51
|
Purdy JG, Flanagan JM, Ropson IJ, Craven RC. Retroviral capsid assembly: a role for the CA dimer in initiation. J Mol Biol 2009; 389:438-51. [PMID: 19361521 DOI: 10.1016/j.jmb.2009.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/31/2009] [Accepted: 04/02/2009] [Indexed: 12/24/2022]
Abstract
In maturing retroviral virions, CA protein assembles to form a capsid shell that is essential for infectivity. The structure of the two folded domains [N-terminal domain (NTD) and C-terminal domain (CTD)] of CA is highly conserved among various retroviruses, and the capsid assembly pathway, although poorly understood, is thought to be conserved as well. In vitro assembly reactions with purified CA proteins of the Rous sarcoma virus (RSV) were used to define factors that influence the kinetics of capsid assembly and provide insights into underlying mechanisms. CA multimerization was triggered by multivalent anions providing evidence that in vitro assembly is an electrostatically controlled process. In the case of RSV, in vitro assembly was a well-behaved nucleation-driven process that led to the formation of structures with morphologies similar to those found in virions. Isolated RSV dimers, when mixed with monomeric protein, acted as efficient seeds for assembly, eliminating the lag phase characteristic of a monomer-only reaction. This demonstrates for the first time the purification of an intermediate on the assembly pathway. Differences in the intrinsic tryptophan fluorescence of monomeric protein and the assembly-competent dimer fraction suggest the involvement of the NTD in the formation of the functional dimer. Furthermore, in vitro analysis of well-characterized CTD mutants provides evidence for assembly dependence on the second domain and suggests that the establishment of an NTD-CTD interface is a critical step in capsid assembly initiation. Overall, the data provide clear support for a model whereby capsid assembly within the maturing virion is dependent on the formation of a specific nucleating complex that involves a CA dimer and is directed by additional virion constituents.
Collapse
Affiliation(s)
- John G Purdy
- Department of Microbiology and Immunology, College of Medicine, The Pennsylvania State University, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
52
|
Visualization of a missing link in retrovirus capsid assembly. Nature 2009; 457:694-8. [PMID: 19194444 PMCID: PMC2721793 DOI: 10.1038/nature07724] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 12/15/2008] [Indexed: 11/13/2022]
Abstract
For a retrovirus such as HIV to be infectious, a properly formed capsid is needed; however, unusually among viruses, retrovirus capsids are highly variable in structure. According to the fullerene conjecture, they are composed of hexamers and pentamers of CA protein, with a capsid’s shape varying according to how the twelve pentamers are distributed and its size depending on the number of hexamers. Hexamers have been studied in planar and tubular arrays but the predicted pentamers have not been observed. Here we report cryo-electron microscopic analyses of two in vitro-assembled capsids of Rous sarcoma virus. Both are icosahedrally symmetric: one is composed of 12 pentamers; the other, of 12 pentamers and 20 hexamers. Fitting of atomic models of the two CA domains into the reconstructions shows three distinct inter-subunit interactions. These observations substantiate the fullerene conjecture, show how pentamers are accommodated at vertices, support the inference that nucleation is a crucial morphologic determinant, and imply that electrostatic interactions govern the differential assembly of pentamers and hexamers.
Collapse
|
53
|
Mortuza GB, Goldstone DC, Pashley C, Haire LF, Palmarini M, Taylor WR, Stoye JP, Taylor IA. Structure of the capsid amino-terminal domain from the betaretrovirus, Jaagsiekte sheep retrovirus. J Mol Biol 2008; 386:1179-92. [PMID: 19007792 DOI: 10.1016/j.jmb.2008.10.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/06/2008] [Accepted: 10/13/2008] [Indexed: 01/27/2023]
Abstract
Jaagsiekte sheep retrovirus is a betaretrovirus and the causative agent of pulmonary adenocarcinoma, a transmissible lung tumour of sheep. Here we report the crystal structure of the capsid amino-terminal domain and examine the self-association properties of Jaagsiekte sheep retrovirus capsid. We find that the structure is remarkably similar to the amino-terminal domain of the alpharetrovirus, avian leukosis virus, revealing a previously undetected evolutionary similarity. Examination of capsid self-association suggests a mode of assembly not driven by the strong capsid carboxy-terminal domain interactions that characterise capsid assembly in the lentiviruses. Based on these data, we propose this structure provides a model for the capsid of betaretroviruses including the HML-2 family of endogenous human betaretroviruses.
Collapse
Affiliation(s)
- Gulnahar B Mortuza
- Division of Molecular Structure, National Institute for Medical Research, the Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Wildová M, Hadravová R, Stokrová J, Krízová I, Ruml T, Hunter E, Pichová I, Rumlová M. The effect of point mutations within the N-terminal domain of Mason-Pfizer monkey virus capsid protein on virus core assembly and infectivity. Virology 2008; 380:157-63. [PMID: 18755489 DOI: 10.1016/j.virol.2008.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 07/10/2008] [Accepted: 07/22/2008] [Indexed: 12/29/2022]
Abstract
Retroviral capsid protein (CA) mediates protein interactions driving the assembly of both immature viral particles and the core of the mature virions. Structurally conserved N-terminal domains of several retroviruses refold after proteolytic cleavage into a beta-hairpin, stabilized by a salt bridge between conserved N-terminal Pro and Asp residues. Based on comparison with other retroviral CA, we identified Asp50 and Asp57 as putative interacting partners for Pro1 in Mason-Pfizer monkey virus (M-PMV) CA. To investigate the importance of CA Pro1 and its interacting Asp in M-PMV core assembly and infectivity, P1A, P1Y, D50A, T54A and D57A mutations were introduced into M-PMV. The P1A and D57A mutations partially blocked Gag processing and the released viral particles exhibited aberrant cores and were non-infectious. These data indicate that the region spanning residues Asp50-Asp57 plays an important role in stabilization of the beta-hairpin and that Asp57 likely forms a salt-bridge with P1 in M-PMV CA.
