S. Abbas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Reham A. Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dalaal M. Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- *Correspondence: Dalaal M. Abdallah,
| |
Collapse
|
74
|
Chrusch MJ, Fu S, Spanswick SC, Vecchiarelli HA, Patel PP, Hill MN, Dyck RH. Environmental Enrichment Engages Vesicular Zinc Signaling to Enhance Hippocampal Neurogenesis. Cells 2023; 12:cells12060883. [PMID: 36980224 PMCID: PMC10046929 DOI: 10.3390/cells12060883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
Zinc is highly concentrated in synaptic vesicles throughout the mammalian telencephalon and, in particular, the hippocampal dentate gyrus. A role for zinc in modulating synaptic plasticity has been inferred, but whether zinc has a particular role in experience-dependent plasticity has yet to be determined. The aim of the current study was to determine whether vesicular zinc is important for modulating adult hippocampal neurogenesis in an experience-dependent manner and, consequently, hippocampal-dependent behaviour. We assessed the role of vesicular zinc in modulating hippocampal neurogenesis and behaviour by comparing ZnT3 knockout (KO) mice, which lack vesicular zinc, to wild-type (WT) littermates exposed to either standard housing conditions (SH) or an enriched environment (EE). We found that vesicular zinc is necessary for a cascade of changes in hippocampal plasticity following EE, such as increases in hippocampal neurogenesis and elevations in mature brain-derived neurotrophic factor (mBDNF), but was otherwise dispensable under SH conditions. Using the Spatial Object Recognition task and the Morris Water task we show that, unlike WT mice, ZnT3 KO mice showed no improvements in spatial memory following EE. These experiments demonstrate that vesicular zinc is essential for the enhancement of adult hippocampal neurogenesis and behaviour following enrichment, supporting a role for zincergic neurons in contributing to experience-dependent plasticity in the hippocampus.
Collapse
Affiliation(s)
- Michael J. Chrusch
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada; (M.J.C.); (S.F.); (S.C.S.); (H.A.V.); (M.N.H.)
- Department of Neuroscience, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Selena Fu
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada; (M.J.C.); (S.F.); (S.C.S.); (H.A.V.); (M.N.H.)
- Department of Psychology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Simon C. Spanswick
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada; (M.J.C.); (S.F.); (S.C.S.); (H.A.V.); (M.N.H.)
- Department of Psychology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Haley A. Vecchiarelli
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada; (M.J.C.); (S.F.); (S.C.S.); (H.A.V.); (M.N.H.)
- Department of Neuroscience, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Payal P. Patel
- Department of Psychology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Matthew N. Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada; (M.J.C.); (S.F.); (S.C.S.); (H.A.V.); (M.N.H.)
- Department of Neuroscience, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Richard H. Dyck
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada; (M.J.C.); (S.F.); (S.C.S.); (H.A.V.); (M.N.H.)
- Department of Psychology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N 1N4, Canada
- Correspondence:
| |
Collapse
|
75
|
Inhibition of Microglial GSK3β Activity Is Common to Different Kinds of Antidepressants: A Proposal for an In Vitro Screen to Detect Novel Antidepressant Principles. Biomedicines 2023; 11:biomedicines11030806. [PMID: 36979785 PMCID: PMC10045655 DOI: 10.3390/biomedicines11030806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Depression is a major public health concern. Unfortunately, the present antidepressants often are insufficiently effective, whilst the discovery of more effective antidepressants has been extremely sluggish. The objective of this review was to combine the literature on depression with the pharmacology of antidepressant compounds, in order to formulate a conceivable pathophysiological process, allowing proposals how to accelerate the discovery process. Risk factors for depression initiate an infection-like inflammation in the brain that involves activation microglial Toll-like receptors and glycogen synthase kinase-3β (GSK3β). GSK3β activity alters the balance between two competing transcription factors, the pro-inflammatory/pro-oxidative transcription factor NFκB and the neuroprotective, anti-inflammatory and anti-oxidative transcription factor NRF2. The antidepressant activity of tricyclic antidepressants is assumed to involve activation of GS-coupled microglial receptors, raising intracellular cAMP levels and activation of protein kinase A (PKA). PKA and similar kinases inhibit the enzyme activity of GSK3β. Experimental antidepressant principles, including cannabinoid receptor-2 activation, opioid μ receptor agonists, 5HT2 agonists, valproate, ketamine and electrical stimulation of the Vagus nerve, all activate microglial pathways that result in GSK3β-inhibition. An in vitro screen for NRF2-activation in microglial cells with TLR-activated GSK3β activity, might therefore lead to the detection of totally novel antidepressant principles with, hopefully, an improved therapeutic efficacy.
Collapse
|
76
|
Zayed AA, Seleem MM, Darwish HA, Shaheen AA. Role of long noncoding RNAs; BDNF-AS and 17A and their relation to GABAergic dysfunction in Egyptian epileptic patients. Metab Brain Dis 2023; 38:1193-1204. [PMID: 36807083 PMCID: PMC10110666 DOI: 10.1007/s11011-023-01182-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/04/2023] [Indexed: 02/23/2023]
Abstract
Epilepsy is a chronic neurological disorder characterized by recurrent unprovoked seizures. Lately, long noncoding RNAs (lncRNAs) have been increasingly appreciated as regulators of epilepsy-related processes, however, their functional role in its pathogenesis is still to be explored. This study investigated the expression levels of lncRNAs; BDNF-AS and 17A in the sera of Egyptian patients with idiopathic generalized and symptomatic focal epilepsy and correlated their levels with brain-derived neurotrophic factor (BDNF), phosphorylated cAMP reaction element -binding protein (p-CREB), gamma- aminobutyric acid (GABA) and glutamate, to underline their related molecular mechanism. A total of 70 epileptic patients were divided into two clinical types, besides 30 healthy controls of matched age and sex. The expression levels of both lncRNAs were markedly upregulated in epileptic groups versus the healthy control group with predominance in the symptomatic focal one. Epileptic patients showed significantly lower levels of BDNF, p-CREB, GABA along with significant increase of glutamate levels and glutamate/ GABA ratio, especially in symptomatic focal versus idiopathic generalized epileptic ones. The obtained data raised the possibility that these lncRNAs might be involved in the pathogenesis of epilepsy via inhibition of GABA/p-CREB/BDNF pathway. The study shed light on the putative role of these lncRNAs in better diagnosis of epilepsy, particularly symptomatic focal epilepsy.
