51
|
Zhang T, Tran S, Clouser C, Pignoni F. Nicastrin controls aspects of photoreceptor neuron specification and differentiation in the Drosophila eye. Dev Dyn 2006; 234:590-601. [PMID: 16145661 DOI: 10.1002/dvdy.20543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nicastrin is a component of the Notch signaling pathway involved in proteolytic release of the Notch receptor intracellular domain. It has been postulated that intracellular Notch is required within the nucleus of fly eye progenitor cells to enhance (pro-neural enhancement) and then repress (lateral inhibition) transcription of pro-neural genes. We present here an analysis of Nicastrin function during eye development and find that Nicastrin is essential to early photoreceptor neuron development. Nicastrin mutant tissue displays neuronal loss or hyperplasia; these phenotypes can be rescued by targeted expression of an intracellular form of Notch. Thus, nuclear translocation of Notch and its direct regulation of gene expression appear to be critical to pro-neural enhancement as well as lateral inhibition. In addition, we show that Nicastrin as well as Notch are required to maintain normal R-cell morphology, because the nuclei of mutant photoreceptor neurons cannot maintain their proper position. Thus, Notch signaling plays a role, not only in cell fate specification, but also in differentiation of photoreceptor neurons.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
52
|
The Development of the Retina. Retina 2006. [DOI: 10.1016/b978-0-323-02598-0.50007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
53
|
Abstract
Notch signaling regulates cell fate determination and many developmental processes. Here we report that lateral inhibition, a major mechanism for Notch activity, is modulated by Hairy, a bHLH-WRPW protein. In Xenopus, Notch can have from inhibitory, permissive to enhancing roles in muscle or neural differentiation. These cell context-dependent effects correlate with Hairy expression levels from high to low, respectively, in the cells. Moreover, Notch effects can be altered upon manipulation of Hairy expression. We propose that Hairy provides a cell context in which a cell can interpret Notch and other extrinsic signals by controlling responsiveness of its target genes; this mode of Hairy-Notch interaction may apply in other systems.
Collapse
Affiliation(s)
- Yanzhen Cui
- Department of Environmental and Biomolecular Systems, Oregon Graduate Institute School of Science and Engineering, Oregon Health and Science University, 20000 NW Walker Road, Beaverton, OR 97006, USA.
| |
Collapse
|
54
|
Rogers EM, Brennan CA, Mortimer NT, Cook S, Morris AR, Moses K. Pointed regulates an eye-specific transcriptional enhancer in the Drosophila hedgehog gene, which is required for the movement of the morphogenetic furrow. Development 2005; 132:4833-43. [PMID: 16207753 DOI: 10.1242/dev.02061] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila development depends on stable boundaries between cellular territories, such as the embryonic parasegment boundaries and the compartment boundaries in the imaginal discs. Patterning in the compound eye is fundamentally different: the boundary is not stable, but moves (the morphogenetic furrow). Paradoxically, Hedgehog signaling is essential to both: Hedgehog is expressed in the posterior compartments in the embryo and in imaginal discs, and posterior to the morphogenetic furrow in the eye. Therefore, uniquely in the eye, cells receiving a Hedgehog signal will eventually produce the same protein. We report that the mechanism that underlies this difference is the special regulation of hedgehog (hh) transcription through the dual regulation of an eye specific enhancer. We show that this enhancer requires the Egfr/Ras pathway transcription factor Pointed. Recently, others have shown that this same enhancer also requires the eye determining transcription factor Sine oculis (So). We discuss these data in terms of a model for a combinatorial code of furrow movement.
Collapse
Affiliation(s)
- Edward M Rogers
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
55
|
Reynolds-Kenneally J, Mlodzik M. Notch signaling controls proliferation through cell-autonomous and non-autonomous mechanisms in the Drosophila eye. Dev Biol 2005; 285:38-48. [PMID: 16039641 DOI: 10.1016/j.ydbio.2005.05.038] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 05/18/2005] [Accepted: 05/26/2005] [Indexed: 11/22/2022]
Abstract
During Drosophila eye development, localized Notch signaling at the dorsal ventral (DV)-midline promotes growth of the entire eye field. This long-range action of Notch signaling may be mediated through the diffusible ligand of the Jak/STAT pathway, Unpaired (Upd), which was recently identified as a downstream target of Notch. However, Notch activity has not been shown to be cell-autonomously required for Upd expression and therefore yet another diffusible signal may be required for Notch activation of Upd. Our results clarify the Notch requirement, demonstrating that Notch activity at the DV-midline leads to cell-autonomous expression of Upd as monitored in loss and gain-of-function Notch clones. In addition, mutations in the Jak/STAT pathway interact genetically with the Notch pathway by suppressing Notch mediated overgrowth. N(act) clones show non-autonomous effects on the cell cycle anterior to the furrow, indicating function of the Jak/STAT pathway. However, cell-autonomous effects of Notch within and posterior to the furrow are independent of Upd. Here, Notch autonomously maintains cells in a proliferative state and blocks photoreceptor differentiation.
Collapse
Affiliation(s)
- Jessica Reynolds-Kenneally
- Brookdale Department of Molecular, Cell and Developmental Biology, Mt. Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
56
|
Cornell RA, Eisen JS. Notch in the pathway: the roles of Notch signaling in neural crest development. Semin Cell Dev Biol 2005; 16:663-72. [PMID: 16054851 DOI: 10.1016/j.semcdb.2005.06.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Here, we review recent studies that suggest that Notch signaling has two roles during neural crest development: first in establishing the neural crest domain within the ectoderm via lateral induction and subsequently in diversifying the fates of cells that arise from the neural crest via lateral inhibition. The first of these roles, specification of neural crest via lateral induction, has been explored primarily in the cranial neural folds from which the cranial neural crest arises. Evidence for such a role has thus far only been obtained from chick and frog; results from these two species differ, but share the feature that Notch signaling regulates genes that are expressed by cranial neural crest through effects on expression of Bmp family members. The second of these roles, diversification of neural crest progeny via lateral inhibition, has been identified thus far only in trunk neural crest. Evidence from several species suggests that Notch-mediated lateral inhibition functions in multiple episodes in this context, in each case inhibiting neurogenesis. In the 'standard' mode of lateral inhibition, Notch promotes proliferation and in the 'instructive' mode, it promotes specific secondary fates, including cell death or glial differentiation. We raise the possibility that a single molecular mechanism, inhibition of so-called proneural bHLH genes, underlies both modes of lateral inhibition mediated by Notch signaling.
Collapse
Affiliation(s)
- Robert A Cornell
- Department of Anatomy and Cell Biology, 1-532 Bowen Science Building, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
57
|
Firth LC, Baker NE. Extracellular Signals Responsible for Spatially Regulated Proliferation in the Differentiating Drosophila Eye. Dev Cell 2005; 8:541-51. [PMID: 15809036 DOI: 10.1016/j.devcel.2005.01.017] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 11/16/2004] [Accepted: 01/10/2005] [Indexed: 11/29/2022]
Abstract
Spatially and temporally choreographed cell cycles accompany the differentiation of the Drosophila retina. The extracellular signals that control these patterns have been identified through mosaic analysis of mutations in signal transduction pathways. All cells arrest in G1 prior to the start of neurogenesis. Arrest depends on Dpp and Hh, acting redundantly. Most cells then go through a synchronous round of cell division before fate specification and terminal cell cycle exit. Cell cycle entry is induced by Notch signaling and opposed in subsets of cells by EGF receptor activity. Unusually, Cyclin E levels are not limiting for retinal cell cycles. Rbf/E2F and the Cyclin E antagonist Dacapo are important, however. All retinal cells, including the postmitotic photoreceptor neurons, continue dividing when rbf and dacapo are mutated simultaneously. These studies identify the specific extracellular signals that pattern the retinal cell cycles and show how differentiation can be uncoupled from cell cycle exit.
