51
|
Montoya DJ, Andrade P, Silva BJA, Teles RMB, Ma F, Bryson B, Sadanand S, Noel T, Lu J, Sarno E, Arnvig KB, Young D, Lahiri R, Williams DL, Fortune S, Bloom BR, Pellegrini M, Modlin RL. Dual RNA-Seq of Human Leprosy Lesions Identifies Bacterial Determinants Linked to Host Immune Response. Cell Rep 2019; 26:3574-3585.e3. [PMID: 30917313 PMCID: PMC6508871 DOI: 10.1016/j.celrep.2019.02.109] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/05/2018] [Accepted: 02/27/2019] [Indexed: 01/20/2023] Open
Abstract
To understand how the interaction between an intracellular bacterium and the host immune system contributes to outcome at the site of infection, we studied leprosy, a disease that forms a clinical spectrum, in which progressive infection by the intracellular bacterium Mycobacterium leprae is characterized by the production of type I IFNs and antibody production. Dual RNA-seq on patient lesions identifies two independent molecular measures of M. leprae, each of which correlates with distinct aspects of the host immune response. The fraction of bacterial transcripts, reflecting bacterial burden, correlates with a host type I IFN gene signature, known to inhibit antimicrobial responses. Second, the bacterial mRNA:rRNA ratio, reflecting bacterial viability, links bacterial heat shock proteins with the BAFF-BCMA host antibody response pathway. Our findings provide a platform for the interrogation of host and pathogen transcriptomes at the site of infection, allowing insight into mechanisms of inflammation in human disease.
Collapse
Affiliation(s)
- Dennis J Montoya
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Priscila Andrade
- Division of Dermatology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Bruno J A Silva
- Division of Dermatology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Rosane M B Teles
- Division of Dermatology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Feiyang Ma
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Bryan Bryson
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA
| | | | - Teia Noel
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Jing Lu
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Euzenir Sarno
- Department of Mycobacteriosis, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Kristine B Arnvig
- Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Douglas Young
- National Institute for Medical Research, Mycobacterial Research Division, London NW7 1AA, UK; The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Ramanuj Lahiri
- Health Resources and Services Administration (HRSA), National Hansen's Disease Program (NHDP), Baton Rouge, LA, USA
| | - Diana L Williams
- Health Resources and Services Administration (HRSA), National Hansen's Disease Program (NHDP), Baton Rouge, LA, USA; Department of Pathobiological Sciences, Louisiana State University (LSU), Baton Rouge, LA, USA
| | - Sarah Fortune
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA
| | - Barry R Bloom
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Robert L Modlin
- Division of Dermatology, David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
52
|
Hahn BH, Kono DH. Animal Models in Lupus. DUBOIS' LUPUS ERYTHEMATOSUS AND RELATED SYNDROMES 2019:164-215. [DOI: 10.1016/b978-0-323-47927-1.00014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
53
|
The role of APRIL - A proliferation inducing ligand - In autoimmune diseases and expectations from its targeting. J Autoimmun 2018; 95:179-190. [DOI: 10.1016/j.jaut.2018.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
|
54
|
BIRC3 Expression Predicts CLL Progression and Defines Treatment Sensitivity via Enhanced NF-κB Nuclear Translocation. Clin Cancer Res 2018; 25:1901-1912. [DOI: 10.1158/1078-0432.ccr-18-1548] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/24/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022]
|
55
|
Lendak DF, Mihajlović DM, Novakov-Mikić AS, Mitić IM, Boban JM, Brkić SV. The role of TNF-α superfamily members in immunopathogenesis of sepsis. Cytokine 2018; 111:125-130. [PMID: 30142533 DOI: 10.1016/j.cyto.2018.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Members of TNFα superfamily, A proliferation inducing ligand (APRIL), B-cell activating factor (BAFF) and Transmembrane activator and calcium cyclophylin interactor (TACI) are main regulators of B-cell function. The aim of this study was to evaluate concentrations of APRIL, BAFF and soluble TACI (sTACI) receptor in septic patients compared to healthy controls and compare concentrations of these biomarkers depending on sepsis severity and outcome. MATERIALS AND METHODS A total of 115 septic patients and 30 healthy volunteers were included and concentrations of APRIL, BAFF and sTACI were determined in all subjects at the admission (ELISA R&D Systems tests). Concentrations of these biomarkers in function of sepsis severity (sepsis n = 94 and septic shock n = 21) and outcome (lethal n = 40, recovery n = 75) were tested, as well as correlations with APACHE II and SOFA scores, immunoglobulins, complement, PCT and CRP concentrations. RESULTS Concentrations of all three biomarkers were significantly increased in septic patients compared to controls (AUCAPRIL = 0.982, AUCBAFF = 0.873, AUCsTACI = 0.683). Higher concentrations of APRIL and sTACI (p = 0.033, p = 0.037), and lower concentrations of BAFF (p = 0.005) were observed in patients with septic shock compared to sepsis. BAFF concentrations correlated positively with IgM, C3 and C4 levels. sTACI and APRIL were shown to be predictors of lethal outcome (p = 0.003, p = 0.049). CONCLUSIONS Concentrations of observedTNFα superfamily members are significantly increased in septic patients, confirming their role in sepsis pathogenesis.Higher concentrations of anti-inflammatory sTACI receptor correlated with severity of sepsis and poorer prognosis, thus potentially indicating domination of anti-inflammatory response in septic patients with worse outcome.
Collapse
Affiliation(s)
- Dajana F Lendak
- Department of Infectious Diseases, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia; Clinical Centre of Vojvodina, Novi Sad, Serbia.
| | - Dunja M Mihajlović
- Clinical Centre of Vojvodina, Novi Sad, Serbia; Department of Anestesiology and Perioerative Medicine, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Aleksandra S Novakov-Mikić
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia; Department of Internal Medicine (Immunology), Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Igor M Mitić
- Clinical Centre of Vojvodina, Novi Sad, Serbia; Department of Internal Medicine (Immunology), Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Jasmina M Boban
- Department for Radiology, Faculty of Medicine, University of Novi Sad, Vojvodina, Serbia; Center for Imaging Diagnostics, Institute of Oncology, Sremska Kamenica, Serbia
| | - Snežana V Brkić
- Department of Infectious Diseases, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia; Clinical Centre of Vojvodina, Novi Sad, Serbia
| |
Collapse
|
56
|
Tai YT, Lin L, Xing L, Cho SF, Yu T, Acharya C, Wen K, Hsieh PA, Dulos J, van Elsas A, Munshi N, Richardson P, Anderson KC. APRIL signaling via TACI mediates immunosuppression by T regulatory cells in multiple myeloma: therapeutic implications. Leukemia 2018; 33:426-438. [PMID: 30135465 PMCID: PMC6367000 DOI: 10.1038/s41375-018-0242-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/16/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023]
Abstract
We here investigate how APRIL impacts immune regulatory T cells and directly contributes to the immunosuppressive multiple myeloma (MM) bone marrow (BM) microenvironment. First, APRIL receptor TACI expression is significantly higher in regulatory T cells (Tregs) than conventional T cells (Tcons) from the same patient, confirmed by upregulated Treg markers, i.e., Foxp3, CTLA-4. APRIL significantly stimulates proliferation and survival of Tregs, whereas neutralizing anti-APRIL monoclonal antibodies (mAbs) inhibit theses effects. Besides TACI-dependent induction of cell cycle progression and anti-apoptosis genes, APRIL specifically augments Foxp3, IL-10, TGFβ1, and PD-L1 in Tregs to further enhance Treg-inhibited Tcon proliferation. APRIL further increases MM cell-driven Treg (iTreg) via TACI-dependent proliferation associated with upregulated IL-10, TGFβ1, and CD15s in iTreg, which further inhibits Tcons. Osteoclasts producing APRIL and PD-L1 significantly block Tcon expansion by iTreg generation, which is overcome by combined treatment with anti-APRIL and -PD1/PD-L1 mAbs. Finally, APRIL increases IL-10-producing B regulatory cells (Bregs) via TACI on BM Bregs of MM patients. Taken together, these results define novel APRIL actions via TACI on Tregs and Bregs to promote MM cell survival, providing the rationale for targeting APRIL/TACI system to alleviate the immunosuppressive BM milieu and improve patient outcome in MM.
Collapse
Affiliation(s)
- Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Liang Lin
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Lijie Xing
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Hematology, Shandong Provincial Hospital affiliated to Shandong University, No. 324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Shih-Feng Cho
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tengteng Yu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Chirag Acharya
- Department of Internal Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kenneth Wen
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Phillip A Hsieh
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - John Dulos
- Aduro Biotech Europe, Oss, The Netherlands
| | | | - Nikhil Munshi
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Paul Richardson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
57
|
Soleto I, Morel E, Martín D, Granja AG, Tafalla C. Regulation of IgM + B Cell Activities by Rainbow Trout APRIL Reveals Specific Effects of This Cytokine in Lower Vertebrates. Front Immunol 2018; 9:1880. [PMID: 30150995 PMCID: PMC6099200 DOI: 10.3389/fimmu.2018.01880] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022] Open
Abstract
Tumor necrosis factor ligand superfamily members such as B cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL) have been identified in mammals as key regulators of B cell homeostasis and activation. However, the immune functions of APRIL are not as well defined as those of BAFF. Furthermore, while BAFF is present in all vertebrates, APRIL is missing in some animal groups, suggesting that BAFF has compensated the functions of APRIL in these species. In this context, we thought of great interest to explore the effects of APRIL on teleost B cells, given that APRIL appears for the first time in evolution in bony fish. Thus, in this study, we have performed an extensive analysis of the effect of APRIL on B cells using rainbow trout (Oncorhynchus mykiss) as a model species. Our results demonstrate that APRIL induces a specific proliferation of IgM+ B cells by itself and increases IgM secretion without promoting a terminal differentiation to plasma cells. APRIL also increased the levels of surface MHC II and augmented the capacity of these cells to process antigen, effects that were exclusively exerted on IgM+ B cells. Although our results point to a highly conserved role of APRIL on B cell homeostasis and activation throughout evolution, some specific differential effects have been observed in fish in comparison to the effects of APRIL previously described in mammals. Finally, the effects that APRIL induces on rainbow trout IgM+ B cells described in this paper have been compared with those previously reported in response to BAFF.
