51
|
Malhotra S, Kovats S, Zhang W, Coggeshall KM. B cell antigen receptor endocytosis and antigen presentation to T cells require Vav and dynamin. J Biol Chem 2009; 284:24088-97. [PMID: 19586920 DOI: 10.1074/jbc.m109.014209] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antigen binding to the B cell antigen receptor (BCR) initiates an array of signaling events. These include endocytosis of ligand-receptor complexes via clathrin-coated pits, trafficking of the internalized ligand to lysosomes, degradation of the associated proteins to peptides, and peptide presentation on nascent major histocompatibility complex class II to T cells. The signal transduction events supporting BCR internalization are not well understood. We have identified a pathway supporting BCR internalization that includes the Vav1 and/or Vav3 isoforms and the GTPase dynamin. Vav1 and -3 are not required for B cell development and maturation, nor for a variety of BCR-induced signaling events nor for BCR signaling leading to major histocompatibility complex class II and CD80 expression, but Vav1 and/or -3 are absolutely required for BCR endocytosis and BCR-induced Rac-GTP loading. This is the first demonstration of a link between Vav and Rac in BCR internalization leading to antigen presentation to T cells.
Collapse
Affiliation(s)
- Shikha Malhotra
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
52
|
Katzav S. Vav1: A hematopoietic signal transduction molecule involved in human malignancies. Int J Biochem Cell Biol 2009; 41:1245-8. [DOI: 10.1016/j.biocel.2008.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Revised: 11/23/2008] [Accepted: 11/24/2008] [Indexed: 11/29/2022]
|
53
|
Lazer G, Idelchuk Y, Schapira V, Pikarsky E, Katzav S. The haematopoietic specific signal transducer Vav1 is aberrantly expressed in lung cancer and plays a role in tumourigenesis. J Pathol 2009; 219:25-34. [DOI: 10.1002/path.2579] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
54
|
Abstract
SUMMARY T-cell activation is mediated by antigen-specific signals from the TCRzeta/CD3 and CD4-CD8-p56lck complexes in combination with additional co-signals provided by coreceptors such as CD28, inducible costimulator (ICOS), cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed death (PD-1), and others. CD28 and ICOS provide positive signals that promote and sustain T-cell responses, while CTLA-4 and PD-1 limit responses. The balance between stimulatory and inhibitory co-signals determines the ultimate nature of T-cell responses where response to foreign pathogen is achieved without excess inflammation and autoimmunity. In this review, we outline the current knowledge of the CD28 and CTLA-4 signaling mechanisms [involving phosphatidylinositol 3 kinase (PI3K), growth factor receptor-bound protein 2 (Grb2), Filamin A, protein kinase C theta (PKCtheta), and phosphatases] that control T-cell immunity. We also present recent findings on T-cell receptor-interacting molecule (TRIM) regulation of CTLA-4 surface expression, and a signaling pathway involving CTLA-4 activation of PI3K and protein kinase B (PKB)/AKT by which cell survival is ensured under conditions of anergy induction.
Collapse
Affiliation(s)
- Christopher E Rudd
- Department of Pathology, Cell Signalling Section, University of Cambridge, Cambridge, UK.
| | | | | |
Collapse
|
55
|
Dumont C, Corsoni-Tadrzak A, Ruf S, de Boer J, Williams A, Turner M, Kioussis D, Tybulewicz VLJ. Rac GTPases play critical roles in early T-cell development. Blood 2009; 113:3990-8. [PMID: 19088377 PMCID: PMC2673125 DOI: 10.1182/blood-2008-09-181180] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 12/14/2008] [Indexed: 01/11/2023] Open
Abstract
The Rac1 and Rac2 GTPases play important roles in many processes including cytoskeletal reorganization, proliferation, and survival, and are required for B-cell development. Previous studies had shown that deficiency in Rac2 did not affect T-cell development, whereas the function of Rac1 in this process has not been investigated. We now show that simultaneous absence of both GTPases resulted in a very strong developmental block at the pre-TCR checkpoint and in defective positive selection. Unexpectedly, deficiency of Rac1 and Rac2 also resulted in the aberrant survival of thymocytes lacking expression of TCR beta, showing hallmarks of hyperactive Notch signaling. Furthermore, we found a similar novel phenotype in the absence of Vav1, Vav2, and Vav3, which function as guanine nucleotide exchange factors for Rac1 and Rac2. These results show that a pathway containing Vav and Rac proteins may negatively regulate Notch signaling during early thymic development.
Collapse
Affiliation(s)
- Celine Dumont
- Division of Immune Cell Biology, Medical Research Council (MRC) National Institute for Medical Research, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Imamura Y, Oda A, Katahira T, Bundo K, Pike KA, Ratcliffe MJH, Kitamura D. BLNK binds active H-Ras to promote B cell receptor-mediated capping and ERK activation. J Biol Chem 2009; 284:9804-13. [PMID: 19218240 DOI: 10.1074/jbc.m809051200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cross-linked B cell receptor (BCR) aggregates on the cell surface, then assembles into the "cap" where Ras is co-localized, and transduces various intracellular signals including Ras-ERK activation. BCR signals induce proliferation, differentiation, or apoptosis of B cells depending on their maturational stage. The adaptor protein BLNK binds various signaling proteins and Igalpha, a signaling subunit of the BCR complex, and plays an important role in the BCR signal transduction. BLNK was shown to be required for activation of ERK, but not of Ras, after BCR cross-linking, raising a question how BLNK facilitates ERK activation. Here we demonstrate that BLNK binds the active form of H-Ras, and their binding is facilitated by BCR cross-linking. We have identified a 10-amino acid Ras-binding domain within BLNK that is necessary for restoration of BCR-mediated ERK activation in BLNK-deficient B cells and for anti-apoptotic signaling. The Ras-binding domain fused with a CD8alpha-Igalpha chimeric receptor could induce prolonged ERK phosphorylation, transcriptional activation of Elk1, as well as the capping of the receptor in BLNK-deficient B cells. These results indicate that BLNK recruits active H-Ras to the BCR complex, which is essential for sustained surface expression of BCR in the form of the cap and for the signal leading to functional ERK activation.
Collapse
Affiliation(s)
- Yasuhiro Imamura
- Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | | | | | | | | | |
Collapse
|
57
|
Siliceo M, Mérida I. T cell receptor-dependent tyrosine phosphorylation of beta2-chimaerin modulates its Rac-GAP function in T cells. J Biol Chem 2009; 284:11354-63. [PMID: 19201754 DOI: 10.1074/jbc.m806098200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The actin cytoskeleton has an important role in the organization and function of the immune synapse during antigen recognition. Dynamic rearrangement of the actin cytoskeleton in response to T cell receptor (TCR) triggering requires the coordinated activation of Rho family GTPases that cycle between active and inactive conformations. This is controlled by GTPase-activating proteins (GAP), which regulate inactivation of Rho GTPases, and guanine exchange factors, which mediate their activation. Whereas much attention has centered on guanine exchange factors for Rho GTPases in T cell activation, the identity and functional roles of the GAP in this process are largely unknown. We previously reported beta2-chimaerin as a diacylglycerol-regulated Rac-GAP that is expressed in T cells. We now demonstrate Lck-dependent phosphorylation of beta2-chimaerin in response to TCR triggering. We identify Tyr-153 as the Lck-dependent phosphorylation residue and show that its phosphorylation negatively regulates membrane stabilization of beta2-chimaerin, decreasing its GAP activity to Rac. This study establishes the existence of TCR-dependent regulation of beta2-chimaerin and identifies a novel mechanism for its inactivation.
Collapse
Affiliation(s)
- María Siliceo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, E-28049 Madrid, Spain
| | | |
Collapse
|
58
|
Wound healing defect of Vav3-/- mice due to impaired {beta}2-integrin-dependent macrophage phagocytosis of apoptotic neutrophils. Blood 2009; 113:5266-76. [PMID: 19147786 DOI: 10.1182/blood-2008-07-166702] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vav proteins are guanine-nucleotide exchange factors implicated in leukocyte functions by relaying signals from immune response receptors and integrins to Rho-GTPases. We here provide first evidence for a role of Vav3 for beta(2)-integrins-mediated macrophage functions during wound healing. Vav3(-/-) and Vav1(-/-)/Vav3(-/-) mice revealed significantly delayed healing of full-thickness excisional wounds. Furthermore, Vav3(-/-) bone marrow chimeras showed an identical healing defect, suggesting that Vav3 deficiency in leukocytes, but not in other cells, is causal for the impaired wound healing. Vav3 was required for the phagocytotic cup formation preceding macrophage phagocytosis of apoptotic neutrophils. Immunoprecipitation and confocal microscopy revealed Vav3 activation and colocalization with beta(2)-integrins at the macrophage membrane upon adhesion to ICAM-1. Moreover, local injection of Vav3(-/-) or beta(2)-integrin(CD18)(-/-) macrophages into wound margins failed to restore the healing defect of Vav3(-/-) mice, suggesting Vav3 to control the beta(2)-integrin-dependent formation of a functional phagocytic synapse. Impaired phagocytosis of apoptotic neutrophils by Vav3(-/-) macrophages was causal for their reduced release of active transforming growth factor (TGF)-beta(1), for decreased myofibroblasts differentiation and myofibroblast-driven wound contraction. TGF-beta(1) deficiency in Vav3(-/-) macrophages was causally responsible for the healing defect, as local injection of either Vav3-competent macrophages or recombinant TGF-beta(1) into wounds of Vav3(-/-) mice fully rescued the delayed wound healing.