Collapse
Affiliation(s)
- Marcela Wildová
- Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Purdy JG, Flanagan JM, Ropson IJ, Rennoll-Bankert KE, Craven RC. Critical role of conserved hydrophobic residues within the major homology region in mature retroviral capsid assembly. J Virol 2008; 82:5951-61. [PMID: 18400856 PMCID: PMC2395126 DOI: 10.1128/jvi.00214-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 03/28/2008] [Indexed: 12/26/2022] Open
Abstract
During retroviral maturation, the CA protein undergoes dramatic structural changes and establishes unique intermolecular interfaces in the mature capsid shell that are different from those that existed in the immature precursor. The most conserved region of CA, the major homology region (MHR), has been implicated in both immature and mature assembly, although the precise contribution of the MHR residues to each event has been largely undefined. To test the roles of specific MHR residues in mature capsid assembly, an in vitro system was developed that allowed for the first-time formation of Rous sarcoma virus CA into structures resembling authentic capsids. The ability of CA to assemble organized structures was destroyed by substitutions of two conserved hydrophobic MHR residues and restored by second-site suppressors, demonstrating that these MHR residues are required for the proper assembly of mature capsids in addition to any role that these amino acids may play in immature particle assembly. The defect caused by the MHR mutations was identified as an early step in the capsid assembly process. The results provide strong evidence for a model in which the hydrophobic residues of the MHR control a conformational reorganization of CA that is needed to initiate capsid assembly and suggest that the formation of an interdomain interaction occurs early during maturation.
Collapse
Affiliation(s)
- John G Purdy
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
56
|
Macek P, Zídek L, Rumlová M, Pichová I, Sklenár V. 1H, 13C, and 15N resonance assignment of the N-terminal domain of Mason-Pfizer monkey virus capsid protein, CA 1-140. BIOMOLECULAR NMR ASSIGNMENTS 2008; 2:43-45. [PMID: 19636921 DOI: 10.1007/s12104-008-9080-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 03/04/2008] [Indexed: 05/28/2023]
Abstract
Mason-Pfizer monkey virus (M-PMV) belongs to the family of betaretroviruses characterized by the assembly of immature particles within cytoplasm of infected cells in contrast to other retroviruses (e.g. HIV, RSV) that assemble their immature particles at a plasma membrane. Simultaneously with or shortly after budding a virus-encoded protease is activated and the Gag polyprotein is cleaved into three major structural proteins: matrix (MA), capsid (CA), and nucleocapsid (NC) protein. Mature retroviral CA proteins consist of two independently folded structural domains: N-terminal domain (NTD) and C-terminal dimerization domain (CTD), separated by a flexible linker. As a first step toward the solution structure elucidation, we present nearly complete backbone and side-chain 1H, 13C and 15N resonance assignment of the M-PMV NTD CA.
Collapse
Affiliation(s)
- Pavel Macek
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kotlárská 2, 61137 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
57
|
Mutations in the spacer peptide and adjoining sequences in Rous sarcoma virus Gag lead to tubular budding. J Virol 2008; 82:6788-97. [PMID: 18448521 DOI: 10.1128/jvi.00213-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
All orthoretroviruses encode a single structural protein, Gag, which is necessary and sufficient for the assembly and budding of enveloped virus-like particles from the cell. The Gag proteins of Rous sarcoma virus (RSV) and human immunodeficiency virus type 1 (HIV-1) contain a short spacer peptide (SP or SP1, respectively) separating the capsid (CA) and nucleocapsid (NC) domains. SP or SP1 and the residues immediately upstream are known to be critical for proper assembly. Using mutagenesis and electron microscopy analysis of insect cells or chicken cells overexpressing RSV Gag, we defined the SP assembly domain to include the last 8 residues of CA, all 12 residues of SP, and the first 4 residues of NC. Five- or two-amino acid glycine-rich insertions or substitutions in this critical region uniformly resulted in the budding of abnormal, long tubular particles. The equivalent SP1-containing HIV-1 Gag sequence was unable to functionally replace the RSV sequence in supporting normal RSV spherical assembly. According to secondary structure predictions, RSV and HIV-1 SP/SP1 and adjoining residues may form an alpha helix, and what is likely the functionally equivalent sequence in murine leukemia virus Gag has been inferred by mutational analysis to form an amphipathic alpha helix. However, our alanine insertion mutagenesis did not provide evidence for an amphipathic helix in RSV Gag. Taken together, these results define a short assembly domain between the folded portions of CA and NC, which is essential for formation of the immature Gag shell.
Collapse
|
58
|
Lokhandwala PM, Nguyen TLN, Bowzard JB, Craven RC. Cooperative role of the MHR and the CA dimerization helix in the maturation of the functional retrovirus capsid. Virology 2008; 376:191-8. [PMID: 18433823 DOI: 10.1016/j.virol.2008.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 02/23/2008] [Accepted: 03/01/2008] [Indexed: 12/25/2022]
Abstract
The second helix in the C-terminal domain of retroviral capsid (CA) protein functions as the site of dimerization between subunits in capsid assembly and is believed to participate in a unique interface between Gag molecules in immature particles. This study reports isolation of two substitutions in the dimerization helix of Rous sarcoma virus CA protein that have the ability to suppress lethal defects in core maturation imposed by alterations to the major homology region (MHR) motif just upstream. Together with two previously published suppressors, these define an extended region of the dimerization helix that is unlikely to contribute directly to CA-CA contacts but whose assembly-competence may be strongly affected by conformation. The broad-spectrum suppression and temperature-sensitivity exhibited by some mutants argues that they act through modulation of protein conformation. These findings provide important biological evidence in support of a significant conformational change involving the dimerization helix and the MHR during maturation.
Collapse
Affiliation(s)
- Parvez M Lokhandwala
- Department of Microbiology and Immunology, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
59
|
Phillips JM, Murray PS, Murray D, Vogt VM. A molecular switch required for retrovirus assembly participates in the hexagonal immature lattice. EMBO J 2008; 27:1411-20. [PMID: 18401344 DOI: 10.1038/emboj.2008.71] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 03/12/2008] [Indexed: 01/03/2023] Open
Abstract
In the Rous sarcoma virus (RSV) Gag protein, the 25 amino-acid residues of the p10 domain immediately upstream of the CA domain are essential for immature particle formation. We performed systematic mutagenesis on this region and found excellent correlation between the amino-acid side chains required for in vitro assembly and those that participate in the p10-CA dimer interface in a previously described crystal structure. We introduced exogenous cysteine residues that were predicted to form disulphide bonds across the dimer interface. Upon oxidation of immature particles, a disulphide-linked Gag hexamer was formed, implying that p10 participates in and stabilizes the immature Gag hexamer. This is the first example of a critical interaction between two different Gag domains. Molecular modeling of the RSV immature hexamer indicates that the N-terminal domains of CA must expand relative to the murine leukaemia virus mature hexamer to accommodate the p10 contact; this expansion is strikingly similar to recent cryotomography results for immature human immunodeficiency virus particles.