Collapse
Affiliation(s)
- Irene Soleto
- Fish Immunology and Pathology Laboratory, Center for Animal Health Research (CISA-INIA), Madrid, Spain
| | - Esther Morel
- Fish Immunology and Pathology Laboratory, Center for Animal Health Research (CISA-INIA), Madrid, Spain
| | - Diana Martín
- Fish Immunology and Pathology Laboratory, Center for Animal Health Research (CISA-INIA), Madrid, Spain
| | - Aitor G Granja
- Fish Immunology and Pathology Laboratory, Center for Animal Health Research (CISA-INIA), Madrid, Spain
| | - Carolina Tafalla
- Fish Immunology and Pathology Laboratory, Center for Animal Health Research (CISA-INIA), Madrid, Spain
| |
Collapse
|
58
|
Cho SF, Anderson KC, Tai YT. Targeting B Cell Maturation Antigen (BCMA) in Multiple Myeloma: Potential Uses of BCMA-Based Immunotherapy. Front Immunol 2018; 9:1821. [PMID: 30147690 PMCID: PMC6095983 DOI: 10.3389/fimmu.2018.01821] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023] Open
Abstract
The approval of the first two monoclonal antibodies targeting CD38 (daratumumab) and SLAMF7 (elotuzumab) in late 2015 for treating relapsed and refractory multiple myeloma (RRMM) was a critical advance for immunotherapies for multiple myeloma (MM). Importantly, the outcome of patients continues to improve with the incorporation of this new class of agents with current MM therapies. However, both antigens are also expressed on other normal tissues including hematopoietic lineages and immune effector cells, which may limit their long-term clinical use. B cell maturation antigen (BCMA), a transmembrane glycoprotein in the tumor necrosis factor receptor superfamily 17 (TNFRSF17), is expressed at significantly higher levels in all patient MM cells but not on other normal tissues except normal plasma cells. Importantly, it is an antigen targeted by chimeric antigen receptor (CAR) T-cells, which have already shown significant clinical activities in patients with RRMM who have undergone at least three prior treatments, including a proteasome inhibitor and an immunomodulatory agent. Moreover, the first anti-BCMA antibody–drug conjugate also has achieved significant clinical responses in patients who failed at least three prior lines of therapy, including an anti-CD38 antibody, a proteasome inhibitor, and an immunomodulatory agent. Both BCMA targeting immunotherapies were granted breakthrough status for patients with RRMM by FDA in Nov 2017. Other promising BCMA-based immunotherapeutic macromolecules including bispecific T-cell engagers, bispecific molecules, bispecific or trispecific antibodies, as well as improved forms of next generation CAR T cells, also demonstrate high anti-MM activity in preclinical and even early clinical studies. Here, we focus on the biology of this promising MM target antigen and then highlight preclinical and clinical data of current BCMA-targeted immunotherapies with various mechanisms of action. These crucial studies will enhance selective anti-MM response, transform the treatment paradigm, and extend disease-free survival in MM.
Collapse
Affiliation(s)
- Shih-Feng Cho
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Yu-Tzu Tai
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|
59
|
Effect of glucocorticoid treatment on BAFF and APRIL expression in patients with immune thrombocytopenia (ITP). Clin Immunol 2018; 188:74-80. [DOI: 10.1016/j.clim.2017.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022]
|
60
|
Samy E, Wax S, Huard B, Hess H, Schneider P. Targeting BAFF and APRIL in systemic lupus erythematosus and other antibody-associated diseases. Int Rev Immunol 2017; 36:3-19. [PMID: 28215100 DOI: 10.1080/08830185.2016.1276903] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The B cell-stimulating molecules, BAFF (B cell activating factor) and APRIL (a proliferation-inducing ligand), are critical factors in the maintenance of the B cell pool and humoral immunity. In addition, BAFF and APRIL are involved in the pathogenesis of a number of human autoimmune diseases, with elevated levels of these cytokines detected in the sera of patients with systemic lupus erythematosus (SLE), IgA nephropathy, Sjögren's syndrome, and rheumatoid arthritis. As such, both molecules are rational targets for new therapies in B cell-driven autoimmune diseases, and several inhibitors of BAFF or BAFF and APRIL together have been investigated in clinical trials. These include the BAFF/APRIL dual inhibitor, atacicept, and the BAFF inhibitor, belimumab, which is approved as an add-on therapy for patients with active SLE. Post hoc analyses of these trials indicate that baseline serum levels of BAFF and BAFF/APRIL correlate with treatment response to belimumab and atacicept, respectively, suggesting a role for the two molecules as predictive biomarkers. It will, however, be important to refine future testing to identify active forms of BAFF and APRIL in the circulation, as well as to distinguish between homotrimer and heteromer configurations. In this review, we discuss the rationale for dual BAFF/APRIL inhibition versus single BAFF inhibition in autoimmune disease, by focusing on the similarities and differences between the physiological and pathogenic roles of the two molecules. A summary of the preclinical and clinical data currently available is also presented.
Collapse
Affiliation(s)
- Eileen Samy
- a EMD Serono Research & Development Institute, Inc. , Billerica , Massachusetts , USA
| | - Stephen Wax
- a EMD Serono Research & Development Institute, Inc. , Billerica , Massachusetts , USA
| | - Bertrand Huard
- b Institute for Advanced Biosciences , University Grenoble Alpes , INSERM U1209, Grenoble , France
| | | | - Pascal Schneider
- d Department of Biochemistry , University of Lausanne , Lausanne , Switzerland
| |
Collapse
|
61
|
Cho SF, Lin L, Xing L, Yu T, Wen K, Anderson KC, Tai YT. Monoclonal Antibody: A New Treatment Strategy against Multiple Myeloma. Antibodies (Basel) 2017; 6:antib6040018. [PMID: 31548533 PMCID: PMC6698817 DOI: 10.3390/antib6040018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/22/2022] Open
Abstract
2015 was a groundbreaking year for the multiple myeloma community partly due to the breakthrough approval of the first two monoclonal antibodies in the treatment for patients with relapsed and refractory disease. Despite early disappointments, monoclonal antibodies targeting CD38 (daratumumab) and signaling lymphocytic activation molecule F7 (SLAMF7) (elotuzumab) have become available for patients with multiple myeloma in the same year. Specifically, phase 3 clinical trials of combination therapies incorporating daratumumab or elotuzumab indicate both efficacy and a very favorable toxicity profile. These therapeutic monoclonal antibodies for multiple myeloma can kill target cells via antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent phagocytosis, as well as by direct blockade of signaling cascades. In addition, their immunomodulatory effects may simultaneously inhibit the immunosuppressive bone marrow microenvironment and restore the key function of immune effector cells. In this review, we focus on monoclonal antibodies that have shown clinical efficacy or promising preclinical anti-multiple myeloma activities that warrant further clinical development. We summarize mechanisms that account for the in vitro and in vivo anti-myeloma effects of these monoclonal antibodies, as well as relevant preclinical and clinical results. Monoclonal antibody-based immunotherapies have already and will continue to transform the treatment landscape in multiple myeloma.
Collapse
Affiliation(s)
- Shih-Feng Cho
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Liang Lin
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Lijie Xing
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324, Jingwu Road, Jinan 250021, China.
| | - Tengteng Yu
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Kenneth Wen
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Yu-Tzu Tai
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
62
|
Borhis G, Trovato M, Chaoul N, Ibrahim HM, Richard Y. B-Cell-Activating Factor and the B-Cell Compartment in HIV/SIV Infection. Front Immunol 2017; 8:1338. [PMID: 29163465 PMCID: PMC5663724 DOI: 10.3389/fimmu.2017.01338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/03/2017] [Indexed: 12/12/2022] Open
Abstract
With the goal to design effective HIV vaccines, intensive studies focused on broadly neutralizing antibodies, which arise in a fraction of HIV-infected people. Apart from identifying new vulnerability sites in the viral envelope proteins, these studies have shown that a fraction of these antibodies are produced by self/poly-reactive B-cells. These findings prompted us to revisit the B-cell differentiation and selection process during HIV/SIV infection and to consider B-cells as active players possibly shaping the helper T-cell program within germinal centers (GCs). In this context, we paid a particular attention to B-cell-activating factor (BAFF), a key cytokine in B-cell development and immune response that is overproduced during HIV/SIV infection. As it does in autoimmune diseases, BAFF excess might contribute to the abnormal rescue of self-reactive B-cells at several checkpoints of the B-cell development and impair memory B-cell generation and functions. In this review, we first point out what is known about the functions of BAFF/a proliferation-inducing ligand and their receptors [B-cell maturation, transmembrane activator and CAML interactor (TACI), and BAFF-R], in physiological and pathophysiological settings, in mice and humans. In particular, we highlight recent results on the previously underappreciated regulatory functions of TACI and on the highly regulated production of soluble TACI and BAFF-R that act as decoy receptors. In light of recent data on BAFF, TACI, and BAFF-R, we then revisit the altered phenotypes and functions of B-cell subsets during the acute and chronic phase of HIV/SIV infection. Given the atypical phenotype and reduced functions of memory B-cells in HIV/SIV infection, we particularly discuss the GC reaction, a key checkpoint where self-reactive B-cells are eliminated and pathogen-specific memory B-cells and plasmablasts/cells are generated in physiological settings. Through its capacity to differentially bind and process BAFF-R and TACI on GC B-cells and possibly on follicular helper T-cells, BAFF appears as a key regulator of the physiological GC reaction. Its local excess during HIV/SIV infection could play a key role in B-cell dysregulations.
