51
|
Nowacka-Zawisza M, Bryś M, Romanowicz-Makowska H, Kulig A, Krajewska WM. Genetic instability in the RAD51 and BRCA1 regions in breast cancer. Cell Mol Biol Lett 2006; 12:192-205. [PMID: 17180310 PMCID: PMC6275757 DOI: 10.2478/s11658-006-0063-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 09/26/2006] [Indexed: 11/20/2022] Open
Abstract
Breast cancer is the most prevalent cancer type in women. Accumulating evidence indicates that the fidelity of double-strand break repair in response to DNA damage is an important step in mammary neoplasias. The RAD51 and BRCA1 proteins are involved in the repair of double-strand DNA breaks by homologous recombination. In this study, we evaluated loss of heterozygosity (LOH) in the RAD51 and BRCA1 regions, and their association with breast cancer. The polymorphic markers D15S118, D15S214 and D15S1006 were the focus for RAD51, and D17S855 and D17S1323 for BRCA1. Genomic deletion detected by allelic loss varied according to the regions tested, and ranged from 29 to 46% of informative cases for the RAD51 region and from 38 to 42% of informative cases for the BRCA1 region. 25% of breast cancer cases displayed LOH for at least one studied marker in the RAD51 region exclusively. On the other hand, 31% of breast cancer cases manifested LOH for at least one microsatellite marker concomitantly in the RAD51 and BRCA1 regions. LOH in the RAD51 region, similarly as in the BRCA1 region, appeared to correlate with steroid receptor status. The obtained results indicate that alteration in the RAD51 region may contribute to the disturbances of DNA repair involving RAD51 and BRCA1 and thus enhance the risk of breast cancer development.
Collapse
Affiliation(s)
- Maria Nowacka-Zawisza
- Department of Cytobiochemistry, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - Magdalena Bryś
- Department of Cytobiochemistry, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - Hanna Romanowicz-Makowska
- Department of Clinical Pathomorphology, Polish Mother’s Memorial Hospital, Research Institute, Rzgowska 281/289, 93-338 Łódź Poland
| | - Andrzej Kulig
- Department of Clinical Pathomorphology, Polish Mother’s Memorial Hospital, Research Institute, Rzgowska 281/289, 93-338 Łódź Poland
| | - Wanda M. Krajewska
- Department of Cytobiochemistry, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| |
Collapse
|
52
|
Collins NS, Bhattacharyya S, Lahue RS. Rev1 enhances CAG.CTG repeat stability in Saccharomyces cerevisiae. DNA Repair (Amst) 2006; 6:38-44. [PMID: 16979389 DOI: 10.1016/j.dnarep.2006.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 07/31/2006] [Accepted: 08/14/2006] [Indexed: 11/30/2022]
Abstract
Trinucleotide repeats (TNRs) frequently expand in certain human genetic diseases, often with devastating pathological consequences. TNR expansions require the addition of new DNA; accordingly, molecular models suggest aberrant DNA replication or error-prone repair synthesis as the sources of most instability. Some proteins are currently known that either promote or inhibit TNR mutability. To identify additional proteins that help protect cells against TNR instability, yeast mutants were isolated with higher than normal rates of CAG.CTG tract expansions. Surprisingly, a rev1 mutant was isolated. In contrast to its canonical function in supporting mutagenesis, we found that Rev1 reduces rates of CAG.CTG repeat expansions and contractions, as judged by the behavior of the rev1 mutant. The rev1 mutator phenotype was specific for TNRs with hairpin forming capacity. Mutations in REV3 or REV7, encoding the subunits of DNA polymerase zeta (pol zeta), did not affect expansion rates in REV1 or rev1 strains. A rev1 point mutant lacking dCMP transferase activity was normal for TNR instability, whereas the rev1-1 allele that interferes with BRCT domain function was as defective as a rev1 null mutant. In summary, these results indicate that yeast Rev1 reduces mutability of CAG.CTG tracts in a manner dependent on BRCT domain function but independent of dCMP transferase activity and of pol zeta.
Collapse
Affiliation(s)
- Natasha S Collins
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Box 986805, Omaha, NE 68198-6805, United States
| | | | | |
Collapse
|
53
|
Guo C, Sonoda E, Tang TS, Parker JL, Bielen AB, Takeda S, Ulrich HD, Friedberg EC. REV1 protein interacts with PCNA: significance of the REV1 BRCT domain in vitro and in vivo. Mol Cell 2006; 23:265-71. [PMID: 16857592 DOI: 10.1016/j.molcel.2006.05.038] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 04/04/2006] [Accepted: 05/25/2006] [Indexed: 01/14/2023]
Abstract
REV1 protein, a eukaryotic member of the Y family of DNA polymerases, is involved in the tolerance of DNA damage by translesion DNA synthesis. It is unclear how REV1 is recruited to replication foci in cells. Here, we report that mouse REV1 can bind directly to PCNA and that monoubiquitylation of PCNA enhances this interaction. The interaction between REV1 protein and PCNA requires a functional BRCT domain located near the N terminus of the former protein. Deletion or mutational inactivation of the BRCT domain abolishes the targeting of REV1 to replication foci in unirradiated cells, but not in UV-irradiated cells. In vivo studies in both chicken DT40 cells and yeast directly support the requirement of the BRCT domain of REV1 for cell survival and DNA damage-induced mutagenesis.
Collapse
Affiliation(s)
- Caixia Guo
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Cox J, Jackson AP, Bond J, Woods CG. What primary microcephaly can tell us about brain growth. Trends Mol Med 2006; 12:358-66. [PMID: 16829198 DOI: 10.1016/j.molmed.2006.06.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 06/08/2006] [Accepted: 06/27/2006] [Indexed: 10/24/2022]
Abstract
Autosomal recessive primary microcephaly (MCPH) is a neuro-developmental disorder that causes a great reduction in brain growth in utero. MCPH is hypothesized to be a primary disorder of neurogenic mitosis, leading to reduced neuron number. Hence, MCPH proteins are likely to be important components of cellular pathways regulating human brain size. At least six genes can cause this disorder and four of these have recently been identified: autosomal recessive primary microcephaly 1 (MCPH1), abnormal spindle-like, microcephaly associated (ASPM), cyclin-dependent kinase 5 regulatory subunit-associated protein 2 (CDK5RAP2) and centromere protein J (CENPJ). Whereas aberration of ASPM is the most common cause of MCPH, MCPH1 patients can be more readily diagnosed by the finding of increased numbers of "prophase-like cells" on routine cytogenetic investigation. Three MCPH proteins are centrosomal components but have apparently diverse roles that affect mitosis. There is accumulating evidence that evolutionary changes to the MCPH genes have contributed to the large brain size seen in primates, particularly humans. The aim of this article is to review what has been learnt about the rare condition primary microcephaly and the information this provides about normal brain growth.
Collapse
Affiliation(s)
- James Cox
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, CB2 2XY Cambridge, UK
| | | | | | | |
Collapse
|
55
|
Lokesh GL, Rachamallu A, Kumar GDK, Natarajan A. High-throughput fluorescence polarization assay to identify small molecule inhibitors of BRCT domains of breast cancer gene 1. Anal Biochem 2006; 352:135-41. [PMID: 16500609 DOI: 10.1016/j.ab.2006.01.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 01/11/2006] [Accepted: 01/11/2006] [Indexed: 11/18/2022]
Abstract
The C-terminus region of the 1863 residue early onset of breast cancer gene 1 (BRCA1) nuclear protein contains a tandem globular carboxy terminus domain termed BRCT. The BRCT repeats in BRCA1 are phosphoserine- and/or phosphothreonine-specific binding modules. The interaction of the BRCT(BRCA1) domains with phosphorylated BRCA1-associated carboxyl terminal helicase (BACH1) is cell cycle regulated and is essential for DNA damage-induced checkpoint control during the transition from the G(2) phase to the M phase of the cell cycle. Development of a competitive, homogeneous, high-throughput fluorescence polarization (FP) assay to identify small molecule inhibitors of BRCT(BRCA1)-BACH1 interaction is reported here. The FP assay was used for measuring binding affinities and inhibition constants of BACH1 peptides and small molecule inhibitors of BRCT(BRCA1) domains, respectively. A fluorescently labeled wild-type BACH1 decapeptide (BDP1) containing the critical phosphoserine, a phenylalanine at (P+3), and a GST-BRCT fusion protein were used to establish the FP assay. BDP1 has a dissociation constant (K(d)) of 1.58+/-0.01microM and a dynamic range (DeltamP) of 164.9+/-1.9. The assay tolerates 20% dimethyl sulfoxide, which enables screening poorly soluble compounds. Under optimized conditions, a Z' factor of 0.87 was achieved in a 384-well format for high-throughput screening.