Collapse
Affiliation(s)
- Judith M Phillips
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
60
|
Mortuza GB, Dodding MP, Goldstone DC, Haire LF, Stoye JP, Taylor IA. Structure of B-MLV Capsid Amino-terminal Domain Reveals Key Features of Viral Tropism, Gag Assembly and Core Formation. J Mol Biol 2008; 376:1493-508. [DOI: 10.1016/j.jmb.2007.12.043] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 12/17/2007] [Accepted: 12/18/2007] [Indexed: 11/25/2022]
|
61
|
Ganser-Pornillos BK, Cheng A, Yeager M. Structure of full-length HIV-1 CA: a model for the mature capsid lattice. Cell 2008; 131:70-9. [PMID: 17923088 DOI: 10.1016/j.cell.2007.08.018] [Citation(s) in RCA: 263] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/19/2007] [Accepted: 08/15/2007] [Indexed: 11/25/2022]
Abstract
The capsids of mature retroviruses perform the essential function of organizing the viral genome for efficient replication. These capsids are modeled as fullerene structures composed of closed hexameric arrays of the viral CA protein, but a high-resolution structure of the lattice has remained elusive. A three-dimensional map of two-dimensional crystals of the R18L mutant of HIV-1 CA was derived by electron cryocrystallography. The docking of high-resolution domain structures into the map yielded the first unambiguous model for full-length HIV-1 CA. Three important protein-protein assembly interfaces are required for capsid formation. Each CA hexamer is composed of an inner ring of six N-terminal domains and an outer ring of C-terminal domains that form dimeric linkers connecting neighboring hexamers. Interactions between the two domains of CA further stabilize the hexamer and provide a structural explanation for the mechanism of action of known HIV-1 assembly inhibitors.
Collapse
Affiliation(s)
- Barbie K Ganser-Pornillos
- The Scripps Research Institute, Department of Cell Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
62
|
Butan C, Winkler DC, Heymann JB, Craven RC, Steven AC. RSV capsid polymorphism correlates with polymerization efficiency and envelope glycoprotein content: implications that nucleation controls morphogenesis. J Mol Biol 2007; 376:1168-81. [PMID: 18206161 DOI: 10.1016/j.jmb.2007.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 11/30/2007] [Accepted: 12/04/2007] [Indexed: 01/12/2023]
Abstract
We used cryo-electron tomography to visualize Rous sarcoma virus, the prototypic alpharetrovirus. Its polyprotein Gag assembles into spherical procapsids, concomitant with budding. In maturation, Gag is dissected into its matrix, capsid protein (CA), and nucleocapsid moieties. CA reassembles into cores housing the viral RNA and replication enzymes. Evidence suggests that a correctly formed core is essential for infectivity. The virions in our data set range from approximately 105 to approximately 175 nm in diameter. Their cores are highly polymorphic. We observe angular cores, including some that are distinctively "coffin-shaped" for which we propose a novel fullerene geometry; cores with continuous curvature including, rarely, fullerene cones; and tubular cores. Angular cores are the most voluminous and densely packed; tubes and some curved cores contain less material, suggesting incomplete packaging. From the tomograms, we measured the surface areas of cores and, hence, their contents of CA subunits. From the virion diameters, we estimated their original complements of Gag. We find that Rous sarcoma virus virions, like the human immunodeficiency virus, contain unassembled CA subunits and that the fraction of CA that is assembled correlates with core type; angular cores incorporate approximately 80% of the available subunits, and open-ended tubes, approximately 30%. The number of glycoprotein spikes is variable (approximately 0 to 118) and also correlates with core type; virions with angular cores average 82 spikes, whereas those with tubular cores average 14 spikes. These observations imply that initiation of CA assembly, in which interactions of spike endodomains with the Gag layer play a role, is a critical determinant of core morphology.
Collapse
Affiliation(s)
- Carmen Butan
- Laboratory of Structural Biology, National Institute for Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
63
|
Auerbach MR, Brown KR, Singh IR. Mutational analysis of the N-terminal domain of Moloney murine leukemia virus capsid protein. J Virol 2007; 81:12337-47. [PMID: 17855544 PMCID: PMC2168981 DOI: 10.1128/jvi.01286-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Retroviral capsid (CA) proteins contain a structurally conserved N-terminal domain (NTD) consisting of a beta-hairpin and six to seven alpha-helices. To examine the role of this domain in Moloney murine leukemia virus (MoMLV) replication, we analyzed 18 insertional mutations in this region. All mutants were noninfectious. Based on the results of this analysis and our previous studies on additional mutations in this domain, we were able to divide the NTD of MoMLV CA into three functional regions. The first functional region included the region near the N terminus that forms the beta-hairpin and was shown to control normal maturation of virions. The second region included the helix 4/5 loop and was essential for the formation of spherical cores. The third region encompassed most of the NTD except for the above loop. Mutants of this region assembled imperfect cores, as seen by detailed electron microscopy analyses, yet the resulting particles were efficiently released from cells. The mutants were defective at a stage immediately following entry of the core into cells. Despite possessing functional reverse transcriptase machinery, these mutant virions did not initiate reverse transcription in cells. This block could be due to structural defects in the assembling core or failure of an essential host protein to interact with the mutant CA protein, both of which may prevent correct disassembly upon entry of the virus into cells. Future studies are needed to understand the mechanism of these blocks and to target these regions pharmacologically to inhibit retroviral infection at additional stages.