Collapse
Affiliation(s)
- Gwenoline Borhis
- INSERM u1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris-Descartes, Paris, France
| | - Maria Trovato
- INSERM u1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris-Descartes, Paris, France
| | - Nada Chaoul
- Commissariat à l’Energie Atomique, Institut des maladies Emergentes et Thérapies innovantes, Service d’Immuno-Virologie, Fontenay-aux Roses, France
| | - Hany M. Ibrahim
- INSERM u1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris-Descartes, Paris, France
| | - Yolande Richard
- INSERM u1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris-Descartes, Paris, France
| |
Collapse
|
63
|
Taher TE, Bystrom J, Ong VH, Isenberg DA, Renaudineau Y, Abraham DJ, Mageed RA. Intracellular B Lymphocyte Signalling and the Regulation of Humoral Immunity and Autoimmunity. Clin Rev Allergy Immunol 2017; 53:237-264. [PMID: 28456914 PMCID: PMC5597704 DOI: 10.1007/s12016-017-8609-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
B lymphocytes are critical for effective immunity; they produce antibodies and cytokines, present antigens to T lymphocytes and regulate immune responses. However, because of the inherent randomness in the process of generating their vast repertoire of antigen-specific receptors, B cells can also cause diseases through recognizing and reacting to self. Therefore, B lymphocyte selection and responses require tight regulation at multiple levels and at all stages of their development and activation to avoid diseases. Indeed, newly generated B lymphocytes undergo rigorous tolerance mechanisms in the bone marrow and, subsequently, in the periphery after their migration. Furthermore, activation of mature B cells is regulated through controlled expression of co-stimulatory receptors and intracellular signalling thresholds. All these regulatory events determine whether and how B lymphocytes respond to antigens, by undergoing apoptosis or proliferation. However, defects that alter regulated co-stimulatory receptor expression or intracellular signalling thresholds can lead to diseases. For example, autoimmune diseases can result from altered regulation of B cell responses leading to the emergence of high-affinity autoreactive B cells, autoantibody production and tissue damage. The exact cause(s) of defective B cell responses in autoimmune diseases remains unknown. However, there is evidence that defects or mutations in genes that encode individual intracellular signalling proteins lead to autoimmune diseases, thus confirming that defects in intracellular pathways mediate autoimmune diseases. This review provides a synopsis of current knowledge of signalling proteins and pathways that regulate B lymphocyte responses and how defects in these could promote autoimmune diseases. Most of the evidence comes from studies of mouse models of disease and from genetically engineered mice. Some, however, also come from studying B lymphocytes from patients and from genome-wide association studies. Defining proteins and signalling pathways that underpin atypical B cell response in diseases will help in understanding disease mechanisms and provide new therapeutic avenues for precision therapy.
Collapse
Affiliation(s)
- Taher E Taher
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jonas Bystrom
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Voon H Ong
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, University College London, London, UK
| | | | - Yves Renaudineau
- Immunology Laboratory, University of Brest Medical School, Brest, France
| | - David J Abraham
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, University College London, London, UK
| | - Rizgar A Mageed
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
64
|
Up-regulated BAFF and BAFF receptor expression in patients with intractable temporal lobe epilepsy and a pilocarpine-induced epilepsy rat model. Seizure 2017; 48:79-88. [DOI: 10.1016/j.seizure.2017.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/23/2017] [Accepted: 03/25/2017] [Indexed: 11/20/2022] Open
|
65
|
Li P, Li Y, Zhou AH, Chen S, Li J, Wen XT, Wu ZY, Li LB, Zhang FC, Li YZ. Association Study of a Proliferation-inducing Ligand, Spermatogenesis Associated 8, Platelet-derived Growth Factor Receptor-alpha, and POLB Polymorphisms with Systemic Lupus Erythematosus in Chinese Han Population. Chin Med J (Engl) 2017; 129:2085-90. [PMID: 27569236 PMCID: PMC5009593 DOI: 10.4103/0366-6999.189055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background: Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease with complex genetic inheritance. This study was conducted to examine whether the association of a proliferation-inducing ligand (APRIL), spermatogenesis associated 8 (SPATA8), platelet-derived growth factor receptor-alpha (PDGFRA), and DNA polymerase beta (POLB) with SLE can be replicated in a Chinese Han population. Methods: Chinese SLE patients (n = 1247) and ethnically and geographically matched healthy controls (n = 1440) were genotyped for the APRIL, SPATA8, PDGFRA, and POLB single-nucleotide polymorphisms (SNPs), rs3803800, rs8023715, rs1364989, and rs12678588 using the Sequenom MassARRAY System. Results: The Chinese Han SLE patients and controls had statistically similar frequencies of alleles and genotypes of four gene polymorphisms. Moreover, no association signal was detected on different genetic models (additive, dominant, and recessive, all, P > 0.05) or in SLE subgroups stratified by various clinical manifestations (all, P > 0.05). Conclusions: Different genetic backgrounds from different ancestries and various populations may result in different genetic risk factors for SLE. We did not detect any significant association with SNPs of APRIL, SPATA8, PDGFRA, and POLB.
Collapse
Affiliation(s)
- Ping Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Yuan Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Ai-Hong Zhou
- Department of Rheumatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, China
| | - Si Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Jing Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Xiao-Ting Wen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Zi-Yan Wu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Liu-Bing Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Feng-Chun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Yong-Zhe Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| |
Collapse
|
66
|
Stohl W. Inhibition of B cell activating factor (BAFF) in the management of systemic lupus erythematosus (SLE). Expert Rev Clin Immunol 2017; 13:623-633. [DOI: 10.1080/1744666x.2017.1291343] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- William Stohl
- Division of Rheumatology, Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
67
|
Stohl W. The Future of B-cell Activating Factor Antagonists in the Treatment of Systemic Lupus Erythematosus. JOURNAL OF RHEUMATIC DISEASES 2017. [DOI: 10.4078/jrd.2017.24.2.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- William Stohl
- Division of Rheumatology, Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
68
|
Uzzan M, Colombel JF, Cerutti A, Treton X, Mehandru S. B Cell-Activating Factor (BAFF)-Targeted B Cell Therapies in Inflammatory Bowel Diseases. Dig Dis Sci 2016; 61:3407-3424. [PMID: 27655102 DOI: 10.1007/s10620-016-4317-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/13/2016] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel diseases (IBD) involve dysregulated immune responses to gut antigens in genetically predisposed individuals. While a better elucidation of IBD pathophysiology has considerably increased the number of treatment options, the need for more effective therapeutic strategies remains a pressing priority. Defects of both non-hematopoietic (epithelial and stromal) and hematopoietic (lymphoid and myeloid) cells have been described in patients with IBD. Within the lymphoid system, alterations of the T cell compartment are viewed as essential in the pathogenesis of IBD. However, growing evidence points to the additional perturbations of the B cell compartment. Indeed, the intestinal lamina propria from IBD patients shows an increased presence of antibody-secreting plasma cells, which correlates with enhanced pro-inflammatory immunoglobulin G production and changes in the quality of non-inflammatory IgA responses. These B cell abnormalities are compounded by the emergence of systemic antibody responses to various autologous and microbial antigens, which predates the clinical diagnosis of IBD and identifies patients with complicated disease. It is presently unclear whether such antibody responses play a pathogenetic role, as B cell depletion with the CD20-targeting monoclonal antibody rituximab did not ameliorate ulcerative colitis in a clinical trial. However, it must be noted that unresponsiveness to rituximab is also observed also in some patients with autoimmune disorders usually responsive to B cell-depleting therapies. In this review, we discussed mechanistic aspects of B cell-based therapies and their potential role in IBD with a special interest on BAFF and BAFF-targeting therapies buoyed by the success of anti-BAFF treatments in rheumatologic disorders.