Collapse
Affiliation(s)
- G L Lokesh
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | |
Collapse
|
56
|
Bond J, Woods CG. Cytoskeletal genes regulating brain size. Curr Opin Cell Biol 2006; 18:95-101. [PMID: 16337370 DOI: 10.1016/j.ceb.2005.11.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 11/24/2005] [Indexed: 11/22/2022]
Abstract
One of the most notable trends in human evolution is the dramatic increase in brain size that has occurred in the great ape clade, culminating in humans. Of particular interest is the vast expanse of the cerebral cortex, which is believed to have resulted in our ability to perform higher cognitive functions. Recent investigations of congenital microcephaly in humans have resulted in the identification of several genes that non-redundantly and specifically influence mammalian brain size. These genes appear to affect neural progenitor cell number through microtubular organisation at the centrosome.
Collapse
Affiliation(s)
- Jacquelyn Bond
- Molecular Medicine Unit, University of Leeds, Clinical Sciences Building, St James's University Hospital, Beckett St., Leeds, West Yorkshire, LS9 7TF, UK.
| | | |
Collapse
|
57
|
Moreau K, Dizin E, Ray H, Luquain C, Lefai E, Foufelle F, Billaud M, Lenoir GM, Venezia ND. BRCA1 affects lipid synthesis through its interaction with acetyl-CoA carboxylase. J Biol Chem 2005; 281:3172-81. [PMID: 16326698 DOI: 10.1074/jbc.m504652200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Germ line alterations in BRCA1 (breast cancer susceptibility gene 1) are associated with an increased susceptibility to breast and ovarian cancer. BRCA1 acts as a scaffold protein implicated in multiple cellular functions, such as transcription, DNA repair, and ubiquitination. However, the molecular mechanisms responsible for tumorigenesis are not yet fully understood. We have recently demonstrated that BRCA1 interacts in vivo with acetyl coenzyme A carboxylase alpha (ACCA) through its tandem of BRCA1 C terminus (BRCT) domains. To understand the biological function of the BRCA1.ACCA complex, we sought to determine whether BRCA1 is a regulator of lipogenesis through its interaction with ACCA. We showed here that RNA inhibition-mediated down-regulation of BRCA1 expression induced a marked increase in the fatty acid synthesis. We then delineated the biochemical characteristics of the complex and found that BRCA1 interacts solely with the phosphorylated and inactive form of ACCA (P-ACCA). Finally, we demonstrated that BRCA1 affects lipid synthesis by preventing P-ACCA dephosphorylation. These results suggest that BRCA1 affects lipogenesis through binding to P-ACCA, providing a new mechanism by which BRCA1 may exert a tumor suppressor function.
Collapse
Affiliation(s)
- Karen Moreau
- CNRS UMR 5201, Laboratoire de Génétique Moléculaire, Signalisation et Cancer, Faculté deMédecine Rockefeller, 69373 Lyon cedex 08, France
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Watson NB, Mukhopadhyay S, McGregor WG. Translesion DNA replication proteins as molecular targets for cancer prevention. Cancer Lett 2005; 241:13-22. [PMID: 16303242 DOI: 10.1016/j.canlet.2005.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 10/10/2005] [Accepted: 10/13/2005] [Indexed: 01/10/2023]
Abstract
Mutations in DNA are generally considered to have an etiologic role in the development of cancer. If so, it follows that reducing the frequency of such mutations will reduce the incidence of cancer induced by mutagens. Recent advances in elucidating the molecular mechanisms of carcinogen-induced mutagenesis indicate that replication of DNA templates that contain replication-blocking adducts is accomplished with error-prone DNA polymerases. These polymerases have relaxed base-pairing requirements, and can insert bases across from adducted templates, but with potentially mutagenic consequences. In principle, these proteins present new and attractive molecular targets to reduce mutagenesis. If this can be done in vivo without increasing cytotoxic responses to carcinogens, then novel chemopreventive strategies can be designed to reduce the risk of cancer in exposed populations prior to the appearance of disease symptoms.
Collapse
Affiliation(s)
- Nicholas B Watson
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | | | | |
Collapse
|
59
|
Ponting C, Jackson AP. Evolution of primary microcephaly genes and the enlargement of primate brains. Curr Opin Genet Dev 2005; 15:241-8. [PMID: 15917198 DOI: 10.1016/j.gde.2005.04.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 04/12/2005] [Indexed: 10/25/2022]
Abstract
Brain size, in relation to body size, has varied markedly during the evolution of mammals. In particular, a large cerebral cortex is a feature that distinguishes humans from our fellow primates. Such anatomical changes must have a basis in genetic alterations, but the molecular processes involved have yet to be defined. However, recent advances from the cloning of two human disease genes promise to make inroads in this important area. Microcephalin (MCPH1) and Abnormal spindle-like microcephaly associated (ASPM) are genes mutated in primary microcephaly, a human neurodevelopmental disorder. In this 'atavistic' condition, brain size is reduced in volume to a size comparable with that of early hominids. Hence, it has been proposed that these genes evolved adaptively with increasing primate brain size. Subsequent studies have lent weight to this hypothesis by showing that both genes have undergone positive selection during great ape evolution. Further functional characterisation of their proteins will contribute to an understanding of the molecular and evolutionary processes that have determined human brain size.
Collapse
Affiliation(s)
- Chris Ponting
- MRC Functional Genetics, University of Oxford, Department of Human Anatomy and Genetics, South Parks Road, Oxford OX1 3QX, UK
| | | |
Collapse
|
60
|
Alpha-Bazin B, Lorphelin A, Nozerand N, Charier G, Marchetti C, Bérenguer F, Couprie J, Gilquin B, Zinn-Justin S, Quéméneur E. Boundaries and physical characterization of a new domain shared between mammalian 53BP1 and yeast Rad9 checkpoint proteins. Protein Sci 2005; 14:1827-39. [PMID: 15987907 PMCID: PMC2253359 DOI: 10.1110/ps.041305205] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Eukaryotic cells have evolved DNA damage checkpoints in response to genome damage. They delay the cell cycle and activate repair mechanisms. The kinases at the heart of these pathways and the accessory proteins, which localize to DNA lesions and regulate kinase activation, are conserved from yeast to mammals. For Saccharomyces cerevisiae Rad9, a key adaptor protein in DNA damage checkpoint pathways, no clear human ortholog has yet been described in mammals. Rad9, however, shares localized homology with both human BRCA1 and 53BP1 since they all contain tandem C-terminal BRCT (BRCA1 C-terminal) motifs. 53BP1 is also a key mediator in DNA damage signaling required for cell cycle arrest, which has just been reported to possess a tandem Tudor repeat upstream of the BRCT motifs. Here we show that the major globular domain upstream of yeast Rad9 BRCT domains is structurally extremely similar to the Tudor domains recently resolved for 53BP1 and SMN. By expressing several fragments encompassing the Tudor-related motif and characterizing them using various physical methods, we isolated the independently folded unit for yeast Rad9. As in 53BP1, the domain corresponds to the SMN Tudor motif plus the contiguous HCA predicted structure region at the C terminus. These domains may help to further elucidate the structural and functional features of these two proteins and improve knowledge of the proteins involved in DNA damage.
Collapse
Affiliation(s)
- Béatrice Alpha-Bazin
- Service de Biochimie Post-Génomique et Toxicologie Nucléaire, Direction des Sciences du Vivant (DSV)--Département d'Ingénierie et d'Etudes des Protéines (DIEP), Commissariat à l'Energie Atomique (CEA-VALRHO), Bagnols-sur-Céze, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Evans PD, Gilbert SL, Mekel-Bobrov N, Vallender EJ, Anderson JR, Vaez-Azizi LM, Tishkoff SA, Hudson RR, Lahn BT. Microcephalin, a Gene Regulating Brain Size, Continues to Evolve Adaptively in Humans. Science 2005; 309:1717-20. [PMID: 16151009 DOI: 10.1126/science.1113722] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The gene Microcephalin (MCPH1) regulates brain size and has evolved under strong positive selection in the human evolutionary lineage. We show that one genetic variant of Microcephalin in modern humans, which arose approximately 37,000 years ago, increased in frequency too rapidly to be compatible with neutral drift. This indicates that it has spread under strong positive selection, although the exact nature of the selection is unknown. The finding that an important brain gene has continued to evolve adaptively in anatomically modern humans suggests the ongoing evolutionary plasticity of the human brain. It also makes Microcephalin an attractive candidate locus for studying the genetics of human variation in brain-related phenotypes.
Collapse
Affiliation(s)
- Patrick D Evans
- Howard Hughes Medical Institute, Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Glover JNM, Williams RS, Lee MS. Interactions between BRCT repeats and phosphoproteins: tangled up in two. Trends Biochem Sci 2005; 29:579-85. [PMID: 15501676 DOI: 10.1016/j.tibs.2004.09.010] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The C-terminal region of the breast-cancer-associated protein BRCA1 contains a pair of tandem BRCA1 C-terminal (BRCT) repeats that are essential for the tumour suppressor function of the protein. Similar repeat sequences have been identified in many proteins that seem to mediate cellular mechanisms for dealing with DNA damage. The BRCT domain in BRCA1 has been recently shown to constitute a module for recognizing phosphorylated (phospho-) peptides, with a recognition groove that spans both BRCT repeats. The fact that many other BRCT-containing proteins have phospho-peptide binding activity suggests that BRCT repeats might mediate phosphorylation-dependent protein-protein interactions in processes that are central to cell-cycle checkpoint and DNA repair functions.