Collapse
Affiliation(s)
- Aya A Zayed
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Mae M Seleem
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Hebatallah A Darwish
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt.
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Amira A Shaheen
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
77
|
Moreno A, Rajagopalan S, Tucker MJ, Lunsford P, Liu RC. Hearing Vocalizations during First Social Experience with Pups Increase Bdnf Transcription in Mouse Auditory Cortex. Neural Plast 2023; 2023:5225952. [PMID: 36845359 PMCID: PMC9946766 DOI: 10.1155/2023/5225952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/30/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
While infant cues are often assumed to innately motivate maternal response, recent research highlights how the neural coding of infant cues is altered through maternal care. Infant vocalizations are important social signals for caregivers, and evidence from mice suggests that experience caring for mouse pups induces inhibitory plasticity in the auditory cortex (AC), though the molecular mediators for such AC plasticity during the initial pup experience are not well delineated. Here, we used the maternal mouse communication model to explore whether transcription in AC of a specific, inhibition-linked, memory-associated gene, brain-derived neurotrophic factor (Bdnf) changes due to the very first pup caring experience hearing vocalizations, while controlling for the systemic influence of the hormone estrogen. Ovariectomized and estradiol or blank-implanted virgin female mice hearing pup calls with pups present had significantly higher AC exon IV Bdnf mRNA compared to females without pups present, suggesting that the social context of vocalizations induces immediate molecular changes at the site of auditory cortical processing. E2 influenced the rate of maternal behavior but did not significantly affect Bdnf mRNA transcription in the AC. To our knowledge, this is the first time Bdnf has been associated with processing social vocalizations in the AC, and our results suggest that it is a potential molecular component responsible for enhancing future recognition of infant cues by contributing to AC plasticity.
Collapse
Affiliation(s)
- Amielle Moreno
- Neuroscience Graduate Program, Emory University, Atlanta, Georgia 30332, USA
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | - Matthew J. Tucker
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Parker Lunsford
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
- College of Science Undergraduate Neuroscience Program, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Robert C. Liu
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
78
|
Weng ZK, Lin TH, Chang KH, Chiu YJ, Lin CH, Tseng PH, Sun YC, Lin W, Lee-Chen GJ, Chen CM. Using ΔK280 Tau RD Folding Reporter Cells to Screen TRKB Agonists as Alzheimer's Disease Treatment Strategy. Biomolecules 2023; 13:biom13020219. [PMID: 36830589 PMCID: PMC9953660 DOI: 10.3390/biom13020219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Misfolded aggregation of the hyperphosphorylated microtubule binding protein Tau in the brain is a pathological hallmark of Alzheimer's disease (AD). Tau aggregation downregulates brain-derived neurotrophic factor (BDNF)/tropomycin receptor kinase B (TRKB) signaling and leads to neurotoxicity. Therefore, enhancement of BDNF/TRKB signaling could be a strategy to alleviate Tau neurotoxicity. In this study, eight compounds were evaluated for the potential of inhibiting Tau misfolding in human neuroblastoma SH-SY5Y cells expressing the pro-aggregator Tau folding reporter (ΔK280 TauRD-DsRed). Among them, coumarin derivative ZN-015 and quinoline derivatives VB-030 and VB-037 displayed chemical chaperone activity to reduce ΔK280 TauRD aggregation and promote neurite outgrowth. Studies of TRKB signaling revealed that ZN-015, VB-030 and VB-037 treatments significantly increased phosphorylation of TRKB and downstream Ca2+/calmodulin-dependent protein kinase II (CaMKII), extracellular signal-regulated kinase 1/2 (ERK) and AKT serine/threonine kinase (AKT), to activate ribosomal S6 kinase (RSK) and cAMP response element-binding protein (CREB). Subsequently, p-CREB enhanced the transcription of pro-survival BDNF and BCL2 apoptosis regulator (BCL2), accompanied with reduced expression of anti-survival BCL2-associated X protein (BAX) in ΔK280 TauRD-DsRed-expressing cells. The neurite outgrowth promotion effect of ZN-015, VB-030 and VB-037 was counteracted by a RNA interference-mediated knockdown of TRKB, suggesting the role of these compounds acting as TRKB agonists. Tryptophan fluorescence quenching analysis showed that ZN-015, VB-030 and VB-037 interacted directly with a Pichia pastoris-expressed TRKB extracellular domain, indirectly supporting the role through TRKB signaling. The results of up-regulation in TRKB signaling open up the therapeutic potentials of ZN-015, VB-030 and VB-037 for AD.
Collapse
Affiliation(s)
- Zheng-Kui Weng
- Department of Life Science, National Taiwan Normal University, Taipei 106, Taiwan
| | - Te-Hsien Lin
- Department of Neurology, Chang Gung Memorial Hospital, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Ya-Jen Chiu
- Department of Life Science, National Taiwan Normal University, Taipei 106, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Pei-Hsuan Tseng
- Department of Life Science, National Taiwan Normal University, Taipei 106, Taiwan
| | - Ying-Chieh Sun
- Department of Chemistry, National Taiwan Normal University, Taipei 106, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 106, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei 106, Taiwan
- Correspondence: (G.-J.L.-C.); (C.-M.C.)
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
- Correspondence: (G.-J.L.-C.); (C.-M.C.)
| |
Collapse
|
79
|
Amanollahi M, Jameie M, Rezaei N. Neuroinflammation as a potential therapeutic target in neuroimmunological diseases. TRANSLATIONAL NEUROIMMUNOLOGY, VOLUME 7 2023:475-504. [DOI: 10.1016/b978-0-323-85841-0.00021-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
80
|
He RH, Fan JZ, Qian FF, He YH, Du XH, Lu HX. Repetitive transcranial magnetic stimulation promotes neurological functional recovery in rats with traumatic brain injury by upregulating synaptic plasticity-related proteins. Neural Regen Res 2023; 18:368-374. [PMID: 35900432 PMCID: PMC9396518 DOI: 10.4103/1673-5374.346548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Studies have shown that repetitive transcranial magnetic stimulation (rTMS) can enhance synaptic plasticity and improve neurological dysfunction. However, the mechanism through which rTMS can improve moderate traumatic brain injury remains poorly understood. In this study, we established rat models of moderate traumatic brain injury using Feeney’s weight-dropping method and treated them using rTMS. To help determine the mechanism of action, we measured levels of several important brain activity-related proteins and their mRNA. On the injured side of the brain, we found that rTMS increased the protein levels and mRNA expression of brain-derived neurotrophic factor, tropomyosin receptor kinase B, N-methyl-D-aspartic acid receptor 1, and phosphorylated cAMP response element binding protein, which are closely associated with the occurrence of long-term potentiation. rTMS also partially reversed the loss of synaptophysin after injury and promoted the remodeling of synaptic ultrastructure. These findings suggest that upregulation of synaptic plasticity-related protein expression is the mechanism through which rTMS promotes neurological function recovery after moderate traumatic brain injury.