Collapse
|
59
|
Abstract
This year marks the 25th anniversary of the first Annual Review of Immunology article to describe features of the T cell antigen receptor (TCR). In celebration of this anniversary, we begin with a brief introduction outlining the chronology of the earliest studies that established the basic paradigm for how the engaged TCR transduces its signals. This review continues with a description of the current state of our understanding of TCR signaling, as well as a summary of recent findings examining other key aspects of T cell activation, including cross talk between the TCR and integrins, the role of costimulatory molecules, and how signals may negatively regulate T cell function.Acronyms and DefinitionsAdapter protein: cellular protein that functions to bridge molecular interactions via characteristic domains able to mediate protein/protein or protein/lipid interactions Costimulation: signals delivered to T cells by cell surface receptors other than the TCR itself that potentiate T cell activation cSMAC: central supramolecular activation cluster Immunoreceptor tyrosine-based activation motif (ITAM): a short peptide sequence in the cytoplasmic tails of key surface receptors on hematopoietic cells that is characterized by tyrosine residues that are phosphorylated by Src family PTKs, enabling the ITAM to recruit activated Syk family kinases Inside-out signaling: signals initiated by engagement of immunoreceptors that lead to conformational changes and clustering of integrins, thereby increasing the affinity and avidity of the integrins for their ligands NFAT: nuclear factor of activated T cells PI3K: phosphoinositide 3-kinase PKC: protein kinase C PLC: phospholipase C pMHC: peptide major histocompatibility complex (MHC) complex pSMAC: peripheral supramolecular activation cluster PTK: protein tyrosine kinase Signal transduction: biochemical events linking surface receptor engagement to cellular responses TCR: T cell antigen receptor
Collapse
Affiliation(s)
- Jennifer E Smith-Garvin
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
60
|
Krishnan S, Juang YT, Chowdhury B, Magilavy A, Fisher CU, Nguyen H, Nambiar MP, Kyttaris V, Weinstein A, Bahjat R, Pine P, Rus V, Tsokos GC. Differential expression and molecular associations of Syk in systemic lupus erythematosus T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:8145-52. [PMID: 19018007 PMCID: PMC2586973 DOI: 10.4049/jimmunol.181.11.8145] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diminished expression of TCR zeta and reciprocal up-regulation and association of FcRgamma with the TCR/CD3 complex is a hallmark of systemic lupus erythematosus (SLE) T cells. In this study we explored whether differential molecular associations of the spleen tyrosine kinase Syk that preferentially binds to FcRgamma contribute to pathological amplification of signals downstream of this "rewired TCR" in SLE. We detected higher amounts of Syk expression and activity in SLE compared with normal T cells. Selective inhibition of the activity of Syk reduced the strength of TCR-induced calcium responses and slowed the rapid kinetics of actin polymerization exclusively in SLE T cells. Syk and ZAP-70 also associated differently with key molecules involved in cytoskeletal and calcium signaling in SLE T cells. Thus, while Vav-1 and LAT preferentially bound to Syk, phospholipase C-gamma1 bound to both Syk and ZAP-70. Our results show that differential associations of Syk family kinases contribute to the enhanced TCR-induced signaling responses in SLE T cells. Thus, we propose molecular targeting of Syk as a measure to control abnormal T cell responses in SLE.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Adult
- Aged
- CD3 Complex/immunology
- CD3 Complex/metabolism
- Calcium Signaling/immunology
- Female
- Humans
- Intracellular Signaling Peptides and Proteins/immunology
- Lupus Erythematosus, Systemic/enzymology
- Lupus Erythematosus, Systemic/immunology
- Male
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Middle Aged
- Phospholipase C gamma/immunology
- Phospholipase C gamma/metabolism
- Protein Binding/immunology
- Protein-Tyrosine Kinases/biosynthesis
- Protein-Tyrosine Kinases/immunology
- Proto-Oncogene Proteins c-vav/immunology
- Proto-Oncogene Proteins c-vav/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Syk Kinase
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- Up-Regulation/immunology
- ZAP-70 Protein-Tyrosine Kinase/immunology
- ZAP-70 Protein-Tyrosine Kinase/metabolism
Collapse
Affiliation(s)
- Sandeep Krishnan
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Yuang-Taung Juang
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard medical School, Boston, MA 02115
| | - Bhabadeb Chowdhury
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Abigail Magilavy
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard medical School, Boston, MA 02115
| | - Carolyn U. Fisher
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Hang Nguyen
- Rheumatology Service, Walter Reed Army Medical Center, Washington, DC 20307
| | - Madhusoodana P. Nambiar
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Vasileios Kyttaris
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard medical School, Boston, MA 02115
| | - Arthur Weinstein
- Section of Rheumatology, Washington Hospital Center, Washington, DC 20010
| | - Rena Bahjat
- Rigel Pharmaceuticals, South San Francisco, CA 94080
| | - Polly Pine
- Rigel Pharmaceuticals, South San Francisco, CA 94080
| | - Violeta Rus
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - George C. Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard medical School, Boston, MA 02115
| |
Collapse
|
61
|
Actin cytoskeleton differentially modulates NF-κB-mediated IL-8 expression in myelomonocytic cells. Biochem Pharmacol 2008; 76:1214-28. [DOI: 10.1016/j.bcp.2008.08.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 08/12/2008] [Accepted: 08/13/2008] [Indexed: 12/11/2022]
|
62
|
Eswarappa SM, Pareek V, Chakravortty D. Role of actin cytoskeleton in LPS-induced NF-kappaB activation and nitric oxide production in murine macrophages. Innate Immun 2008; 14:309-318. [PMID: 18809655 DOI: 10.1177/1753425908096856] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lipopolysaccharide (LPS) is a major cell wall component of Gram-negative bacteria and is known to cause actin cytoskeleton reorganization in a variety of cells including macrophages. Actin cytoskeleton dynamics influence many cell signaling pathways including the NF-kappaB pathway. LPS is also known to induce the expression of many pro-inflammatory genes via the NF-kappaB pathway. Here, we have investigated the role of actin cytoskeleton in LPS-induced NF-kappaB activation and signaling leading to the expression of iNOS and nitric oxide production. Using murine macrophages, we show that disruption of actin cytoskeleton by either cytochalasin D (CytD) or latrunculin B (LanB) does not affect LPS-induced NF-kappaB activation and the expression of iNOS, a NF-kappaB target gene. However, disruption of actin cytoskeleton caused significant reduction in LPS-induced nitric oxide production indicating a role of actin cytoskeleton in the post-translational regulation of iNOS.
Collapse
Affiliation(s)
- Sandeepa M Eswarappa
- Centre for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | | | | |
Collapse
|
63
|
Genomic expression profiling of TNF-alpha-treated BDC2.5 diabetogenic CD4+ T cells. Proc Natl Acad Sci U S A 2008; 105:10107-12. [PMID: 18632574 DOI: 10.1073/pnas.0803336105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TNF-alpha plays an important role in immune regulation, inflammation, and autoimmunity. Chronic TNF exposure has been shown to down-modulate T cell responses. In a mouse T cell hybridoma model, TNF attenuated T cell receptor (TCR) signaling. We have confirmed that chronic TNF and anti-TNF exposure suppressed and increased T cell responses, respectively. In adult TCR (BDC2.5) transgenic nonobese diabetic mice, DNA microarray analysis of global gene expression in BDC2.5 CD4(+) T cells in response to chronic TNF or anti-TNF exposure showed that genes involved in functional categories including T cell signaling, cell cycle, proliferation, ubiquitination, cytokine synthesis, calcium signaling, and apoptosis were modulated. Genes such as ubiquitin family genes, cytokine inducible Src homology 2-containing genes, cyclin-dependent kinase inhibitors p21, p57, calmodulin family genes (calmodulin-1, -2, and -3) and calcium channel voltage-dependent, N type alpha1B subunit (CaV2.2) were induced by TNF, whereas Vav2, Rho GTPase-activating protein, calcium channel voltage-dependent, L type alpha1C subunit (CaV1.2), IL-1 receptor-associated kinase-1 and -2, and IL enhancer binding factor 3 were reduced by TNF. Genes such as CaV1.2 and proliferating cell nuclear antigen, repressed by TNF, were induced by anti-TNF treatment. Further, we showed that chronic TNF exposure impaired NF-kappaB and adaptor protein 1 transactivation activity, leading to T cell unresponsiveness. Thus, our results present a detailed picture of transcriptional programs affected by chronic TNF exposure and provide candidate target genes that may function to mediate TNF-induced T cell unresponsiveness.
Collapse
|
64
|
Abstract
T cell cytoarchitecture differs dramatically depending on whether the cell is circulating within the bloodstream, migrating through tissues, or interacting with antigen-presenting cells. The transition between these states requires important signaling-dependent changes in actin cytoskeletal dynamics. Recently, analysis of actin-regulatory proteins associated with T cell activation has provided new insights into how T cells control actin dynamics in response to external stimuli and how actin facilitates downstream signaling events and effector functions. Among the actin-regulatory proteins that have been identified are nucleation-promoting factors such as WASp, WAVE2, and HS1; severing proteins such as cofilin; motor proteins such as myosin II; and linker proteins such as ezrin and moesin. We review the current literature on how signaling pathways leading from diverse cell surface receptors regulate the coordinated activity of these and other actin-regulatory proteins and how these proteins control T cell function.