Collapse
Affiliation(s)
- J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada T6G 2H7.
| | | | | |
Collapse
|
63
|
Wilkinson A, Smith A, Bullard D, Lavesa-Curto M, Sayer H, Bonner A, Hemmings A, Bowater R. Analysis of ligation and DNA binding by Escherichia coli DNA ligase (LigA). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1749:113-22. [PMID: 15848142 DOI: 10.1016/j.bbapap.2005.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 03/03/2005] [Accepted: 03/03/2005] [Indexed: 01/05/2023]
Abstract
NAD(+)-dependent DNA ligases are essential enzymes in bacteria, with the most widely studied of this class of enzymes being LigA from Escherichia coli. NAD(+)-dependent DNA ligases comprise several discrete structural domains, including a BRCT domain at the C-terminus that is highly-conserved in this group of proteins. The over-expression and purification of various fragments of E. coli LigA allowed the investigation of the different domains in DNA-binding and ligation by this enzyme. Compared to the full-length protein, the deletion of the BRCT domain from LigA reduced in vitro ligation activity by 3-fold and also reduced DNA binding. Using an E. coli strain harbouring a temperature-sensitive mutation of ligA, the over-expression of protein with its BRCT domain deleted enabled growth at the non-permissive temperature. In gel-mobility shift experiments, the isolated BRCT domain bound DNA in a stable manner and to a wider range of DNA molecules compared to full LigA. Thus, the BRCT domain of E. coli LigA can bind DNA, but it is not essential for DNA nick-joining activity in vitro or in vivo.
Collapse
Affiliation(s)
- Adam Wilkinson
- Phico Therapeutics Ltd, Babraham Hall, Babraham, Cambridge, CB2 4AT, UK
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Gilbert SL, Dobyns WB, Lahn BT. Genetic links between brain development and brain evolution. Nat Rev Genet 2005; 6:581-90. [PMID: 15951746 DOI: 10.1038/nrg1634] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The most defining biological attribute of Homo sapiens is its enormous brain size and accompanying cognitive prowess. How this was achieved by means of genetic changes over the course of human evolution has fascinated biologists and the general public alike. Recent studies have shown that genes controlling brain development - notably those implicated in microcephaly (a congenital defect that is characterized by severely reduced brain size) - are favoured targets of natural selection during human evolution. We propose that genes that regulate brain size during development, such as microcephaly genes, are chief contributors in driving the evolutionary enlargement of the human brain. Based on the synthesis of recent studies, we propose a general methodological template for the genetic analysis of human evolution.
Collapse
Affiliation(s)
- Sandra L Gilbert
- Howard Hughes Medical Institute, Department of Human Genetics, University of Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
65
|
Ward BD, Hendrickson BC, Judkins T, Deffenbaugh AM, Leclair B, Ward BE, Scholl T. A multi-exonic BRCA1 deletion identified in multiple families through single nucleotide polymorphism haplotype pair analysis and gene amplification with widely dispersed primer sets. J Mol Diagn 2005; 7:139-42. [PMID: 15681486 PMCID: PMC1867506 DOI: 10.1016/s1525-1578(10)60020-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The identification of intragenic rearrangements is important for a comprehensive understanding of mutations that occur in some clinically important genes. Single nucleotide polymorphism haplotypes obtained from clinical sequence data have been used to identify patients at high risk for rearrangement mutations. Application of this method identified a novel 26-kb deletion of BRCA1 exons 14 through 20 in patients from multiple families with hereditary breast and ovarian cancer. Clinical sequence data from 5911 anonymous patients were screened for genotypes that were inconsistent with known pairs of canonical haplotypes in BRCA1 that could be explained by hemizygous deletions involving exon 16. Long-range polymerase chain reaction demonstrated that two of six samples identified by this search contained a deletion in the expected region encompassing exons 14 through 20. The breakpoint was fully characterized by DNA sequencing and demonstrated that the deletion resulted from Alu-mediated recombination. This mutation was also identified twice in a set of 982 anonymous specimens that had negative clinical test results, but uninformative haplotypes. Three additional occurrences of this mutation were found by testing 10 other patients with the indicative genotype. An assay for this mutation was added to a comprehensive clinical breast/ovarian cancer test and eight more instances were found in 20,649 probands. This multiexon deletion has therefore been detected in 15 different North American families with hereditary breast/ovarian cancer. In conclusion, this primarily computational approach is highly effective and identifies specimens using existing data that are enriched for deletion mutations.
Collapse
Affiliation(s)
- Benjamin D Ward
- Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT 84108, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Judkins T, Hendrickson BC, Deffenbaugh AM, Scholl T. Single nucleotide polymorphisms in clinical genetic testing: the characterization of the clinical significance of genetic variants and their application in clinical research for BRCA1. Mutat Res 2005; 573:168-79. [PMID: 15829246 DOI: 10.1016/j.mrfmmm.2004.07.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 07/23/2004] [Indexed: 05/02/2023]
Abstract
Clinical genetic testing is increasingly employed in the medical management of cancer patients. These tests support a variety of clinical decisions by providing results that indicate risk for future disease, confirmation of diagnoses, and more recently, therapeutic selection and prognosis. Most genetic variation detected during clinical testing involves single nucleotide polymorphisms (SNPs). Continued advances in the technologies of genetic analyses make these tests increasingly sensitive, cost-effective and timely, which contribute to their increased utilization. Conversely, it has proven difficult to characterize the clinical significance of genetic variants that do not obviously truncate the open reading frames of genes. These genetic variants of uncertain clinical significance diminish the value of genetic test results. This article highlights a variety of approaches that have emerged from research in diverse disciplines to solve the problem, including the application of information about common SNPs in multiple methods to better characterize clinically uncertain variants. Hereditary breast/ovarian cancer, and in particular BRCA1, provides a framework for this discussion. BRCA1 is particularly interesting in this respect since clinical genetic testing by direct DNA sequencing for over 50,000 patients in North America has revealed approximately 1500 genetic variants to date. This large data set combined with the clinical significance of BRCA1 have resulted in research groups selecting BRCA1 as a preferred gene to evaluate novel methods in this field. Finally, the lessons learned through work with BRCA1 are highly applicable to many other genes associated with cancer risk.
Collapse
Affiliation(s)
- Thaddeus Judkins
- Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, UT 84018, USA
| | | | | | | |
Collapse
|
67
|
Woods CG, Bond J, Enard W. Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings. Am J Hum Genet 2005; 76:717-28. [PMID: 15806441 PMCID: PMC1199363 DOI: 10.1086/429930] [Citation(s) in RCA: 313] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 02/25/2005] [Indexed: 12/24/2022] Open
Abstract
Autosomal recessive primary microcephaly (MCPH) is a neurodevelopmental disorder. It is characterized by two principal features, microcephaly present at birth and nonprogressive mental retardation. The microcephaly is the consequence of a small but architecturally normal brain, and it is the cerebral cortex that shows the greatest size reduction. There are at least seven MCPH loci, and four of the genes have been identified: MCPH1, encoding Microcephalin; MCPH3, encoding CDK5RAP2; MCPH5, encoding ASPM; and MCPH6, encoding CENPJ. These findings are starting to have an impact on the clinical management of families affected with MCPH. Present data suggest that MCPH is the consequence of deficient neurogenesis within the neurogenic epithelium. Evolutionary interest in MCPH has been sparked by the suggestion that changes in the MCPH genes might also be responsible for the increase in brain size during human evolution. Indeed, evolutionary analyses of Microcephalin and ASPM reveal evidence for positive selection during human and great ape evolution. So an understanding of this rare genetic disorder may offer us significant insights into neurogenic mitosis and the evolution of the most striking differences between us and our closest living relatives: brain size and cognitive ability.
Collapse
Affiliation(s)
- C Geoffrey Woods
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, United Kingdom.
| | | | | |
Collapse
|
68
|
Pyrpassopoulos S, Ladopoulou A, Vlassi M, Papanikolau Y, Vorgias CE, Yannoukakos D, Nounesis G. Thermal denaturation of the BRCT tandem repeat region of human tumour suppressor gene product BRCA1. Biophys Chem 2005; 114:1-12. [PMID: 15792855 DOI: 10.1016/j.bpc.2004.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 09/14/2004] [Accepted: 09/30/2004] [Indexed: 10/26/2022]
Abstract
Reduced stability of the tandem BRCT domains of human BReast CAncer 1 (BRCA1) due to missense mutations may be critical for loss of function in DNA repair and damage-induced checkpoint control. In the present thermal denaturation study of the BRCA1 BRCT region, high-precision differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy provide evidence for the existence of a denatured state that is structurally very similar to the native. Consistency between theoretical structure-based estimates of the enthalpy (DeltaH) and heat capacity change (DeltaCp) and the calorimetric results is obtained when considering partial thermal unfolding contained in the region of the conserved hydrophobic pocket formed at the interface of the two BRCT repeats. The structural integrity of this region has been shown to be crucial for the interaction of BRCA1 with phosphorylated peptides. In addition, cancer-causing missense mutations located at the inter-BRCT-repeat interface have been linked to the destabilization of the tandem BRCT structure.