Collapse
Affiliation(s)
- Marcy R Auerbach
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | |
Collapse
|
64
|
Larsen LSZ, Zhang M, Beliakova-Bethell N, Bilanchone V, Lamsa A, Nagashima K, Najdi R, Kosaka K, Kovacevic V, Cheng J, Baldi P, Hatfield GW, Sandmeyer S. Ty3 capsid mutations reveal early and late functions of the amino-terminal domain. J Virol 2007; 81:6957-72. [PMID: 17442718 PMCID: PMC1933270 DOI: 10.1128/jvi.02207-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The Ty3 retrotransposon assembles into 50-nm virus-like particles that occur in large intracellular clusters in the case of wild-type (wt) Ty3. Within these particles, maturation of the Gag3 and Gag3-Pol3 polyproteins by Ty3 protease produces the structural proteins capsid (CA), spacer, and nucleocapsid. Secondary and tertiary structure predictions showed that, like retroviral CA, Ty3 CA contains a large amount of helical structure arranged in amino-terminal and carboxyl-terminal bundles. Twenty-six mutants in which alanines were substituted for native residues were used to study CA subdomain functions. Transposition was measured, and particle morphogenesis and localization were characterized by analysis of protein processing, cDNA production, genomic RNA protection, and sedimentation and by fluorescence and electron microscopy. These measures defined five groups of mutants. Proteins from each group could be sedimented in a large complex. Mutations in the amino-terminal domain reduced the formation of fluorescent Ty3 protein foci. In at least one major homology region mutant, Ty3 protein concentrated in foci but no wt clusters of particles were observed. One mutation in the carboxyl-terminal domain shifted assembly from spherical particles to long filaments. Two mutants formed foci separate from P bodies, the proposed sites of assembly, and formed defective particles. P-body association was therefore found to be not necessary for assembly but correlated with the production of functional particles. One mutation in the amino terminus blocked transposition after cDNA synthesis. Our data suggest that Ty3 proteins are concentrated first, assembly associated with P bodies occurs, and particle morphogenesis concludes with a post-reverse transcription, CA-dependent step. Particle formation was generally resistant to localized substitutions, possibly indicating that multiple domains are involved.
Collapse
Affiliation(s)
- Liza S Z Larsen
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Spidel JL, Wilson CB, Craven RC, Wills JW. Genetic Studies of the beta-hairpin loop of Rous sarcoma virus capsid protein. J Virol 2007; 81:1288-96. [PMID: 17093186 PMCID: PMC1797520 DOI: 10.1128/jvi.01551-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 10/31/2006] [Indexed: 12/14/2022] Open
Abstract
The first few residues of the Rous sarcoma virus (RSV) CA protein comprise a structurally dynamic region that forms part of a Gag-Gag interface in immature virus particles. Dissociation of this interaction during maturation allows refolding and formation of a beta-hairpin structure important for assembly of CA monomers into the mature capsid shell. A consensus binding site for the cellular Ubc9 protein was previously identified within this region, suggesting that binding of Ubc9 and subsequent small ubiquitin-like modifier protein 1 (SUMO-1) modification of CA may play a role either in regulating the assembly activity of CA in immature particles or mature cores or in controlling postentry function(s) during the establishment of infection. In the present study, mutations designed to eliminate the consensus binding site were used to dissect the potentially overlapping functions of these residues. The resulting replication defects could not be traced to a failure to form particles of normal composition but, rather, to a deficit in genome replication. Genetic suppressors of two detrimental beta-hairpin mutations improved infectivity without restoring the consensus site or creating a novel one elsewhere. Optimal restoration of infectivity to a Lys-to-Arg mutant required a combination of secondary changes, one on the surface of each domain of CA. Rather than arguing for a critical role of Ubc9 and SUMO in RSV replication, these findings provide strong support for a structural role of the N-terminal residues and a particularly striking example of long-range interactions between regions of CA in achieving a functional core competent for genome replication.
Collapse
Affiliation(s)
- Jared L Spidel
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
66
|
Neuman BW, Adair BD, Yoshioka C, Quispe JD, Orca G, Kuhn P, Milligan RA, Yeager M, Buchmeier MJ. Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J Virol 2006; 80:7918-28. [PMID: 16873249 PMCID: PMC1563832 DOI: 10.1128/jvi.00645-06] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Coronavirus particles are enveloped and pleomorphic and are thus refractory to crystallization and symmetry-assisted reconstruction. A novel methodology of single-particle image analysis was applied to selected virus features to obtain a detailed model of the oligomeric state and spatial relationships among viral structural proteins. Two-dimensional images of the S, M, and N structural proteins of severe acute respiratory syndrome coronavirus and two other coronaviruses were refined to a resolution of approximately 4 nm. Proteins near the viral membrane were arranged in overlapping lattices surrounding a disordered core. Trimeric glycoprotein spikes were in register with four underlying ribonucleoprotein densities. However, the spikes were dispensable for ribonucleoprotein lattice formation. The ribonucleoprotein particles displayed coiled shapes when released from the viral membrane. Our results contribute to the understanding of the assembly pathway used by coronaviruses and other pleomorphic viruses and provide the first detailed view of coronavirus ultrastructure.
Collapse
Affiliation(s)
- Benjamin W Neuman
- Department of Molecular and Integrative Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Ulbrich P, Haubova S, Nermut MV, Hunter E, Rumlova M, Ruml T. Distinct roles for nucleic acid in in vitro assembly of purified Mason-Pfizer monkey virus CANC proteins. J Virol 2006; 80:7089-99. [PMID: 16809314 PMCID: PMC1489063 DOI: 10.1128/jvi.02694-05] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In contrast to other retroviruses, Mason-Pfizer monkey virus (M-PMV) assembles immature capsids in the cytoplasm. We have compared the ability of minimal assembly-competent domains from M-PMV and human immunodeficiency virus type 1 (HIV-1) to assemble in vitro into virus-like particles in the presence and absence of nucleic acids. A fusion protein comprised of the capsid and nucleocapsid domains of Gag (CANC) and its N-terminally modified mutant (DeltaProCANC) were used to mimic the assembly of the viral core and immature particles, respectively. In contrast to HIV-1, where CANC assembled efficiently into cylindrical structures, the same domains of M-PMV were assembly incompetent. The addition of RNA or oligonucleotides did not complement this defect. In contrast, the M-PMV DeltaProCANC molecule was able to assemble into spherical particles, while that of HIV-1 formed both spheres and cylinders. For M-PMV, the addition of purified RNA increased the efficiency with which DeltaProCANC formed spherical particles both in terms of the overall amount and the numbers of completed spheres. The amount of RNA incorporated was determined, and for both rRNA and MS2-RNA, quantities similar to that of genomic RNA were encapsidated. Oligonucleotides also stimulated assembly; however, they were incorporated into DeltaProCANC spherical particles in trace amounts that could not serve as a stoichiometric structural component for assembly. Thus, oligonucleotides may, through a transient interaction, induce conformational changes that facilitate assembly, while longer RNAs appear to facilitate the complete assembly of spherical particles.