Collapse
|
81
|
Cheng HF, Chiu WT, Lai YS, Truong TT, Lee PY, Huang CC. High-frequency noncontact low-intensity pulsed ultrasound modulates Ca 2+-dependent transcription factors contributing to cell migration. ULTRASONICS 2023; 127:106852. [PMID: 36201953 DOI: 10.1016/j.ultras.2022.106852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/02/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Chronic wounds have negative physical and psychological effects on patients and increase the health care burden. Consequently, chronic wound in the elderly population is an important issue. Ultrasound can be a great modality for treating chronic wounds because of its noninvasive and safety characteristics; it can accelerate in vitro and in vivo wound healing. In this study, we developed a novel noncontact ultrasound for wound treatment. We stimulated human epidermal keratinocyte migration using low-intensity pulsed ultrasound (LIPUS) with a noncontact transducer to avoid direct contact with the wound. We also compared the effects of 15-min contact and noncontact transducer stimulation, where a 1-MHz contact transducer (intensity = 40 or 200 mW/cm2) and a 0.45-MHz noncontact transducer (intensity = 30 mW/cm2) were used. Both contact and noncontact LIPUS considerably increased cell migration and activated the calcium (Ca2+)-dependent transcription factors cAMP-responsive element-binding protein (CREB) and nuclear factor of activated T cells (NFAT). Furthermore, noncontact transducer stimulation did not cause cell death or affect cell proliferation but significantly increased the Ca2+ influx-mediated intracellular Ca2+ levels. Ca2+-free medium and Ca2+ channel blockers effectively inhibited LIPUS-induced Ca2+-dependent transcription factor activation and cell migration.
Collapse
Affiliation(s)
- Hsiao-Fan Cheng
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Shyun Lai
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Thi-Thuyet Truong
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Po-Yang Lee
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
82
|
Bastos CR, Xavier J, Camerini L, Dewes SS, Moreira FP, Wiener CD, Jansen K, Kaster MP, de Mattos Souza LD, da Silva RA, Oses JP, Portela LV, Lara DR, Tovo-Rodrigues L, Ghisleni G. BDNF Levels According to Variations in the CACNA1C Gene: Sex-Based Disparity. Cell Mol Neurobiol 2023; 43:357-366. [PMID: 35128618 PMCID: PMC11415201 DOI: 10.1007/s10571-022-01189-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/03/2022] [Indexed: 01/07/2023]
Abstract
The CACNA1C gene encodes the pore-forming alpha-1c subunit of L-type voltage-gated calcium channels. The calcium influx through these channels regulates the transcription of the brain-derived neurotrophic factor (BDNF). Polymorphisms in this gene have been consistently associated with psychiatric disorders, and alterations in BDNF levels are a possible biological mechanism to explain such associations. Here, we sought to investigate the effect of the CACNA1C rs1006737 and rs4765913 polymorphisms and their haplotypes on serum BDNF concentration. We further aim to investigate the regulatory function of these SNPs and the ones linked to them. The study enrolled 641 young adults (362 women and 279 men) in a cross-sectional population-based survey. Linear regression was used to test the effects of polymorphisms and haplotypes on BDNF levels adjusted for potential confounders. Moreover, regulatory putative functional roles were assessed using in silico approach. BDNF levels were not associated with CACNA1C polymorphisms/haplotype in the total sample. When the sample was stratified by sex, checking the effect of polymorphisms on men and women separately, the A-allele of rs4765913 was associated with lower BDNF levels in women compared with the TT genotype (p = 0.010). The AA (rs1006737-rs4765913) haplotype was associated with BDNF levels in opposite directions regarding sex, with lower levels of BDNF in women (p = 0.040) compared to those without this haplotype, while with higher levels in men (p = 0.027). These findings were supported by the presence of regulatory marks only on the male fetal brain. Our results suggest that the BDNF levels regulation may be a potential mechanism underpinning the association between CACNA1C and psychiatric disorders, with a differential role in women and men.
Collapse
Affiliation(s)
- Clarissa Ribeiro Bastos
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Janaina Xavier
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Laísa Camerini
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Samantha Seibt Dewes
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fernanda Pedrotti Moreira
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Carolina David Wiener
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Karen Jansen
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Manuella Pinto Kaster
- Department of Biochemistry at the Federal University of Santa Catarina, Florianópolis, Brazil
| | - Luciano Dias de Mattos Souza
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Ricardo Azevedo da Silva
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Jean Pierre Oses
- Post Graduation Program of Physiological Science, Federal University of Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Luis Valmor Portela
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Diogo Rizzato Lara
- Department of Cellular and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luciana Tovo-Rodrigues
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Gabriele Ghisleni
- Laboratory of Clinical Neuroscience, Post-Graduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
- Laboratory of Clinical Neuroscience, Post-Graduation Program of Health and Behavior, Center of Health Science, Catholic University of Pelotas, 373, 324C Gonçalves Chaves Street, Pelotas, Rio Grande do Sul, CEP 96015-560, Brazil.
| |
Collapse
|
83
|
Pathak H, Borchert A, Garaali S, Burkert A, Frieling H. BDNF exon IV promoter methylation and antidepressant action: a complex interplay. Clin Epigenetics 2022; 14:187. [PMID: 36572893 PMCID: PMC9793565 DOI: 10.1186/s13148-022-01415-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND BDNF exon IV promoter methylation is a potential biomarker for treatment response to antidepressants in MDD. We have previously shown CpG-87 methylation as a successful biomarker for the prediction of non-response to monoaminergic antidepressants like the SSRI Fluoxetine or the SNRI Venlafaxine. This study aimed to dissect the biological evidence and mechanisms for the functionality of CpG-87 methylation in a cell culture model. RESULTS We observed a significant interaction between methylation and antidepressant-mediated transcriptional activity in BDNF exon IV promoter. In addition, antidepressant treatment increased the promoter methylation in a concentration-dependent manner. Further single CpG methylation of -87 did not change the promoter activity, but methylation of CREB domain CpG-39 increased the transcriptional activity in an antidepressant-dependent manner. Interestingly, DNMT3a overexpression also increases the BDNF exon IV transcription and more so in Venlafaxine-treated cells. CONCLUSIONS The study strengthens the previously reported association between antidepressant treatment and BDNF exon IV promoter methylation as well as hints toward the mechanism of action. We argue that potential CpG methylation biomarkers display a complex synergy with the molecular changes at the neighboring CpG positions, thus highlighting the importance of epiallele analyses.