Collapse
Affiliation(s)
- Serapion Pyrpassopoulos
- National Centre for Scientific Research Demokritos, Patriarchou Gregoriou St., 153 10 Aghia Paraskevi, Greece
| | | | | | | | | | | | | |
Collapse
|
69
|
Jansen JG, Tsaalbi-Shtylik A, Langerak P, Calléja F, Meijers CM, Jacobs H, de Wind N. The BRCT domain of mammalian Rev1 is involved in regulating DNA translesion synthesis. Nucleic Acids Res 2005; 33:356-65. [PMID: 15653636 PMCID: PMC546167 DOI: 10.1093/nar/gki189] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rev1 is a deoxycytidyl transferase associated with DNA translesion synthesis (TLS). In addition to its catalytic domain, Rev1 possesses a so-called BRCA1 C-terminal (BRCT) domain. Here, we describe cells and mice containing a targeted deletion of this domain. Rev1B/B mice are healthy, fertile and display normal somatic hypermutation. Rev1B/B cells display an elevated spontaneous frequency of intragenic deletions at Hprt. In addition, these cells were sensitized to exogenous DNA damages. Ultraviolet-C (UV-C) light induced a delayed progression through late S and G2 phases of the cell cycle and many chromatid aberrations, specifically in a subset of mutant cells, but not enhanced sister chromatid exchanges (SCE). UV-C-induced mutagenesis was reduced and mutations at thymidine–thymidine dimers were absent in Rev1B/B cells, the opposite phenotype of UV-C-exposed cells from XP-V patients, lacking TLS polymerase η. This suggests that the enhanced UV-induced mutagenesis in XP-V patients may depend on error-prone Rev1-dependent TLS. Together, these data indicate a regulatory role of the Rev1 BRCT domain in TLS of a limited spectrum of endogenous and exogenous nucleotide damages during a defined phase of the cell cycle.
Collapse
Affiliation(s)
- Jacob G Jansen
- Department of Toxicogenetics, Leiden University Medical Center 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
70
|
Thai TH, Kearney JF. Isoforms of terminal deoxynucleotidyltransferase: developmental aspects and function. Adv Immunol 2005; 86:113-36. [PMID: 15705420 DOI: 10.1016/s0065-2776(04)86003-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The immune system develops in a series of programmed developmental stages. Although recombination-activating gene (RAG) and nonhomologous end-joining (NHEJ) proteins are indispensable in the generation of immunoglobulins and T-cell receptors (TCRs), most CDR3 diversity is contributed by nontemplated addition of nucleotides catalyzed by the nuclear enzyme terminal deoxynucleotidyltransferase (TdT) and most nucleotide deletion is performed by exonucleases at V(D)J joins. Increasing TdT expression continuing into adult life results in N region addition and diversification of the T and B cell repertoires. In several species including mice and humans, there are multiple isoforms of TdT resulting from alternative mRNA splicing. The short form (TdTS) produces N additions during TCR and B-cell receptor (BCR) gene rearrangements. Other long isoforms, TdTL1 and TdTL2, have 3' --> 5' exonuclease activity. The two forms of TdT therefore have distinct and opposite functions in lymphocyte development. The enzymatic activities of the splice variants of TdT play an essential role in the diversification of lymphocyte repertoires by modifying the composition and length of the gene segments involved in the production of antibodies and T-cell receptors.
Collapse
Affiliation(s)
- To-Ha Thai
- Division of Developmental and Clinical Immunology, Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35204, USA
| | | |
Collapse
|
71
|
Misiewicz I, Kozar A, Skupinska K, Kowalska E, Lubinski J, Kasprzycka-Guttman T. Inhibition of cell cycle and induction of apoptosis by 2-oxoheksyl isothiocyanate and alyssin in cell lines carrying various inheritedBRCA1 mutations. Drug Dev Res 2005. [DOI: 10.1002/ddr.20007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
72
|
Affiliation(s)
- Jules G Leroy
- Departments of Pediatrics and Genetics, University of Ghent, Ghent, Belgium
| | | |
Collapse
|
73
|
Ostrow KL, McGuire V, Whittemore AS, DiCioccio RA. The effects of BRCA1 missense variants V1804D and M1628T on transcriptional activity. ACTA ACUST UNITED AC 2004; 153:177-80. [PMID: 15350310 DOI: 10.1016/j.cancergencyto.2004.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 01/15/2004] [Accepted: 01/21/2004] [Indexed: 12/31/2022]
Abstract
Many families with multiple cases of ovarian cancer, breast cancer, or both segregate inherited mutations in one allele of the tumor suppressor gene BRCA1. Genetic testing is used to assess cancer risk; however, testing can detect missense DNA alterations, called unclassified variants, of unknown functional and biological significance with uncertain risk implications. Some missense variants at the transcriptional activation domain of BRCA1 of cancer patients inactivate transcriptional activity of BRCA1, providing evidence that they are deleterious. We identified the variants V1804D and M1628T at the transcriptional activation domain of BRCA1 of two ovarian cancer patients without a family history of ovarian or breast cancer. To test if these residues are critical for transcriptional activation, we created V1804D and M1628T independently in BRCA1 cDNA via site-directed mutagenesis in a mammalian expression vector, pcDNA3.1. Wild-type, mutant, and empty vector constructs were tested in human kidney 293 cells using a p53-responsive luciferase reporter. M1628T had the same transcriptional activity as wild-type BRCA1 but V1804D and the empty vector control showed a 60% reduction. This indicates that V1804D is deleterious but M1628T is not.
Collapse
|
74
|
Fan W, Wu X. DNA polymerase lambda can elongate on DNA substrates mimicking non-homologous end joining and interact with XRCC4-ligase IV complex. Biochem Biophys Res Commun 2004; 323:1328-33. [PMID: 15451442 DOI: 10.1016/j.bbrc.2004.09.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Indexed: 11/25/2022]
Abstract
Non-homologous end joining (NHEJ) is one of two pathways responsible for the repair of double-strand breaks in eukaryotic cells. The mechanism involves the alignment of broken DNA ends with minimal homology, fill in of short gaps by DNA polymerase(s), and ligation by XRCC4-DNA ligase IV complex. The gap-filling polymerase has not yet been positively identified, but recent biochemical studies have implicated DNA polymerase lambda (pol lambda), a novel DNA polymerase that has been assigned to the pol X family, in this process. Here we demonstrate that purified pol lambda can efficiently catalyze gap-filling synthesis on DNA substrates mimicking NHEJ. By designing two truncated forms of pol lambda, we also show that the unique proline-rich region in pol lambda plays a role in limiting strand displacement synthesis, a feature that may help its participation in in vivo NHEJ. Moreover, pol lambda interacts with XRCC4-DNA ligase IV via its N-terminal BRCT domain and the interaction stimulates the DNA synthesis activity of pol lambda. Taken together, these data strongly support that pol lambda functions in DNA polymerization events during NHEJ.
Collapse
Affiliation(s)
- Wei Fan
- Department of Immunology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, PR China
| | | |
Collapse
|
75
|
Ekblad CMS, Friedler A, Veprintsev D, Weinberg RL, Itzhaki LS. Comparison of BRCT domains of BRCA1 and 53BP1: a biophysical analysis. Protein Sci 2004; 13:617-25. [PMID: 14978302 PMCID: PMC2286730 DOI: 10.1110/ps.03461404] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
53BP1 interacts with the DNA-binding core domain of the tumor suppressor p53 and enhances p53-mediated transcriptional activation. The p53-binding region of 53BP1 maps to the C-terminal BRCT domains, which are homologous to those found in the breast cancer protein BRCA1 and in other proteins involved in DNA repair. Here we compare the thermodynamic behavior of the BRCT domains of 53BP1 and BRCA1 and examine their ability to interact with the p53 core domain. The free energies of unfolding are of similar magnitude, although slightly higher for 53BP1-BRCT, and both populate an aggregation-prone partly folded intermediate. Interaction studies performed in vitro by analytical size-exclusion chromatography, analytical ultracentrifugation, and isothermal titration calorimetry reveal that 53BP1-BRCT interacts with p53 with a K(d) in the low micromolar range. Despite their homology with 53BP1-BRCT domains, the BRCT domains of BRCA1 did not bind p53 with any detectable affinity. In summary, although other studies have indicated that the BRCT domains of both BRCA1 and 53BP1 interact with p53 core domain, the quantitative biophysical measurements performed here indicate that only 53BP1 can bind. Although both proteins may be involved in the same DNA repair pathways, our study indicates that a direct role in p53 function is unique to 53BP1.