Collapse
Affiliation(s)
- Pavel Ulbrich
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Technicka 3, 166 28 Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
68
|
Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J Virol 2006. [PMID: 16873249 DOI: 10.1128/jvi.00645‐06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Coronavirus particles are enveloped and pleomorphic and are thus refractory to crystallization and symmetry-assisted reconstruction. A novel methodology of single-particle image analysis was applied to selected virus features to obtain a detailed model of the oligomeric state and spatial relationships among viral structural proteins. Two-dimensional images of the S, M, and N structural proteins of severe acute respiratory syndrome coronavirus and two other coronaviruses were refined to a resolution of approximately 4 nm. Proteins near the viral membrane were arranged in overlapping lattices surrounding a disordered core. Trimeric glycoprotein spikes were in register with four underlying ribonucleoprotein densities. However, the spikes were dispensable for ribonucleoprotein lattice formation. The ribonucleoprotein particles displayed coiled shapes when released from the viral membrane. Our results contribute to the understanding of the assembly pathway used by coronaviruses and other pleomorphic viruses and provide the first detailed view of coronavirus ultrastructure.
Collapse
|
69
|
Auerbach MR, Brown KR, Kaplan A, de Las Nueces D, Singh IR. A small loop in the capsid protein of Moloney murine leukemia virus controls assembly of spherical cores. J Virol 2006; 80:2884-93. [PMID: 16501097 PMCID: PMC1395457 DOI: 10.1128/jvi.80.6.2884-2893.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We report the identification of a novel domain in the Gag protein of Moloney murine leukemia virus (MoLV) that is important for the formation of spherical cores. Analysis of 18 insertional mutations in the N-terminal domain of the capsid protein (CA) identified 3 that were severely defective for viral assembly and release. Transmission electron microscopy of cells producing these mutants showed assembly of Gag proteins in large, flat or dome-shaped patches at the plasma membrane. Spherical cores were not formed, and viral particles were not released. This late assembly/release block was partially rescued by wild-type virus. All three mutations localized to the small loop between alpha-helices 4 and 5 of CA, analogous to the cyclophilin A-binding loop of human immunodeficiency virus type 1 CA. In the X-ray structure of the hexameric form of MLV CA, this loop is located at the periphery of the hexamer. The phenotypes of mutations in this loop suggest that formation of a planar lattice of Gag is unhindered by mutations in the loop. However, the lack of progression of these planar structures to spherical ones suggests that mutations in this loop may prevent formation of pentamers or of stable pentamer-hexamer interactions, which are essential for the formation of a closed, spherical core. This region in CA, focused to a few residues of a small loop, may offer a novel therapeutic target for retroviral diseases.
Collapse
Affiliation(s)
- Marcy R Auerbach
- Department of Pathology, Columbia University Medical Center, 630 West 168th Street, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
70
|
Ako-Adjei D, Johnson MC, Vogt VM. The retroviral capsid domain dictates virion size, morphology, and coassembly of gag into virus-like particles. J Virol 2005; 79:13463-72. [PMID: 16227267 PMCID: PMC1262573 DOI: 10.1128/jvi.79.21.13463-13472.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The retroviral structural protein, Gag, is capable of independently assembling into virus-like particles (VLPs) in living cells and in vitro. Immature VLPs of human immunodeficiency virus type 1 (HIV-1) and of Rous sarcoma virus (RSV) are morphologically distinct when viewed by transmission electron microscopy (TEM). To better understand the nature of the Gag-Gag interactions leading to these distinctions, we constructed vectors encoding several RSV/HIV-1 chimeric Gag proteins for expression in either insect cells or vertebrate cells. We used TEM, confocal fluorescence microscopy, and a novel correlative scanning EM (SEM)-confocal microscopy technique to study the assembly properties of these proteins. Most chimeric proteins assembled into regular VLPs, with the capsid (CA) domain being the primary determinant of overall particle diameter and morphology. The presence of domains between matrix and CA also influenced particle morphology by increasing the spacing between the inner electron-dense ring and the VLP membrane. Fluorescently tagged versions of wild-type RSV, HIV-1, or murine leukemia virus Gag did not colocalize in cells. However, wild-type Gag proteins colocalized extensively with chimeric Gag proteins bearing the same CA domain, implying that Gag interactions are mediated by CA. A dramatic example of this phenomenon was provided by a nuclear export-deficient chimera of RSV Gag carrying the HIV-1 CA domain, which by itself localized to the nucleus but relocalized to the cytoplasm in the presence of wild type HIV-1 Gag. Wild-type and chimeric Gag proteins were capable of coassembly into a single VLP as viewed by correlative fluorescence SEM if, and only if, the CA domain was derived from the same virus. These results imply that the primary selectivity of Gag-Gag interactions is determined by the CA domain.
Collapse
Affiliation(s)
- Danso Ako-Adjei
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
71
|
Briggs JAG, Johnson MC, Simon MN, Fuller SD, Vogt VM. Cryo-electron microscopy reveals conserved and divergent features of gag packing in immature particles of Rous sarcoma virus and human immunodeficiency virus. J Mol Biol 2005; 355:157-68. [PMID: 16289202 DOI: 10.1016/j.jmb.2005.10.025] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 10/07/2005] [Accepted: 10/11/2005] [Indexed: 11/18/2022]
Abstract
Retrovirus assembly proceeds via multimerisation of the major structural protein, Gag, into a tightly packed, spherical particle that buds from the membrane of the host cell. The lateral packing arrangement of the human immunodeficiency virus type 1 (HIV-1) Gag CA (capsid) domain in the immature virus has been described. Here we have used cryo-electron microscopy (cryo-EM) and image processing to determine the lateral and radial arrangement of Gag in in vivo and in vitro assembled Rous sarcoma virus (RSV) particles and to compare these features with those of HIV-1. We found that the lateral packing arrangement in the vicinity of the inner sub-domain of CA is conserved between these retroviruses. The curvature of the lattice, however, is different. RSV Gag protein adopts a more tightly curved lattice than is seen in HIV-1, and the virions therefore contain fewer copies of Gag. In addition, consideration of the relationship between the radial position of different Gag domains and their lateral spacings in particles of different diameters, suggests that the N-terminal MA (matrix) domain does not form a single, regular lattice in immature retrovirus particles.