Collapse
Affiliation(s)
- Lucy C Firth
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | |
Collapse
|
58
|
Baonza A, Freeman M. Control of Cell Proliferation in the Drosophila Eye by Notch Signaling. Dev Cell 2005; 8:529-39. [PMID: 15809035 DOI: 10.1016/j.devcel.2005.01.019] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 11/17/2004] [Accepted: 01/10/2005] [Indexed: 11/24/2022]
Abstract
Cell proliferation in animals must be precisely controlled, but the signaling mechanisms that regulate the cell cycle are not well characterized. A regulated terminal mitosis, called the second mitotic wave (SMW), occurs during Drosophila eye development, providing a model for the genetic analysis of proliferation control. We report a cell cycle checkpoint at the G1-S transition that initiates the SMW, and we demonstrate that Notch signaling is required for cells to overcome this checkpoint. Notch triggers the onset of proliferation by multiple pathways, including the activation of dE2F1, a member of the E2F transcription factor family. Delta to Notch signaling derepresses the inhibition of dE2F1 by RBF, and Delta expression depends on the secreted proteins Hedgehog and Dpp. Notch is also required for the expression of Cyclin A in the SMW.
Collapse
Affiliation(s)
- Antonio Baonza
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | |
Collapse
|
59
|
Daudet N, Lewis J. Two contrasting roles for Notch activity in chick inner ear development:specification of prosensory patches and lateral inhibition of hair-cell differentiation. Development 2005; 132:541-51. [PMID: 15634704 DOI: 10.1242/dev.01589] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Lateral inhibition mediated by Notch is thought to generate the mosaic of hair cells and supporting cells in the inner ear, but the effects of the activated Notch protein itself have never been directly tested. We have explored the role of Notch signalling by transiently overexpressing activated Notch (NICD) in the chick otocyst. We saw two contrasting consequences, depending on the time and site of gene misexpression: (1)inhibition of hair-cell differentiation within a sensory patch; and (2)induction of ectopic sensory patches. We infer that Notch signalling has at least two functions during inner ear development. Initially, Notch activity can drive cells to adopt a prosensory character, defining future sensory patches. Subsequently, Notch signalling within each such patch mediates lateral inhibition, restricting the proportion of cells that differentiate as hair cells so as to generate the fine-grained mixture of hair cells and supporting cells.
Collapse
MESH Headings
- Animals
- Body Patterning
- Calcium-Binding Proteins
- Cell Differentiation
- Chick Embryo
- Ear, Inner/cytology
- Ear, Inner/embryology
- Ear, Inner/metabolism
- Gene Expression Regulation, Developmental
- Hair Cells, Auditory/cytology
- Hair Cells, Auditory/embryology
- Hair Cells, Auditory/metabolism
- In Situ Hybridization
- Intercellular Signaling Peptides and Proteins
- Membrane Proteins
- Organ of Corti
- Plasmids/genetics
- Proteins/metabolism
- Receptor, Notch1
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Serrate-Jagged Proteins
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Nicolas Daudet
- Vertebrate Development Laboratory, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | |
Collapse
|
60
|
Janody F, Lee JD, Jahren N, Hazelett DJ, Benlali A, Miura GI, Draskovic I, Treisman JE. A mosaic genetic screen reveals distinct roles for trithorax and polycomb group genes in Drosophila eye development. Genetics 2004; 166:187-200. [PMID: 15020417 PMCID: PMC1470713 DOI: 10.1534/genetics.166.1.187] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The wave of differentiation that traverses the Drosophila eye disc requires rapid transitions in gene expression that are controlled by a number of signaling molecules also required in other developmental processes. We have used a mosaic genetic screen to systematically identify autosomal genes required for the normal pattern of photoreceptor differentiation, independent of their requirements for viability. In addition to genes known to be important for eye development and to known and novel components of the Hedgehog, Decapentaplegic, Wingless, Epidermal growth factor receptor, and Notch signaling pathways, we identified several members of the Polycomb and trithorax classes of genes encoding general transcriptional regulators. Mutations in these genes disrupt the transitions between zones along the anterior-posterior axis of the eye disc that express different combinations of transcription factors. Different trithorax group genes have very different mutant phenotypes, indicating that target genes differ in their requirements for chromatin remodeling, histone modification, and coactivation factors.
Collapse
Affiliation(s)
- Florence Janody
- Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Li Y, Baker NE. The roles of cis-inactivation by Notch ligands and of neuralized during eye and bristle patterning in Drosophila. BMC DEVELOPMENTAL BIOLOGY 2004; 4:5. [PMID: 15113404 PMCID: PMC420236 DOI: 10.1186/1471-213x-4-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Accepted: 04/27/2004] [Indexed: 11/17/2022]
Abstract
Background The receptor protein Notch and its ligand Delta are expressed throughout proneural regions yet non-neural precursor cells are defined by Notch activity and neural precursor cells by Notch inactivity. Not even Delta overexpression activates Notch in neural precursor cells. It is possible that future neural cells are protected by cis-inactivation, in which ligands block activation of Notch within the same cell. The Delta-ubiquitin ligase Neuralized has been proposed to antagonize cis-inactivation, favoring Notch activation. Cis-inactivation and role of Neuralized have not yet been studied in tissues where neural precursor cells are resistant to nearby Delta, however, such as the R8 cells of the eye or the bristle precursor cells of the epidermis. Results Overexpressed ligands could block Notch signal transduction cell-autonomously in non-neural cells of the epidermis and retina, but did not activate Notch nonautonomously in neural cells. High ligand expression levels were required for cis-inactivation, and Serrate was more effective than Delta, although Delta is the ligand normally regulating neural specification. Differences between Serrate and Delta depended on the extracellular domains of the respective proteins. Neuralized was found to act cell nonautonomously in signal-sending cells during eye development, inconsistent with the view that Neuralized antagonizes cis-inactivation in non-neural cells. Conclusions Delta and Neuralized contribute cell nonautonomously to Notch signaling in neurogenesis, and the model that Neuralized antagonizes cis-inactivation to permit Notch activity and specification of non-neural cells is refuted. The molecular mechanism rendering Notch insensitive to paracrine activation in neural precursor cells remains uncertain.
Collapse
Affiliation(s)
- Yanxia Li
- Department of Molecular Genetics Albert Einstein College of Medicine 1300 Morris Park Avenue Bronx NY 10261 USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10261, USA
| | - Nicholas E Baker
- Department of Molecular Genetics Albert Einstein College of Medicine 1300 Morris Park Avenue Bronx NY 10261 USA
| |
Collapse
|
62
|
Abstract
The Drosophila eye is a highly ordered epithelial tissue composed of approximately 750 subunits called ommatidia arranged in a reiterated hexagonal pattern. At higher resolution, observation of the constituent photoreceptors, cone cells, and pigment cells of the eye reveals a highly ordered mosaic of amazing regularity. This relatively simple organization belies the repeated requirement for spatially and temporally coordinated inputs from the Hedgehog (Hh), Wingless (Wg), Decapentaplegic (Dpp), JAK-STAT, Notch, and receptor tyrosine kinase (RTK) signaling pathways. This review will discuss how signaling inputs from the Notch and RTK pathways, superimposed on the developmental history of a cell, facilitate context-specific and appropriate cell fate specification decisions in the developing fly eye. Lessons learned from investigating the combinatorial signal integration strategies underlying Drosophila eye development will likely reveal cell-cell communication paradigms relevant to many aspects of invertebrate and mammalian development. Developmental Dynamics 229:162-175, 2004.
Collapse
Affiliation(s)
- Matthew G Voas
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | |
Collapse
|
63
|
Jones C, Moses K. Cell-cycle regulation and cell-type specification in the developing Drosophila compound eye. Semin Cell Dev Biol 2004; 15:75-81. [PMID: 15036210 DOI: 10.1016/j.semcdb.2003.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During nervous system development stem cell daughters must exit the proliferative cycle to adopt specific neural and glial fates and they must do so in the correct positions. Cell proliferation in the central nervous system occurs in neuroepithelia such as the neural retina and the ventricular zones. As cells are assigned specific fates they migrate out of the plane of the epithelium to form higher layers. Recent evidence from the Drosophila compound eye suggests that a novel mode of Ras pathway regulation may be crucial in both cell-cycle exit and neural patterning: "MAP Kinase cytoplasmic hold".