Collapse
|
76
|
Lu J, Tong J, Feng H, Huang J, Afonso CL, Rock DL, Barany F, Cao W. Unique ligation properties of eukaryotic NAD+-dependent DNA ligase from Melanoplus sanguinipes entomopoxvirus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1701:37-48. [PMID: 15450174 DOI: 10.1016/j.bbapap.2004.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 05/26/2004] [Accepted: 06/04/2004] [Indexed: 10/26/2022]
Abstract
The eukaryotic Melanoplus sanguinipes entomopoxvirus (MsEPV) genome reveals a homologous sequence to eubacterial nicotinamide adenine dinucleotide (NAD(+))-dependent DNA ligases [J. Virol. 73 (1999) 533]. This 522-amino acid open reading frame (ORF) contains all conserved nucleotidyl transferase motifs but lacks the zinc finger motif and BRCT domain found in conventional eubacterial NAD(+) ligases. Nevertheless, cloned MsEPV ligase seals DNA nicks in a NAD(+)-dependent fashion, while adenosine 5'-monophosphate (ATP) cannot serve as an adenylation cofactor. The ligation activity of MsEPV ligase requires Mg(2+) or Mn(2+). MsEPV ligase seals sticky ends efficiently, but has little activity on 1-nucleotide gap or blunt-ended DNA substrates even in the presence of polyethylene glycol. In comparison, bacterial NAD(+)-dependent ligases seal blunt-ended DNA substrates in the presence of polyethylene glycol. MsEPV DNA ligase readily joins DNA nicks with mismatches at either side of the nick junction, except for mismatches at the nick junction containing an A base in the template strand (A/A, G/A, and C/A). MsEPV NAD(+)-dependent DNA ligase can join DNA probes on RNA templates, a unique property that distinguishes this enzyme from other conventional bacterial NAD(+) DNA ligases. T4 ATP-dependent DNA ligase shows no detectable mismatch ligation at the 3' side of the nick but substantial 5' T/G mismatch ligation on an RNA template. In contrast, MsEPV ligase joins mismatches at the 3' side of the nick more frequently than at the 5' side of the nick on an RNA template. The complementary specificities of these two enzymes suggest alternative primer design for genomic profiling approaches that use allele-specific detection directly from RNA transcripts.
Collapse
Affiliation(s)
- Jing Lu
- Department of Genetics, Biochemistry and Life Science Studies, South Carolina Experiment Station, Clemson University, Room 219, Biosystems Research Complex, 51 New Cherry Street, Clemson, SC 29634, USA
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Thai TH, Kearney JF. Distinct and opposite activities of human terminal deoxynucleotidyltransferase splice variants. THE JOURNAL OF IMMUNOLOGY 2004; 173:4009-19. [PMID: 15356150 DOI: 10.4049/jimmunol.173.6.4009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Evidence for potential human TdT (hTdT) isoforms derived from hTdT genomic sequences led us to identify the short isoform (hTdTS), as well as mature long transcripts containing exon XII (hTdTL1) and another including exon VII (hTdTL2) in lymphoid cells. Normal B and T lymphocytes express exclusively hTdTS and hTdTL2, whereas hTdTL1 expression appears to be restricted to transformed lymphoid cell lines. In in vitro recombination and primer assays, both long isoforms were shown to have 3'-->5' exonuclease activity. Overexpression of hTdTS or hTdTL2 greatly reduced the efficiency of recombination, which was reverted to normal levels by the simultaneous expression of both enzymes. Therefore, alternative splicing may prevent the adverse effects of unchecked elongation or diminution of coding ends during V(D)J recombination, thus affecting the survival of a B or T cell precursor during receptor gene rearrangements. Finally, the newly discovered hTdT isoforms should be considered in future screening of human leukemias.
Collapse
Affiliation(s)
- To-Ha Thai
- Division of Developmental and Clinical Immunology, University of Alabama, Birmingham 35294, USA
| | | |
Collapse
|
78
|
Belogianni I, Apessos A, Mihalatos M, Razi E, Labropoulos S, Petounis A, Gaki V, Keramopoulos A, Pandis N, Kyriacou K, Hadjisavvas A, Kosmidis P, Yannoukakos D, Nasioulas G. Characterization of a novel large deletion and single point mutations in the BRCA1 gene in a Greek cohort of families with suspected hereditary breast cancer. BMC Cancer 2004; 4:61. [PMID: 15353005 PMCID: PMC520816 DOI: 10.1186/1471-2407-4-61] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 09/07/2004] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Germline mutations in BRCA1 and BRCA2 predispose to breast and ovarian cancer. A multitude of mutations have been described and are found to be scattered throughout these two large genes. We describe analysis of BRCA1 in 25 individuals from 18 families from a Greek cohort. METHODS The approach used is based on dHPLC mutation screening of the BRCA1 gene, followed by sequencing of fragments suspected to carry a mutation including intron--exon boundaries. In patients with a strong family history but for whom no mutations were detected, analysis was extended to exons 10 and 11 of the BRCA2 gene, followed by MLPA analysis for screening for large genomic rearrangements. RESULTS A pathogenic mutation in BRCA1 was identified in 5/18 (27.7 %) families, where four distinct mutations have been observed. Single base putative pathogenic mutations were identified by dHPLC and confirmed by sequence analysis in 4 families: 5382insC (in two families), G1738R, and 5586G > A (in one family each). In addition, 18 unclassified variants and silent polymorphisms were detected including a novel silent polymorphism in exon 11 of the BRCA1 gene. Finally, MLPA revealed deletion of exon 20 of the BRCA1 gene in one family, a deletion that encompasses 3.2 kb of the gene starting 21 bases into exon 20 and extending 3.2 kb into intron 20 and leads to skipping of the entire exon 20. The 3' breakpoint lies within an AluSp repeat but there are no recognizable repeat motifs at the 5' breakpoint implicating a mechanism different to Alu-mediated recombination, responsible for the majority of rearrangements in the BRCA1 gene. CONCLUSIONS We conclude that a combination of techniques capable of detecting both single base mutations and small insertions/deletions and large genomic rearrangements is necessary in order to accurately analyze the BRCA1 gene in patients at high risk of carrying a germline mutation as determined by their family history. Furthermore, our results suggest that in those families with strong evidence of linkage to the BRCA1 locus in whom no point mutation has been identified re-examination should be carried out searching specifically for genomic rearrangements.
Collapse
Affiliation(s)
- Ioulia Belogianni
- Molecular Biology Research Center HYGEIA «Antonis Papayiannis», DTCA HYGEIA, 15123 Maroussi, Athens, Greece
| | - Angela Apessos
- Molecular Biology Research Center HYGEIA «Antonis Papayiannis», DTCA HYGEIA, 15123 Maroussi, Athens, Greece
| | - Markos Mihalatos
- Molecular Biology Research Center HYGEIA «Antonis Papayiannis», DTCA HYGEIA, 15123 Maroussi, Athens, Greece
| | - Evangelia Razi
- 1Pathology – Oncology Clinic, DTCA HYGEIA, 15123 Maroussi, Athens, Greece
| | | | - Andreas Petounis
- 1Pathology – Oncology Clinic, DTCA HYGEIA, 15123 Maroussi, Athens, Greece
| | - Vasiliki Gaki
- Breast Cancer Unit, Iaso Women's Hospital, 15123 Maroussi, Greece
| | | | - Nikos Pandis
- Department of Genetics, "Saint Savas" Anticancer Hospital, 11522 Athens, Greece
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, 1683 Nicosia, Cyprus
| | - Andreas Hadjisavvas
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, 1683 Nicosia, Cyprus
| | - Paris Kosmidis
- 2Pathology – Oncology Clinic, DTCA HYGEIA, 15123 Maroussi, Athens, Greece
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Lab, I/R-RP, National Center for Scientific Research "Demokritos" 15310 Athens, Greece
| | - Georgios Nasioulas
- Molecular Biology Research Center HYGEIA «Antonis Papayiannis», DTCA HYGEIA, 15123 Maroussi, Athens, Greece
| |
Collapse
|
79
|
Trimborn M, Bell SM, Felix C, Rashid Y, Jafri H, Griffiths PD, Neumann LM, Krebs A, Reis A, Sperling K, Neitzel H, Jackson AP. Mutations in microcephalin cause aberrant regulation of chromosome condensation. Am J Hum Genet 2004; 75:261-6. [PMID: 15199523 PMCID: PMC1216060 DOI: 10.1086/422855] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Accepted: 05/26/2004] [Indexed: 12/21/2022] Open
Abstract
Microcephalin (MCPH1) is a gene mutated in primary microcephaly, an autosomal recessive neurodevelopmental disorder in which there is a marked reduction in brain size. PCC syndrome is a recently described disorder of microcephaly, short stature, and misregulated chromosome condensation. Here, we report the finding that MCPH1 primary microcephaly and PCC syndrome are allelic disorders, both having mutations in the MCPH1 gene. The two conditions share a common cellular phenotype of premature chromosome condensation in the early G2 phase of the cell cycle, which, therefore, appears to be a useful diagnostic marker for individuals with MCPH1 gene mutations. We demonstrate that an siRNA-mediated depletion of MCPH1 is sufficient to reproduce this phenotype and also show that MCPH1-deficient cells exhibit delayed decondensation postmitosis. These findings implicate microcephalin as a novel regulator of chromosome condensation and link the apparently disparate fields of neurogenesis and chromosome biology. Further characterization of MCPH1 is thus likely to lead to fundamental insights into both the regulation of chromosome condensation and neurodevelopment.