Collapse
Affiliation(s)
- Mathieu Uzzan
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Departments of Medicine and Pediatrics, Susan and Leonard Feinstein IBD Clinical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Cerutti
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xavier Treton
- Department of Gastroenterology, Beaujon Hospital, APHP, Denis Diderot University, Paris, France
| | - Saurabh Mehandru
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
69
|
APRIL gene polymorphism and serum sAPRIL levels in children with systemic lupus erythematosus. Clin Rheumatol 2016; 36:831-836. [PMID: 27878683 DOI: 10.1007/s10067-016-3466-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/10/2016] [Accepted: 10/30/2016] [Indexed: 01/12/2023]
Abstract
Systemic lupus erythematosus (SLE) is a multi-factor autoimmune disorder with diverse clinical manifestations and unclear pathogenesis. Genetic components play important roles in the incidence and development of SLE. Among these, APRIL as a cytokine has roles in the stimulation and antibody production in B cells. APRIL was hypothesized to be associated with SLE. The aim of this study was to assess the involvement of the APRIL gene in SLE susceptibility in Iranian patients. A single-nucleotide polymorphism (SNP) for rs11552708 of APRIL gene was analyzed by real-time PCR in 60 SLE Iranian children and 64 healthy controls. DNA samples of patients and healthy controls were extracted from peripheral blood leukocytes by phenol-chloroform. Serum samples obtained from 45 children with SLE and 45 healthy controls were assayed by enzyme-linked immunosorbent assay (ELISA). The G/G genotype (odds ratio (OR) 0.67, 95% confidence interval (CI) 0.22-2.07; P = 0.68) and G allele (OR 0.81, 95% CI 0.25-2.56; P = 0.89) frequencies of polymorphism at codon 67 (67G) do not differ significantly in the SLE patients compared with those in the healthy controls. The serum APRIL levels in the SLE patients (mean ± SD = 29.27 ng/ml ± 20.77, range from 0 to 55.33 ng/ml) were significantly higher than those in the healthy controls (P = 0.02). Our results demonstrated that rs11552708 of the APRIL gene is not associated with SLE susceptibility in Iranian children. Likewise, these findings suggest that APRIL antagonist could be a potential therapeutic target to control SLE in children.
Collapse
|
70
|
Stohl W, Banfalvi A. B cell-independent contribution of BAFF to murine autoimmune disease. Clin Immunol 2016; 172:111-116. [DOI: 10.1016/j.clim.2016.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/10/2016] [Indexed: 01/04/2023]
|
71
|
Nicoletti AM, Kenny CH, Khalil AM, Pan Q, Ralph KLM, Ritchie J, Venkataramani S, Presky DH, DeWire SM, Brodeur SR. Unexpected Potency Differences between B-Cell-Activating Factor (BAFF) Antagonist Antibodies against Various Forms of BAFF: Trimer, 60-Mer, and Membrane-Bound. J Pharmacol Exp Ther 2016; 359:37-44. [PMID: 27440419 DOI: 10.1124/jpet.116.236075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/18/2016] [Indexed: 03/08/2025] Open
Abstract
Therapeutic agents antagonizing B-cell-activating factor/B-lymphocyte stimulator (BAFF/BLyS) are currently in clinical development for autoimmune diseases; belimumab is the first Food and Drug Administration-approved drug in more than 50 years for the treatment of lupus. As a member of the tumor necrosis factor superfamily, BAFF promotes B-cell survival and homeostasis and is overexpressed in patients with systemic lupus erythematosus and other autoimmune diseases. BAFF exists in three recognized forms: membrane-bound and two secreted, soluble forms of either trimeric or 60-mer oligomeric states. To date, most in vitro pharmacology studies of BAFF neglect one or more of these forms. Here, we report a comprehensive in vitro cell-based analysis of BAFF in assay systems that measure all forms of BAFF-mediated activation. We demonstrate the effects of these BAFF forms in both a primary human B-cell proliferation assay and in nuclear factor κB reporter assay systems in Chinese hamster ovary cells expressing BAFF receptors and transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI). In contrast to the mouse system, we find that BAFF trimer activates the human TACI receptor. Further, we profiled the activities of two clinically advanced BAFF antagonist antibodies, belimumab and tabalumab. Unexpectedly, we revealed differences in inhibitory potencies against the various BAFF forms, in particular that belimumab does not potently inhibit BAFF 60-mer. Through this increased understanding of the activity of BAFF antagonists against different forms of BAFF, we hope to influence the discovery of BAFF antagonist antibodies with distinct therapeutic mechanisms for improvement in the treatment of lupus or other related autoimmune pathologies.
Collapse
Affiliation(s)
- Amy M Nicoletti
- Immune Modulation and Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Cynthia Hess Kenny
- Immune Modulation and Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Ashraf M Khalil
- Immune Modulation and Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Qi Pan
- Immune Modulation and Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Kerry L M Ralph
- Immune Modulation and Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Julie Ritchie
- Immune Modulation and Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Sathyadevi Venkataramani
- Immune Modulation and Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - David H Presky
- Immune Modulation and Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Scott M DeWire
- Immune Modulation and Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Scott R Brodeur
- Immune Modulation and Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| |
Collapse
|
72
|
Al-Hujaily EM, Oldham RAA, Hari P, Medin JA. Development of Novel Immunotherapies for Multiple Myeloma. Int J Mol Sci 2016; 17:E1506. [PMID: 27618026 PMCID: PMC5037783 DOI: 10.3390/ijms17091506] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/24/2016] [Accepted: 09/01/2016] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a disorder of terminally differentiated plasma cells characterized by clonal expansion in the bone marrow (BM). It is the second-most common hematologic malignancy. Despite significant advances in therapeutic strategies, MM remains a predominantly incurable disease emphasizing the need for the development of new treatment regimens. Immunotherapy is a promising treatment modality to circumvent challenges in the management of MM. Many novel immunotherapy strategies, such as adoptive cell therapy and monoclonal antibodies, are currently under investigation in clinical trials, with some already demonstrating a positive impact on patient survival. In this review, we will summarize the current standards of care and discuss major new approaches in immunotherapy for MM.
Collapse
Affiliation(s)
- Ensaf M Al-Hujaily
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Robyn A A Oldham
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
| | - Parameswaran Hari
- Department of Medicine, Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Jeffrey A Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- The Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
73
|
Jabara HH, Lee JJ, Janssen E, Ullas S, Liadaki K, Garibyan L, Benson H, Sannikova T, Bram R, Hammarstrom L, Cruz AC, Siegel R, Manis J, Malley R, Geha RS. Heterozygosity for transmembrane activator and calcium modulator ligand interactor A144E causes haploinsufficiency and pneumococcal susceptibility in mice. J Allergy Clin Immunol 2016; 139:1293-1301.e4. [PMID: 27609654 DOI: 10.1016/j.jaci.2016.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/18/2016] [Accepted: 07/26/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND The B-cell receptor transmembrane activator and calcium modulator ligand interactor (TACI) is important for T-independent antibody responses. One in 200 blood donors are heterozygous for the TACI A181E mutation. OBJECTIVE We sought to investigate the effect on B-cell function of TACI A181E heterozygosity in reportedly healthy subjects and of the corresponding TACI A144E mutation in mice. METHODS Nuclear factor κB (NF-κB) activation was measured by using the luciferase assay in 293T cells cotransfected with wild-type and mutant TACI. TACI-driven proliferation, isotype switching, and antibody responses were measured in B cells from heterozygous TACI A144E knock-in mice. Mouse mortality was monitored after intranasal pneumococcal challenge. RESULTS Levels of natural antibodies to the pneumococcal polysaccharide component phosphocholine were significantly lower in A181E-heterozygous than TACI-sufficient Swedish blood donors never immunized with pneumococcal antigens. Although overexpressed hTACI A181E and mTACI A144E acted as dominant-negative mutations in transfectants, homozygosity for A144E in mice resulted in absent TACI expression in B cells, indicating that the mutant protein is unstable when naturally expressed. A144E heterozygous mice, such as TACI+/- mice, expressed half the normal level of TACI on their B cells and exhibited similar defects in a proliferation-inducing ligand-driven B-cell activation, antibody responses to TNP-Ficoll, production of natural antibodies to phosphocholine, and survival after intranasal pneumococcal challenge. CONCLUSION These results suggest that TACI A181E heterozygosity results in TACI haploinsufficiency with increased susceptibility to pneumococcal infection. This has important implications for asymptomatic TACI A181E carriers.
Collapse
Affiliation(s)
- Haifa H Jabara
- Division of Immunology, Boston Children's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Mass
| | - John J Lee
- Division of Immunology, Boston Children's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Mass
| | - Erin Janssen
- Division of Immunology, Boston Children's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Mass
| | - Sumana Ullas
- Division of Immunology, Boston Children's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Mass
| | - Kyriaki Liadaki
- Division of Immunology, Boston Children's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Mass
| | - Lilit Garibyan
- Division of Immunology, Boston Children's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Mass
| | - Halli Benson
- Division of Immunology, Boston Children's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Mass
| | - Tatyana Sannikova
- Division of Immunology, Boston Children's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Mass
| | - Richard Bram
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minn
| | | | - Anthony C Cruz
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Richard Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - John Manis
- Division of Transfusion Medicine, Boston Children's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Mass
| | - Richard Malley
- Division of Infectious Diseases, Boston Children's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Mass
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Mass.
| |
Collapse
|
74
|
Abstract
The major impediment to drug development for systemic lupus erythematosus (SLE) is its heterogeneity. The unpredictable manner in which lupus targets different organs at varying intensity makes the study of new drugs and the optimization of their administration extremely difficult. With the advent of novel, targeted biologic agents for SLE, it can be hoped that more strategic, lupus-relevant immune modulation will lead to safer and more effective treatments. Two alternative new approaches to lupus treatment are reviewed. The first involves selective inhibition of a single protein (BLyS), which may play a central role in host defense and in the pathogenesis of SLE. Although this approach is finely targeted to the inhibition of a single protein which is known to be upregulated in SLE patients, the positioning of BLyS at a critical hub in the immune response suggests that more global adverse repercussions on immunity might still occur. The second strategy is the use of peptides designed to specifically induce tolerance in limited autoreactive immune responses. Immune repercussions might, at least in theory, be almost nonexistent with this kind of approach. Concerns that limited induction of tolerance might have equally limited impact on the complex immune disorder of SLE are not borne out in preliminary murine data. Specific development programs are ongoing using both of these strategies and have recently entered human trials.