Collapse
Affiliation(s)
- Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
65
|
Schneider H, Rudd CE. CD28 and Grb-2, relative to Gads or Grap, preferentially co-operate with Vav1 in the activation of NFAT/AP-1 transcription. Biochem Biophys Res Commun 2008; 369:616-21. [PMID: 18295596 PMCID: PMC4186964 DOI: 10.1016/j.bbrc.2008.02.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 02/14/2008] [Indexed: 12/11/2022]
Abstract
The co-receptor CD28 binds to several intracellular proteins including PI3 kinase, Grb-2, Gads and ITK. Grb-2 and PI3 kinase binding has been mapped to the pYMNM motif within the cytoplasmic tail of CD28 and has been shown to play a role in co-stimulation. In this study, we demonstrate that amongst the Grb-2 family adapter proteins, CD28 precipitated Grb-2 and specifically co-operated in the up-regulation of NFAT/AP-1 transcription. By contrast, Gads and Grap either failed or only weakly collaborated with CD28 ligation. Further, the loss of Grb-2 binding interferes with the ability of Vav1 to co-operate with CD28. Anti-CD28 ligation alone was capable for co-operating with Grb-2 or Grb-2-Vav1. Our findings define a pathway involving CD28 binding to Grb-2 and its co-operativity with Vav1 in the regulation of T-cell co-stimulation.
Collapse
Affiliation(s)
- Helga Schneider
- Cell Signalling Section, Division of Immunology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Christopher E. Rudd
- Cell Signalling Section, Division of Immunology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
66
|
Weber M, Treanor B, Depoil D, Shinohara H, Harwood NE, Hikida M, Kurosaki T, Batista FD. Phospholipase C-gamma2 and Vav cooperate within signaling microclusters to propagate B cell spreading in response to membrane-bound antigen. ACTA ACUST UNITED AC 2008; 205:853-68. [PMID: 18362175 PMCID: PMC2292224 DOI: 10.1084/jem.20072619] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
B cell receptor (BCR) recognition of membrane-bound antigen initiates a spreading and contraction response, the extent of which is controlled through the formation of signaling-active BCR-antigen microclusters and ultimately affects the outcome of B cell activation. We followed a genetic approach to define the molecular requirements of BCR-induced spreading and microcluster formation. We identify a key role for phospholipase C-γ2 (PLCγ2), Vav, B cell linker, and Bruton's tyrosine kinase in the formation of highly coordinated “microsignalosomes,” the efficient assembly of which is absolutely dependent on Lyn and Syk. Using total internal reflection fluorescence microscopy, we examine at high resolution the recruitment of PLCγ2 and Vav to microsignalosomes, establishing a novel synergistic relationship between the two. Thus, we demonstrate the importance of cooperation between components of the microsignalosome in the amplification of signaling and propagation of B cell spreading, which is critical for appropriate B cell activation.
Collapse
Affiliation(s)
- Michele Weber
- Lymphocyte Interaction Laboratory, London Research Institute, Cancer Research UK, London WC2A 3PX, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
More than a quarter of a century has passed since the observation that T cells rapidly polarize their actin and microtubule cytoskeletal systems toward antigen-presenting cells during activation. Since this initial discovery, several receptors on T cells (e.g., T cell receptor [TCR], co-receptors, integrins, and chemokine receptors) have been identified to regulate these two cytoskeletal networks through complex signaling pathways, which are still being elucidated. There is now an undeniable body of biochemical, pharmacological, and genetic evidence indicating that regulators of actin and microtubule dynamics are crucial for T cell activation and effector functions. In fact, the actin cytoskeleton participates in the initial clustering of TCR-major histocompatibility complex or peptide complexes, formation and stabilization of the immune synapse, integrin-mediated adhesion, and receptor sequestration, whereas both the actin and microtubule cytoskeletons regulate the establishment of cell polarity, cell migration, and directed secretion of cytokines and cytolytic granules. Over the past several years, we have begun to more thoroughly understand the contributions of specific actin-regulatory and actin-nucleating proteins that govern these processes. Herein, we discuss our current understanding of how activating receptors on T lymphocytes regulate the actin and microtubule cytoskeletons, and how in turn, these distinct but integrated cytoskeletal networks coordinate T cell immune responses.
Collapse
|
68
|
Alcázar I, Marqués M, Kumar A, Hirsch E, Wymann M, Carrera AC, Barber DF. Phosphoinositide 3-kinase gamma participates in T cell receptor-induced T cell activation. ACTA ACUST UNITED AC 2007; 204:2977-87. [PMID: 17998387 PMCID: PMC2118532 DOI: 10.1084/jem.20070366] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Class I phosphoinositide 3–kinases (PI3Ks) constitute a family of enzymes that generates 3-phosphorylated polyphosphoinositides at the cell membrane after stimulation of protein tyrosine (Tyr) kinase–associated receptors or G protein–coupled receptors (GPCRs). The class I PI3Ks are divided into two types: class IA p85/p110 heterodimers, which are activated by Tyr kinases, and the class IB p110γ isoform, which is activated by GPCR. Although the T cell receptor (TCR) is a protein Tyr kinase–associated receptor, p110γ deletion affects TCR-induced T cell stimulation. We examined whether the TCR activates p110γ, as well as the consequences of interfering with p110γ expression or function for T cell activation. We found that after TCR ligation, p110γ interacts with Gαq/11, lymphocyte-specific Tyr kinase, and ζ-associated protein. TCR stimulation activates p110γ, which affects 3-phosphorylated polyphosphoinositide levels at the immunological synapse. We show that TCR-stimulated p110γ controls RAS-related C3 botulinum substrate 1 activity, F-actin polarization, and the interaction between T cells and antigen-presenting cells, illustrating a crucial role for p110γ in TCR-induced T cell activation.
Collapse
Affiliation(s)
- Isabela Alcázar
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Cientificas, Madrid 28049, Spain
| | | | | | | | | | | | | |
Collapse
|
69
|
Katzav S. Flesh and blood: The story of Vav1, a gene that signals in hematopoietic cells but can be transforming in human malignancies. Cancer Lett 2007; 255:241-54. [PMID: 17590270 DOI: 10.1016/j.canlet.2007.04.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 04/30/2007] [Accepted: 04/30/2007] [Indexed: 01/08/2023]
Abstract
Cancer results from the interaction of multiple aberrations including activation of dominant oncogenes and upregulation of signal transduction pathways. Identification of the genes involved in malignant transformation is a pre-requisite for understanding cancer and improving its diagnosis and treatment. Quite a few of the genes that have been implicated in cancer are mutant or aberrantly expressed versions of genes that are important mediators of the normal growth that occurs during development. An important example of this is Vav1, a cytoplasmic signal transducer protein initially identified as an oncogene. Physiological expression of Vav1 is restricted to the hematopoietic system, where its best-known function is as a GDP/GTP nucleotide exchange factor for Rho/Rac GTPases, an activity strictly controlled by tyrosine phosphorylation. Vav1 was shown to regulate cytoskeletal rearrangement during activation of hematopoietic cells. Vav1 can also mediate other cellular functions including activation of the JNK, ERK, Ras, NF-kB, and NFAT pathways, in addition to association with numerous adapter proteins such as Shc, NCK, SLP-76, GRB2, and Crk. Although the oncogenic form of Vav1 has not been detected in clinical human tumors, its wild-type form has recently been implicated in mammalian malignancies such as neuroblastoma, melanoma, pancreatic tumors and B-cell chronic lymphocytic leukemia. This review addresses the physiological function of wild-type Vav1, its mode of activation as an oncogene, and its emerging role as a transforming protein in human cancer.
Collapse
Affiliation(s)
- Shulamit Katzav
- The Hubert H. Humphrey center for Experimental Medicine & Cancer Research, The Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel.
| |
Collapse
|
70
|
Cotta-de-Almeida V, Westerberg L, Maillard MH, Onaldi D, Wachtel H, Meelu P, Chung UI, Xavier R, Alt FW, Snapper SB. Wiskott Aldrich syndrome protein (WASP) and N-WASP are critical for T cell development. Proc Natl Acad Sci U S A 2007; 104:15424-9. [PMID: 17878299 PMCID: PMC2000553 DOI: 10.1073/pnas.0706881104] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Indexed: 11/18/2022] Open
Abstract
Although T cell dysfunction and lymphopenia are key features of immunodeficient patients with the Wiskott-Aldrich syndrome and Wiskott-Aldrich syndrome protein (WASP)-deficient mice, T cell development appears relatively normal. We hypothesized that N-WASP, a ubiquitously expressed homologue of WASP, may serve a redundant function with WASP. To examine the unique and redundant activities of WASP and N-WASP, we generated ES cells devoid of WASP and N-WASP [double knockout (DKO)] and used the RAG-2-deficient blastocyst complementation system to generate DKO lymphocytes. Moreover, we mated WASP KO mice with mice containing a conditionally targeted N-WASP allele and used the Cre-loxP system to generate mice lacking WASP and N-WASP in T cells [conditional DKO (cDKO)]. In both systems, N-WASP-deficient cells were indistinguishable from WT cells. In contrast, T cell development in DKO and cDKO mice was markedly altered, as shown by thymic hypocellularity and reduced numbers of peripheral T cells. We found that the combined activity of WASP and N-WASP was important for CD4(-)CD8(-) double-negative (DN)-to-CD4(+)CD8(+) double-positive (DP) cell transition, and this may be partly explained by reduced cycling DN3 cells. In addition, decreased migratory responses of CD4(+)CD8(-) and CD4(-)CD8(+) single-positive (SP) cells and increased percentage of CD69(low)CD24(low) and CD62L(low) SP cells in cDKO cells imply retention of SP cells in the thymus. In summary, this study suggests that, although WASP serves a unique role for peripheral T cell function, T cell development depends on the combined activity of WASP and N-WASP.