Collapse
Affiliation(s)
- Marc Trimborn
- Institute of Human Genetics, Charité Universitary Medicine Berlin, Campus Virchow, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Mirkovic N, Marti-Renom MA, Weber BL, Sali A, Monteiro ANA. Structure-based assessment of missense mutations in human BRCA1: implications for breast and ovarian cancer predisposition. Cancer Res 2004; 64:3790-7. [PMID: 15172985 DOI: 10.1158/0008-5472.can-03-3009] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The BRCA1 gene from individuals at risk of breast and ovarian cancers can be screened for the presence of mutations. However, the cancer association of most alleles carrying missense mutations is unknown, thus creating significant problems for genetic counseling. To increase our ability to identify cancer-associated mutations in BRCA1, we set out to use the principles of protein three-dimensional structure as well as the correlation between the cancer-associated mutations and those that abolish transcriptional activation. Thirty-one of 37 missense mutations of known impact on the transcriptional activation function of BRCA1 are readily rationalized in structural terms. Loss-of-function mutations involve nonconservative changes in the core of the BRCA1 C-terminus (BRCT) fold or are localized in a groove that presumably forms a binding site involved in the transcriptional activation by BRCA1; mutations that do not abolish transcriptional activation are either conservative changes in the core or are on the surface outside of the putative binding site. Next, structure-based rules for predicting functional consequences of a given missense mutation were applied to 57 germ-line BRCA1 variants of unknown cancer association. Such a structure-based approach may be helpful in an integrated effort to identify mutations that predispose individuals to cancer.
Collapse
Affiliation(s)
- Nebojsa Mirkovic
- Laboratory of Molecular Biophysics, Pels Family Center for Biochemistry and Structural Biology, Rockefeller University, New York, New York, USA
| | | | | | | | | |
Collapse
|
81
|
Saito S, Tatsumoto T, Lorenzi MV, Chedid M, Kapoor V, Sakata H, Rubin J, Miki T. Rho exchange factor ECT2 is induced by growth factors and regulates cytokinesis through the N-terminal cell cycle regulator-related domains. J Cell Biochem 2004; 90:819-36. [PMID: 14587037 DOI: 10.1002/jcb.10688] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The ECT2 protooncogene plays a critical role in cytokinesis, and its C-terminal half encodes a Dbl homology-pleckstrin homology module, which catalyzes guanine nucleotide exchange on the Rho family of small GTPases. The N-terminal half of ECT2 (ECT2-N) contains domains related to the cell cycle regulator/checkpoint control proteins including human XRCC1, budding yeast CLB6, and fission yeast Cut5. The Cut5-related domain consists of two BRCT repeats, which are widespread to repair/checkpoint control proteins. ECT2 is ubiquitously expressed in various tissues and cell lines, but elevated levels of ECT2 expression were found in various tumor cell lines and rapidly developing tissues in mouse embryos. Consistent with these findings, induction of ECT2 expression was observed upon stimulation by serum or various growth factors. In contrast to other oncogenes whose expression is induced early in G1, ECT2 expression was induced later, coinciding with the initiation of DNA synthesis. To test the role of the cell cycle regulator/checkpoint control protein-related domains of ECT2 in cytokinesis, we expressed various ECT2 derivatives in U2OS cells, and analyzed their DNA content by flow cytometry. Expression of the N-terminal half of ECT2, which lacks the catalytic domain, generated cells with more than 4N DNA content, suggesting that cytokinesis was inhibited in these cells. Interestingly, ECT2-N lacking the nuclear localization signals inhibited cytokinesis more strongly than the derivatives containing these signals. Mutational analyses revealed that the XRCC1, CLB6, and BRCT domains in ECT2-N are all essential for the cytokinesis inhibition by ECT2-N. These results suggest that the XRCC1, CLB6, and BRCT domains of ECT2 play a critical role in regulating cytokinesis.
Collapse
Affiliation(s)
- Shin'ichi Saito
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bldg. 37-1E24, 37 Convent Dr., Bethesda, Maryland 20892-4255, USA
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Clapperton JA, Manke IA, Lowery DM, Ho T, Haire LF, Yaffe MB, Smerdon SJ. Structure and mechanism of BRCA1 BRCT domain recognition of phosphorylated BACH1 with implications for cancer. Nat Struct Mol Biol 2004; 11:512-8. [PMID: 15133502 DOI: 10.1038/nsmb775] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 04/22/2004] [Indexed: 01/29/2023]
Abstract
Germline mutations in the BRCA1 tumor suppressor gene often result in a significant increase in susceptibility to breast and ovarian cancers. Although the molecular basis of their effects remains largely obscure, many mutations are known to target the highly conserved C-terminal BRCT repeats that function as a phosphoserine/phosphothreonine-binding module. We report the X-ray crystal structure at a resolution of 1.85 A of the BRCA1 tandem BRCT domains in complex with a phosphorylated peptide representing the minimal interacting region of the DEAH-box helicase BACH1. The structure reveals the determinants of this novel class of BRCA1 binding events. We show that a subset of disease-linked mutations act through specific disruption of phospho-dependent BRCA1 interactions rather than through gross structural perturbation of the tandem BRCT domains.
Collapse
Affiliation(s)
- Julie A Clapperton
- National Institute for Medical Research, Division of Protein Structure, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | |
Collapse
|
83
|
Williams RS, Lee MS, Hau DD, Glover JNM. Structural basis of phosphopeptide recognition by the BRCT domain of BRCA1. Nat Struct Mol Biol 2004; 11:519-25. [PMID: 15133503 DOI: 10.1038/nsmb776] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Accepted: 04/23/2004] [Indexed: 12/17/2022]
Abstract
The BRCT repeats in BRCA1 are essential for its tumor suppressor activity and interact with phosphorylated protein targets containing the sequence pSer-X-X-Phe, where X indicates any residue. The structure of the tandem BRCA1 BRCT repeats bound to an optimized phosphopeptide reveals that the N-terminal repeat harbors a conserved BRCT phosphoserine-binding pocket, while the interface between the repeats forms a hydrophobic groove that recognizes the phenylalanine. Crystallographic and biochemical data suggest that the structural integrity of both binding sites is essential for peptide recognition. The diminished peptide-binding capacity observed for cancer-associated BRCA1-BRCT variants may explain the enhanced cancer risks associated with these mutations.
Collapse
Affiliation(s)
- R Scott Williams
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | | | | | | |
Collapse
|
84
|
Choi DH, Lee MH, Bale AE, Carter D, Haffty BG. Incidence of BRCA1 and BRCA2 Mutations in Young Korean Breast Cancer Patients. J Clin Oncol 2004; 22:1638-45. [PMID: 15117986 DOI: 10.1200/jco.2004.04.179] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose The prevalence of BRCA-associated breast carcinoma in the Korean population has not been evaluated extensively. Methods Sixty Korean women who developed breast cancer by age 40 years were studied. Lymphocyte specimens from peripheral blood were processed for BRCA1 and BRCA2 by complete sequencing. Family history through three generations was obtained. Available paraffin-embedded tissue blocks were processed for immunohistochemical staining. Results In the cohort of 60 patients, nine patients with 11 deleterious mutations (six in BRCA1 and five in BRCA2) and seven missense mutations of unknown significance were found. Two patients had deleterious mutations in both BRCA1 and BRCA2 (double mutant). One half of the mutations were novel, and no founder mutations were observed in this cohort. Most of the BRCA-associated patients had no family history of breast and/or ovarian cancer. The expression of HER-2/neu, cyclin D1, and hormone receptors was less common, and p53 overexpression was more common in BRCA-associated tumors. Conclusion The prevalence of BRCA1 and BRCA2 mutations in Korean women with breast cancer at a young age was high. However, the penetrance, as evidenced by the low frequency of breast and ovarian cancers in family members, appears to be low. These data suggest that there may be different genetic and etiologic factors affecting transmission and penetrance of the BRCA genes in Korean patients with breast cancer diagnosed at a young age.
Collapse
Affiliation(s)
- Doo Ho Choi
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
85
|
Wang YQ, Su B. Molecular evolution of microcephalin, a gene determining human brain size. Hum Mol Genet 2004; 13:1131-7. [PMID: 15056608 DOI: 10.1093/hmg/ddh127] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Microcephalin gene is one of the major players in regulating human brain development. It was reported that truncated mutations in this gene can cause primary microcephaly in humans with a brain size comparable with that of early hominids. We studied the molecular evolution of microcephalin by sequencing the coding region of microcephalin gene in humans and 12 representative non-human primate species covering great apes, lesser apes, Old World monkeys and New World monkeys. Our results showed that microcephalin is highly polymorphic in human populations. We observed 22 substitutions in the coding region of microcephalin gene in human populations, with 15 of them causing amino acid changes. The neutrality tests and phylogenetic analysis indicated that the rich sequence variations of microcephalin in humans are likely caused by the combination of recent population expansion and Darwinian positive selection. The synonymous/non-synonymous analyses in primates revealed positive selection on microcephalin during the origin of the last common ancestor of humans and great apes, which coincides with the drastic brain enlargement from lesser apes to great apes. The codon-based neutrality test also indicated the signal of positive selection on five individual amino acid sites of microcephalin, which may contribute to brain enlargement during primate evolution and human origin.