Collapse
Affiliation(s)
- Chonnettia Jones
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street NE, 1648 Pierce Drive, Atlanta, GA 30322-3030, USA
| | | |
Collapse
|
64
|
Fu W, Baker NE. Deciphering synergistic and redundant roles of Hedgehog, Decapentaplegic and Delta that drive the wave of differentiation in Drosophila eye development. Development 2003; 130:5229-39. [PMID: 12954721 DOI: 10.1242/dev.00764] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In Drosophila, a wave of differentiation progresses across the retinal field in response to signals from posterior cells. Hedgehog (Hh), Decapentaplegic (Dpp) and Notch (N) signaling all contribute. Clones of cells mutated for receptors and nuclear effectors of one, two or all three pathways were studied to define systematically the necessary and sufficient roles of each signal. Hh signaling alone was sufficient for progressive differentiation, acting through both the transcriptional activator Ci155 and the Ci75 repressor. In the absence of Ci, Dpp and Notch signaling together provided normal differentiation. Dpp alone sufficed for some differentiation, but Notch was not sufficient alone and acted only to enhance the effect of Dpp. Notch acted in part through downregulation of Hairy; Hh signaling downregulated Hairy independently of Notch. One feature of this signaling network is to limit Dpp signaling spatially to a range coincident with Hh.
Collapse
Affiliation(s)
- Weimin Fu
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
65
|
Lim J, Choi KW. Bar homeodomain proteins are anti-proneural in the Drosophila eye: transcriptional repression of atonal by Bar prevents ectopic retinal neurogenesis. Development 2003; 130:5965-74. [PMID: 14573515 DOI: 10.1242/dev.00818] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Atonal (Ato)/Math (Mammalian atonal homolog) family proneural proteins are key regulators of neurogenesis in both vertebrates and invertebrates. In the Drosophila eye, Ato is essential for the generation of photoreceptor neurons. Ato expression is initiated at the anterior ridge of the morphogenetic furrow but is repressed in the retinal precursor cells behind the furrow to prevent ectopic neurogenesis. We show that Ato repression is mediated by the conserved homeobox proteins BarH1 and BarH2. Loss of Bar causes cell-autonomous ectopic Ato expression, resulting in excess photoreceptor clusters. The initial ommatidial spacing at the furrow occurs normally in the absence of Bar, suggesting that the ectopic neurogenesis within Bar mutant clones is not due to the lack of Notch (N)-dependent lateral inhibition. Targeted misexpression of Bar is sufficient to repress ato expression. Furthermore, we provide evidence that Bar represses ato expression at the level of transcription without affecting the expression of an ato activator, Cubitus interruptus (Ci). Thus, we propose that Bar is essential for transcriptional repression of ato and the prevention of ectopic neurogenesis behind the furrow.
Collapse
Affiliation(s)
- Janghoo Lim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
66
|
Kenyon KL, Ranade SS, Curtiss J, Mlodzik M, Pignoni F. Coordinating proliferation and tissue specification to promote regional identity in the Drosophila head. Dev Cell 2003; 5:403-14. [PMID: 12967560 DOI: 10.1016/s1534-5807(03)00243-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Decapentaplegic and Notch signaling pathways are thought to direct regional specification in the Drosophila eye-antennal epithelium by controlling the expression of selector genes for the eye (Eyeless/Pax6, Eyes absent) and/or antenna (Distal-less). Here, we investigate the function of these signaling pathways in this process. We find that organ primordia formation is indeed controlled at the level of Decapentaplegic expression but critical steps in regional specification occur earlier than previously proposed. Contrary to previous findings, Notch does not specify eye field identity by promoting Eyeless expression but it influences eye primordium formation through its control of proliferation. Our analysis of Notch function reveals an important connection between proliferation, field size, and regional specification. We propose that field size modulates the interaction between the Decapentaplegic and Wingless pathways, thereby linking proliferation and patterning in eye primordium development.
Collapse
Affiliation(s)
- Kristy L Kenyon
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA, 02114, USA
| | | | | | | | | |
Collapse
|
67
|
Li Y, Lei L, Irvine KD, Baker NE, Li L. Notch activity in neural cells triggered by a mutant allele with altered glycosylation. Development 2003; 130:2829-40. [PMID: 12756168 DOI: 10.1242/dev.00498] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The receptor protein Notch is inactive in neural precursor cells despite neighboring cells expressing ligands. We investigated specification of the R8 neural photoreceptor cells that initiate differentiation of each Drosophila ommatidium. The ligand Delta was required in R8 cells themselves, consistent with a lateral inhibitor function for Delta. By contrast, Delta expressed in cells adjacent to R8 could not activate Notch in R8 cells. The split mutation of Notch was found to activate signaling in R8 precursor cells, blocking differentiation and leading to altered development and neural cell death. split did not affect other, inductive functions of Notch. The Ile578-->Thr578 substitution responsible for the split mutation introduced a new site for O-fucosylation on EGF repeat 14 of the Notch extracellular domain. The O-fucose monosaccharide did not require extension by Fringe to confer the phenotype. Our results suggest functional differences between Notch in neural and non-neural cells. R8 precursor cells are protected from lateral inhibition by Delta. The protection is affected by modifications of a particular EGF repeat in the Notch extracellular domain. These results suggest that the pattern of neurogenesis is determined by blocking Notch signaling, as well as by activating Notch signaling.
Collapse
Affiliation(s)
- Yanxia Li
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
68
|
Stenkamp DL, Frey RA. Extraretinal and retinal hedgehog signaling sequentially regulate retinal differentiation in zebrafish. Dev Biol 2003; 258:349-63. [PMID: 12798293 DOI: 10.1016/s0012-1606(03)00121-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hedgehog (Hh) signaling is required for eye development in vertebrates; known roles in the zebrafish include regulation of eye morphogenesis and ganglion cell and photoreceptor differentiation. We employed a temporally selective Hh signaling knockdown strategy, by using antisense morpholino oligonucleotides or the teratogenic alkaloid cyclopamine, in order to dissect the separate roles of Hh signaling arising from specific sources. We also examined the eye phenotype of zebrafish slow muscle-omitted (smu) mutants, which lack a functional smoothened gene, encoding a component of the Hh signal transduction pathway. We find that Hh signaling from extraretinal sources is required for the initiation of retinal differentiation, but this involvement may be independent of the effects of Hh signaling on optic stalk development. We also find that Hh signals from ganglion cells participate in propagating expression of ath5, and we suggest that the effects of Hh signals from the retinal pigmented epithelium on photoreceptor differentiation may be mediated by the transcription factor rx1.
Collapse
Affiliation(s)
- Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3051, USA.
| | | |
Collapse
|
69
|
Johannes B, Preiss A. Wing vein formation in Drosophila melanogaster: hairless is involved in the cross-talk between Notch and EGF signaling pathways. Mech Dev 2002; 115:3-14. [PMID: 12049762 DOI: 10.1016/s0925-4773(02)00083-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Wing vein development in Drosophila is controlled by different morphogenetic pathways, including Notch. Hairless (H) antagonizes Notch target gene activation by binding to the Notch signal transducer Suppressor of Hairless [Su(H)]. Accordingly, overexpression of H phenocopies reduction of Notch activity. Deletion of the Su(H)-binding domain in H-C2 results in loss of H activity. However, overexpression of H-C2 induces formation of ectopic veins. In a screen for genetic modifiers of this phenotype, we have identified several genes involved in Notch and epidermal growth factor (EGF) signaling. Most notably veinlet, an activator of EGF signaling, acts downstream of H-C2. H-C2 positively regulates veinlet maybe through inhibition of inter-vein determinants in agreement with a model, whereby Notch and EGF signaling pathways cross-regulate vein pre-patterning.