Collapse
Affiliation(s)
- Hansi Pathak
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Anton Borchert
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Sara Garaali
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Alexandra Burkert
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Helge Frieling
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School (MHH), 30625 Hannover, Germany
| |
Collapse
|
84
|
Differential Regulation of the BDNF Gene in Cortical and Hippocampal Neurons. J Neurosci 2022; 42:9110-9128. [PMID: 36316156 PMCID: PMC9761680 DOI: 10.1523/jneurosci.2535-21.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 09/18/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a widely expressed neurotrophin that supports the survival, differentiation, and signaling of various neuronal populations. Although it has been well described that expression of BDNF is strongly regulated by neuronal activity, little is known whether regulation of BDNF expression is similar in different brain regions. Here, we focused on this fundamental question using neuronal populations obtained from rat cerebral cortices and hippocampi of both sexes. First, we thoroughly characterized the role of the best-described regulators of BDNF gene - cAMP response element binding protein (CREB) family transcription factors, and show that activity-dependent BDNF expression depends more on CREB and the coactivators CREB binding protein (CBP) and CREB-regulated transcriptional coactivator 1 (CRTC1) in cortical than in hippocampal neurons. Our data also reveal an important role of CREB in the early induction of BDNF mRNA expression after neuronal activity and only modest contribution after prolonged neuronal activity. We further corroborated our findings at BDNF protein level. To determine the transcription factors regulating BDNF expression in these rat brain regions in addition to CREB family, we used in vitro DNA pulldown assay coupled with mass spectrometry, chromatin immunoprecipitation (ChIP), and bioinformatics, and propose a number of neurodevelopmentally important transcription factors, such as FOXP1, SATB2, RAI1, BCL11A, and TCF4 as brain region-specific regulators of BDNF expression. Together, our data reveal complicated brain region-specific fine-tuning of BDNF expression.SIGNIFICANCE STATEMENT To date, majority of the research has focused on the regulation of brain-derived neurotrophic factor (BDNF) in the brain but much less is known whether the regulation of BDNF expression is universal in different brain regions and neuronal populations. Here, we report that the best described regulators of BDNF gene from the cAMP-response element binding protein (CREB) transcription factor family have a more profound role in the activity-dependent regulation of BDNF in cortex than in hippocampus. Our results indicate a brain region-specific fine tuning of BDNF expression. Moreover, we have used unbiased determination of novel regulators of the BDNF gene and report a number of neurodevelopmentally important transcription factors as novel potential regulators of the BDNF expression.
Collapse
|
85
|
Kang BW, Kim F, Cho JY, Kim S, Rhee J, Choung JJ. Phosphodiesterase 5 inhibitor mirodenafil ameliorates Alzheimer-like pathology and symptoms by multimodal actions. Alzheimers Res Ther 2022; 14:92. [PMID: 35804462 PMCID: PMC9264543 DOI: 10.1186/s13195-022-01034-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022]
Abstract
Background Alzheimer’s disease (AD) pathology is associated with complex interactions among multiple factors, involving an intertwined network of various signaling pathways. The polypharmacological approach is an emerging therapeutic strategy that has been proposed to overcome the multifactorial nature of AD by targeting multiple pathophysiological factors including amyloid-β (Aβ) and phosphorylated tau. We evaluated a blood-brain barrier penetrating phosphodiesterase 5 (PDE5) inhibitor, mirodenafil (5-ethyl-2-7-n-propyl-3,5-dihydrro-4H-pyrrolo[3,2-d]pyrimidin-4-one), for its therapeutic effects on AD with polypharmacological properties. Methods To evaluate the potential of mirodenafil as a disease-modifying AD agent, mirodenafil was administered to test its effects on the cognitive behaviors of the APP-C105 AD mouse model using the Morris water maze and passive avoidance tests. To investigate the mechanisms of action that underlie the beneficial disease-modifying effects of mirodenafil, human neuroblastoma SH-SY5Y cells and mouse hippocampal HT-22 cells were used to show mirodenafil-induced alterations associated with the cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase (PKG)/cAMP-responsive element-binding protein (CREB) pathway, apoptotic cell death, tau phosphorylation, amyloidogenesis, the autophagy-lysosome pathway, glucocorticoid receptor (GR) transcriptional activity, and the Wnt/β-catenin signaling. Results Here, mirodenafil is demonstrated to improve cognitive behavior in the APP-C105 mouse model. Mirodenafil not only reduced the Aβ and phosphorylated tau burdens in vivo, but also ameliorated AD pathology induced by Aβ through the modulation of the cGMP/PKG/CREB signaling pathway, glycogen synthase kinase 3β (GSK-3β) activity, GR transcriptional activity, and the Wnt/β-catenin signaling in neuronal cells. Interestingly, homodimerization and nuclear localization of GR were inhibited by mirodenafil, but not by other PDE5 inhibitors. In addition, only mirodenafil reduced the expression levels of the Wnt antagonist Dickkopf-1 (Dkk-1), thus activating the Wnt/β-catenin signaling. Conclusions These findings strongly suggest that the PDE5 inhibitor mirodenafil shows promise as a potential polypharmacological drug candidate for AD treatment, acting on multiple key signaling pathways involved in amyloid deposition, phosphorylated tau burden, the cGMP/PKG/CREB pathway, GSK-3β kinase activity, GR signaling, and the Wnt/β-catenin signaling. Mirodenafil administration to the APP-C105 AD mouse model also improved cognitive behavior, demonstrating the potential of mirodenafil as a polypharmacological AD therapeutic agent. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01034-3.