Collapse
Affiliation(s)
- J T Merrill
- Clinical Pharmacology Research Program, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA.
| |
Collapse
|
75
|
Abstract
B lymphocytestimulator (BLyS) is a vital B cell survivalfactor. Overexpressionof BLyS in mice may lead to systemic lupus erythematosus (SLE)-like disease, and treatment of bona fide SLE mice with BLyS antagonists ameliorates disease progression and enhances survival. BLyS overexpression is common in human SLE, and results from a phase I clinical trial with a BLyS antagonistin human SLE have shown the antagonist to be biologicallyactive and safe. These features collectivelypoint to BLyS as an attractive therapeutic target in human disease.
Collapse
Affiliation(s)
- W Stohl
- Division of Rheumatology, University of Southern California Keck School of Medicine, Los Angeles 90033, USA.
| |
Collapse
|
76
|
Lokensgard JR, Mutnal MB, Prasad S, Sheng W, Hu S. Glial cell activation, recruitment, and survival of B-lineage cells following MCMV brain infection. J Neuroinflammation 2016; 13:114. [PMID: 27207308 PMCID: PMC4874004 DOI: 10.1186/s12974-016-0582-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 05/13/2016] [Indexed: 12/23/2022] Open
Abstract
Background Chemokines produced by reactive glia drive migration of immune cells and previous studies from our laboratory have demonstrated that CD19+ B cells infiltrate the brain. In this study, in vivo and in vitro experiments investigated the role of reactive glial cells in recruitment and survival of B-lineage cells in response to (murine cytomegalovirus) MCMV infection. Methods Flow cytometric analysis was used to assess chemokine receptor expression on brain-infiltrating B cells. Real-time RT-PCR and ELISA were used to measure chemokine levels. Dual-immunohistochemical staining was used to co-localize chemokine production by reactive glia. Primary glial cell cultures and migration assays were used to examine chemokine-mediated recruitment. Astrocyte: B cell co-cultures were used to investigate survival and proliferation. Results The chemokine receptors CXCR3, CXCR5, CCR5, and CCR7 were detected on CD19+ cells isolated from the brain during MCMV infection. In particular, CXCR3 was found to be elevated on an increasing number of cells over the time course of infection, and it was the primary chemokine receptor expressed at 60 days post infection Quite different expression kinetics were observed for CXCR5, CCR5, and CCR7, which were elevated on the highest number of cells early during infection and decreased by 14, 30, and 60 days post infection Correspondingly, elevated levels of CXCL9, CXCL10, and CXCL13, as well as CCL5, were found within the brains of infected animals, and only low levels of CCL3 and CCL19 were detected. Differential expression of CXCL9/CXCL10 and CXCL13 between microglia and astrocytes was apparent, and B cells moved towards supernatants from MCMV-infected microglia, but not astrocytes. Pretreatment with neutralizing Abs to CXCL9 and CXCL10 inhibited this migration. In contrast, neutralizing Abs to the ligand of CXCR5 (i.e., CXCL13) did not significantly block chemotaxis. Proliferation of brain-infiltrating B cells was detected at 7 days post infection and persisted through the latest time tested (60 days post infection). Finally, astrocytes produce BAFF (B cell activating factor of the TNF family) and promote proliferation of B cells via cell-to-cell contact. Conclusions CXCR3 is the primary chemokine receptor on CD19+ B cells persisting within the brain, and migration to microglial cell supernatants is mediated through this receptor. Correspondingly, microglial cells produce CXCL9 and CXCL10, but not CXCL13. Reactive astrocytes promote B cell proliferation.
Collapse
Affiliation(s)
- James R Lokensgard
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, 3-220 LRB/MTRF, 2001 6th Street S.E., Minneapolis, MN, 55455, USA.
| | - Manohar B Mutnal
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, 3-220 LRB/MTRF, 2001 6th Street S.E., Minneapolis, MN, 55455, USA
| | - Sujata Prasad
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, 3-220 LRB/MTRF, 2001 6th Street S.E., Minneapolis, MN, 55455, USA
| | - Wen Sheng
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, 3-220 LRB/MTRF, 2001 6th Street S.E., Minneapolis, MN, 55455, USA
| | - Shuxian Hu
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, 3-220 LRB/MTRF, 2001 6th Street S.E., Minneapolis, MN, 55455, USA
| |
Collapse
|
77
|
Pfeuffer S, Ruck T, Kleinschnitz C, Wiendl H, Meuth SG. Failed, interrupted and inconclusive trials on relapsing multiple sclerosis treatment: update 2010–2015. Expert Rev Neurother 2016; 16:689-700. [DOI: 10.1080/14737175.2016.1176531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
78
|
Tumor necrosis factor superfamily member APRIL contributes to fibrotic scar formation after spinal cord injury. J Neuroinflammation 2016; 13:87. [PMID: 27098833 PMCID: PMC4839088 DOI: 10.1186/s12974-016-0552-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/14/2016] [Indexed: 12/28/2022] Open
Abstract
Background Fibrotic scar formation contributes to the axon growth-inhibitory environment that forms following spinal cord injury (SCI). We recently demonstrated that depletion of hematogenous macrophages led to a reduction in fibrotic scar formation and increased axon growth after SCI. These changes were associated with decreased TNFSF13 (a proliferation inducing ligand (APRIL)) expression, but the role of APRIL in fibrotic scar formation after SCI has not been directly investigated. Thus, the goal of this study was to determine the role of APRIL in fibrotic scar formation after SCI. Methods APRIL knockout and wild-type mice received contusive SCI and were assessed for inflammatory cytokine/chemokine expression, leukocyte infiltration, fibrotic scar formation, axon growth, and cell proliferation. Results Expression of APRIL and its receptor BCMA is increased following SCI, and genetic deletion of APRIL led to reduced fibrotic scar formation and increased axon growth. However, the fibrotic scar reduction in APRIL KO mice was not a result of changes in fibroblast or astrocyte proliferation. Rather, APRIL knockout mice displayed reduced TNFα and CCL2 expression and less macrophage and B cell infiltration at the injury site. Conclusions Our data indicate that APRIL contributes to fibrotic scar formation after SCI by mediating the inflammatory response.
Collapse
|
79
|
Liu H, Zhang J, Li J, Song J, Zhang S. Molecular structure, distribution, and immunology function of TNFSF13B (BAFF) in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2016; 51:240-250. [PMID: 26915306 DOI: 10.1016/j.fsi.2016.02.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
B cell-activating factor (BAFF)is a member of the tumor necrosis factor (TNF) family and plays roles in B cell survival and maturation. In this study, the full-length cDNA of Nile tilapia (Oreochromis niloticus) BAFF (tBAFF) was amplified from the spleen by reverse transcription PCR (RT-PCR). The open reading frame of this cDNA encodes a protein of 261 amino acids containing a predicted transmembrane domain and a furin protease cleavage site, similar to mammalian, avian, and reptile BAFF. Real-time quantitative PCR (qPCR) analysis revealed that tBAFF is present in various tissues and is predominantly expressed in the spleen. The predicted three-dimensional (3D) structure of the Nile tilapia (Oreochromis niloticus) soluble BAFF (tsBAFF) monomer was determined by (3D) structure modeling monomeranalyzed by (3D) structure mouse counterpart. Both tsBAFF and EGFP/tsBAFF were efficiently expressed in Escherichia coli BL21 (DE3), as confirmed by SDS-PAGE and Western blot analysis. After purification, the EGFP/tsBAFF fusion protein showed a fluorescence spectrum similar to that of EGFP. Laser scanning confocal microscopy showed that EGFP/tsBAFF bound to its receptor. In vitro, tsBAFF promoted the proliferation of Nile tilapia and mouse splenic B cells together with/without a priming agent (Staphylococcus aureus Cowan 1, SAC) or anti-mouse IgM. Furthermore, tsBAFF showed a similar proliferation-stimulating effect on mouse B cells compared to msBAFF. These findings indicate that tsBAFF plays an important role in the proliferation of Nile tilapia B cells and has functional cross-reactivity among Nile tilapia and mammals. Therefore, BAFF may represent a useful factor for enhancing immunological efficacy in animals.
Collapse
Affiliation(s)
- Hongzhen Liu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, 210046, China
| | - Jiaxin Zhang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, 210046, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jianfeng Li
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310036, China
| | - Jinyun Song
- Central Laboratory, The Second Affiliated Hospital of Southeast University, 210003, Nanjing, China
| | - Shuangquan Zhang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
80
|
Zhai YL, Zhu L, Shi SF, Liu LJ, Lv JC, Zhang H. Increased APRIL Expression Induces IgA1 Aberrant Glycosylation in IgA Nephropathy. Medicine (Baltimore) 2016; 95:e3099. [PMID: 26986150 PMCID: PMC4839931 DOI: 10.1097/md.0000000000003099] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aberrant glycosylated IgA1 molecules, mainly galactose-deficient IgA1 (Gd-IgA1), are important causal factors in IgA nephropathy; however, the underlying mechanism for the production of aberrantly glycosylated IgA1 is unknown. A recent genome-wide association study identified a novel IgAN susceptibility gene, TNFSF13, which encoded a proliferation-inducing ligand (APRIL) that promotes lymphocyte proliferation and IgA class switching. We aimed to explore the mechanism of APRIL's involvement in IgAN. We enrolled 166 patients with IgAN and 77 healthy controls and detected the plasma APRIL levels by the ELISA method, identified the mRNA expression of APRIL and its receptors by relative quantitative PCR, and confirmed by in vitro experiment. We identified increased plasma APRIL levels in IgAN, which was further proved by upregulated mRNA expression in B-lymphocytes from 27 IgAN patients. Analysis of the clinical characteristics of patients with IgAN showed that higher plasma APRIL level was associated with more severe clinical presentations (high proteinuria and low eGFR). The plasma APRIL level was positively correlated with Gd-IgA1 levels. Furthermore, exogenous APRIL could induce more production of Gd-IgA1 in cultured lymphocytes from patients with IgAN, compared with that from healthy controls. And, the relative higher expression of receptors of APRIL, that is, BCMA and TACI, in B-lymphocytes from IgAN patients were observed. Our findings implied that in patients with IgAN, increased APRIL is accompanied elevated expression of its receptors in B-lymphocytes, which induces overproduction of Gd-IgA1, ultimately contributing to the pathogenesis of IgAN.