Collapse
Affiliation(s)
- Vinicius Cotta-de-Almeida
- *Gastrointestinal Unit
- Center for the Study of Inflammatory Bowel Disease
- Medicine, Harvard Medical School, Boston, MA 02115; and
- Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Lisa Westerberg
- *Gastrointestinal Unit
- Center for the Study of Inflammatory Bowel Disease
- Medicine, Harvard Medical School, Boston, MA 02115; and
| | - Michel H. Maillard
- *Gastrointestinal Unit
- Center for the Study of Inflammatory Bowel Disease
- Medicine, Harvard Medical School, Boston, MA 02115; and
| | - Dilek Onaldi
- *Gastrointestinal Unit
- Center for the Study of Inflammatory Bowel Disease
- Medicine, Harvard Medical School, Boston, MA 02115; and
| | - Heather Wachtel
- *Gastrointestinal Unit
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Parool Meelu
- *Gastrointestinal Unit
- Center for the Study of Inflammatory Bowel Disease
- Medicine, Harvard Medical School, Boston, MA 02115; and
| | | | - Ramnik Xavier
- *Gastrointestinal Unit
- Center for the Study of Inflammatory Bowel Disease
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Medicine, Harvard Medical School, Boston, MA 02115; and
| | - Frederick W. Alt
- **Howard Hughes Medical Institute, Children's Hospital, Boston, MA 02115
- Center for Blood Research, Boston, MA 02115
- Departments of Genetics and
| | - Scott B. Snapper
- *Gastrointestinal Unit
- Center for the Study of Inflammatory Bowel Disease
- Medicine, Harvard Medical School, Boston, MA 02115; and
| |
Collapse
|
71
|
Nolz JC, Fernandez-Zapico ME, Billadeau DD. TCR/CD28-stimulated actin dynamics are required for NFAT1-mediated transcription of c-rel leading to CD28 response element activation. THE JOURNAL OF IMMUNOLOGY 2007; 179:1104-12. [PMID: 17617603 DOI: 10.4049/jimmunol.179.2.1104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
TCR/CD28 engagement triggers the initiation of a variety of signal transduction pathways that lead to changes in gene transcription. Although reorganization of the actin cytoskeleton is required for T cell activation, the molecular pathways controlled by the actin cytoskeleton are ill defined. To this end, we analyzed TCR/CD28-stimulated signaling pathways in cytochalasin D-treated T cells to determine the cytoskeletal requirements for T cell activation. Cytochalasin D treatment impaired T cell activation by causing a reduction in TCR/CD28-mediated calcium flux, and blocked activation of two regulatory elements within the IL-2 promoter, NFAT/AP-1 and CD28RE/AP. Treatment had no effect on signaling leading to the activation of either AP-1 or NF-kappaB. Significantly, we found that NFAT1 is required for optimal c-rel up-regulation in response to TCR/CD28 stimulation. In fact, NFAT1 could be detected bound at the c-rel promoter in response to TCR/CD28 stimulation, and targeting of NFAT1 using RNA interference in human CD4(+) T cells abrogated c-rel transcription. Overall, these findings establish that disrupting actin cytoskeletal dynamics impairs TCR/CD28-mediated calcium flux required for NFAT1-mediated c-rel transcription and, thus, activation of the CD28RE/AP.
Collapse
Affiliation(s)
- Jeffrey C Nolz
- Department of Immunology, Mayo Clinic College of Medicine, MN 55905, USA
| | | | | |
Collapse
|
72
|
Gomez-Rodriguez J, Readinger JA, Viorritto IC, Mueller KL, Houghtling RA, Schwartzberg PL. Tec kinases, actin, and cell adhesion. Immunol Rev 2007; 218:45-64. [PMID: 17624943 DOI: 10.1111/j.1600-065x.2007.00534.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Tec family non-receptor tyrosine kinases have been recognized for their roles in the regulation of phospholipase C-gamma and Ca(2+) mobilization downstream from antigen receptors on lymphocytes. Recent data, however, show that the Tec family kinase interleukin-2-inducible T-cell kinase (Itk) also participates in pathways regulating the actin cytoskeleton and 'inside-out' signaling to integrins downstream from the T-cell antigen receptor. Data suggest that Itk may function in a kinase-independent fashion to regulate proper recruitment of the Vav1 guanine nucleotide exchange factor. By enhancing actin cytoskeleton reorganization, recruitment of signaling molecules to the immune synapse, and integrin clustering in response to both antigen and chemokine receptors, the Tec kinases serve as modulators or amplifiers that can increase the duration of T-cell signaling and regulate T-cell functional responses.
Collapse
Affiliation(s)
- Julio Gomez-Rodriguez
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
73
|
Abstract
Adapters are multidomain molecules that recruit effector proteins during signal transduction by immunoreceptors and integrins. The absence of these scaffolding molecules profoundly affects development and function of various hematopoietic lineages, underscoring their importance as regulators of signaling cascades. An emerging aspect of the mechanism by which engaged immunoreceptors and integrins transmit signals within the cell is by differential usage of various adapters that function to nucleate formation of distinct signaling complexes in a specific location within the cell. In this review, we discuss the mechanisms by which adapter proteins coordinate signal transduction with an emphasis on the role of subcellular compartmentalization in adapter function.
Collapse
Affiliation(s)
- Natalie Bezman
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
74
|
Zhou Z, Yin J, Dou Z, Tang J, Zhang C, Cao Y. The calponin homology domain of Vav1 associates with calmodulin and is prerequisite to T cell antigen receptor-induced calcium release in Jurkat T lymphocytes. J Biol Chem 2007; 282:23737-44. [PMID: 17550897 DOI: 10.1074/jbc.m702975200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vav1 is a guanine nucleotide exchange factor that is expressed specifically in hematopoietic cells and plays important roles in T cell development and activation. Vav1 consists of multiple structural domains so as to facilitate both its guanine nucleotide exchange activity and scaffold function following T cell antigen receptor (TCR) engagement. Previous studies demonstrated that the calponin homology (CH) domain of Vav1 is required for TCR-stimulated calcium mobilization and thus downstream activation of nuclear factor of activated T cells. However, it remained obscure how Vav1 functions in regulating calcium flux. In an effort to explore molecules interacting with Vav1, we found that calmodulin bound to Vav1 in a calcium-dependent and TCR activation-independent manner. The binding site was mapped to the CH domain of Vav1. Reconstitution of vav1-null Jurkat T cells (J.Vav1) with CH-deleted Vav1 exhibited a severe deficiency in calcium release to the same extent as that of Jurkat cells treated with the calmodulin inhibitor or J.Vav1 cells. The defect persisted even when phospholipase-Cgamma1 was fully activated, indicating a prerequisite role of Vav1 CH domain in calcium signaling. The results suggest that Vav1 and calmodulin function cooperatively to potentiate TCR-induced calcium release. This study unveiled a mechanism by which the Vav1 CH domain is involved in calcium signaling and provides insight into our understanding of the role of Vav1 in T cell activation.
Collapse
Affiliation(s)
- Zhuo Zhou
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | | | |
Collapse
|
75
|
Wei B, da Rocha Dias S, Wang H, Rudd CE. CTL-associated antigen-4 ligation induces rapid T cell polarization that depends on phosphatidylinositol 3-kinase, Vav-1, Cdc42, and myosin light chain kinase. THE JOURNAL OF IMMUNOLOGY 2007; 179:400-8. [PMID: 17579061 DOI: 10.4049/jimmunol.179.1.400] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CTLA-4 can negatively regulate cytokine production and proliferation, increase motility, and override the TCR-induced stop-signal needed for stable T cell-APC conjugation. Despite this, little is known regarding whether CTLA-4 can alter T cell morphology and the nature of the signaling events that could account for this event. In this study, we demonstrate that anti-CTLA-4 and CD3/CTLA-4 induce rapid T cell polarization (i.e., within 15-30 min) with increases in lamellipodia, filopodia, and uropod formation. This was observed with anti-CTLA-4 and CD80-Ig ligation of CTLA-4, but not with anti-CD3 alone, or anti-CD3/CD28 coligation. Polarization required PI3K, the guanine nucleotide exchange factor Vav1, the GTP-binding protein Cdc42, as well as myosin L chain kinase. By contrast, a key downstream target of PI3K, protein kinase B, as well as Rho kinase and RhoA, were not needed. Our results demonstrate that CTLA-4 is a potent activator T cell polarization needed for motility, and this process involves specific set of signaling proteins that might contribute to coreceptor regulation of T cell function.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Differentiation/immunology
- Antigens, Differentiation/metabolism
- Antigens, Differentiation/physiology
- CD3 Complex/immunology
- CTLA-4 Antigen
- Cell Movement/immunology
- Cells, Cultured
- Humans
- Immune Sera/physiology
- Intracellular Signaling Peptides and Proteins/metabolism
- Intracellular Signaling Peptides and Proteins/physiology
- Mice
- Myosin-Light-Chain Kinase/physiology
- Phosphatidylinositol 3-Kinases/physiology
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-vav/physiology
- Pseudopodia/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/enzymology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Up-Regulation/immunology
- cdc42 GTP-Binding Protein/physiology
- rho-Associated Kinases
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Bin Wei
- Molecular Immunology Section, Department of Immunology, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | | | | | |
Collapse
|
76
|
Abstract
Following stimulation, T cells undergo marked changes in actin architecture that are required for productive immune responses. T-cell-receptor-dependent reorganization of the actin cytoskeleton is necessary for the formation of the immunological synapse at the T-cell-antigen-presenting-cell contact site and the distal pole complex at the opposite face of the T cell. Convergence of specific signaling molecules within these two plasma membrane domains facilitates downstream signaling events leading to full T-cell activation. Recent studies have identified many of the relevant actin-regulatory proteins, and significant progress has been made in our understanding of how these proteins choreograph molecular movements associated with T-cell activation. Proteins such as WASp, WAVE2, HS1 and cofilin direct the formation of a cortical actin scaffold at the immune synapse, while actin-binding proteins such as ezrin and moesin direct binding of signaling molecules to actin filaments within the distal pole complex.