Collapse
|
86
|
Dai H, Kitami Y, Goto YI, Itoh M. 5-HT 1A Receptor Agonist Treatment Partially Ameliorates Rett Syndrome Phenotypes in mecp2-Null Mice by Rescuing Impairment of Neuron Transmission and the CREB/BDNF Signaling Pathway. Int J Mol Sci 2022; 23:14025. [PMID: 36430502 PMCID: PMC9697184 DOI: 10.3390/ijms232214025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the gene that encodes methyl CpG-binding protein 2 (MECP2) and is characterized by the loss of acquired motor and language skills, stereotypic movements, respiratory abnormalities and autistic features. There has been no effective treatment for this disorder until now. In this study, we used a Mecp2-null (KO) mouse model of RTT to investigate whether repeated intraperitoneal treatment with the 5-HT1A receptor agonist tandospirone could improve the RTT phenotype. The results showed that administration of tandospirone significantly extended the lifespan of Mecp2-KO mice and obviously ameliorated RTT phenotypes, including general condition, hindlimb clasping, gait, tremor and breathing in Mecp2-KO mice. Tandospirone treatment significantly improved the impairment in GABAergic, glutaminergic, dopaminergic and serotoninergic neurotransmission in the brainstem of Mecp2-KO mice. Decreased dopaminergic neurotransmission in the cerebellum of Mecp2-KO mice was also significantly increased by tandospirone treatment. Moreover, RNA-sequencing analysis found that tandospirone modulates the RTT phenotype, partially through the CREB1/BDNF signaling pathway in Mecp2-KO mice. These findings provide a new option for clinical treatment.
Collapse
Affiliation(s)
| | | | | | - Masayuki Itoh
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan
| |
Collapse
|
87
|
Neuroprotective Action of Coumarin Derivatives through Activation of TRKB-CREB-BDNF Pathway and Reduction of Caspase Activity in Neuronal Cells Expressing Pro-Aggregated Tau Protein. Int J Mol Sci 2022; 23:ijms232112734. [PMID: 36361524 PMCID: PMC9654711 DOI: 10.3390/ijms232112734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Hyperphosphorylation and aggregation of the microtubule binding protein tau is a neuropathological hallmark of Alzheimer’s disease/tauopathies. Tau neurotoxicity provokes alterations in brain-derived neurotrophic factor (BDNF)/tropomycin receptor kinase B (TRKB)/cAMP-response-element binding protein (CREB) signaling to contribute to neurodegeneration. Compounds activating TRKB may therefore provide beneficial effects in tauopathies. LM-031, a coumarin derivative, has demonstrated the potential to improve BDNF signaling in neuronal cells expressing pro-aggregated ΔK280 tau mutant. In this study, we investigated if LM-031 analogous compounds provide neuroprotection effects through interaction with TRKB in SH-SY5Y cells expressing ΔK280 tauRD-DsRed folding reporter. All four LMDS compounds reduced tau aggregation and reactive oxygen species. Among them, LMDS-1 and -2 reduced caspase-1, caspase-6 and caspase-3 activities and promoted neurite outgrowth, and the effect was significantly reversed by knockdown of TRKB. Treatment of ERK inhibitor U0126 or PI3K inhibitor wortmannin decreased p-CREB, BDNF and BCL2 in these cells, implying that the neuroprotective effects of LMDS-1/2 are via activating TRKB downstream ERK, PI3K-AKT and CREB signaling. Furthermore, LMDS-1/2 demonstrated their ability to quench the intrinsic fluorescence of tryptophan residues within the extracellular domain of TRKB, thereby consolidating their interaction with TRKB. Our results suggest that LMDS-1/2 exert neuroprotection through activating TRKB signaling, and shed light on their potential application in therapeutics of Alzheimer’s disease/tauopathies.
Collapse
|
88
|
Costa RO, Martins LF, Tahiri E, Duarte CB. Brain-derived neurotrophic factor-induced regulation of RNA metabolism in neuronal development and synaptic plasticity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1713. [PMID: 35075821 DOI: 10.1002/wrna.1713] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) plays multiple roles in the nervous system, including in neuronal development, in long-term synaptic potentiation in different brain regions, and in neuronal survival. Alterations in these regulatory mechanisms account for several diseases of the nervous system. The synaptic effects of BDNF mediated by activation of tropomyosin receptor kinase B (TrkB) receptors are partly mediated by stimulation of local protein synthesis which is now considered a ubiquitous feature in both presynaptic and postsynaptic compartments of the neuron. The capacity to locally synthesize proteins is of great relevance at several neuronal developmental stages, including during neurite development, synapse formation, and stabilization. The available evidence shows that the effects of BDNF-TrkB signaling on local protein synthesis regulate the structure and function of the developing and mature synapses. While a large number of studies have illustrated a wide range of effects of BDNF on the postsynaptic proteome, a growing number of studies also point to presynaptic effects of the neurotrophin in the local regulation of the protein composition at the presynaptic level. Here, we will review the latest evidence on the role of BDNF in local protein synthesis, comparing the effects on the presynaptic and postsynaptic compartments. Additionally, we overview the relevance of BDNF-associated local protein synthesis in neuronal development and synaptic plasticity, at the presynaptic and postsynaptic compartments, and their relevance in terms of disease. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Rui O Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Luís F Martins
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- Molecular Neurobiology Laboratory, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Emanuel Tahiri
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
89
|
Zhao A, Liu N, Jiang G, Xu L, Yao M, Zhang Y, Xue B, Ma B, Chang D, Feng Y, Jiang Y, Liu J, Zhou G. Combination of panax ginseng and ginkgo biloba extracts attenuate cerebral ischemia injury with modulation of NLRP3 inflammasome and CAMK4/CREB pathway. Front Pharmacol 2022; 13:980449. [PMID: 36091745 PMCID: PMC9452960 DOI: 10.3389/fphar.2022.980449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
Stroke is a major cause of death and disability throughout the world. A combination of Panax Ginseng and Ginkgo biloba extracts (CGGE) is an effective treatment for nervous system diseases, but the neuroprotective mechanism underlying CGGE remains unclear. Both network analysis and experimental research were employed to explore the potential mechanism of CGGE in treating ischemic stroke (IS). Network analysis identified a total number of 133 potential targets for 34 active ingredients and 239 IS-related targets. What’s more, several processes that might involve the regulation of CGGE against IS were identified, including long-term potentiation, cAMP signaling pathway, neurotrophin signaling pathway, and Nod-like receptor signaling pathway. Our studies in animal models suggested that CGGE could reduce inflammatory response by inhibiting the activity of Nod-like receptor, pyrin containing 3 (NLRP3) inflammasome, and maintain the balance of glutamate (Glu)/gamma-aminobutyric acid (GABA) via activating calmodulin-dependent protein kinase type Ⅳ (CAMK4)/cyclic AMP-responsive element-binding protein (CREB) pathway. These findings indicated the neuroprotective effects of CGGE, possibly improving neuroinflammation and excitotoxicity by regulating the NLRP3 inflammasome and CAMK4/CREB pathway.