Collapse
Affiliation(s)
- Ya-Ling Zhai
- From the Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | | | | | | | | | | |
Collapse
|
81
|
Jacob CO, Yu N, Sindhava V, Cancro MP, Pawar RD, Putterman C, Stohl W. Differential Development of Systemic Lupus Erythematosus in NZM 2328 Mice Deficient in Discrete Pairs of BAFF Receptors. Arthritis Rheumatol 2015; 67:2523-35. [DOI: 10.1002/art.39210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 05/14/2015] [Indexed: 01/02/2023]
Affiliation(s)
- Chaim O. Jacob
- University of Southern California Keck School of Medicine; Los Angeles
| | - Ning Yu
- University of Southern California Keck School of Medicine; Los Angeles
| | | | | | | | | | - William Stohl
- University of Southern California Keck School of Medicine; Los Angeles
| |
Collapse
|
82
|
Sonar S, Lal G. Role of Tumor Necrosis Factor Superfamily in Neuroinflammation and Autoimmunity. Front Immunol 2015; 6:364. [PMID: 26257732 PMCID: PMC4507150 DOI: 10.3389/fimmu.2015.00364] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/05/2015] [Indexed: 12/18/2022] Open
Abstract
Tumor necrosis factor superfamily (TNFSF) molecules play an important role in the activation, proliferation, differentiation, and migration of immune cells into the central nervous system (CNS). Several TNF superfamily molecules are known to control alloimmunity, autoimmunity, and immunity. Development of transgenic and gene knockout animals, and monoclonal antibodies against TNFSF molecules have increased our understanding of individual receptor-ligand interactions, and their intracellular signaling during homeostasis and neuroinflammation. A strong clinical association has been observed between TNFSF members and CNS autoimmunity such as multiple sclerosis and also in its animal model experimental autoimmune encephalomyelitis. Therefore, they are promising targets for alternative therapeutic options to control autoimmunity. Although, TNFSF ligands are widely distributed and have diverse functions, we have restricted the discussions in this review to TNFSF receptor-ligand interactions and their role in the pathogenesis of neuroinflammation and CNS autoimmunity.
Collapse
|
83
|
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease that is marked by a systemic inflammatory reaction and joint erosions. Elevated levels of B cell activating factor (BAFF) have been detected in the serum and synovial fluid of RA patients. Moreover, the levels of BAFF increase in cases of autoimmune disease and are correlated with the level of disease activity. As an innate cytokine mediator, BAFF affects the immune response of the synovial microenvironment. In this review, we consider recent observations of BAFF and its receptors in RA progression, as well as the effects of BAFF on the cell-cell interactions network. We also summarize the clinical development of BAFF antagonists for the treatment of RA.
Collapse
|
84
|
Sathkumara HD, De Silva NR, Handunnetti S, De Silva AD. Genetics of common variable immunodeficiency: role of transmembrane activator and calcium modulator and cyclophilin ligand interactor. Int J Immunogenet 2015; 42:239-53. [DOI: 10.1111/iji.12217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/27/2015] [Accepted: 05/25/2015] [Indexed: 12/25/2022]
Affiliation(s)
- H. D. Sathkumara
- Genetech Research Institute; Colombo Sri Lanka
- Institute of Biochemistry, Molecular Biology and Biotechnology; University of Colombo; Colombo Sri Lanka
| | | | - S. Handunnetti
- Institute of Biochemistry, Molecular Biology and Biotechnology; University of Colombo; Colombo Sri Lanka
| | | |
Collapse
|
85
|
Chang Y, Sun X, Jia X, Xu S, Wei F, Yang X, Wei W. Expression and effects of B-lymphocyte stimulator and its receptors in T cell-mediated autoimmune arthritis. Int Immunopharmacol 2015; 24:451-457. [DOI: 10.1016/j.intimp.2015.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/25/2014] [Accepted: 01/05/2015] [Indexed: 02/05/2023]
|
86
|
Hobeika E, Nielsen PJ, Medgyesi D. Signaling mechanisms regulating B-lymphocyte activation and tolerance. J Mol Med (Berl) 2015; 93:143-58. [PMID: 25627575 DOI: 10.1007/s00109-015-1252-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/15/2014] [Accepted: 12/25/2014] [Indexed: 01/01/2023]
Abstract
It is becoming more and more accepted that, in addition to producing autoantibodies, B lymphocytes have other important functions that influence the development of autoimmunity. For example, autoreactive B cells are able to produce inflammatory cytokines and activate pathogenic T cells. B lymphocytes can react to extracellular signals with a range of responses from anergy to autoreactivity. The final outcome is determined by the relative contribution of signaling events mediated by activating and inhibitory pathways. Besides the B cell antigen receptor (BCR), several costimulatory receptors expressed on B cells can also induce B cell proliferation and survival, or regulate antibody production. These include CD19, CD40, the B cell activating factor receptor, and Toll-like receptors. Hyperactivity of these receptors clearly contributes to breaking B-cell tolerance in several autoimmune diseases. Inhibitors of these activating signals (including protein tyrosine phosphatases, deubiquitinating enzymes and several adaptor proteins) are crucial to control B-cell activation and maintain B-cell tolerance. In this review, we summarize the inhibitory signaling mechanisms that counteract B-cell activation triggered by the BCR and the coreceptors.
Collapse
Affiliation(s)
- Elias Hobeika
- BIOSS Centre of Biological Signalling Studies, University of Freiburg and Department for Molecular Immunology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | | | | |
Collapse
|
87
|
Factors regulating immunoglobulin production by normal and disease-associated plasma cells. Biomolecules 2015; 5:20-40. [PMID: 25615546 PMCID: PMC4384109 DOI: 10.3390/biom5010020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/13/2015] [Indexed: 12/29/2022] Open
Abstract
Immunoglobulins are molecules produced by activated B cells and plasma cells in response to exposure to antigens. Upon antigen exposure, these molecules are secreted allowing the immune system to recognize and effectively respond to a myriad of pathogens. Immunoglobulin or antibody secreting cells are the mature form of B lymphocytes, which during their development undergo gene rearrangements and selection in the bone marrow ultimately leading to the generation of B cells, each expressing a single antigen-specific receptor/immunoglobulin molecule. Each individual immunoglobulin molecule has an affinity for a unique motif, or epitope, found on a given antigen. When presented with an antigen, activated B cells differentiate into either plasma cells (which secrete large amounts of antibody that is specific for the inducing antigen), or memory B cells (which are long-lived and elicit a stronger and faster response if the host is re-exposed to the same antigen). The secreted form of immunoglobulin, when bound to an antigen, serves as an effector molecule that directs other cells of the immune system to facilitate the neutralization of soluble antigen or the eradication of the antigen-expressing pathogen. This review will focus on the regulation of secreted immunoglobulin by long-lived normal or disease-associated plasma cells. Specifically, the focus will be on signaling and transcriptional events that regulate the development and homeostasis of long-lived immunoglobulin secreting plasma cells.
Collapse
|
88
|
Prognostic significance of ligands belonging to tumour necrosis factor superfamily in acute lymphoblastic leukaemia. Leuk Res 2015; 39:290-5. [PMID: 25582383 DOI: 10.1016/j.leukres.2014.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 11/24/2022]
Abstract
Altered activities of ligands belonging to tumour necrosis factor (TNF) superfamily, namely B-cell activating factor (BAFF), a proliferation-inducing ligand (APRIL) and apoptosis inducing ligand (TRAIL) were demonstrated in several haematological diseases including acute lymphoblastic leukaemia (ALL). BAFF, APRIL and TRAIL provide crucial survival signals to immature, naive and activated B cells. These ligands are capable of activating a broad spectrum of intracellular signalling cascades that can either induce apoptosis or protect from programmed cell death. BAFF and APRIL, which can directly activate the NF-κB pathway, have been identified as crucial survival factors for ALL cells. Here, we have analyzed serum BAFF, APRIL and TRAIL concentrations in 48 patients with newly diagnosed ALL and 44 healthy volunteers. The levels of APRIL and BAFF were significantly higher in ALL patients as compared to healthy volunteers. In contrast, concentrations of TRAIL were significantly lower in ALL patients. Moreover, following induction, the levels of APRIL, but not BAFF or TRAIL, were significantly lower in a group of patients with complete remission (CR) as compared to non-respondent (NR) ALL patients. Furthermore, we demonstrated statistically significant differences in concentrations of APRIL between CR MRD-negative and CR, MRD-positive ALL patients. Notably detection of higher concentrations of APRIL was associated with shorter leukaemia-free survival and overall survival. Altogether, our data indicate that APRIL can play an important role in the pathogenesis of ALL and the measurement of APRIL levels can improve prognostication in ALL patients.