Collapse
Affiliation(s)
- Bernd Johannes
- Institut für Genetik (240), Universität Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | | |
Collapse
|
70
|
Ohnuma SI, Hopper S, Wang KC, Philpott A, Harris WA. Co-ordinating retinal histogenesis: early cell cycle exit enhances early cell fate determination in the Xenopus retina. Development 2002; 129:2435-46. [PMID: 11973275 DOI: 10.1242/dev.129.10.2435] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The laminar arrays of distinct cell types in the vertebrate retina are built by a histogenic process in which cell fate is correlated with birth order. To explore this co-ordination mechanistically, we altered the relative timing of cell cycle exit in the developing Xenopus retina and asked whether this affected the activity of neural determinants. We found that Xath5, a bHLH proneural gene that promotes retinal ganglion cell (RGC) fate, (Kanekar, S., Perron, M., Dorsky, R., Harris, W. A., Jan, L. Y., Jan, Y. N. and Vetter, M. L. (1997) Neuron19, 981-994), does not cause these cells to be born prematurely. To drive cells out of the cell cycle early, therefore, we misexpressed the cyclin kinase inhibitor, p27Xic1. We found that early cell cycle exit potentiates the ability of Xath5 to promote RGC fate. Conversely, the cell cycle activator, cyclin E1, which inhibits cell cycle exit, biases Xath5-expressing cells toward later neuronal fates. We found that Notch activation in this system caused cells to exit the cell cycle prematuely, and when it is misexpressed with Xath5, it also potentiates the induction of RGCs. The potentiation is counteracted by co-expression of cyclin E1. These results suggest a model of histogenesis in which the activity of factors that promote early cell cycle exit enhances the activity of factors that promote early cellular fates.
Collapse
Affiliation(s)
- Shin-ichi Ohnuma
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | | | | | | | | |
Collapse
|
71
|
Frankfort BJ, Mardon G. R8 development in theDrosophilaeye: a paradigm for neural selection and differentiation. Development 2002; 129:1295-306. [PMID: 11880339 DOI: 10.1242/dev.129.6.1295] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila eye is an outstanding model with which to decipher mechanisms of neural differentiation. Paramount to normal eye development is the organized selection and differentiation of a patterned array of R8 photoreceptors – the founding photoreceptor of each ommatidium that coordinates the incorporation of all other photoreceptors. R8 development is a complex process that requires the integration of transcription factors and signaling pathways, many of which are highly conserved and perform similar functions in other species. This article discusses the developmental control of the four key elements of R8 development: selection, spacing, differentiation and orchestration of later events. New questions that have surfaced because of recent advances in the field are addressed, and the unique characteristics of R8 development are highlighted through comparisons with neural specification in other Drosophila tissues and with ganglion cell development in the mammalian retina.
Collapse
Affiliation(s)
- Benjamin J Frankfort
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
72
|
Fetchko M, Huang W, Li Y, Lai ZC. Drosophila Gp150 is required for early ommatidial development through modulation of Notch signaling. EMBO J 2002; 21:1074-83. [PMID: 11867535 PMCID: PMC125890 DOI: 10.1093/emboj/21.5.1074] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cellular signaling activities must be tightly regulated for proper cell fate control and tissue morphogenesis. Here we report that the Drosophila leucine-rich repeat transmembrane glycoprotein Gp150 is required for viability, fertility and development of the eye, wing and sensory organs. In the eye, Gp150 plays a critical role in regulating early ommatidial formation. Gp150 is highly expressed in cells of the morphogenetic furrow (MF) region, where it accumulates exclusively in intracellular vesicles in an endocytosis-independent manner. Loss of gp150 function causes defects in the refinement of photoreceptor R8 cells and recruitment of other cells, which leads to the formation of aberrant ommatidia. Genetic analyses suggest that Gp150 functions to modulate Notch signaling. Consistent with this notion, Gp150 is co-localized with Delta in intracellular vesicles in cells within the MF region and loss of gp150 function causes accumulation of intracellular Delta protein. Therefore, Gp150 might function in intracellular vesicles to modulate Delta-Notch signaling for cell fate control and tissue morphogenesis.
Collapse
Affiliation(s)
- Michael Fetchko
- Department of Biochemistry and Molecular Biology and Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA Corresponding author e-mail:
| | - Wei Huang
- Department of Biochemistry and Molecular Biology and Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA Corresponding author e-mail:
| | - Ying Li
- Department of Biochemistry and Molecular Biology and Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA Corresponding author e-mail:
| | - Zhi-Chun Lai
- Department of Biochemistry and Molecular Biology and Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA Corresponding author e-mail:
| |
Collapse
|
73
|
Baker NE. NOTCH and the patterning of ommatidial founder cells in the developing Drosophila eye. Results Probl Cell Differ 2002; 37:35-58. [PMID: 25707068 DOI: 10.1007/978-3-540-45398-7_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Nicholas E Baker
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| |
Collapse
|
74
|
van Den Brink GR, de Santa Barbara P, Roberts DJ. Development. Epithelial cell differentiation--a Mather of choice. Science 2001; 294:2115-6. [PMID: 11739944 DOI: 10.1126/science.1067751] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- G R van Den Brink
- Academic Medical Center, Department of Experimental Internal Medicine in the Netherlands
| | | | | |
Collapse
|
75
|
Schneider ML, Turner DL, Vetter ML. Notch signaling can inhibit Xath5 function in the neural plate and developing retina. Mol Cell Neurosci 2001; 18:458-72. [PMID: 11922138 DOI: 10.1006/mcne.2001.1040] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuronal differentiation is regulated by both positive and negative regulatory factors; however, precisely how these factors interact to regulate retinogenesis is still unclear. We have examined the ability of the Notch pathway to modulate the function of the basic helix-loop-helix factor Xath5. Overexpression of Xath5 by RNA injection into cleavage-stage blastomeres promotes ectopic neurogenesis at neural plate stages and ganglion cell differentiation in the developing retina. We found that these activities of Xath5 could be inhibited by coexpression of activated Notch. Notch inhibition of Xath5 function was reversed by coexpression with the zinc finger protein X-MyT1. The Notch effector enhancer-of-split related 1 (ESR1) also blocked Xath5 activity but efficient inhibition by ESR1 required the DNA binding basic domain and the conserved WRPW motif. In addition, ESR1 inhibited the ability of Xath5 to directly activate the expression of XBrn3d, a transcription factor involved in retinal ganglion cell development. Xath5 could upregulate expression of X-Delta-1, ESR1, and ESR3, suggesting that Xath5 participates in a regulatory loop with the Notch pathway.
Collapse
Affiliation(s)
- M L Schneider
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City 84132, USA
| | | | | |
Collapse
|
76
|
Baonza A, Freeman M. Notch signalling and the initiation of neural development in the Drosophila eye. Development 2001; 128:3889-98. [PMID: 11641214 DOI: 10.1242/dev.128.20.3889] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural determination in the Drosophila eye occurs progressively. A diffusible signal, Dpp, causes undetermined cells first to adopt a ‘pre-proneural’ state in which they are primed to start differentiating. A second signal is required to trigger the activation of the transcription factor Atonal, which causes the cells to initiate overt photoreceptor neurone differentiation. Both Dpp and the second signal are dependent on Hedgehog (Hh) signalling. Previous work has shown that the Notch signalling pathway also has a proneural role in the eye (as well as a later, opposite function when it restricts the number of cells becoming photoreceptors – a process of lateral inhibition). It is not clear how the early proneural role of Notch integrates with the other signalling pathways involved. We provide evidence that Notch activation by its ligand Delta is the second Hh-dependent signal required for neural determination. Notch activity normally only triggers Atonal expression in cells that have adopted the pre-proneural state induced by Dpp. We also report that Notch drives the transition from pre-proneural to proneural by downregulating two repressors of Atonal: Hairy and Extramacrochaetae.
Collapse
Affiliation(s)
- A Baonza
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | |
Collapse
|
77
|
Lai EC, Rubin GM. Neuralized is essential for a subset of Notch pathway-dependent cell fate decisions during Drosophila eye development. Proc Natl Acad Sci U S A 2001; 98:5637-42. [PMID: 11344304 PMCID: PMC33265 DOI: 10.1073/pnas.101135498] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuralized (neur) is a neurogenic mutant of Drosophila in which many signaling events mediated by the Notch (N) receptor are disrupted. Here, we analyze the role of neur during eye development. Neur is required in a cell-autonomous fashion to restrict R8 and other photoreceptor fates and is involved in lateral inhibition of interommatidial bristles but is not required for induction of the cone cell fate. The latter contrasts with the absolute requirement for Suppressor of Hairless and the Enhancer of split-Complex for cone cell induction. Using gain-of-function experiments, we further demonstrate that ectopic wild-type and truncated Neur proteins can interfere with multiple N-controlled aspects of eye development, including both neur-dependent and neur-independent processes.