Collapse
Affiliation(s)
- Aimei Zhao
- Department of Acupuncture and Moxibustion, Neuroscience Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Beijing Key Laboratory of Pharmacology of Chinese Materia, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Nan Liu
- Beijing Increasepharm Safety and Efficacy Co. Ltd., Beijing, China
| | - Guozhi Jiang
- Shineway Pharmaceutical Group Co. Ltd., Shijiazhuang, China
| | - Li Xu
- Beijing Key Laboratory of Pharmacology of Chinese Materia, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingjiang Yao
- Beijing Key Laboratory of Pharmacology of Chinese Materia, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yehao Zhang
- Beijing Key Laboratory of Pharmacology of Chinese Materia, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Bingjie Xue
- Beijing Key Laboratory of Pharmacology of Chinese Materia, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Ma
- Beijing Key Laboratory of Pharmacology of Chinese Materia, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Dennis Chang
- NICM, Western Sydney University, Penrith, NSW, Australia
| | - Yujing Feng
- Department of Anesthesiology, Punan Hospital, Shanghai, China
| | - Yunyao Jiang
- School of Pharmaceutical Sciences, Institute for Chinese Materia Medica, Tsinghua University, Beijing, China
- *Correspondence: Yunyao Jiang, ; Jianxun Liu, ; Guoping Zhou,
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yunyao Jiang, ; Jianxun Liu, ; Guoping Zhou,
| | - Guoping Zhou
- Department of Acupuncture and Moxibustion, Neuroscience Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Yunyao Jiang, ; Jianxun Liu, ; Guoping Zhou,
| |
Collapse
|
90
|
Tezuka Y, Hagihara KM, Ohki K, Hirano T, Tagawa Y. Developmental stage-specific spontaneous activity contributes to callosal axon projections. eLife 2022; 11:72435. [PMID: 36001081 PMCID: PMC9402231 DOI: 10.7554/elife.72435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/25/2022] [Indexed: 12/18/2022] Open
Abstract
The developing neocortex exhibits spontaneous network activity with various synchrony levels, which has been implicated in the formation of cortical circuits. We previously reported that the development of callosal axon projections, one of the major long-range axonal projections in the brain, is activity dependent. However, what sort of activity and when activity is indispensable are not known. Here, using a genetic method to manipulate network activity in a stage-specific manner, we demonstrated that network activity contributes to callosal axon projections in the mouse visual cortex during a ‘critical period’: restoring neuronal activity during that period resumed the projections, whereas restoration after the period failed. Furthermore, in vivo Ca2+ imaging revealed that the projections could be established even without fully restoring highly synchronous activity. Overall, our findings suggest that spontaneous network activity is selectively required during a critical developmental time window for the formation of long-range axonal projections in the cortex.
Collapse
Affiliation(s)
- Yuta Tezuka
- Department of Biophysics, Kyoto University Graduate School of Science
| | - Kenta M Hagihara
- Department of Molecular Physiology, Kyushu University Graduate School of Medical Sciences
| | - Kenichi Ohki
- Department of Molecular Physiology, Kyushu University Graduate School of Medical Sciences
- Department of Physiology, The University of Tokyo School of Medicine
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo School of Medicine
- Institute for AI and Beyond, The University of Tokyo School of Medicine
- CREST, Japan Science and Technology Agency
| | - Tomoo Hirano
- Department of Biophysics, Kyoto University Graduate School of Science
| | - Yoshiaki Tagawa
- Department of Biophysics, Kyoto University Graduate School of Science
- CREST, Japan Science and Technology Agency
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University
| |
Collapse
|
91
|
Serotonin Receptor 5-HT2A Regulates TrkB Receptor Function in Heteroreceptor Complexes. Cells 2022; 11:cells11152384. [PMID: 35954229 PMCID: PMC9368268 DOI: 10.3390/cells11152384] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Serotonin receptor 5-HT2A and tropomyosin receptor kinase B (TrkB) strongly contribute to neuroplasticity regulation and are implicated in numerous neuronal disorders. Here, we demonstrate a physical interaction between 5-HT2A and TrkB in vitro and in vivo using co-immunoprecipitation and biophysical and biochemical approaches. Heterodimerization decreased TrkB autophosphorylation, preventing its activation with agonist 7,8-DHF, even with low 5-HT2A receptor expression. A blockade of 5-HT2A receptor with the preferential antagonist ketanserin prevented the receptor-mediated downregulation of TrkB phosphorylation without restoring the TrkB response to its agonist 7,8-DHF in vitro. In adult mice, intraperitoneal ketanserin injection increased basal TrkB phosphorylation in the frontal cortex and hippocampus, which is in accordance with our findings demonstrating the prevalence of 5-HT2A–TrkB heteroreceptor complexes in these brain regions. An expression analysis revealed strong developmental regulation of 5-HT2A and TrkB expressions in the cortex, hippocampus, and especially the striatum, demonstrating that the balance between TrkB and 5-HT2A may shift in certain brain regions during postnatal development. Our data reveal the functional role of 5-HT2A–TrkB receptor heterodimerization and suggest that the regulated expression of 5-HT2A and TrkB is a molecular mechanism for the brain-region-specific modulation of TrkB functions during development and under pathophysiological conditions.
Collapse
|
92
|
Elevated BICD2 DNA methylation in blood of major depressive disorder patients and reduction of depressive-like behaviors in hippocampal Bicd2-knockdown mice. Proc Natl Acad Sci U S A 2022; 119:e2201967119. [PMID: 35858435 PMCID: PMC9335189 DOI: 10.1073/pnas.2201967119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Major depressive disorder (MDD) is a prevalent and devastating mental illness. To date, the diagnosis of MDD is largely dependent on clinical interviews and questionnaires and still lacks a reliable biomarker. DNA methylation has a stable and reversible nature and is likely associated with the course and therapeutic efficacy of complex diseases, which may play an important role in the etiology of a disease. Here, we identified and validated a DNA methylation biomarker for MDD from four independent cohorts of the Chinese Han population. First, we integrated the analysis of the DNA methylation microarray (n = 80) and RNA expression microarray data (n = 40) and identified BICD2 as the top-ranked gene. In the replication phase, we employed the Sequenom MassARRAY method to confirm the DNA hypermethylation change in a large sample size (n = 1,346) and used the methylation-sensitive restriction enzymes and a quantitative PCR approach (MSE-qPCR) and qPCR method to confirm the correlation between DNA hypermethylation and mRNA down-regulation of BICD2 (n = 60). The results were replicated in the peripheral blood of mice with depressive-like behaviors, while in the hippocampus of mice, Bicd2 showed DNA hypomethylation and mRNA/protein up-regulation. Hippocampal Bicd2 knockdown demonstrates antidepressant action in the chronic unpredictable mild stress (CUMS) mouse model of depression, which may be mediated by increased BDNF expression. Our study identified a potential DNA methylation biomarker and investigated its functional implications, which could be exploited to improve the diagnosis and treatment of MDD.