Collapse
Affiliation(s)
- Yanping Huang
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, 816D Abramson Research Center, 3615 Civic Center Blvd., Philadelphia, PA 19104, USA
| | | |
Collapse
|
77
|
Irvine DJ, Doh J, Huang B. Patterned surfaces as tools to study ligand recognition and synapse formation by T cells. Curr Opin Immunol 2007; 19:463-9. [PMID: 17616382 DOI: 10.1016/j.coi.2007.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 05/07/2007] [Accepted: 05/16/2007] [Indexed: 11/26/2022]
Abstract
Activation of immune cells is often achieved via ligand-receptor interactions occurring at a cell-cell junction known as an immunological synapse (IS). Synapse structures, probably best studied in the context of T cell-antigen presenting cell (APC) interactions, are characterized by clustering of cell surface receptors and intracellular signaling components, and in some settings, the formation of microscale or submicron patterns of receptors in the cell-cell interface. To help expand our understanding of how synapses form and function, substrates bearing patterned protein ligands are being developed as simplified models of the APC surface. These new tools allow well-defined signal inputs to be delivered to the T cell in order to ask how the physical organization and composition of APC-derived signals control T cell activation.
Collapse
Affiliation(s)
- Darrell J Irvine
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
78
|
Nolz JC, Medeiros RB, Mitchell JS, Zhu P, Freedman BD, Shimizu Y, Billadeau DD. WAVE2 regulates high-affinity integrin binding by recruiting vinculin and talin to the immunological synapse. Mol Cell Biol 2007; 27:5986-6000. [PMID: 17591693 PMCID: PMC1952166 DOI: 10.1128/mcb.00136-07] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
T-cell-receptor (TCR)-mediated integrin activation is required for T-cell-antigen-presenting cell conjugation and adhesion to extracellular matrix components. While it has been demonstrated that the actin cytoskeleton and its regulators play an essential role in this process, no mechanism has been established which directly links TCR-induced actin polymerization to the activation of integrins. Here, we demonstrate that TCR stimulation results in WAVE2-ARP2/3-dependent F-actin nucleation and the formation of a complex containing WAVE2, ARP2/3, vinculin, and talin. The verprolin-connecting-acidic (VCA) domain of WAVE2 mediates the formation of the ARP2/3-vinculin-talin signaling complex and talin recruitment to the immunological synapse (IS). Interestingly, although vinculin is not required for F-actin or integrin accumulation at the IS, it is required for the recruitment of talin. In addition, RNA interference of either WAVE2 or vinculin inhibits activation-dependent induction of high-affinity integrin binding to VCAM-1. Overall, these findings demonstrate a mechanism in which signals from the TCR produce WAVE2-ARP2/3-mediated de novo actin polymerization, leading to integrin clustering and high-affinity binding through the recruitment of vinculin and talin.
Collapse
Affiliation(s)
- Jeffrey C Nolz
- Department of Immunology and Division of Oncology Research, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Rueda D, Gaide O, Ho L, Lewkowicz E, Niedergang F, Hailfinger S, Rebeaud F, Guzzardi M, Conne B, Thelen M, Delon J, Ferch U, Mak TW, Ruland J, Schwaller J, Thome M. Bcl10 controls TCR- and FcgammaR-induced actin polymerization. THE JOURNAL OF IMMUNOLOGY 2007; 178:4373-84. [PMID: 17371994 DOI: 10.4049/jimmunol.178.7.4373] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bcl10 plays an essential role in the adaptive immune response, because Bcl10-deficient lymphocytes show impaired Ag receptor-induced NF-kappaB activation and cytokine production. Bcl10 is a phosphoprotein, but the physiological relevance of this posttranslational modification remains poorly defined. In this study, we report that Bcl10 is rapidly phosphorylated upon activation of human T cells by PMA/ionomycin- or anti-CD3 treatment, and identify Ser(138) as a key residue necessary for Bcl10 phosphorylation. We also show that a phosphorylation-deficient Ser(138)/Ala mutant specifically inhibits TCR-induced actin polymerization yet does not affect NF-kappaB activation. Moreover, silencing of Bcl10, but not of caspase recruitment domain-containing MAGUK protein-1 (Carma1) induces a clear defect in TCR-induced F-actin formation, cell spreading, and conjugate formation. Remarkably, Bcl10 silencing also impairs FcgammaR-induced actin polymerization and phagocytosis in human monocytes. These results point to a key role of Bcl10 in F-actin-dependent immune responses of T cells and monocytes/macrophages.
Collapse
Affiliation(s)
- Daniel Rueda
- Department of Biochemistry, University of Lausanne, BIL Biomedical Research Center, Chemin des Boveresses 155, Epalinges, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Weckbecker G, Bruns C, Fischer KD, Heusser C, Li J, Metzler B, Morris RE, Nuesslein-Hildesheim B, Raulf F, Wieczorek G, Zenke G. Strongly reduced alloreactivity and long-term survival times of cardiac allografts in Vav1- and Vav1/Vav2-knockout mice. Transpl Int 2007; 20:353-64. [PMID: 17326776 DOI: 10.1111/j.1432-2277.2006.00438.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Vav proteins mediate T- and B-cell activation by functioning as GTP/GDP exchange factors for small GTPases. We have studied the role of Vav1 and Vav2 in allogeneic T-cell activation, antibody responses and allograft rejection. Alloantigen-induced proliferation of T cells from Vav1- and Vav1/Vav2-knockout (ko) mice was decreased by >90% in a mixed lymphocyte reaction. In whole-blood cultures, Vav deficiency led to markedly impaired T- and B-cell activation. Expansion of Vav1- or Vav1/Vav2-ko T cells (C57BL/6) was reduced after transfer into severe combined immune deficiency/beige recipient mice (BALB/c). After priming with 2,4-dinitrophenyl (DNP)-keyhole limpet hemocyanin, T-cell-dependent anti-DNP IgM and IgG antibody levels were normal in Vav1-ko mice but undetectable in Vav1/Vav2-ko mice. The median survival time of BALB/c cardiac allografts transplanted into C57BL/6 Vav1-ko mice (n = 13) or Vav1/Vav2-ko mice (n = 5) was >100 and >77 days, compared with 8-9 days in the corresponding wild-type mice. Vav1/Vav2-ko mice with <100 days graft survival developed bacterial skin infections and were prematurely killed with beating cardiac allograft. Long-term surviving transplants of single and double ko mice showed mild cellular interstitial rejection and mild to severe vascular remodeling. In conclusion, our studies show for the first time that the absence of Vav1 and Vav1/Vav2 in ko mice strongly reduces alloreactivity and results in long-term allograft survival, whereas antibody responses were only affected in Vav1/Vav2 ko mice.
Collapse
Affiliation(s)
- Gisbert Weckbecker
- Autoimmunity and Transplantation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Legrand-Poels S, Kustermans G, Bex F, Kremmer E, Kufer TA, Piette J. Modulation of Nod2-dependent NF-kappaB signaling by the actin cytoskeleton. J Cell Sci 2007; 120:1299-310. [PMID: 17356065 DOI: 10.1242/jcs.03424] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Actin disruption by CytochalasinD (CytD) and LatrunculinB (LatB) induced NF-kappaB activation in myelomonocytic and intestinal epithelial cells. In an attempt to elucidate the mechanism by which actin disruption induced IKK activation, we studied the human Nod2 protein, which was able to induce NF-kappaB activation and whose expression was restricted to myelomonocytic and intestinal epithelial cells. Nod2 is thought to play key roles in pathogen defence through sensing bacteria and generating an inflammatory immune response. We showed that actin disruption by CytD significantly and specifically increased Nod2-mediated NF-kappaB signaling. Nod2 was fully partitioned in the Triton-X-100-insoluble fraction but translocated into the soluble fraction after CytD treatment, demonstrating that the presence of Nod2 in the detergent-insoluble pellet was specific to actin cytoskeleton. Confocal analysis also revealed a Nod2 colocalization with membrane-associated F-actin. Colocalization and co-immunoprecipitation assays with endogenous Rac1 have shown that Nod2 associated with activated Rac1 in membrane ruffles through both its N-terminal caspase recruitment domains (CARD) and C-terminal leucine-rich repeats (LRRs). Membrane ruffle disruption by a Rac1 dominant negative form primed Nod2-dependent NF-kappaB signaling. The recruitment of Nod2 in Rac-induced dynamic cytoskeletal structures could be a strategy to both repress the Nod2-dependent NF-kappaB signaling in unstimulated cells and rapidly mobilize Nod2 during bacterial infection.