Collapse
Affiliation(s)
- E C Lai
- Howard Hughes Medical Institute, University of California, Department of Molecular and Cell Biology, 539 Life Sciences Addition, Berkeley, CA 94720-3200, USA.
| | | |
Collapse
|
78
|
Helms AW, Gowan K, Abney A, Savage T, Johnson JE. Overexpression of MATH1 disrupts the coordination of neural differentiation in cerebellum development. Mol Cell Neurosci 2001; 17:671-82. [PMID: 11312603 DOI: 10.1006/mcne.2000.0969] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An essential role for the bHLH transcription factor MATH1 in the formation of cerebellar granule cells was previously demonstrated in a Math1 null mouse. The function of regulated levels of MATH1 in granule cell development is investigated here using a gain-of-function paradigm. Overexpression of Math1 in its normal domain in transgenic mice leads to early postnatal lethality and perturbs cerebellar development. The cerebellum of the (B)MATH1 transgenic neonate is smaller with less foliation, particularly in the central vermal regions, when compared to wild-type cerebella. A detailed analysis of multiple molecular markers in brains overexpressing Math1 has revealed defects in the differentiation of cerebellar granule cells. NeuroD and doublecortin, markers normally distinguishing the discrete layered organization of granule cell maturation in the inner EGL, are aberrantly expressed in the outer EGL where MATH1-positive, proliferating cells reside. In contrast, TAG-1, a later marker of developing granule cells that labels parallel fibers, is severely diminished. The elevated MATH1 levels appear to drive expression of a subset of early differentiation markers but are insufficient for development of a mature TAG-1-expressing granule cell. Thus, balanced levels of MATH1 are essential for the correct coordination of differentiation events in granule cell development.
Collapse
Affiliation(s)
- A W Helms
- Center for Basic Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | | | | | | | | |
Collapse
|
79
|
Li Y, Baker NE. Proneural enhancement by Notch overcomes Suppressor-of-Hairless repressor function in the developing Drosophila eye. Curr Biol 2001; 11:330-8. [PMID: 11267869 DOI: 10.1016/s0960-9822(01)00093-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND The receptor protein Notch plays a conserved role in restricting neural-fate specification during lateral inhibition. Lateral inhibition requires the Notch intracellular domain to coactivate Su(H)-mediated transcription of the Enhancer-of-split Complex. During Drosophila eye development, Notch plays an additional role in promoting neural fate independently of Su(H) and E(spl)-C, and this finding suggests an alternative mechanism of Notch signal transduction. RESULTS We used genetic mosaics to analyze the proneural enhancement pathway. As in lateral inhibition, the metalloprotease Kuzbanian, the EGF repeat 12 region of the Notch extracellular domain, Presenilin, and the Notch intracellular domain were required. By contrast, proneural enhancement became constitutive in the absence of Su(H), and this led to premature differentiation and upregulation of the Atonal and Senseless proteins. Ectopic Notch signaling by Delta expression ahead of the morphogenetic furrow also caused premature differentiation. CONCLUSIONS Proneural enhancement and lateral inhibition use similar ligand binding and receptor processing but differ in the nuclear role of Su(H). Prior to Notch signaling, Su(H) represses neural development directly, not indirectly through E(spl)-C. During proneural enhancement, the Notch intracellular domain overcomes the repression of neural differentiation. Later, lateral inhibition restores the repression of neural development by a different mechanism, requiring E(spl)-C transcription. Thus, Notch restricts neurogenesis temporally to a narrow time interval between two modes of repression.
Collapse
Affiliation(s)
- Y Li
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
80
|
Affiliation(s)
- J P Kumar
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322-3030, USA
| | | |
Collapse
|
81
|
Affiliation(s)
- U Heberlein
- Department of Anatomy, University of California, San Francisco 94143-0452, USA
| | | |
Collapse
|
82
|
Treisman J. Drosophila homologues of the transcriptional coactivation complex subunits TRAP240 and TRAP230 are required for identical processes in eye-antennal disc development. Development 2001; 128:603-15. [PMID: 11171343 DOI: 10.1242/dev.128.4.603] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have identified mutations in two genes, blind spot and kohtalo, that encode Drosophila homologues of human TRAP240 and TRAP230, components of a large transcriptional coactivation complex homologous to the yeast Mediator complex. Loss of either blind spot or kohtalo has identical effects on the development of the eye-antennal disc. Eye disc cells mutant for either gene can express decapentaplegic and atonal in response to Hedgehog signaling, but they maintain inappropriate expression of these genes and fail to differentiate further. Mutant cells in the antennal disc lose expression of Distal-less and misexpress eyeless, suggesting a partial transformation towards the eye fate. blind spot and kohtalo are not required for cell proliferation or survival, and their absence cannot be rescued by activation of the Hedgehog or Notch signaling pathways. These novel and specific phenotypes suggest that TRAP240 and TRAP230 act in concert to mediate an unknown developmental signal or a combination of signals.
Collapse
Affiliation(s)
- J Treisman
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
83
|
Chanut F, Luk A, Heberlein U. A screen for dominant modifiers of ro(Dom), a mutation that disrupts morphogenetic furrow progression in Drosophila, identifies groucho and hairless as regulators of atonal expression. Genetics 2000; 156:1203-17. [PMID: 11063695 PMCID: PMC1461342 DOI: 10.1093/genetics/156.3.1203] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
ro(Dom) is a dominant allele of rough (ro) that results in reduced eye size due to premature arrest in morphogenetic furrow (MF) progression. We found that the ro(Dom) stop-furrow phenotype was sensitive to the dosage of genes known to affect retinal differentiation, in particular members of the hedgehog (hh) signaling cascade. We demonstrate that ro(Dom) interferes with Hh's ability to induce the retina-specific proneural gene atonal (ato) in the MF and that normal eye size can be restored by providing excess Ato protein. We used ro(Dom) as a sensitive genetic background in which to identify mutations that affect hh signal transduction or regulation of ato expression. In addition to mutations in several unknown loci, we recovered multiple alleles of groucho (gro) and Hairless (H). Analysis of their phenotypes in somatic clones suggests that both normally act to restrict neuronal cell fate in the retina, although they control different aspects of ato's complex expression pattern.
Collapse
Affiliation(s)
- F Chanut
- Department of Anatomy, University of California, San Francisco, California 94143, USA.
| | | | | |
Collapse
|
84
|
Lee EC, Yu SY, Baker NE. The scabrous protein can act as an extracellular antagonist of notch signaling in the Drosophila wing. Curr Biol 2000; 10:931-4. [PMID: 10959842 DOI: 10.1016/s0960-9822(00)00622-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Notch (N) is a receptor for signals that inhibit neural precursor specification [1-6]. As N and its ligand Delta (DI) are expressed homogeneously, other molecules may be differentially expressed or active to permit neural precursor cells to arise intermingled with nonneural cells [7,8]. During Drosophila wing development, the glycosyltransferase encoded by the gene fringe (fng) promotes N signaling in response to DI, but inhibits N signaling in response to Serrate (Ser), which encodes a ligand that is structurally similar to DI. Dorsal expression of Fng protein localizes N signaling to the dorsoventral (DV) wing margin [9-11]. The secreted protein Scabrous (Sca) is a candidate for modulation of N in neural cells. Mutations at the scabrous (sca) locus alter the locations where precursor cells form in the peripheral nervous system [12,13]. Unlike fringe, sca mutations act cell non-autonomously [12]. Here, we report that targeted misexpression of Sca during wing development inhibited N signaling, blocking expression of all N target genes. Sca reduced N activation in response to DI more than in response to Ser. Ligand-independent signaling by overexpression of N protein, or by expression of activated truncated N molecules, was not inhibited by Sca. Our results indicate that Sca can act on N to reduce its availability for paracrine and autocrine interactions with DI and Ser, and can act as an antagonist of N signaling.