Collapse
|
93
|
Rentería I, García-Suárez PC, Fry AC, Moncada-Jiménez J, Machado-Parra JP, Antunes BM, Jiménez-Maldonado A. The Molecular Effects of BDNF Synthesis on Skeletal Muscle: A Mini-Review. Front Physiol 2022; 13:934714. [PMID: 35874524 PMCID: PMC9306488 DOI: 10.3389/fphys.2022.934714] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
The brain-derived neurotrophic factor (BDNF) is a member of the nerve growth factor family which is generated mainly by the brain. Its main role involve synaptic modulation, neurogenesis, neuron survival, immune regulation, myocardial contraction, and angiogenesis in the brain. Together with the encephalon, some peripheral tissues synthesize BDNF like skeletal muscle. On this tissue, this neurotrophin participates on cellular mechanisms related to muscle function maintenance and plasticity as reported on recent scientific works. Moreover, during exercise stimuli the BDNF contributes directly to strengthening neuromuscular junctions, muscle regeneration, insulin-regulated glucose uptake and β-oxidation processes in muscle tissue. Given its vital relevance on many physiological mechanisms, the current mini-review focuses on discussing up-to-date knowledge about BDNF production in skeletal muscle and how this neurotrophin impacts skeletal muscle biology.
Collapse
Affiliation(s)
- I Rentería
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - P C García-Suárez
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico.,Department of Health, Sports and Exercise Sciences, University of Kansas, Lawrence, KS, United States
| | - A C Fry
- Department of Health, Sports and Exercise Sciences, University of Kansas, Lawrence, KS, United States
| | - J Moncada-Jiménez
- Human Movement Sciences Research Center (CIMOHU), University of Costa Rica, San José, Costa Rica
| | - J P Machado-Parra
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - B M Antunes
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - A Jiménez-Maldonado
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| |
Collapse
|
94
|
Keloglan SM, Sahin L, Cevik OS. Chronic caffeine consumption improves the acute REM sleep deprivation-induced spatial memory impairment while altering NMDA receptor subunit expression in male rats. Int J Dev Neurosci 2022; 82:596-605. [PMID: 35830151 DOI: 10.1002/jdn.10212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/08/2022] [Accepted: 07/04/2022] [Indexed: 11/07/2022] Open
Abstract
Caffeine is a psychostimulant substance that is mostly used to prevent fatigue, increase alertness, and ameliorate sleep loss situations. In this study, we aimed to investigate the effect of chronic caffeine consumption on learning and memory functions and related genes in REM (rapid-eye-movement) sleep-deprived rats. During the neonatal period [postnatal day (PND) 28] Wistar albino male rats (n=32) were randomly assigned into four groups: control (C), caffeine application (Cf), acute REM sleep-deprivation (RD), and caffeine application+acute RD (Cf+RD). The 48 hours of RD was executed when caffeine administration was completed. The learning and memory performance was evaluated by the Morris Water Maze Test (MWMT). Following this, the rats were decapitated to isolate hippocampus tissues. In MWMT, time spent in the targeted quadrant decreased significantly in the RD group compared to the C and Cf+RD group. NR2A expression level increased in the RD group compared to C, Cf, and Cf+RD groups (p<0.05). NR2B expression level increased in RD and Cf +RD groups compared to C and Cf groups (p<0.05). BDNF and c-Fos expression levels did not differ significantly between the groups. RD impaired hippocampal spatial memory performance in the MWMT test. Our results indicated that chronic caffeine consumption has a therapeutic effect on spatial memory deterioration impairment caused by RD. Furthermore, it seems that the effect of caffeine RD on the hippocampus may be mediated by NR2A.
Collapse
Affiliation(s)
| | - Leyla Sahin
- Physiology Department, Faculty of Medicine Mersin University, Mersin, Turkey
| | - Ozge Selin Cevik
- Physiology Department, Faculty of Medicine Mersin University, Mersin, Turkey
| |
Collapse
|
95
|
Masuda S, Tanaka S, Shiraki H, Sotomaru Y, Harada K, Hide I, Kiuchi Y, Sakai N. GPR3 expression in retinal ganglion cells contributes to neuron survival and accelerates axonal regeneration after optic nerve crush in mice. Neurobiol Dis 2022; 172:105811. [PMID: 35809764 DOI: 10.1016/j.nbd.2022.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Glaucoma is an optic neuropathy and is currently one of the most common diseases that leads to irreversible blindness. The axonal degeneration that occurs before retinal ganglion neuronal loss is suggested to be involved in the pathogenesis of glaucoma. G protein-coupled receptor 3 (GPR3) belongs to the class A rhodopsin-type GPCR family and is highly expressed in various neurons. GPR3 is unique in its ability to constitutively activate the Gαs protein without a ligand, which elevates the basal intracellular cAMP level. Our earlier reports suggested that GPR3 enhances both neurite outgrowth and neuronal survival. However, the potential role of GPR3 in axonal regeneration after neuronal injury has not been elucidated. Herein, we investigated retinal GPR3 expression and its possible involvement in axonal regeneration after retinal injury in mice. GPR3 was relatively highly expressed in retinal ganglion cells (RGCs). Surprisingly, RGCs in GPR3 knockout mice were vulnerable to neural death during aging without affecting high intraocular pressure (IOP) and under ischemic conditions. Primary cultured neurons from the retina showed that GPR3 expression was correlated with neurite outgrowth and neuronal survival. Evaluation of the effect of GPR3 on axonal regeneration using GPR3 knockout mice revealed that GPR3 in RGCs participates in axonal regeneration after optic nerve crush (ONC) under zymosan stimulation. In addition, regenerating axons were further stimulated when GPR3 was upregulated in RGCs, and the effect was further augmented when combined with zymosan treatment. These results suggest that GPR3 expression in RGCs helps maintain neuronal survival and accelerates axonal regeneration after ONC in mice.