Collapse
Affiliation(s)
- Sylvie Legrand-Poels
- Laboratory of Virology and Immunology, CBIG-GIGA, University of Liège, Liège, Belgium.
| | | | | | | | | | | |
Collapse
|
82
|
Morley SC, Sung J, Sun GP, Martelli MP, Bunnell SC, Bierer BE. Gelsolin overexpression alters actin dynamics and tyrosine phosphorylation of lipid raft-associated proteins in Jurkat T cells. Mol Immunol 2007; 44:2469-80. [PMID: 17178161 PMCID: PMC1945820 DOI: 10.1016/j.molimm.2006.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 09/29/2006] [Indexed: 12/18/2022]
Abstract
Upon T cell receptor engagement, both the actin cytoskeleton and substrates of tyrosine phosphorylation are remodeled to create a signaling complex at the interface of the antigen-presenting cell and responding T cell. While T cell signaling has been shown to regulate actin reorganization, the mechanisms by which changes in actin dynamics affect early T cell signaling have not been fully explored. Using gelsolin, an actin-binding protein with capping and severing activities, and latrunculin, an actin-depolymerizing agent, we have further investigated the interplay between actin dynamics and the regulation of T cell signaling. Overexpression of gelsolin altered actin dynamics in Jurkat T cells, and alteration of actin dynamics correlated with dysregulation of tyrosine phosphorylation of raft-associated substrates. This perturbation of tyrosine phosphorylation was correlated with inhibition of activation-dependent signaling pathways regulating Erk-1/2 phosphorylation, NF-AT transcriptional activation and IL-2 production. Modification of actin by the depolymerizing agent latrunculin also altered the tyrosine phosphorylation patterns of proteins associated with lipid rafts, and pre-treatment with latrunculin inhibited anti-CD3 mAb-mediated NF-AT activation. Thus, our data indicate that actin cytoskeletal dynamics modulate the tyrosine phosphorylation of raft-associated proteins and subsequent downstream signal transduction.
Collapse
Affiliation(s)
- S Celeste Morley
- Laboratory of Lymphocyte Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
83
|
Pearce AC, McCarty OJT, Calaminus SDJ, Vigorito E, Turner M, Watson SP. Vav family proteins are required for optimal regulation of PLCgamma2 by integrin alphaIIbbeta3. Biochem J 2007; 401:753-61. [PMID: 17054426 PMCID: PMC1770845 DOI: 10.1042/bj20061508] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vav proteins belong to the family of guanine-nucleotide-exchange factors for the Rho/Rac family of small G-proteins. In addition, they serve as important adapter proteins for the activation of PLCgamma (phospholipase Cgamma) isoforms by ITAM (immunoreceptor tyrosine-based activation motif) receptors, including the platelet collagen receptor GPVI (glycoprotein VI). Vav proteins are also regulated downstream of integrins, including the major platelet integrin alphaIIbbeta3, which has recently been shown to regulate PLCgamma2. In the present study, we have investigated the role of Vav family proteins in filopodia and lamellipodia formation on fibrinogen using platelets deficient in Vav1 and Vav3. Wild-type mouse platelets undergo a limited degree of spreading on fibrinogen, characterized by the formation of numerous filopodia and limited lamellipodia structures. Platelets deficient in Vav1 and Vav3 exhibit reduced filopodia and lamellipodia formation during spreading on fibrinogen. This is accompanied by reduced alphaIIbbeta3-mediated PLCgamma2 tyrosine phosphorylation and reduced Ca(2+) mobilization. In contrast, the G-protein agonist thrombin stimulates full spreading of control and Vav1/3-deficient platelets. Consistent with this, stimulation of F-actin (filamentous actin) formation and Rac activation by thrombin is not altered in Vav-deficient cells. These results demonstrate that Vav1 and Vav3 are required for optimal spreading and regulation of PLCgamma2 by integrin alphaIIbbeta3, but that their requirement is by-passed upon G-protein receptor activation.
Collapse
Affiliation(s)
- Andrew C Pearce
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, Division of Medical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | | | | | |
Collapse
|
84
|
Gomez TS, Kumar K, Medeiros RB, Shimizu Y, Leibson PJ, Billadeau DD. Formins regulate the actin-related protein 2/3 complex-independent polarization of the centrosome to the immunological synapse. Immunity 2007; 26:177-90. [PMID: 17306570 PMCID: PMC2836258 DOI: 10.1016/j.immuni.2007.01.008] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 12/20/2006] [Accepted: 01/08/2007] [Indexed: 12/23/2022]
Abstract
T cell receptor (TCR)-mediated cytoskeletal reorganization is considered to be actin-related protein (Arp) 2/3 complex dependent. We therefore examined the requirement for Arp2/3- and formin-dependent F-actin nucleation during T cell activation. We demonstrated that without Arp2/3-mediated actin nucleation, stimulated T cells could not form an F-actin-rich lamellipod, but instead produced polarized filopodia-like structures. Moreover, the microtubule-organizing center (MTOC, or centrosome), which rapidly reorients to the immunological synapse through an unknown mechanism, polarized in the absence of Arp2/3. Conversely, the actin-nucleating formins, Diaphanous-1 (DIA1) and Formin-like-1 (FMNL1), did not affect TCR-stimulated F-actin-rich structures, but instead displayed unique patterns of centrosome colocalization and controlled TCR-mediated centrosome polarization. Depletion of FMNL1 or DIA1 in cytotoxic lymphocytes abrogated cell-mediated killing. Altogether, our results have identified Arp2/3 complex-independent cytoskeletal reorganization events in T lymphocytes and indicate that formins are essential cytoskeletal regulators of centrosome polarity in T cells.
Collapse
Affiliation(s)
- Timothy S. Gomez
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Karan Kumar
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Ricardo B. Medeiros
- Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Yoji Shimizu
- Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Paul J. Leibson
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Daniel D. Billadeau
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, MN 55905
| |
Collapse
|
85
|
Brown K, Cheetham GMT. Crystal structures and inhibitors of proteins involved in IL-2 release and T cell signaling. VITAMINS AND HORMONES 2006; 74:31-59. [PMID: 17027510 DOI: 10.1016/s0083-6729(06)74002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Kieron Brown
- Vertex Pharmaceuticals (Europe) Ltd., Abingdon Oxfordshire OX14 4RY, United Kingdom
| | | |
Collapse
|
86
|
Billadeau DD, Burkhardt JK. Regulation of cytoskeletal dynamics at the immune synapse: new stars join the actin troupe. Traffic 2006; 7:1451-60. [PMID: 16984404 PMCID: PMC1779662 DOI: 10.1111/j.1600-0854.2006.00491.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Reorganization of actin cytoskeletal dynamics plays a critical role in controlling T-lymphocyte activation and effector functions. Interaction of T-cell receptors (TCR) with appropriate major histocompatibility complex-peptide complexes on antigen-presenting cells results in the activation of signaling cascades, leading to the accumulation of F-actin at the cell-cell contact site. This event is required for the formation and stabilization of the immune synapse (IS), a cellular structure essential for the modulation of T-cell responses. Analysis of actin cytoskeletal dynamics following engagement of the TCR has largely focused on the Arp2/3 regulator, WASp, because of its early identification and its association with human disease. However, recent studies have shown equally important roles for several additional actin regulatory proteins. In this review, we turn the spotlight on the expanding cast of actin regulatory proteins, which co-ordinate actin dynamics at the IS.
Collapse
Affiliation(s)
- Daniel D. Billadeau
- Department of Immunology and Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Janis K. Burkhardt
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
- *Corresponding author: Janis K. Burkhardt,
| |
Collapse
|
87
|
Martín-Cófreces NB, Sancho D, Fernández E, Vicente-Manzanares M, Gordón-Alonso M, Montoya MC, Michel F, Acuto O, Alarcón B, Sánchez-Madrid F. Role of Fyn in the rearrangement of tubulin cytoskeleton induced through TCR. THE JOURNAL OF IMMUNOLOGY 2006; 176:4201-7. [PMID: 16547257 DOI: 10.4049/jimmunol.176.7.4201] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The translocation of the microtubule-organizing center (MTOC), its associated signaling complex, and the secretory apparatus is the most characteristic early event that involves the tubulin cytoskeleton of T or NK cells after their interaction with APC or target cells. Our results show that Fyn kinase activity is essential for MTOC reorientation in an Ag-dependent system. Moreover, T cells from Fyn-deficient mice are unable to rearrange their tubulin cytoskeleton in response to anti-CD3-coated beads. Analysis of conjugates of T cells from transgenic OT-I mice with dendritic cells revealed that an antagonist peptide induces translocation of the MTOC, and that this process is impaired in T cells from Fyn(-/-) OT-I mice. In addition, Fyn deficiency significantly affects the MTOC relocation mediated by agonist peptide stimulation. These results reveal Fyn to be a key regulator of tubulin cytoskeleton reorganization in T cells.
Collapse
Affiliation(s)
- Noa B Martín-Cófreces
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Abstract
A combination of various post-translational modifications regulates the formation of signaling networks in both the nucleus and the cytosol. Of these, lysine methylation provides a relatively stable marker on histones and contributes to the formation of a distinct pattern of histone-dependent gene regulation ('transcriptional memory'). Thus far, lysine methylation was considered to be nucleus specific; however, recent findings indicate that lysine methylation contributes to receptor-mediated signal transduction in the cytosol.