Collapse
Affiliation(s)
- E C Lee
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
85
|
Zaffran S, Frasch M. Barbu: an E(spl) m4/m(alpha)-related gene that antagonizes Notch signaling and is required for the establishment of ommatidial polarity. Development 2000; 127:1115-30. [PMID: 10662650 DOI: 10.1242/dev.127.5.1115] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Notch signaling pathway is required, in concert with cell-type-specific transcriptional regulators and other signaling processes, for multiple cell fate decisions during mesodermal and ectodermal tissue development. In many instances, Notch signaling occurs initially in a bidirectional manner and then becomes unidirectional upon amplification of small inherent differences in signaling activity between neighboring cells. In addition to ligands and extracellular modulators of the Notch receptor, several intracellular proteins have been identified that can positively or negatively influence the activity of the Notch pathway during these dynamic processes. Here, we describe a new gene, Barbu, whose product can antagonize Notch signaling activity during Drosophila development. Barbu encodes a small and largely cytoplasmic protein with sequence similarity to the proteins encoded by the transcription units m4 and m(alpha) of the E(spl) complex. Ectopic expression studies with Barbu provide evidence that Barbu can antagonize Notch during lateral inhibition processes in the embryonic mesoderm, sensory organ specification in imaginal discs and cell type specification in developing ommatidia. Barbu loss-of-function mutations cause lethality and disrupt the establishment of planar polarity and photoreceptor specification in eye imaginal discs, which may also be a consequence of altered Notch signaling activities. Furthermore, in the embryonic neuroectoderm, Barbu expression is inducible by activated Notch. Taken together, we propose that Barbu functions in a negative feed-back loop, which may be important for the accurate adjustment of Notch signaling activity and the extinction of Notch activity between successive rounds of signaling events.
Collapse
Affiliation(s)
- S Zaffran
- Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
86
|
Kurata S, Go MJ, Artavanis-Tsakonas S, Gehring WJ. Notch signaling and the determination of appendage identity. Proc Natl Acad Sci U S A 2000; 97:2117-22. [PMID: 10681430 PMCID: PMC15763 DOI: 10.1073/pnas.040556497] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Notch signaling pathway defines an evolutionarily conserved cell-cell interaction mechanism that throughout development controls the ability of precursor cells to respond to developmental signals. Here we show that Notch signaling regulates the expression of the master control genes eyeless, vestigial, and Distal-less, which in combination with homeotic genes induce the formation of eyes, wings, antennae, and legs. Therefore, Notch is involved in a common regulatory pathway for the determination of the various Drosophila appendages.
Collapse
Affiliation(s)
- S Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | |
Collapse
|
87
|
Greenwood S, Struhl G. Progression of the morphogenetic furrow in the Drosophila eye: the roles of Hedgehog, Decapentaplegic and the Raf pathway. Development 1999; 126:5795-808. [PMID: 10572054 DOI: 10.1242/dev.126.24.5795] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During Drosophila eye development, Hedgehog (Hh) protein secreted by maturing photoreceptors directs a wave of differentiation that sweeps anteriorly across the retinal primordium. The crest of this wave is marked by the morphogenetic furrow, a visible indentation that demarcates the boundary between developing photoreceptors located posteriorly and undifferentiated cells located anteriorly. Here, we present evidence that Hh controls progression of the furrow by inducing the expression of two downstream signals. The first signal, Decapentaplegic (Dpp), acts at long range on undifferentiated cells anterior to the furrow, causing them to enter a ‘pre-proneural’ state marked by upregulated expression of the transcription factor Hairy. Acquisition of the pre-proneural state appears essential for all prospective retinal cells to enter the proneural pathway and differentiate as photoreceptors. The second signal, presently unknown, acts at short range and is transduced via activation of the Serine-Threonine kinase Raf. Activation of Raf is both necessary and sufficient to cause pre-proneural cells to become proneural, a transition marked by downregulation of Hairy and upregulation of the proneural activator, Atonal (Ato), which initiates differentiation of the R8 photoreceptor. The R8 photoreceptor then organizes the recruitment of the remaining photoreceptors (R1-R7) through additional rounds of Raf activation in neighboring pre-proneural cells. Finally, we show that Dpp signaling is not essential for establishing either the pre-proneural or proneural states, or for progression of the furrow. Instead, Dpp signaling appears to increase the rate of furrow progression by accelerating the transition to the pre-proneural state. In the abnormal situation in which Dpp signaling is blocked, Hh signaling can induce undifferentiated cells to become pre-proneural but does so less efficiently than Dpp, resulting in a retarded rate of furrow progression and the formation of a rudimentary eye.
Collapse
Affiliation(s)
- S Greenwood
- Howard Hughes Medical Institute, Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | |
Collapse
|
88
|
Brennan K, Tateson R, Lieber T, Couso JP, Zecchini V, Arias AM. The abruptex mutations of notch disrupt the establishment of proneural clusters in Drosophila. Dev Biol 1999; 216:230-42. [PMID: 10588874 DOI: 10.1006/dbio.1999.9501] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The receptor encoded by the Notch gene plays a central role in preventing cells from making decisions about their fates until appropriate signals are present. This function of Notch requires the product of the Suppressor of Hairless gene. Loss of either Notch or Suppressor of Hairless function results in cells making premature and incorrect cell fate decisions, whilst increases in Notch signalling prevent cells from making these decisions. Here we find that the proneural clusters are not established correctly in certain Abruptex mutations of Notch and this failure to establish proneural clusters correctly is not due to increased Notch signalling during lateral inhibition. In addition we show that the overexpression of certain dominant negative Notch molecules can disrupt the initiation of proneural cluster development in a manner similar to the Abruptex mutants.
Collapse
Affiliation(s)
- K Brennan
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | | | | | | | | | | |
Collapse
|
89
|
Helms W, Lee H, Ammerman M, Parks AL, Muskavitch MA, Yedvobnick B. Engineered truncations in the Drosophila mastermind protein disrupt Notch pathway function. Dev Biol 1999; 215:358-74. [PMID: 10545243 DOI: 10.1006/dbio.1999.9477] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The phenotypes and genetic interactions associated with mutations in the Drosophila mastermind (mam) gene have implicated it as a component of the Notch signaling pathway. However, its function and site of action within many tissues requiring Notch signaling have not been thoroughly investigated. To address these questions, we have constructed truncated versions of the Mam protein that elicit dominant phenotypes when expressed in imaginal tissues under GAL4-UAS regulation. By several criteria, these effects appear to phenocopy loss of function for the Notch pathway. When expressed in the notum, truncated Mam results in failure of lateral inhibition within proneural clusters and perturbations in cell fate specification within the sensory organ precursor cell lineage. Expression in the wing is associated with vein thickening and margin defects, including nicking and bristle loss. The truncation-associated wing margin phenotypes are modified by mutations in Notch and Wg pathway genes and are correlated with depressed expression of wg, cut, and vg. These data support the idea that Mam truncations have lost key effector domains and therefore behave as dominant-negative proteins. Coexpression of Delta or an activated form of Notch suppresses the effects of the Mam truncation, suggesting that Mam can function upstream of ligand-receptor interaction in the Notch pathway. This system should prove useful for the investigation of the role of Mam within the Notch pathway.
Collapse
Affiliation(s)
- W Helms
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
90
|
Steneberg P, Hemphälä J, Samakovlis C. Dpp and Notch specify the fusion cell fate in the dorsal branches of the Drosophila trachea. Mech Dev 1999; 87:153-63. [PMID: 10495279 DOI: 10.1016/s0925-4773(99)00157-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Decapentaplegic (Dpp) signaling determines the number of cells that migrate dorsally to form the dorsal primary branch during tracheal development. We report that Dpp signaling is also required for the differentiation of one of three different cell types in the dorsal branches, the fusion cell. In Mad mutant embryos or in embryos expressing dominant negative constructs of the two type I Dpp receptors in the trachea the number of cells expressing fusion cell-specific marker genes is reduced and fusion of the dorsal branches is defective. Ectopic expression of Dpp or the activated form of the Dpp receptor Tkv in all tracheal cells induces ectopic fusions of the tracheal lumen and ectopic expression of fusion gene markers in all tracheal branches. Among the fusion marker genes that are activated in the trachea in response to ectopic Dpp signaling is Delta. In conditional Notch loss of function mutants additional tracheal cells adopt the fusion cell fate and ectopic expression of an activated form of the Notch receptor in fusion cells results in suppression of fusion cell markers and disruption of the branch fusion. The number of cells that express the fusion cell markers in response to ectopic Dpp signaling is increased in Notch(ts1) mutants, suggesting that the two signaling pathways have opposing effects in the selection of the fusion cells in the dorsal branches.