Collapse
Affiliation(s)
- John A G Briggs
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| | | | | | | | | |
Collapse
|
72
|
Vana ML, Chen A, Boross P, Weber I, Colman D, Barklis E, Leis J. Mutations affecting cleavage at the p10-capsid protease cleavage site block Rous sarcoma virus replication. Retrovirology 2005; 2:58. [PMID: 16188035 PMCID: PMC1262776 DOI: 10.1186/1742-4690-2-58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Accepted: 09/27/2005] [Indexed: 11/20/2022] Open
Abstract
A series of amino acid substitutions (M239F, M239G, P240F, V241G) were placed in the p10-CA protease cleavage site (VVAM*PVVI) to change the rate of cleavage of the junction. The effects of these substitutions on p10-CA cleavage by RSV PR were confirmed by measuring the kinetics of cleavage of model peptide substrates containing the wild type and mutant p10-CA sites. The effects of these substitutions on processing of the Gag polyprotein were determined by labeling Gag transfected COS-1 cells with 35S-Met and -Cys, and immunoprecipitation of Gag and its cleavage products from the media and lysate fractions. All substitutions except M239F caused decreases in detectable Gag processing and subsequent release from cells. Several of the mutants also caused defects in production of the three CA proteins. The p10-CA mutations were subcloned into an RSV proviral vector (RCAN) and introduced into a chick embryo fibroblast cell line (DF-1). All of the mutations except M239F blocked RSV replication. In addition, the effects of the M239F and M239G substitutions on the morphology of released virus particles were examined by electron microscopy. While the M239F particles appeared similar to wild type particles, M239G particles contained cores that were large and misshapen. These results suggest that mutations affecting cleavage at the p10-CA protease cleavage site block RSV replication and can have a negative impact on virus particle morphology.
Collapse
Affiliation(s)
- Marcy L Vana
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Aiping Chen
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Peter Boross
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
- Biochemistry and Molecular Biology Department, Medical and Health Sciences Center, University of Debrecen, Debrecen, Hungary
| | - Irene Weber
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Dalbinder Colman
- Vollum Institute and Department of Microbiology, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Eric Barklis
- Vollum Institute and Department of Microbiology, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Jonathan Leis
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
73
|
Kuznetsov YG, Zhang M, Menees TM, McPherson A, Sandmeyer S. Investigation by atomic force microscopy of the structure of Ty3 retrotransposon particles. J Virol 2005; 79:8032-45. [PMID: 15956549 PMCID: PMC1143757 DOI: 10.1128/jvi.79.13.8032-8045.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ty3, a member of the Metaviridiae family of long-terminal-repeat retrotransposons found in Saccharomyces cerevisiae, encodes homologs of retroviral Gag and Gag-Pol proteins, which, together with genomic RNA, assemble into virus-like particles (VLPs) that undergo processing and reverse transcription. The Ty3 structural proteins, capsid and nucleocapsid, contain major homology and nucleocapsid motifs similar to retrovirus capsid and nucleocapsid proteins, but Ty3 lacks a matrix-like structural domain amino terminal to capsid. Mass spectrometry analysis of Ty3 Gag3 processing products defined an acetylated Ser residue as the amino terminus of Gag3/p34, p27, and CA/p24 species and supported a model where p34 and p27 occur in phosphorylated forms. Using atomic force microscopy, VLPs were imaged from cells producing wild-type and protease and reverse transcriptase mutant Ty3. Wild-type VLPs were found to have a broad range of diameters, but the majority, if not all of the particles, exhibited arrangements of capsomeres on their surfaces which were consistent with icosahedral symmetry. Wild-type particles were in the range of 25 to 52 nm in diameter, with particles in the 42- to 52-nm diameter range consistent with T=7 symmetry. Both classes of mutant VLPs fell into a narrower range of 44 to 53 nm in diameter and appeared to be consistent with T=7 icosahedral symmetry. The smaller particles in the wild-type population likely correspond to VLPs that have progressed to reverse transcription or later stages, which do not occur in the protease and reverse transcriptase mutants. Ty3 VLPs did not undergo major external rearrangements during proteolytic maturation.
Collapse
Affiliation(s)
- Yurii G Kuznetsov
- Department of Molecular Biology, University of California, Irvine, California 92697-1700, USA
| | | | | | | | | |
Collapse
|
74
|
Morellet N, Druillennec S, Lenoir C, Bouaziz S, Roques BP. Helical structure determined by NMR of the HIV-1 (345-392)Gag sequence, surrounding p2: implications for particle assembly and RNA packaging. Protein Sci 2005; 14:375-86. [PMID: 15659370 PMCID: PMC2253411 DOI: 10.1110/ps.041087605] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Gag protein oligomerization, an essential step during virus assembly, results in budding of spherical virus particles. This process is critically dependent on the spacer p2, located between the capsid and the nucleocapsid proteins. P2 contributes also, in association with NCp7, to specific recognition of the HIV-1 packaging signal resulting in viral genome encapsidation. There is no structural information about the 20 last amino acids of the C-terminal part of capsid (CA[CTD]) and p2, in the molecular mechanism of Gag assembly. In this study the structure of a peptide encompassing the 14 residues of p2 with the upstream 21 residues and the downstream 13 residues was determined by (1)H NMR in 30% trifluoroethanol (TFE). The main structural motif is a well-defined amphipathic alpha-helix including p2, the seven last residues of the CA(CTD), and the two first residues of NCp7. Peptides containing the p2 domain have a strong tendency to aggregate in solution, as shown by gel filtration analyses in pure H(2)O. To take into account the aggregation phenomena, models of dimer and trimer formed through hydrophobic or hydrophilic interfaces were constructed by molecular dynamic simulations. Gel shift experiments demonstrate that the presence of at least p2 and the 13 first residues of NCp7 is required for RNA binding. A computer-generated model of the Gag polyprotein segment (282-434)Gag interacting with the packaging element SL3 is proposed, illustrating the importance of p2 and NCp7 in genomic encapsidation.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Capsid
- Capsid Proteins/chemistry
- Chromatography, Gel
- Databases, Protein
- Dimerization
- Gene Products, gag/chemistry
- Genes, gag
- Genome, Viral
- HIV-1/chemistry
- Magnetic Resonance Spectroscopy/methods
- Models, Molecular
- Molecular Sequence Data
- Peptide Fragments/chemistry
- Peptides/chemistry
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA/chemistry
- RNA, Viral/chemistry
- Software
- Virus Assembly
- Water/chemistry
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Nelly Morellet
- Unite de Pharmacologie Chimique et Genetique, INSERM U640, CNRS UMR 8151, UFR des Sciences Pharmaceutiques et Biologiques, 4, Avenue de l'Observatoire, 75270 Paris Cedex 06, France.