Collapse
Affiliation(s)
- Yin-Qiu Wang
- Key Laboratory of Cellulr and Molecular Evolutioin, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming, China
| | | |
Collapse
|
86
|
Coupier I, Baldeyron C, Rousseau A, Mosseri V, Pages-Berhouet S, Caux-Moncoutier V, Papadopoulo D, Stoppa-Lyonnet D. Fidelity of DNA double-strand break repair in heterozygous cell lines harbouring BRCA1 missense mutations. Oncogene 2003; 23:914-9. [PMID: 14647443 DOI: 10.1038/sj.onc.1207191] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Germ-line mutations of the BRCA1 and BRCA2 genes, when they lead to a truncated protein, confer a high risk of breast and ovarian cancer. However, the role of BRCA1 missense mutations in cancer predisposition is unclear. Functional assays may be very helpful to more clearly define the biological effect of these mutations, and could therefore be useful in clinical practice. A recent study using a Host Cell End-Joining assay showed that a truncating mutation results in impaired fidelity of DSB repair by DNA end-joining. In the present study, we examined the fidelity of DSB repair in four lymphoblastoid cell lines with BRCA1 missense mutations. The fidelity of DNA end-joining was impaired in the four cell lines studied compared to the normal control cell line. The fidelity of end-joining was similar to that of a truncated mutation control cell line for one cell line and slightly higher for the other cell lines.
Collapse
Affiliation(s)
- Isabelle Coupier
- Service de Génétique Oncologique, Institut Curie 26, rue d'Ulm, Section Médicale, Paris Cedex 05 75248, France
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Yan J, Zhu J, Zhong H, Lu Q, Huang C, Ye Q. BRCA1 interacts with FHL2 and enhances FHL2 transactivation function. FEBS Lett 2003; 553:183-9. [PMID: 14550570 DOI: 10.1016/s0014-5793(03)00978-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Germ-line mutations in BRCA1 are associated with an increased lifetime risk of developing breast and/or ovarian tumors. The BRCA1 gene product is a 220-kDa protein that contains a tandem of two BRCA1 C-terminal (BRCT) domains required for transcription. In an attempt to understand how BRCA1 exerts its function through BRCT domains, we search for partners of the BRCT domains of BRCA1. Using the yeast two-hybrid system, we identified the four and a half LIM-only protein 2 (FHL2) as a novel BRCA1 interacting protein. We demonstrate that BRCA1 and FHL2 can physically associate in vitro, in yeast, and in human cells. BRCA1 interacted with FHL2 through its second BRCT domain and the interaction of FHL2 with BRCA1 requires the last three LIM domains of FHL2. BRCA1 enhanced FHL2-mediated transcriptional activity in transient transfections. Tumor-derived transactivation-deficient BRCA1 mutants showed a reduced ability to enhance transactivation by FHL2. Lack of BRCA1 binding sites in the FHL2 completely abolished the FHL2 transactivation function. Reverse transcription polymerase chain reaction analysis showed that FHL2 mRNA levels may be downregulated in many breast cancer cell lines. These results suggest that the BRCA1-FHL2 interaction may be involved in transcriptional regulation and play a significant role in cancer cell growth.
Collapse
Affiliation(s)
- Jinghua Yan
- Beijing Institute of Biotechnology, PR China
| | | | | | | | | | | |
Collapse
|
88
|
Manke IA, Lowery DM, Nguyen A, Yaffe MB. BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 2003; 302:636-9. [PMID: 14576432 DOI: 10.1126/science.1088877] [Citation(s) in RCA: 563] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We used a proteomic approach to identify phosphopeptide-binding modules mediating signal transduction events in the DNA damage response pathway. Using a library of partially degenerate phosphopeptides, we identified tandem BRCT (BRCA1 carboxyl-terminal) domains in PTIP (Pax transactivation domain-interacting protein) and in BRCA1 as phosphoserine- or phosphothreonine-specific binding modules that recognize substrates phosphorylated by the kinases ATM (ataxia telangiectasia-mutated) and ATR (ataxia telangiectasia- and RAD3-related) in response to gamma-irradiation. PTIP tandem BRCT domains are responsible for phosphorylation-dependent protein localization into 53BP1- and phospho-H2AX (gamma-H2AX)-containing nuclear foci, a marker of DNA damage. These findings provide a molecular basis for BRCT domain function in the DNA damage response and may help to explain why the BRCA1 BRCT domain mutation Met1775 --> Arg, which fails to bind phosphopeptides, predisposes women to breast and ovarian cancer.
Collapse
Affiliation(s)
- Isaac A Manke
- Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
89
|
Affiliation(s)
- Keith W Caldecott
- Genome Damage and Stability Center, University of Sussex, Brighton BN1 9RR, UK.
| |
Collapse
|
90
|
Lee JW, Blanco L, Zhou T, Garcia-Diaz M, Bebenek K, Kunkel TA, Wang Z, Povirk LF. Implication of DNA polymerase lambda in alignment-based gap filling for nonhomologous DNA end joining in human nuclear extracts. J Biol Chem 2003; 279:805-11. [PMID: 14561766 DOI: 10.1074/jbc.m307913200] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accurate repair of free radical-mediated DNA double-strand breaks by the nonhomologous end joining pathway requires replacement of fragmented nucleotides in the aligned ends by a gap-filling DNA polymerase. Nuclear extracts of human HeLa cells, supplemented with recombinant XRCC4-DNA ligase IV complex (XRCC4/ligase IV), were capable of accurately rejoining model double-strand break substrates with a 1- or 2-base gap, and the gap-filling step was dependent on XRCC4/ligase IV. To determine what polymerase was responsible for gap filling, end joining was examined in the presence of polyclonal antibodies against each of two prime candidate enzymes, DNA polymerases mu and lambda, both of which were present in the extracts. For a DNA substrate with partially complementary 3' overhangs and a 2-base gap, antibodies to polymerase lambda completely eliminated both gap filling and accurate end joining, whereas antibodies to polymerase mu had little effect. Immunodepletion of polymerase lambda, but not polymerase mu, likewise blocked both gap filling and end joining, and both functions could be restored by addition of recombinant polymerase lambda. Recombinant polymerase mu, and a truncated polymerase lambda lacking the Brca1 C-terminal domain, were at least 10-fold less active in restoring gap filling to the immunodepleted extracts, and polymerase beta was completely inactive. The results suggest that polymerase lambda is the primary gap-filling polymerase for accurate nonhomologous end joining, and that the Brca1 C-terminal domain is required for this activity.
Collapse
Affiliation(s)
- Jae Wan Lee
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Williams RS, Chasman DI, Hau DD, Hui B, Lau AY, Glover JNM. Detection of protein folding defects caused by BRCA1-BRCT truncation and missense mutations. J Biol Chem 2003; 278:53007-16. [PMID: 14534301 DOI: 10.1074/jbc.m310182200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most cancer-associated BRCA1 mutations identified to date result in the premature translational termination of the protein, highlighting a crucial role for the C-terminal, BRCT repeat region in mediating BRCA1 tumor suppressor function. However, the molecular and genetic effects of missense mutations that map to the BRCT region remain largely unknown. Using a protease-based assay, we directly assessed the sensitivity of the folding of the BRCT domain to an extensive set of truncation and single amino acid substitutions derived from breast cancer screening programs. The protein can tolerate truncations of up to 8 amino acids, but further deletion results in drastic BRCT folding defects. This molecular phenotype can be correlated with an increased susceptibility to disease. A cross-validated computational assessment of the BRCT mutation data base suggests that as much as half of all BRCT missense mutations contribute to BRCA1 loss of function and disease through protein-destabilizing effects. The coupled use of proteolytic methods and computational predictive methods to detect mutant BRCA1 conformations at the protein level will augment the efficacy of current BRCA1 screening protocols, especially in the absence of clinical data that can be used to discriminate deleterious BRCT missense mutations from benign polymorphisms.