Collapse
Affiliation(s)
- I-hsin Su
- Laboratory of Lymphocyte Signaling, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
89
|
Gelkop S, Gish GD, Babichev Y, Pawson T, Isakov N. T cell activation-induced CrkII binding to the Zap70 protein tyrosine kinase is mediated by Lck-dependent phosphorylation of Zap70 tyrosine 315. THE JOURNAL OF IMMUNOLOGY 2006; 175:8123-32. [PMID: 16339550 DOI: 10.4049/jimmunol.175.12.8123] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Zap70 protein tyrosine kinase controls TCR-linked signal transduction pathways and is critical for T cell development and responsiveness. Following engagement of TCR, the Zap70 undergoes phosphorylation on multiple tyrosine residues that are implicated in the regulation of its catalytic activity and interaction with signaling effector molecules downstream of the TCR. We have shown previously that the CT10 regulator of kinase II (CrkII) adapter protein interacts with tyrosine-phosphorylated Zap70 in TCR-engaged T cells, and now extend these studies to show that Tyr315 in the Zap70 interdomain B region is the site of interaction with CrkII. A point mutation of Tyr315 (Y315F) eliminated the CrkII-Zap70 interaction capacity. Phosphorylation of Tyr315 and Zap70 association with CrkII were both dependent upon the Lck protein tyrosine kinase. Previous studies demonstrated the Tyr315 is the Vav-Src homology 2 (SH2) binding site, and that replacement of Tyr315 by Phe impaired the function of Zap70 in TCR signaling. However, fluorescence polarization-based binding studies revealed that the CrkII-SH2 and the Vav-SH2 bind a phosphorylated Tyr315-Zap70-derived peptide with affinities of a similar order of magnitude (Kd of 2.5 and 1.02 microM, respectively). The results suggest therefore that the biological functions attributed to the association of Zap70 with Vav following T cell activation may equally reflect the association of Zap70 with CrkII, and further support a regulatory role for CrkII in the TCR-linked signal transduction pathway.
Collapse
Affiliation(s)
- Sigal Gelkop
- Department of Microbiology and Immunology, Faculty of Health Sciences, and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | |
Collapse
|
90
|
Nolz JC, Gomez TS, Zhu P, Li S, Medeiros RB, Shimizu Y, Burkhardt JK, Freedman BD, Billadeau DD. The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation. Curr Biol 2006; 16:24-34. [PMID: 16401421 PMCID: PMC1779663 DOI: 10.1016/j.cub.2005.11.036] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 10/19/2005] [Accepted: 11/08/2005] [Indexed: 11/15/2022]
Abstract
BACKGROUND The engagement of the T cell receptor results in actin cytoskeletal reorganization at the immune synapse (IS) and the triggering of biochemical signaling cascades leading to gene regulation and, ultimately, cellular activation. Recent studies have identified the WAVE family of proteins as critical mediators of Rac1-induced actin reorganization in other cell types. However, whether these proteins participate in actin reorganization at the IS or signaling pathways in T cells has not been investigated. RESULTS By using a combination of biochemical, genetic, and cell biology approaches, we provide evidence that WAVE2 is recruited to the IS, is biochemically modified, and is required for actin reorganization and beta-integrin-mediated adhesion after TCR crosslinking. Moreover, we show that WAVE2 regulates calcium entry at a point distal to PLCgamma1 activation and IP(3)-mediated store release. CONCLUSIONS These data reveal a role for WAVE2 in regulating multiple pathways leading to T cell activation. In particular, this work shows that WAVE2 is a key component of the actin regulatory machinery in T cells and that it also participates in linking intracellular calcium store depletion to calcium release-activated calcium (CRAC) channel activation.
Collapse
Affiliation(s)
| | | | - Peimin Zhu
- Department of Pathobiology School of Veterinary Medicine
University of Pennsylvania Philadelphia, Pennsylvania 19104
| | - Shuixing Li
- Department of Pathology Children’s Hospital of
Philadelphia University of Pennsylvania Philadelphia, Pennsylvania 19104
| | - Ricardo B. Medeiros
- Department of Laboratory Medicine and Pathology Center for
Immunology Cancer Center University of Minnesota Medical School Minneapolis,
Minnesota 55455
| | - Yoji Shimizu
- Department of Laboratory Medicine and Pathology Center for
Immunology Cancer Center University of Minnesota Medical School Minneapolis,
Minnesota 55455
| | - Janis K. Burkhardt
- Department of Pathology Children’s Hospital of
Philadelphia University of Pennsylvania Philadelphia, Pennsylvania 19104
| | - Bruce D. Freedman
- Department of Pathobiology School of Veterinary Medicine
University of Pennsylvania Philadelphia, Pennsylvania 19104
| | - Daniel D. Billadeau
- Department of Immunology
- Division of Oncology Research Mayo Clinic College of Medicine
Rochester, Minnesota 55905
- Correspondence:
| |
Collapse
|
91
|
Lee WT, Watson ARO. Single-cell analysis of lipid rafts in lymphocytes and in T cell-containing immunoconjugates. CURRENT PROTOCOLS IN TOXICOLOGY 2006; Chapter 2:Unit2.11. [PMID: 20941702 DOI: 10.1002/0471140856.tx0211s27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Within the plasma membranes of many different cell types, certain membrane lipids, including cholesterol and sphingolipids, form lateral assemblies surrounded by unsaturated glycerophospholipids. The concentration of such membrane lipids and associated proteins results in the formation of microdomains termed lipid rafts" (or glycolipid-enriched membranes or detergent-insoluble glycosphingolipid-enriched domains). Proteins that possess saturated acyl chains are generally associated with lipid rafts. Lipid rafts are believed to be involved in a number of cellular processes including cell activation. When material is limiting, raft-associated proteins may be identified on single cells using microscopy. This unit describes the application of this technique in an immunological example, examining the location and movement of signal transduction complexes in single T lymphocytes and in interactive conjugates between T cells and antigen-presenting cells (APCs).
Collapse
|
92
|
Hall AB, Gakidis MAM, Glogauer M, Wilsbacher JL, Gao S, Swat W, Brugge JS. Requirements for Vav guanine nucleotide exchange factors and Rho GTPases in FcgammaR- and complement-mediated phagocytosis. Immunity 2006; 24:305-16. [PMID: 16546099 DOI: 10.1016/j.immuni.2006.02.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 01/20/2006] [Accepted: 02/01/2006] [Indexed: 12/19/2022]
Abstract
Vav guanine nucleotide exchange factors (GEFs) have been implicated in cell adhesion by integrin and immune response receptors through the regulation of Rho GTPases. Here, we examine the role of Vav and Rho GTPases in phagocytosis by using primary murine macrophages. The genetic deletion of Rac1 and Rac2 prevents phagocytosis mediated by integrin and Fcgamma receptors (FcgammaR), whereas the genetic deletion of Vav1 and Vav3 only prevents integrin-mediated phagocytosis through the complement receptor alpha(M)beta(2). In addition, a Rac1/2 or Vav1/3 deficiency blocks Arp2/3 recruitment and actin polymerization at the complement-induced phagosome, indicating that these proteins regulate early steps in phagocytosis. Moreover, constitutively active Rac is able to rescue actin polymerization and complement-mediated phagocytosis in Vav-deficient macrophages. These studies indicate that Rac is critical for complement- and FcgammaR-mediated phagocytosis. In contrast, Vav is specifically required for complement-mediated phagocytosis, suggesting that Rac is regulated by GEFs other than Vav downstream of the FcgammaR.
Collapse
Affiliation(s)
- Amy B Hall
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
93
|
Langhorst MF, Reuter A, Luxenhofer G, Boneberg EM, Legler DF, Plattner H, Stuermer CAO. Preformed reggie/flotillin caps: stable priming platforms for macrodomain assembly in T cells. FASEB J 2006; 20:711-3. [PMID: 16452278 DOI: 10.1096/fj.05-4760fje] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
T cell activation after contact with an antigen-presenting cell depends on the regulated assembly of the T cell receptor signaling complex, which involves the polarized assembly of a stable, raft-like macrodomain surrounding engaged T cell receptors. Here we show that the preformed reggie/flotillin caps present in resting T cells act as priming platforms for macrodomain assembly. Preformed reggie-1/flotillin-2 caps are exceptionally stable, as shown by fluorescence recovery after photobleaching (FRAP). Upon T cell stimulation, signaling molecules are recruited to the stable reggie/flotillin caps. Importantly, a trans-negative reggie-1/flotillin-2 deletion mutant, which interferes with assembly of the preformed reggie/flotillin cap, impairs raft polarization and macrodomain formation after T cell activation. Accordingly, expression of the trans-negative reggie-1 mutant leads to the incorrect positioning of the guanine nucleotide exchange factor Vav, resulting in defects in cytoskeletal reorganization. Thus, the preformed reggie/flotillin caps are stable priming platforms for the assembly of multiprotein complexes controlling actin reorganization during T cell activation.
Collapse
Affiliation(s)
- Matthias F Langhorst
- Developmental Neurobiology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | | | | | | | | | | | | |
Collapse
|
94
|
Wabnitz GH, Nebl G, Klemke M, Schröder AJ, Samstag Y. Phosphatidylinositol 3-Kinase Functions as a Ras Effector in the Signaling Cascade That Regulates Dephosphorylation of the Actin-Remodeling Protein Cofilin after Costimulation of Untransformed Human T Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2006; 176:1668-74. [PMID: 16424196 DOI: 10.4049/jimmunol.176.3.1668] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activity of cofilin, an actin-remodeling protein, is required for T lymphocyte activation with regard to formation of the immunological synapse, cytokine production, and proliferation. In unstimulated T PBL (PB-T), cofilin is present in its Ser3-phosphorylated inactive form. Costimulation of TCR/CD3 and CD28 induces dephosphorylation and, thus, activation of cofilin. In this study we characterized the signaling cascades leading to cofilin activation in untransformed human PB-T. We show that a Ras-PI3K cascade regulates dephosphorylation of cofilin in PB-T. The GTPase Ras is a central mediator of this pathway; transient expression of an activated form of H-Ras in PB-T triggered the dephosphorylation of cofilin. Inhibition of either MAPK/ERK kinase or PI3K blocked both Ras-induced and costimulation-induced cofilin dephosphorylation in PB-T, showing that the combined activities of both signaling proteins are required to activate cofilin. That Ras functions as a central regulator of cofilin dephosphorylation after costimulation through CD3 x CD28 was finally proven by transient expression of a dominant negative form of H-Ras in primary human PB-T. It clearly inhibited costimulation-induced cofilin dephosphorylation, and likewise, activation of PI3K was diminished. Our data, in addition, demonstrate that regarding the downstream effectors of Ras, a clear difference exists between untransformed human PB-T and the T lymphoma line Jurkat. Thus, in PB-T the Ras signaling cascade is able to activate PI3K, whereas in Jurkat cells this is not the case. In addition to the insights into the regulation of cofilin, this finding discloses a to date unrecognized possibility of PI3K activation in T lymphocytes.