Collapse
Affiliation(s)
- P Steneberg
- Umeå Center for Molecular Pathogenesis, Umeå University, S-90187, Umeå, Sweden
| | | | | |
Collapse
|
91
|
Domínguez M. Dual role for Hedgehog in the regulation of the proneural gene atonal during ommatidia development. Development 1999; 126:2345-53. [PMID: 10225994 DOI: 10.1242/dev.126.11.2345] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The differentiation of cells in the Drosophila eye is precisely coordinated in time and space. Each ommatidium is founded by a photoreceptor (R)8 cell and these founder cells are added in consecutive rows. Within a row, the nascent R8 cells appear in precise locations that lie out of register with the R8 cells in the previous row. The bHLH protein Atonal determines the development of the R8 cells. The expression of atonal is induced shortly before the selection of a new row of R8 cells and is initially detected in a stripe. Subsequently atonal expression resolves into regularly spaced clusters (proneural clusters) that prefigure the positions of the future R8 cells. The serial induction of atonal expression, and hence the increase in the number of rows of R8 cells, requires Hedgehog function. Here it is shown that, in addition to this role, Hedgehog signalling is also required to repress atonal expression between the nascent proneural clusters. This repression has not been previously described and appears to be critical for the positioning of Atonal proneural clusters and, therefore, the R8 cells. The two temporal responses to Hedgehog are due to direct stimulation of the responding cells by Hedgehog itself.
Collapse
Affiliation(s)
- M Domínguez
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| |
Collapse
|
92
|
Ligoxygakis P, Bray SJ, Apidianakis Y, Delidakis C. Ectopic expression of individual E(spl) genes has differential effects on different cell fate decisions and underscores the biphasic requirement for notch activity in wing margin establishment in Drosophila. Development 1999; 126:2205-14. [PMID: 10207145 DOI: 10.1242/dev.126.10.2205] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A common consequence of Notch signalling in Drosophila is the transcriptional activation of seven Enhancer of split [E(spl)] genes, which encode a family of closely related basic-helix-loop-helix transcriptional repressors. Different E(spl) proteins can functionally substitute for each other, hampering loss-of-function genetic analysis and raising the question of whether any specialization exists within the family. We expressed each individual E(spl) gene using the GAL4-UAS system in order to analyse their effect in a number of cell fate decisions taking place in the wing imaginal disk. We focussed on sensory organ precursor determination, wing vein determination and wing pattern formation. All of the E(spl) proteins affect the first two processes in the same way, namely they antagonize neural precursor and vein fates. Yet, the efficacy of this antagonism is quite distinct: E(spl)mbeta has the strongest vein suppression effect, whereas E(spl)m8 and E(spl)m7 are the most active bristle suppressors. During wing patterning, Notch activity orchestrates a complex sequence of events that define the dorsoventral boundary of the wing. We have discerned two phases within this process based on the sensitivity of N loss-of-function phenotypes to concomitant expression of E(spl) genes. E(spl) proteins are initially involved in repression of the vg quadrant enhancer, whereas later they appear to relay the Notch signal that triggers activation of cut expression. Of the seven proteins, E(spl)mgamma is most active in both of these processes. In conclusion, E(spl) proteins have partially redundant functions, yet they have evolved distinct preferences in implementing different cell fate decisions, which closely match their individual normal expression patterns.
Collapse
Affiliation(s)
- P Ligoxygakis
- Institute of Molecular Biology, Foundation for Research and Technology Department of Biology, University of Crete, Vasilika Vouton, GR 71110, Heraklion, Greece
| | | | | | | |
Collapse
|
93
|
Wakamatsu Y, Maynard TM, Jones SU, Weston JA. NUMB localizes in the basal cortex of mitotic avian neuroepithelial cells and modulates neuronal differentiation by binding to NOTCH-1. Neuron 1999; 23:71-81. [PMID: 10402194 DOI: 10.1016/s0896-6273(00)80754-0] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The importance of lateral inhibition mediated by NOTCH signaling is well demonstrated to control neurogenesis both in invertebrates and vertebrates. We have identified the chicken homolog of Drosophila numb, which suppresses NOTCH signaling. We show that chicken NUMB (c-NUMB) protein is localized to the basal cortex of mitotic neuroepithelial cells, suggesting that c-NUMB regulates neurogenesis by the modification of NOTCH signaling through asymmetrical cell division. Consistent with this suggestion, we show (1) that c-NUMB interferes with the nuclear translocation of activated c-NOTCH-1 through direct binding to the PEST sequence in the cytoplasmic domain of c-NOTCH-1 and (2) that c-NUMB interferes with c-NOTCH-1-mediated inhibition of neuronal differentiation.
Collapse
Affiliation(s)
- Y Wakamatsu
- Institute of Neuroscience, University of Oregon, Eugene 97403, USA
| | | | | | | |
Collapse
|
94
|
Nagel AC, Preiss A. Notchspl is deficient for inductive processes in the eye, and E(spl)D enhances split by interfering with proneural activity. Dev Biol 1999; 208:406-15. [PMID: 10191054 DOI: 10.1006/dbio.1999.9203] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eye development in Drosophila involves the Notch signaling pathway at several consecutive steps. At first, Notch signaling is required for stable expression of the proneural gene atonal (ato), thereby maintaining neural potential of the cells. Second, in a process of lateral inhibition, Notch signaling is necessary to confine neural commitment to individual photoreceptor founder cells. Later on, the successive addition of cells to maturing ommatidia is under Notch control. In contrast to previous assumptions, the recessive Notch allele split (Nspl) involves specifically loss of the early proneural Notch activity in the eye, which is in agreement with bristle defects as well. As a result, fewer cells gain neural potential and fewer ommatidia are founded. Enhancement of this phenotype by the dominant mutation Enhancer of split [E(spl)D] happens within the remaining proneural cells, in which Ato expression is abolished. In line with genetic data, this process occurs primarily at the protein level due to altered protein-protein interactions between the aberrant E(spl)D and proneural proteins. Nspl is the first Notch mutation known to specifically affect Notch inductive processes during eye development.
Collapse
Affiliation(s)
- A C Nagel
- Institut für Genetik (240), Universität Hohenheim, Garbenstrasse 30, Stuttgart, 70599, Germany
| | | |
Collapse
|
95
|
Lesokhin AM, Yu SY, Katz J, Baker NE. Several levels of EGF receptor signaling during photoreceptor specification in wild-type, Ellipse, and null mutant Drosophila. Dev Biol 1999; 205:129-44. [PMID: 9882502 DOI: 10.1006/dbio.1998.9121] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dominant Ellipse mutant alleles of the Drosophila EGF receptor homologue (DER) dramatically suppress ommatidium development in the eye and induce ectopic vein development in the wing. Their phenotype suggests a possible role for DER in specifying the founder R8 photoreceptor cells for each ommatidium. Here we analyze the basis of Ellipse mutations and use them to probe the role of DER in eye development. We show that Elp mutations result from a single amino acid substitution in the kinase domain which activates tyrosine kinase activity and MAP kinase activation in tissue culture cells. Transformant studies confirmed that the mutation is hypermorphic in vivo, but the DER function was elevated less than by ectopic expression of the ligand spitz. Ectopic spi promoted photoreceptor differentiation, even in the absence of R8 cells. Pathways downstream of DER activation were assessed to explore the basis of these distinct outcomes. Elp mutations caused overexpression of the Notch target gene E(spl) mdelta and required function of Notch to suppress ommatidium formation. The Elp phenotype also depended on the secreted protein argos and was reverted in Elp aos double mutants. Complete loss of DER function in clones of null mutant cells led to delay in R8 specification and subsequently to loss of mutant cells. The DER null phenotype was distinct from that of either spitz or vein mutants, suggesting that a combination of these or other ligands was required for aspects of DER function. In normal development DER protein was expressed in most retinal cells, but at distinct levels. We used an antibody specific for diphospho-ERK as well as expression of the DER target gene argos to assess the pattern of DER activity, finding highest activity in the intermediate groups of cells in the morphogenetic furrow. However, studies of mutant genotypes suggested that this activity may not be required for normal ommatidium development. Since we saw distinct phenotypic effects of four different levels of DER activity associated with wild-type, null mutant, Elp mutant, or fully activated DER function, we propose that multiple thresholds separate several aspects of DER function. These include activation of N signaling to repress R8 specification, turning on argos expression, and recruiting photoreceptors R1-R7. It is possible that during normal eye development these thresholds are attained by different cells, contributing to the pattern of retinal differentiation.