| | | | | | | | | |
Collapse
|
75
|
Bouamr F, Cornilescu CC, Goff SP, Tjandra N, Carter CA. Structural and dynamics studies of the D54A mutant of human T cell leukemia virus-1 capsid protein. J Biol Chem 2004; 280:6792-801. [PMID: 15569685 DOI: 10.1074/jbc.m408119200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human T cell leukemia virus and the human immunodeficiency virus share a highly conserved, predominantly helical two-domain mature capsid (CA) protein structure with an N-terminal beta-hairpin. Despite overall structural similarity, differences exist in the backbone dynamic properties of the CA N-terminal domain. Since studies with other retroviruses suggest that the beta-hairpin is critical for formation of a CA-CA interface, we investigated the functional role of the human T cell leukemia virus beta-hairpin by disrupting the salt bridge between Pro(1) and Asp(54) that stabilizes the beta-hairpin. NMR (15)N relaxation data were used to characterize the backbone dynamics of the D54A mutant in the context of the N-terminal domains, compared with the wild-type counterpart. Moreover, the effect of the mutation on proteolytic processing and release of virus-like particles (VLPs) from human cells in culture was determined. Conformational and dynamic changes resulting from the mutation were detected by NMR spectroscopy. The mutation also altered the conformation of mature CA in cells and VLPs, as reflected by differential antibody recognition of the wild-type and mutated CA proteins. In contrast, the mutation did not detectably affect antibody recognition of the CA protein precursor or release of VLPs assembled by the precursor, consistent with the fact that the hairpin cannot form in the precursor molecule. The particle morphology and size were not detectably affected. The results indicate that the beta-hairpin contributes to the overall structure of the mature CA protein and suggest that differences in the backbone dynamics of the beta-hairpin contribute to mature CA structure, possibly introducing flexibility into interface formation during proteolytic maturation.
Collapse
Affiliation(s)
- Fadila Bouamr
- Howard Hughes Medical Institute, New York, New York, USA
| | | | | | | | | |
Collapse
|
76
|
Mortuza GB, Haire LF, Stevens A, Smerdon SJ, Stoye JP, Taylor IA. High-resolution structure of a retroviral capsid hexameric amino-terminal domain. Nature 2004; 431:481-5. [PMID: 15386017 DOI: 10.1038/nature02915] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 08/05/2004] [Indexed: 11/08/2022]
Abstract
Retroviruses are the aetiological agents of a range of human diseases including AIDS and T-cell leukaemias. They follow complex life cycles, which are still only partly understood at the molecular level. Maturation of newly formed retroviral particles is an essential step in production of infectious virions, and requires proteolytic cleavage of Gag polyproteins in the immature particle to form the matrix, capsid and nucleocapsid proteins present in the mature virion. Capsid proteins associate to form a dense viral core that may be spherical, cylindrical or conical depending on the genus of the virus. Nonetheless, these assemblies all appear to be composed of a lattice formed from hexagonal rings, each containing six capsid monomers. Here, we describe the X-ray structure of an individual hexagonal assembly from N-tropic murine leukaemia virus (N-MLV). The interface between capsid monomers is generally polar, consistent with weak interactions within the hexamer. Similar architectures are probably crucial for the regulation of capsid assembly and disassembly in all retroviruses. Together, these observations provide new insights into retroviral uncoating and how cellular restriction factors may interfere with viral replication.
Collapse
Affiliation(s)
- Gulnahar B Mortuza
- Division of Protein Structure, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | |
Collapse
|
77
|
Knejzlík Z, Strohalm M, Sedlácková L, Kodícek M, Sakalian M, Ruml T. Isolation and characterization of the Mason–Pfizer monkey virus p12 protein. Virology 2004; 324:204-12. [PMID: 15183067 DOI: 10.1016/j.virol.2004.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 12/22/2003] [Accepted: 03/23/2004] [Indexed: 10/26/2022]
Abstract
The Mason-Pfizer monkey virus (M-PMV) Gag protein, precursor to the structural proteins of the infectious virion, assembles into immature capsid-like particles when expressed at high levels in bacterial cells. Similar capsid-like particles can be obtained by in vitro assembly using a high concentration of isolated Gag. M-PMV Gag contains a p12 protein that has no corresponding analogues in most other retroviruses and has been suggested to contain an internal scaffold domain (ISD). We have expressed and purified p12 and the N- and C-terminal halves (Np12 and Cp12) that are predicted to be structurally independent domains. The behavior of these proteins was analyzed using chemical cross-linking, CD spectroscopy, and electron microscopy. The N-terminal half of p12 is largely alpha-helical although the C-terminal portion lacks any apparent ordered structure. Both p12 and Np12 form high-order oligomers in vitro and when expressed in E. coli produce organized structures that are visible by electron microscopy. Interestingly, Cp12, as well as the whole protein, can form dimers in the presence of SDS. The data show that both domains of p12 contribute to its ability to multimerize with much of this potential residing in its N-terminal part, most probably within the leucine zipper-like (LZL) sequence.