Collapse
Affiliation(s)
- R Scott Williams
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
92
|
Berg A, Meza TJ, Mahić M, Thorstensen T, Kristiansen K, Aalen RB. Ten members of the Arabidopsis gene family encoding methyl-CpG-binding domain proteins are transcriptionally active and at least one, AtMBD11, is crucial for normal development. Nucleic Acids Res 2003; 31:5291-304. [PMID: 12954765 PMCID: PMC203319 DOI: 10.1093/nar/gkg735] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animal proteins that contain a methyl-CpG-binding domain (MBD) are suggested to provide a link between DNA methylation, chromatin remodelling and gene silencing. However, some MBD proteins reside in chromatin remodelling complexes, but do not have specific affinity for methylated DNA. It has recently been shown that the Arabidopsis genome contains 12 putative genes encoding proteins with domains similar to MBD, of which at least three bind symmetrically methylated DNA. Using a bioinformatics approach, we have identified additional domains in a number of these proteins and, on this basis and extended sequence similarity, divided the proteins into subgroups. Using RT-PCR we show that 10 of the AtMBD genes are active and differentially expressed in diverse tissues. To investigate the biological significance of AtMBD proteins, we have transformed Arabidopsis with a construct aimed at RNA interference with expression of the AtMBD11 gene, normally active in most tissues. The resulting 35S::AtMBD11-RNAi plants displayed a variety of phenotypic effects, including aerial rosettes, serrated leaves, abnormal position of flowers, fertility problems and late flowering. Arabidopsis lines with reduced expression of genes involved in chromatin remodelling and transgene silencing show similar phenotypes. Our results suggest an important role for AtMBD proteins in plant development.
Collapse
Affiliation(s)
- Anita Berg
- Division of Cell and Molecular Biology, Department of Biology, University of Oslo, PO Box 1031 Blindern, N-0315 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
93
|
Abstract
Cortical malformations give rise to severe clinical manifestations such as epilepsy and mental retardation, but sometimes to more subtle problems like dyslexia. From a clinical standpoint, such structural abnormalities are diagnosed by radiographic and histologic findings, with disease classifications often based on these observations. Using this categorization, many of the responsible genes have been determined and now provide a means of understanding the molecular basis of the neurologic disorders. This review discusses the known genetic developmental syndromes in the context of the observed cortical malformations, the expression and function of the responsible genes, and their potential roles during the various stages of central nervous system development.
Collapse
Affiliation(s)
- Volney L Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center, HIM 816, 4 Blackfan Circle, Boston, MA 02115, USA
| | | |
Collapse
|
94
|
Benezra M, Chevallier N, Morrison DJ, MacLachlan TK, El-Deiry WS, Licht JD. BRCA1 augments transcription by the NF-kappaB transcription factor by binding to the Rel domain of the p65/RelA subunit. J Biol Chem 2003; 278:26333-41. [PMID: 12700228 DOI: 10.1074/jbc.m303076200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BRCA1 is a tumor suppressor gene mutated in cases of hereditary breast and ovarian cancer. BRCA1 protein is involved in apoptosis and growth/tumor suppression. In this study, we present evidence that p65/RelA, one of the two subunits of the transcription factor NF-kappaB, binds to the BRCA1 protein. Treatment of 293T cells with the cytokine tumor necrosis factor-alpha induces an interaction between endogenous p65/RelA and BRCA1. GST-protein affinity assay experiments reveal that the Rel homology domain of the p65/RelA subunit of NF-kappaB interacts with multiple sites within the N-terminal region of BRCA1. Transient transfection of BRCA1 significantly enhances the ability of the tumor necrosis factor-alpha or interleukin-1beta to activate transcription from the promoters of NF-kappaB target genes. Mutation of the NF-kappaB-binding sites in the NF-kappaB reporter blocks the effect of BRCA1 on transcription. Also the ability of BRCA1 to activate NF-kappaB target genes is inhibited by a super-stable inhibitor of NF-kappaB and by the chemical inhibitor SN-50. These data indicate that BRCA1 acts as a co-activator with NF-kappaB. In addition, we show that cells infected with an adenovirus expressing BRCA1 up-regulate the endogenous expression of NF-kappaB target genes Fas and interferon-beta. Together, this information suggests that BRCA1 may play a role in cell life-death decisions following cell stress by modulation of the activity of NF-kappaB.
Collapse
Affiliation(s)
- Miriam Benezra
- Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
95
|
Nyberg KA, Michelson RJ, Putnam CW, Weinert TA. Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 2003; 36:617-56. [PMID: 12429704 DOI: 10.1146/annurev.genet.36.060402.113540] [Citation(s) in RCA: 624] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA checkpoints play a significant role in cancer pathology, perhaps most notably in maintaining genome stability. This review summarizes the genetic and molecular mechanisms of checkpoint activation in response to DNA damage. The major checkpoint proteins common to all eukaryotes are identified and discussed, together with how the checkpoint proteins interact to induce arrest within each cell cycle phase. Also discussed are the molecular signals that activate checkpoint responses, including single-strand DNA, double-strand breaks, and aberrant replication forks. We address the connection between checkpoint proteins and damage repair mechanisms, how cells recover from an arrest response, and additional roles that checkpoint proteins play in DNA metabolism. Finally, the connection between checkpoint gene mutation and genomic instability is considered.
Collapse
Affiliation(s)
- Kara A Nyberg
- Molecular and Cellular Biology Department, University of Arizona, Tucson, Arizona, 85721, USA.
| | | | | | | |
Collapse
|
96
|
Lindahl T, Barnes DE. Repair of endogenous DNA damage. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:127-33. [PMID: 12760027 DOI: 10.1101/sqb.2000.65.127] [Citation(s) in RCA: 422] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- T Lindahl
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD, United Kingdom
| | | |
Collapse
|
97
|
Cerosaletti KM, Concannon P. Nibrin forkhead-associated domain and breast cancer C-terminal domain are both required for nuclear focus formation and phosphorylation. J Biol Chem 2003; 278:21944-51. [PMID: 12679336 DOI: 10.1074/jbc.m211689200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mre11.Rad50.nibrin protein complex plays an essential role in the mammalian cellular response to DNA double-strand breaks. The disorder Nijmegen breakage syndrome (NBS) results from mutations in the NBS1 gene that encodes nibrin, and NBS cells are radiosensitive and defective in S-phase checkpoint activation following irradiation. In response to radiation, nibrin is phosphorylated by Atm, and the Mre11.Rad50.nibrin complex relocalizes to form punctate nuclear foci. The N terminus of nibrin contains a forkhead-associated (FHA) domain and a breast cancer C-terminal (BRCT) domain, the functions of which are unclear. To determine the role of the FHA and BRCT domains in nibrin function, we have performed site-directed mutagenesis of conserved residues in these motifs. Mutations in the nibrin FHA and BRCT domains did not affect interaction with Mre11.Rad50 or nuclear localization of the complex. However, mutation of conserved residues in either domain disrupted nuclear focus formation and blocked nibrin phosphorylation after irradiation, suggesting that these events may be functionally interdependent. Despite an effect on nibrin phosphorylation, expression of the FHA or BRCT mutants in NBS cells restored the downstream phosphorylation of Chk2 and Smc1, necessary for S-phase checkpoint activation. None of the mutations revealed separate functions for the FHA or BRCT domains, suggesting they do not function independently.
Collapse
Affiliation(s)
- Karen M Cerosaletti
- Molecular Genetics Program, Virginia Mason Research Center, University of Washington School of Medicine, Seattle, WA 98101-2795, USA
| | | |
Collapse
|
98
|
Kumar A, Markandaya M, Girimaji SC. Primary microcephaly: microcephalin and ASPM determine the size of the human brain. J Biosci 2002; 27:629-32. [PMID: 12571366 DOI: 10.1007/bf02708369] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Arun Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.
| | | | | |
Collapse
|
99
|
Abstract
We review the genes and proteins related to the homologous recombinational repair (HRR) pathway that are implicated in cancer through either genetic disorders that predispose to cancer through chromosome instability or the occurrence of somatic mutations that contribute to carcinogenesis. Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and an ataxia-like disorder (ATLD), are chromosome instability disorders that are defective in the ataxia telangiectasia mutated (ATM), NBS, and Mre11 genes, respectively. These genes are critical in maintaining cellular resistance to ionizing radiation (IR), which kills largely by the production of double-strand breaks (DSBs). Bloom syndrome involves a defect in the BLM helicase, which seems to play a role in restarting DNA replication forks that are blocked at lesions, thereby promoting chromosome stability. The Werner syndrome gene (WRN) helicase, another member of the RecQ family like BLM, has very recently been found to help mediate homologous recombination. Fanconi anemia (FA) is a genetically complex chromosomal instability disorder involving seven or more genes, one of which is BRCA2. FA may be at least partially caused by the aberrant production of reactive oxidative species. The breast cancer-associated BRCA1 and BRCA2 proteins are strongly implicated in HRR; BRCA2 associates with Rad51 and appears to regulate its activity. We discuss in detail the phenotypes of the various mutant cell lines and the signaling pathways mediated by the ATM kinase. ATM's phosphorylation targets can be grouped into oxidative stress-mediated transcriptional changes, cell cycle checkpoints, and recombinational repair. We present the DNA damage response pathways by using the DSB as the prototype lesion, whose incorrect repair can initiate and augment karyotypic abnormalities.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory L-441, P.O. Box 808, Livermore, CA 94551-0808, USA.
| | | |
Collapse
|
100
|
|