Collapse
|
89
|
Almaden JV, Tsui R, Liu YC, Birnbaum H, Shokhirev MN, Ngo KA, Davis-Turak JC, Otero D, Basak S, Rickert RC, Hoffmann A. A pathway switch directs BAFF signaling to distinct NFκB transcription factors in maturing and proliferating B cells. Cell Rep 2014; 9:2098-111. [PMID: 25497099 PMCID: PMC4889572 DOI: 10.1016/j.celrep.2014.11.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/04/2014] [Accepted: 11/17/2014] [Indexed: 11/27/2022] Open
Abstract
BAFF, an activator of the noncanonical NFκB pathway, provides critical survival signals during B cell maturation and contributes to B cell proliferation. We found that the NFκB family member RelB is required ex vivo for B cell maturation, but cRel is required for proliferation. Combined molecular network modeling and experimentation revealed Nfkb2 p100 as a pathway switch; at moderate p100 synthesis rates in maturing B cells, BAFF fully utilizes p100 to generate the RelB:p52 dimer, whereas at high synthesis rates, p100 assembles into multimeric IκBsome complexes, which BAFF neutralizes in order to potentiate cRel activity and B cell expansion. Indeed, moderation of p100 expression or disruption of IκBsome assembly circumvented the BAFF requirement for full B cell expansion. Our studies emphasize the importance of p100 in determining distinct NFκB network states during B cell biology, which causes BAFF to have context-dependent functional consequences.
Collapse
Affiliation(s)
- Jonathan V Almaden
- Signaling Systems Laboratory and San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Rachel Tsui
- Signaling Systems Laboratory and San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yi C Liu
- Department of Microbiology, Immunology, and Molecular Genetics and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90025, USA
| | - Harry Birnbaum
- Signaling Systems Laboratory and San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Microbiology, Immunology, and Molecular Genetics and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90025, USA
| | - Maxim N Shokhirev
- Signaling Systems Laboratory and San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kim A Ngo
- Signaling Systems Laboratory and San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Microbiology, Immunology, and Molecular Genetics and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90025, USA
| | - Jeremy C Davis-Turak
- Signaling Systems Laboratory and San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Dennis Otero
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Robert C Rickert
- Program on Inflammatory Disease Research, Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Alexander Hoffmann
- Signaling Systems Laboratory and San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Microbiology, Immunology, and Molecular Genetics and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90025, USA.
| |
Collapse
|
90
|
Oropallo MA, Goenka R, Cancro MP. Spinal cord injury impacts B cell production, homeostasis, and activation. Semin Immunol 2014; 26:421-7. [PMID: 25443579 DOI: 10.1016/j.smim.2014.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 01/10/2023]
Abstract
Complex interactions govern the interplay of central nervous and immune systems, including the generation, homeostatic maintenance, and activation of B cells. Accordingly, spinal cord injury will likely impact all of these processes. Several laboratories have recently explored this possibility, and their observations in aggregate reveal both acute and chronic consequences that can vary based on the injury location. Acute effects include a transient cessation of bone marrow B lymphopoiesis, with a corresponding drop in the peripheral follicular and transitional B cell subsets, whereas the marginal zone subset is preserved. Despite recovery of B lymphopoiesis by 28 days post injury, follicular B cell numbers remain depressed; this may reflect reduced levels of the homeostatic cytokine BLyS. In general, the ability to mount T dependent antibody responses after injury are intact, as are pre-existing memory B cell pools and antibody levels. In contrast, T-independent responses are chronically compromised. Both glucocorticoid-dependent and -independent processes mediate these effects, but a detailed understanding of the mechanisms involved awaits further study. Nonetheless, these observations in toto strengthen the growing appreciation for bidirectional interactions between the CNS and immune system, highlighting the need for further basic and translational efforts.
Collapse
Affiliation(s)
- Michael A Oropallo
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 284 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Radhika Goenka
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 284 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 284 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
91
|
Horie R. Molecularly-targeted Strategy and NF-κB in lymphoid malignancies. J Clin Exp Hematop 2014; 53:185-95. [PMID: 24369220 DOI: 10.3960/jslrt.53.185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Molecularly-targeted therapy is a promising strategy for the treatment of cancer. Nuclear factor (NF)-κB is a transcription factor that is constitutively activated in various lymphoid malignancies and may therefore be a good therapeutic target. Lymphoid malignancies arise from different stages of normal lymphocyte differentiation and acquire distinct pathways for constitutive NF-κB activation. However, no NF-κB inhibitor has yet been successfully applied in clinical medicine. This review focuses on the concept of molecularly-targeted therapeutics with small molecule drugs, molecular mechanisms of constitutive NF-κB activation in lymphoid malignancies, and the development of NF-κB inhibitors. A future perspective regarding the development of NF-κB inhibitors is also included.
Collapse
Affiliation(s)
- Ryouichi Horie
- Department of Hematology, School of Medicine, Kitasato University
| |
Collapse
|
92
|
Sthoeger Z, Sharabi A, Mozes E. Novel approaches to the development of targeted therapeutic agents for systemic lupus erythematosus. J Autoimmun 2014; 54:60-71. [PMID: 24958634 DOI: 10.1016/j.jaut.2014.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 01/29/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic multisystem disease in which various cell types and immunological pathways are dysregulated. Current therapies for SLE are based mainly on the use of non-specific immunosuppressive drugs that cause serious side effects. There is, therefore, an unmet need for novel therapeutic means with improved efficacy and lower toxicity. Based on recent better understanding of the pathogenesis of SLE, targeted biological therapies are under different stages of development. The latter include B-cell targeted treatments, agents directed against the B lymphocyte stimulator (BLyS), inhibitors of T cell activation as well as cytokine blocking means. Out of the latter, Belimumab was the first drug approved by the FDA for the treatment of SLE patients. In addition to the non-antigen specific agents that may affect the normal immune system as well, SLE-specific therapeutic means are under development. These are synthetic peptides (e.g. pConsensus, nucleosomal peptides, P140 and hCDR1) that are sequences of conserved regions of molecules involved in the pathogenesis of lupus. The peptides are tolerogenic T-cell epitopes that immunomodulate only cell types and pathways that play a role in the pathogenesis of SLE without interfering with normal immune functions. Two of the peptides (P140 and hCDR1) were tested in clinical trials and were reported to be safe and well tolerated. Thus, synthetic peptides are attractive potential means for the specific treatment of lupus patients. In this review we discuss the various biological treatments that have been developed for lupus with a special focus on the tolerogenic peptides.
Collapse
Affiliation(s)
- Zev Sthoeger
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; Department of Internal Medicine B and Clinical Immunology, Kaplan Medical Center, Rehovot, Israel
| | - Amir Sharabi
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Edna Mozes
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
93
|
Abstract
B cell maturation antigen (BCMA) is a tumor necrosis family receptor (TNFR) member that is predominantly expressed on terminally differentiated B cells and, upon binding to its ligands B cell activator of the TNF family (BAFF) and a proliferation inducing ligand (APRIL), delivers pro-survival cell signals. Thus, BCMA is mostly known for its functional activity in mediating the survival of plasma cells that maintain long-term humoral immunity. The expression of BCMA has also been linked to a number of cancers, autoimmune disorders, and infectious diseases that suggest additional roles for BCMA activity. Despite recent advances in our understanding of the roles for the related TNFR members BAFF-R and transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI), the signaling pathway used by BCMA for mediating plasma cell survival as well as its putative function in certain disease states are not well understood. By examining the expression, regulation, and signaling targets of BCMA, we may gain further insight into this receptor and how it operates within cells in both health and disease. This information is important for identifying new therapeutic targets that may be relevant in treating diseases that involve the BAFF/APRIL cytokine network.
Collapse
Affiliation(s)
- Christine M Coquery
- Department of Microbiology, Immunology, & Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
94
|
Boghdadi G, Elewa EA. Increased serum APRIL differentially correlates with distinct cytokine profiles and disease activity in systemic lupus erythematosus patients. Rheumatol Int 2014; 34:1217-23. [PMID: 24748505 DOI: 10.1007/s00296-014-3020-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 04/05/2014] [Indexed: 11/27/2022]
Abstract
Cytokines play an important role in the pathogenesis of systemic lupus erythematosus (SLE). Among the cytokines that regulate B cell homeostasis is a proliferation-inducing ligand (APRIL). This study aimed to determine whether serum levels of APRIL are raised in patients with SLE and correlate with disease activity or proinflammatory cytokines production, or both. Serum APRIL, interleukin-17 (IL-17), IL-4 and interferon gamma (IFN-γ) levels were measured in forty patients with SLE and 30 healthy controls. Disease activity was assessed by SLE disease activity index (SLEDAI), and results were correlated with serum APRIL levels. Serum APRIL levels were significantly higher in patients with SLE than in healthy controls. Positive correlation was found between serum APRIL levels and total SLEDAI score and anti-dsDNA antibody titers. Moreover, serum APRIL levels was significantly higher in patients with arthritis, mucocutaneous manifestations and proteinuria. APRIL is increased in patients with active SLE accompanying the increase of IL-17 and IFN-γ. Significant positive correlations between serum levels of APRIL and IL-17 and IFN-γ and a negative correlation between serum levels of APRIL and IL-4 were found. The results suggest that APRIL may be an important marker of disease activity in patients with SLE. We provide the analyses of APRIL levels in patients with SLE, suggesting new tools for the diagnosis, prognosis and possible therapeutic management of SLE.