Collapse
Affiliation(s)
- Guido H Wabnitz
- Ruprecht Karls University, Institute of Immunology, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
95
|
Gallo EM, Canté-Barrett K, Crabtree GR. Lymphocyte calcium signaling from membrane to nucleus. Nat Immunol 2005; 7:25-32. [PMID: 16357855 DOI: 10.1038/ni1295] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 11/14/2005] [Indexed: 12/14/2022]
Abstract
Ca(2+) signals control a variety of lymphocyte responses, ranging from short-term cytoskeletal modifications to long-term changes in gene expression. The identification of molecules and channels that modulate Ca(2+) entry into T and B lymphocytes has both provided details of the molecular events leading to immune responses and raised controversy. Here we review studies of the pathways that allow Ca(2+) entry, the function of Ca(2+) in the regulation of cell polarity and motility and the principles by which Ca(2+)-dependent transcription regulates lymphocyte function.
Collapse
Affiliation(s)
- Elena M Gallo
- Program in Immunology, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
96
|
Sato M, Iwaya R, Ogihara K, Sawahata R, Kitani H, Chiba J, Kurosawa Y, Sekikawa K. Intrabodies against the EVH1 domain of Wiskott-Aldrich syndrome protein inhibit T cell receptor signaling in transgenic mice T cells. FEBS J 2005; 272:6131-44. [PMID: 16302976 DOI: 10.1111/j.1742-4658.2005.05011.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intracellularly expressed antibodies (intrabodies) have been used to inhibit the function of various kinds of protein inside cells. However, problems with stability and functional expression of intrabodies in the cytosol remain unsolved. In this study, we show that single-chain variable fragment (scFv) intrabodies constructed with a heavy chain variable (V(H)) leader signal sequence at the N-terminus were translocated from the endoplasmic reticulum into the cytosol of T lymphocytes and inhibited the function of the target molecule, Wiskott-Aldrich syndrome protein (WASP). WASP resides in the cytosol as a multifunctional adaptor molecule and mediates actin polymerization and interleukin (IL)-2 synthesis in the T-cell receptor (TCR) signaling pathway. It has been suggested that an EVH1 domain in the N-terminal region of WASP may participate in IL-2 synthesis. In transgenic mice expressing anti-EVH1 scFvs derived from hybridoma cells producing WASP-EVH1 mAbs, a large number of scFvs in the cytosol and binding between anti-EVH1 scFvs and native WASP in T cells were detected by immunoprecipitation analysis. Furthermore, impairment of the proliferative response and IL-2 production induced by TCR stimulation which did not affect TCR capping was demonstrated in the scFv transgenic T cells. We previously described the same T-cell defects in WASP transgenic mice overexpressing the EVH1 domain. These results indicate that the EVH1 intrabodies inhibit only the EVH1 domain function that regulates IL-2 synthesis signaling without affecting the overall domain structure of WASP. The novel procedure presented here is a valuable tool for in vivo functional analysis of cytosolic proteins.
Collapse
Affiliation(s)
- Mitsuru Sato
- Department of Molecular Biology and Immunology, National Institute of Agrobiological Sciences, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Kustermans G, Benna J, Piette J, Legrand-Poels S. Perturbation of actin dynamics induces NF-kappaB activation in myelomonocytic cells through an NADPH oxidase-dependent pathway. Biochem J 2005; 387:531-40. [PMID: 15535802 PMCID: PMC1134982 DOI: 10.1042/bj20041318] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although several reports showed the effect of compounds disrupting microtubules on NF-kappaB (nuclear factor kappaB) activation, nothing is known about agents perturbing actin dynamics. In the present study, we have shown that actin cytoskeleton disruption induced by actin-depolymerizing agents such as cytochalasin D and latrunculin B and actin-polymerizing compounds such as jasplakinolide induced NF-kappaB activation in myelomonocytic cells. The transduction pathway involved the IkappaB (inhibitory kappaB) kinase complex and a degradation of IkappaBalpha. We have shown that NF-kappaB activation in response to the perturbation of actin dynamics required reactive oxygen species, as demonstrated by the effect of antioxidants. Actin cytoskeleton disruption by cytochalasin D induced O2- release from human monocytes, through the activation of the NADPH oxidase, as confirmed by the phosphorylation and by the membrane translocation of p47phox. NF-kappaB activation after actin cytoskeleton disruption could be physiologically relevant during monocyte activation and/or recruitment into injured tissues, where cellular attachment, migration and phagocytosis result in cyclic shifts in cytoskeletal organization and disorganization.
Collapse
Affiliation(s)
- Gaelle Kustermans
- *Laboratory of Virology and Immunology, Institute of Pathology, University of Liège, B-4000 Liege, Belgium
| | - Jamel EL Benna
- †INSERM, Unité 479, Centre Hospitalier Universitaire Xavier Bichat, Paris, France
| | - Jacques Piette
- *Laboratory of Virology and Immunology, Institute of Pathology, University of Liège, B-4000 Liege, Belgium
| | - Sylvie Legrand-Poels
- *Laboratory of Virology and Immunology, Institute of Pathology, University of Liège, B-4000 Liege, Belgium
- To whom correspondence should be addressed (email )
| |
Collapse
|
98
|
Friedman RS, Jacobelli J, Krummel MF. Mechanisms of T cell motility and arrest: deciphering the relationship between intra- and extracellular determinants. Semin Immunol 2005; 17:387-99. [PMID: 16219473 DOI: 10.1016/j.smim.2005.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
T lymphocytes are capable of rapid motility in vitro and in vivo. Upon antigen recognition, they may stop crawling and form a stable cell-cell contact called the 'immunological synapse' (IS). However, it is becoming clear that this outcome may not occur with the reliability that was once presumed. T cells, particularly naïve cells, are apparently triggered partly 'on the fly' during short contacts with peptide-MHC (pMHC) bearing antigen-presenting cells (APCs) and are also influenced in both activity and synapse duration by a multitude of external cues. Underlying the emerging issues is a paucity of data concerning the cell biology of T lymphocytes. Here, we review the molecular mechanisms of crawling and adhesion versus the various potential modes of 'stopping' in T lymphocytes. Both motility and arrest involve similar processes: adhesion, actin elongation and internal tension control, but with different coordination. We will attempt to integrate this with the known and potential external cues that signal for T cell motility versus stopping to form a synapse in vivo. Finally, we discuss how this interplay may give rise to unexpectedly complex motile and morphological behavior.
Collapse
Affiliation(s)
- Rachel S Friedman
- Department of Pathology, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0511, USA
| | | | | |
Collapse
|
99
|
Prisco A, Vanes L, Ruf S, Trigueros C, Tybulewicz VLJ. Lineage-specific requirement for the PH domain of Vav1 in the activation of CD4+ but not CD8+ T cells. Immunity 2005; 23:263-274. [PMID: 16169499 DOI: 10.1016/j.immuni.2005.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Revised: 07/08/2005] [Accepted: 07/19/2005] [Indexed: 10/25/2022]
Abstract
Vav1 is a guanine nucleotide exchange factor (GEF) for Rho-family GTPases, which is activated by tyrosine phosphorylation following TCR stimulation. Vav1-deficient mice have defects in positive and negative selection of thymocytes as well as TCR-induced proliferation in mature T cells, demonstrating a critical role for Vav1 in transducing TCR signals. Binding of phospholipids to the PH domain of Vav1 has been proposed to regulate its GEF activity in vitro. To test this model in vivo, we have generated mice carrying a point mutation in the PH domain of Vav1, and we show that they have defects in T cell development and activation. We demonstrate that the mutation affects the function of Vav1 as a GEF and perturbs PI3K-dependent pathways downstream of Vav1. Unexpectedly, the mutation selectively affects TCR-induced proliferation of CD4(+) but not CD8(+) T cells, demonstrating differences in the wiring of TCR signaling pathways between the two lineages.
Collapse
Affiliation(s)
- Antonella Prisco
- Division of Immune Cell Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | |
Collapse
|
100
|
Abstract
The Vav family proteins (Vav1, Vav2, Vav3) are cytoplasmic guanine nucleotide exchange factors (GEFs) for Rho-family GTPases. T-cell antigen receptor (TCR) signalling results in the tyrosine phosphorylation of Vav proteins and hence their activation. Results from mice deficient in one or more Vav proteins has shown that they play critical roles in T-cell development and activation. Vav1 is required for TCR-induced calcium flux, activation of the ERK MAP kinase pathway, activation of the NF-kappaB transcription factor, inside-out activation of the integrin LFA-1, TCR clustering, and polarisation of the T cell. Although many of these processes may require the GEF activity of Vav1, it is possible that Vav1 also has adaptor-like functions. Recent evidence suggests that Vav1 might also function in the nucleus, where it undergoes arginine methylation. An emerging theme is that Vav proteins may have important functions downstream of receptors other than the TCR, such as integrins and chemokine receptors.
Collapse
Affiliation(s)
- Victor L J Tybulewicz
- Division of Immune Cell Biology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|