Collapse
Affiliation(s)
- Shun Masuda
- Department of Molecular and Pharmacological Neuroscience, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; Department of Ophthalmology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Hiroko Shiraki
- Department of Molecular and Pharmacological Neuroscience, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yoshiaki Kiuchi
- Department of Ophthalmology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
96
|
Qin C, Yang S, Chu YH, Zhang H, Pang XW, Chen L, Zhou LQ, Chen M, Tian DS, Wang W. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:215. [PMID: 35794095 PMCID: PMC9259607 DOI: 10.1038/s41392-022-01064-1] [Citation(s) in RCA: 388] [Impact Index Per Article: 129.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is caused primarily by an interruption in cerebral blood flow, which induces severe neural injuries, and is one of the leading causes of death and disability worldwide. Thus, it is of great necessity to further detailly elucidate the mechanisms of ischemic stroke and find out new therapies against the disease. In recent years, efforts have been made to understand the pathophysiology of ischemic stroke, including cellular excitotoxicity, oxidative stress, cell death processes, and neuroinflammation. In the meantime, a plethora of signaling pathways, either detrimental or neuroprotective, are also highly involved in the forementioned pathophysiology. These pathways are closely intertwined and form a complex signaling network. Also, these signaling pathways reveal therapeutic potential, as targeting these signaling pathways could possibly serve as therapeutic approaches against ischemic stroke. In this review, we describe the signaling pathways involved in ischemic stroke and categorize them based on the pathophysiological processes they participate in. Therapeutic approaches targeting these signaling pathways, which are associated with the pathophysiology mentioned above, are also discussed. Meanwhile, clinical trials regarding ischemic stroke, which potentially target the pathophysiology and the signaling pathways involved, are summarized in details. Conclusively, this review elucidated potential molecular mechanisms and related signaling pathways underlying ischemic stroke, and summarize the therapeutic approaches targeted various pathophysiology, with particular reference to clinical trials and future prospects for treating ischemic stroke.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lian Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
97
|
Aldhshan MS, Mizuno TM. Effect of environmental enrichment on aggression and the expression of brain-derived neurotrophic factor transcript variants in group-housed male mice. Behav Brain Res 2022; 433:113986. [DOI: 10.1016/j.bbr.2022.113986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/20/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022]
|
98
|
Liu R, Bai L, Liu M, Wang R, Wu Y, Li Q, Ba Y, Zhang H, Zhou G, Yu F, Huang H. Combined exposure of lead and high-fat diet enhanced cognitive decline via interacting with CREB-BDNF signaling in male rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119200. [PMID: 35364187 DOI: 10.1016/j.envpol.2022.119200] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
The health risks to populations induced by lead (Pb) and high-fat diets (HFD) have become a global public health problem. Pb and HFD often co-exist and are co-occurring risk factors for cognitive impairment. This study investigates effect of combined Pb and HFD on cognitive function, and explores the underlying mechanisms in terms of regulatory components of synaptic plasticity and insulin signaling pathway. We showed that the co-exposure of Pb and HFD further increased blood Pb levels, caused body weight loss and dyslipidemia. The results from Morris water maze (MWM) test and Nissl staining disclosed that Pb and HFD each contributed to cognitive deficits and neuronal damage and combined exposure enhanced this toxic injury. Pb and HFD decreased the levels of synapsin-1, GAP-43 and PSD-95 protein related to synaptic properties and SIRT1, NMDARs, phosphorylated CREB and BDNF related to synaptic plasticity regulatory, and these decreases was greater when combined exposure. Additionally, we revealed that Pb and HFD promoted IRS-1 phosphorylation and subsequently reduced downstream PI3K-Akt kinases phosphorylation in hippocampus and cortex of rats, and this process was aggravated when co-exposure. Collectively, our data suggested that combined exposure of Pb and HFD enhanced cognitive deficits, pointing to additive effects in rats than the individual stress effects related to multiple signaling pathways with CREB-BDNF signaling as the hub. This study emphasizes the need to evaluate the effects of mixed exposures on brain function in realistic environment and to better inform prevention of neurological disorders via modulating central pathway, such as CREB/BDNF signaling.
Collapse
Affiliation(s)
- Rundong Liu
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Lin Bai
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengchen Liu
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruike Wang
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yingying Wu
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiong Li
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yue Ba
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Huizhen Zhang
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Guoyu Zhou
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Fangfang Yu
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Huang
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
99
|
Chen L, Song M, Yao C. Calcineurin in development and disease. Genes Dis 2022; 9:915-927. [PMID: 35685477 PMCID: PMC9170610 DOI: 10.1016/j.gendis.2021.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/27/2021] [Accepted: 03/05/2021] [Indexed: 12/26/2022] Open
Abstract
Calcineurin (CaN) is a unique calcium (Ca2+) and calmodulin (CaM)-dependent serine/threonine phosphatase that becomes activated in the presence of increased intracellular Ca2+ level. CaN then functions to dephosphorylate target substrates including various transcription factors, receptors, and channels. Once activated, the CaN signaling pathway participates in the development of multiple organs as well as the onset and progression of various diseases via regulation of different cellular processes. Here, we review current literature regarding the structural and functional properties of CaN, highlighting its crucial role in the development and pathogenesis of immune system disorders, neurodegenerative diseases, kidney disease, cardiomyopathy and cancer.
Collapse
Affiliation(s)
- Lei Chen
- Department of Blood Transfusion, First Affiliated Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Min Song
- Department of Blood Transfusion, First Affiliated Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Chunyan Yao
- Department of Blood Transfusion, First Affiliated Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| |
Collapse
|
100
|
The role and therapeutic implication of protein tyrosine phosphatases in Alzheimer's disease. Biomed Pharmacother 2022; 151:113188. [PMID: 35676788 DOI: 10.1016/j.biopha.2022.113188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 11/24/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) are important regulator of neuronal signal transduction and a growing number of PTPs have been implicated in Alzheimer's disease (AD). In the brains of patients with AD, there are a variety of abnormally phosphorylated proteins, which are closely related to the abnormal expression and activity of PTPs. β-Amyloid plaques (Aβ) and hyperphosphorylated tau protein are two pathological hallmarks of AD, and their accumulation ultimately leads to neurodegeneration. Studies have shown that protein phosphorylation signaling pathways mediates intracellular accumulation of Aβ and tau during AD development and are involved in synaptic plasticity and other stress responses. Here, we summarized the roles of PTPs related to the pathogenesis of AD and analyzed their therapeutic potential in AD.
Collapse
|