Collapse
Affiliation(s)
- Ghada Boghdadi
- Immunology Research Lab, Department of Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt,
| | | |
Collapse
|
95
|
Atacicept in multiple sclerosis (ATAMS): a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Neurol 2014; 13:353-63. [PMID: 24613349 DOI: 10.1016/s1474-4422(14)70028-6] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Depletion of B lymphocytes is associated with suppression of inflammatory activity in multiple sclerosis. We aimed to assess the safety and efficacy of atacicept, a recombinant fusion protein that suppresses B-cell function and antibody production. METHODS In this placebo-controlled, double-blind, 36-week, phase 2 trial (ATAMS) in Australia, Canada, Europe, and the USA, patients aged 18-60 years with relapsing multiple sclerosis were randomly assigned via an interactive voice response system in a 1:1:1:1 ratio, stratified by geographical region, to receive weekly subcutaneous injections with atacicept (25, 75, or 150 mg) or placebo. Both patients and study personnel were masked to treatment assignment. The primary endpoint was the change in mean number of gadolinium-enhancing lesions on T1-weighted MRI per patient per scan between weeks 12 and 36. Efficacy endpoints were analysed in the intention-to-treat population. Patients who completed week 36 were eligible to participate in a long-term extension study (ATAMS EXT), consisting of a double-blind phase followed by an open-label phase, for a total study time of up to 5 years. The study was terminated early after the independent data and safety monitoring board noted an increased annualised relapse rate with atacicept. The protocol was subsequently amended to include a 60-week safety follow-up, to allow treatment with approved multiple sclerosis drugs, and to change the primary endpoint to gadolinium-enhancing T1 lesions per scan during the entire double-blind period of ATAMS. Both the trial and the extension are registered with ClinicalTrials.gov, numbers NCT00642902 (ATAMS) and NCT00853762 (ATAMS EXT). FINDINGS Between April 23, 2008, and early study termination on Sept 11, 2009, 255 patients were randomly assigned: 63 to placebo, 63 to atacicept 25 mg, 64 to 75 mg, and 65 to 150 mg. 90 (35%) patients completed the week 36 treatment visit, 26 (10%) discontinued before study termination (including one who dropped out before receiving study treatment), and 139 (55%) discontinued because of study termination. During the double-blind period of ATAMS, annualised relapse rates were higher in the atacicept groups than in the placebo group (atacicept 25 mg, 0·86, 95% CI 0·43-1·74; 75 mg, 0·79, 0·40-1·58; 150 mg, 0·98, 0·52-1·81; placebo, 0·38, 0·17-0·87). Mean numbers of gadolinium-enhancing T1 lesions per scan were similar in all groups (25 mg, 2·26, 0·97-5·27; 75 mg, 2·30, 1·08-4·92; 150 mg, 2·49, 1·18-5·27; placebo, 3·07, 1·40-6·77). Seven patients (one taking placebo and six atacicept) discontinued treatment because of adverse events. One death occurred in the placebo group. During the safety follow-up, immunoglobulin concentrations and B-cell counts returned towards predose values and annualised relapse rates in the atacicept groups decreased until they were similar to that of the placebo group INTERPRETATION Increased clinical disease activity associated with atacicept suggests that the role of B cells and humoral immunity in multiple sclerosis is complex. For studies that explore therapeutic immunomodulation in multiple sclerosis, rigorous monitoring for negative effects on clinical and MRI outcomes is warranted. FUNDING Merck Serono (Merck KGaA) and EMD Serono (Merck KGaA).
Collapse
|
96
|
Yang S, Li JY, Xu W. Role of BAFF/BAFF-R axis in B-cell non-Hodgkin lymphoma. Crit Rev Oncol Hematol 2014; 91:113-22. [PMID: 24629840 DOI: 10.1016/j.critrevonc.2014.02.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/20/2014] [Accepted: 02/14/2014] [Indexed: 12/23/2022] Open
Abstract
B-cell activating factor (BAFF), as a member of the tumor necrosis factor (TNF) ligand family, plays important roles in B-cell homeostasis, tolerance, and malignancy. BAFF binds to three receptors of TNF, TACI, BCMA and BAFF-receptor (BAFF-R). In particular, the BAFF/BAFF-R pathway is crucial to the survival and growth of mature normal and malignant B-cells. BAFF is displayed on the cell surface or is released in a soluble form after cleavage from the plasma membrane. BAFF-R as the main BAFF receptor is expressed mainly on B-cells. Aberrant BAFF expression was found in malignant B-cells from B-cell non-Hodgkin lymphoma (B-NHL) patients, which protects these cells from spontaneous or drug-induced apoptosis and stimulated NF-κB activation via autocrine and/or paracrine pathways. However, the mechanisms involved in the gene expression and regulation of BAFF or BAFF-R has not been elucidated. More importantly, the design of reagents able to counteract BAFF/BAFF-R pathways may be of therapeutic value for B-NHL. Results of ongoing clinical trials with BAFF or BAFF-R antagonists are eagerly awaited.
Collapse
Affiliation(s)
- Shu Yang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Jian-Yong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.
| |
Collapse
|
97
|
Stohl W. Therapeutic targeting of the BAFF/APRIL axis in systemic lupus erythematosus. Expert Opin Ther Targets 2014; 18:473-89. [DOI: 10.1517/14728222.2014.888415] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
98
|
Sindhava VJ, Scholz JL, Stohl W, Cancro MP. APRIL mediates peritoneal B-1 cell homeostasis. Immunol Lett 2014; 160:120-7. [PMID: 24512739 DOI: 10.1016/j.imlet.2014.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 01/31/2014] [Indexed: 01/13/2023]
Abstract
BLyS (B lymphocyte stimulator) family cytokines and receptors play key roles in B-2 cell maturation and survival, but their importance for B-1 cells remains less clear. Here we use knockout mice to show that APRIL (A proliferation-inducing ligand), but not BLyS, plays a role in peritoneal B-1 cell maintenance. APRIL likely exerts its effects on peritoneal B-1 cells through binding to HSPG (heparan sulfate proteoglycans) rather than to the TACI (transmembrane activator and cyclophilin ligand interactor) receptor. Finally, we show that peritoneal macrophages express high levels of APRIL message, and are a likely local source of the cytokine in this anatomic locale.
Collapse
Affiliation(s)
- Vishal J Sindhava
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, United States
| | - Jean L Scholz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, United States
| | - William Stohl
- Division of Rheumatology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, United States
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, United States.
| |
Collapse
|
99
|
Zhang J, Ma L, Zhang SQ. Expression and purification of soluble human APRIL in Escherichia coli using ELP-SUMO tag. Protein Expr Purif 2014; 95:177-81. [PMID: 24412409 DOI: 10.1016/j.pep.2013.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/27/2013] [Accepted: 12/27/2013] [Indexed: 10/25/2022]
Abstract
APRIL is a member of the tumor necrosis factor (TNF) family of ligands that mediate tumor cells proliferation as well as survival, depending on the cellular context. In this report, we present a novel method to obtain soluble human APRIL in Escherichia coli using the elastin-like polypeptide and SUMO (ELP-SUMO) tags. The fusion protein with ELP-SUMO tag was expressed in a soluble form at 15°C. After purification based on inverse transition cycling (ITC) method, the purified ELP-SUMO-hAPRIL fusion protein was subsequently cleaved by SUMO protease to release mature hAPRIL. Following affinity chromatography, the target protein was re-purified with high purity. Finally, about 4.8mg recombinant hAPRIL was obtained from 1l bacterial culture with no less than 85% purity. The molecular mass (Mr) of the recombinant hAPRIL was confirmed by MALDI-TOF MS as Mr 16,314. The purified hAPRIL exhibits biological activity on Jurkat cells. It is the first report on soluble production of hAPRIL in E. coli using ELP-SUMO tag.
Collapse
Affiliation(s)
- Jie Zhang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, Jiangsu Province, PR China; Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Science College, Nanjing Normal University, Nanjing 210046, Jiangsu, PR China
| | - Lei Ma
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Science College, Nanjing Normal University, Nanjing 210046, Jiangsu, PR China
| | - Shuang Quan Zhang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Science College, Nanjing Normal University, Nanjing 210046, Jiangsu, PR China.
| |
Collapse
|
100
|
Goenka R, Scholz JL, Sindhava VJ, Cancro MP. New roles for the BLyS/BAFF family in antigen-experienced B cell niches. Cytokine Growth Factor Rev 2014; 25:107-13. [PMID: 24507939 DOI: 10.1016/j.cytogfr.2014.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
Abstract
BLyS family members govern selection and survival of cells in the pre-immune B cell compartment, and emerging evidence suggests similar roles in antigen-experienced B cell pools. We review the features of this family, with particular emphasis on recent findings of how BLyS influences affinity maturation in germinal centers, which lie at the intersection of the pre-immune and antigen-experienced B cell compartments. We propose a model whereby tolerogenic selection at the transitional stage and affinity maturation in the germinal center employ the same BLyS driven mechanism.
Collapse
Affiliation(s)
- Radhika Goenka
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, United States.
| | - Jean L Scholz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, United States.
| | - Vishal J Sindhava
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, United States.
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, United States.
| |
Collapse
|