Collapse
Affiliation(s)
- A M Lesokhin
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | | | | | | |
Collapse
|
96
|
Steinbach OC, Ulshöfer A, Authaler A, Rupp RA. Temporal restriction of MyoD induction and autocatalysis during Xenopus mesoderm formation. Dev Biol 1998; 202:280-92. [PMID: 9769179 DOI: 10.1006/dbio.1998.8993] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Xenopus, the activation of the myogenic determination factors MyoD and Myf-5 in the muscle-forming region of the embryo occurs in response to mesoderm-inducing factors (MIFs). Different members of the FGF, TGF-beta, and Wnt protein families have been implicated in this process, but how MIFs induce the myogenic regulators is not known. For MyoD, the induction process may serve to locally stabilize a transient burst of ubiquitous transcription at the midblastula transition, possibly by triggering MyoD's autocatalytic loop. Here we have sought to distinguish separate activating functions during MyoD induction by analyzing when MyoD responds to different MIF signaling or to MyoD autoactivation. We show that MyoD induction depends on the developmental age of the induced cells, rather than on the type or time point of inducer application. At the permissive time, de novo MyoD induction by Activin requires less than 90 min, arguing for an immediate response, rather than a series of inductive events. MyoD autoactivation is direct, but subject to the same temporal restriction as MyoD induction by MIF signaling. Further evidence implicating MyoD autocatalysis as an essential component of the induction process comes from the observation that both autocatalysis and induction of MyoD are selectively repressed by a dominant-negative MyoD mutant. In summary, our observations let us conclude that MyoD's expression domain in the embryo results from an interplay of timed changes in cellular competence, pleiotropic signaling pathways, and autocatalysis.
Collapse
Affiliation(s)
- O C Steinbach
- Friedrich Miescher Laboratorium, Max Planck-Gesellschaft, Spemannstrasse 37-39, Tübingen, 72076, Germany
| | | | | | | |
Collapse
|
97
|
Sun Y, Jan LY, Jan YN. Transcriptional regulation of atonal during development of the Drosophila peripheral nervous system. Development 1998; 125:3731-40. [PMID: 9716538 DOI: 10.1242/dev.125.18.3731] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
atonal is a proneural gene for the development of Drosophila chordotonal organs and photoreceptor cells. We show here that atonal expression is controlled by modular enhancer elements located 5′ or 3′ to the atonal-coding sequences. During chordotonal organ development, the 3′ enhancer directs expression in proneural clusters; whereas successive modular enhancers located in the 5′ region drive tissue-specific expression in chordotonal organ precursors in the embryo and larval leg, wing and antennal imaginal discs. Similarly, in the eye disc, the 3′ enhancer directs initial expression in a stripe anterior to the morphogenetic furrow. These atonal-expressing cells are then patterned through a Notch-dependent process into initial clusters, representing the earliest patterning event yet identified during eye morphogenesis. A distinct 5′ enhancer drives expression in intermediate groups and R8 cells within and posterior to the morphogenetic furrow. Both enhancers are required for normal atonal function in the eye. The 5′ enhancer, but not the 3′ enhancer, depends on endogenous atonal function, suggesting a switch from regulation directed by other upstream genes to atonal autoregulation during the process of lateral inhibition. The regulatory regions identified in this study can thus account for atonal expression in every tissue and essentially in every stage of its expression during chordotonal organ and photoreceptor development.
Collapse
Affiliation(s)
- Y Sun
- Departments of Physiology and Biochemistry, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143-0725, USA
| | | | | |
Collapse
|
98
|
Ligoxygakis P, Yu SY, Delidakis C, Baker NE. A subset of notch functions during Drosophila eye development require Su(H) and the E(spl) gene complex. Development 1998; 125:2893-900. [PMID: 9655811 DOI: 10.1242/dev.125.15.2893] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Notch signalling pathway is involved in many processes where cell fate is decided. Previous work showed that Notch is required at successive steps during R8 specification in the Drosophila eye. Initially, Notch enhances atonal expression and promotes atonal function. After atonal autoregulation has been established, Notch signalling represses atonal expression during lateral specification. In this paper we investigate which known components of the Notch pathway are involved in each signalling process. Using clonal analysis we show that a ligand of Notch, Delta, is required along with Notch for both proneural enhancement and lateral specification, while the downstream components Suppressor-of-Hairless and Enhancer-of-Split are involved only in lateral specification. Our data point to a distinct signal transduction pathway during proneural enhancement by Notch. Using misexpression experiments we also show that particular Enhancer-of-split bHLH genes can differ greatly in their contribution to lateral specification.
Collapse
Affiliation(s)
- P Ligoxygakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, and Department of Biology, University of Crete, Box 1527, GR 71110 Heraklion, Greece
| | | | | | | |
Collapse
|
99
|
Perron M, Kanekar S, Vetter ML, Harris WA. The genetic sequence of retinal development in the ciliary margin of the Xenopus eye. Dev Biol 1998; 199:185-200. [PMID: 9698439 DOI: 10.1006/dbio.1998.8939] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ciliary marginal zone is a perpetually self-renewing proliferative neuroepithelium at the perimeter of the retina in amphibians and fish. In the ciliary marginal zone (CMZ), cells are spatially ordered with respect to cellular development, deep stem cells being most peripheral and differentiating retinal progenitors being most central. This spatial gradient in the CMZ recapitulates embryonic retinogenesis and provides a powerful system to examine the relative order of gene expression during this process. A number of neurogenic and proneural genes have been described to have interacting roles in the development of the vertebrate nervous system, and so it is of major importance to put these genes in a hierarchical pathway. In no other system yet described are the developmental stages of neurogenesis arrayed so clearly in a spatial pattern as in the CMZ. We have therefore taken advantage of this system, using double in situ hybridizations on cross sections of the CMZ, to compare the spatial patterns of 15 proneural, neurogenic, and other genes involved in early and late phases of retinal development. In addition, we have positioned these expression patterns with respect to cell division. What emerges from this work is a spatial ordering of gene expression that predicts a genetic hierarchy governing vertebrate retinogenesis. By injecting messenger RNA for some of these genes into blastomeres of the Xenopus embryo and examining the effects on expression of the putative downstream genes, we have been able to corroborate some of the relationships between genes predicted to act sequentially.
Collapse
Affiliation(s)
- M Perron
- Department of Anatomy, University of Cambridge, United Kingdom
| | | | | | | |
Collapse
|
100
|
Brewster R, Lee J, Ruiz i Altaba A. Gli/Zic factors pattern the neural plate by defining domains of cell differentiation. Nature 1998; 393:579-83. [PMID: 9634234 DOI: 10.1038/31242] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Three cell types differentiate in the early frog neural plate: neural crest at the lateral edges, floorplate at the midline and primary neurons in three bilateral stripes. Floorplate cells and ventral neurons are induced by Sonic hedgehog (Shh) and neural crest and dorsal neurons are induced by epidermal factors such as bone morphogenetic proteins (BMPs). Neurogenesis in a subset of cells within the stripes involves lateral inhibition. However, the process by which pools of precursors are defined in stereotypic domains in response to inductive signals is unknown. Here we show that frog Zic2 encodes a zinc-finger transcription factor of the Gli superfamily which is expressed in stripes that alternate with those in which primary neurons differentiate and overlap the domains of floorplate and neural crest progenitors. Zic2 inhibits neurogenesis and induces neural crest differentiation. Conversely, Gli proteins are widely expressed, induce neurogenesis and inhibit neural crest differentiation. Zic2 is therefore a vertebrate pre-pattern gene, encoding anti-neurogenic and crest-inducing functions that counteract the neurogenic but not the floorplate-inducing activity of Gli proteins. We propose that the combined function of Gli/Zic genes responds to inductive signals and induces patterned neural cell differentiation.
Collapse
Affiliation(s)
- R Brewster
- The Skirball Institute, Developmental Genetics Program, Department of Cell Biology, NYU Medical Center, New York 10016, USA
| | | | | |
Collapse
|