Collapse
Affiliation(s)
- Zdenek Knejzlík
- Department of Biochemistry and Microbiology and Center for Integrated Genomics, Institute of Chemical Technology, 166 28 Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
78
|
Ganser-Pornillos BK, von Schwedler UK, Stray KM, Aiken C, Sundquist WI. Assembly properties of the human immunodeficiency virus type 1 CA protein. J Virol 2004; 78:2545-52. [PMID: 14963157 PMCID: PMC369201 DOI: 10.1128/jvi.78.5.2545-2552.2004] [Citation(s) in RCA: 264] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
During retroviral maturation, the CA protein oligomerizes to form a closed capsid that surrounds the viral genome. We have previously identified a series of deleterious surface mutations within human immunodeficiency virus type 1 (HIV-1) CA that alter infectivity, replication, and assembly in vivo. For this study, 27 recombinant CA proteins harboring 34 different mutations were tested for the ability to assemble into helical cylinders in vitro. These cylinders are composed of CA hexamers and are structural models for the mature viral capsid. Mutations that diminished CA assembly clustered within helices 1 and 2 in the N-terminal domain of CA and within the crystallographically defined dimer interface in the CA C-terminal domain. These mutations demonstrate the importance of these regions for CA cylinder production and, by analogy, mature capsid assembly. One CA mutant (R18A) assembled into cylinders, cones, and spheres. We suggest that these capsid shapes occur because the R18A mutation alters the frequency at which pentamers are incorporated into the hexagonal lattice. The fact that a single CA protein can simultaneously form all three known retroviral capsid morphologies supports the idea that these structures are organized on similar lattices and differ only in the distribution of 12 pentamers that allow them to close. In further support of this model, we demonstrate that the considerable morphological variation seen for conical HIV-1 capsids can be recapitulated in idealized capsid models by altering the distribution of pentamers.
Collapse
|
79
|
Guo X, Hu J, Whitney JB, Russell RS, Liang C. Important role for the CA-NC spacer region in the assembly of bovine immunodeficiency virus Gag protein. J Virol 2004; 78:551-60. [PMID: 14694086 PMCID: PMC368772 DOI: 10.1128/jvi.78.2.551-560.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lentiviral Gag proteins contain a short spacer sequence that separates the capsid (CA) from the downstream nucleocapsid (NC) domain. This short spacer has been shown to play an important role in the assembly of human immunodeficiency virus type 1 (HIV-1). We have now extended this finding to the CA-NC spacer motif within the Gag protein of bovine immunodeficiency virus (BIV). Mutation of this latter spacer sequence led to dramatic reductions in virus production, which was mainly attributed to the severely disrupted association of the mutated Gag with the plasma membrane, as shown by the results of membrane flotation assays and confocal microscopy. Detailed mutagenesis analysis of the BIV CA-NC spacer region for virus assembly determinants led to the identification of two key residues, L368 and M372, which are separated by three amino acids, 369-VAA-371. Incidentally, the same two residues are present within the HIV-1 CA-NC spacer region at positions 364 and 368 and have also been shown to be crucial for HIV-1 assembly. Regardless of this conservation between these two viruses, the BIV CA-NC spacer could not be replaced by its HIV-1 counterpart without decreasing virus production, as opposed to its successful replacement by the CA-NC spacer sequences from the nonprimate lentiviruses such as feline immunodeficiency virus (FIV), equine infectious anemia virus and visna virus, with the sequence from FIV showing the highest effectiveness in this regard. Taken together, these data suggest a pivotal role for the CA-NC spacer region in the assembly of BIV Gag; however, the mechanism involved therein may differ from that for the HIV-1 CA-NC spacer.
Collapse
Affiliation(s)
- Xiaofeng Guo
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2.
| | | | | | | | | |
Collapse
|
80
|
Ma YM, Vogt VM. Nucleic acid binding-induced Gag dimerization in the assembly of Rous sarcoma virus particles in vitro. J Virol 2004; 78:52-60. [PMID: 14671087 PMCID: PMC303394 DOI: 10.1128/jvi.78.1.52-60.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
As also found for other retroviruses, the Rous sarcoma virus structural protein Gag is necessary and sufficient for formation of virus-like particles (VLPs). Purified polypeptide fragments comprising most of Gag spontaneously assemble in vitro at pH 6.5 into VLPs lacking a membrane, a process that requires nucleic acid. We showed previously that the minimum length of a DNA oligonucleotide that can support efficient assembly is 16 nucleotides (nt), twice the protein's binding site size. This observation suggests that the essential role of nucleic acid in assembly is to promote the formation of Gag dimers. In order to gain further insight into the role of dimerization, we have studied the assembly properties of two proteins, a nearly full-length Gag (deltaMBDdeltaPR) capable of proper in vitro assembly and a smaller Gag fragment (CTD-NC) capable of forming only irregular aggregates but with the same pH and oligonucleotide length requirements as for assembly with the larger protein. In analyses by sedimentation velocity and by cross-linking, both proteins remained monomeric in the absence of oligonucleotides or in the presence of an oligonucleotide of length 8 nt (GT8). At pH 8, which does not support assembly, binding to GT16 induced the formation of dimers of deltaMBDdeltaPR but not of CTD-NC, implying that dimerization requires the N-terminal domain of the capsid moiety of Gag. Assembly of VLPs was induced by shifting the pH of dimeric complexes of deltaMBDdeltaPR and GT16 from 8 to 6.5. An analogue of GT16 with a ribonucleotide linkage in the middle also supported dimer formation at pH 8. Even after quantitative cleavage of the oligonucleotide by treatment of the complex with RNase, these dimers could be triggered to undergo assembly by pH change. This result implies that protein-protein interactions stabilize the dimer. We propose that binding of two adjacent Gag molecules on a stretch of nucleic acid leads to protein-protein interactions that create a Gag dimer and that this species has an exposed surface not present in monomers which allows polymerization of the dimers into a spherical shell.
Collapse
Affiliation(s)
- Yu May Ma
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
81
|
Nandhagopal N, Simpson AA, Johnson MC, Francisco AB, Schatz GW, Rossmann MG, Vogt VM. Dimeric Rous Sarcoma Virus Capsid Protein Structure Relevant to Immature Gag Assembly. J Mol Biol 2004; 335:275-82. [PMID: 14659756 DOI: 10.1016/j.jmb.2003.10.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The structure of the N-terminal domain (NTD) of Rous sarcoma virus (RSV) capsid protein (CA), with an upstream 25 amino acid residue extension corresponding to the C-terminal portion of the Gag p10 protein, has been determined by X-ray crystallography. Purified Gag proteins of retroviruses can assemble in vitro into virus-like particles closely resembling in vivo-assembled immature virus particles, but without a membrane. When the 25 amino acid residues upstream of CA are deleted, Gag assembles into tubular particles. The same phenotype is observed in vivo. Thus, these residues act as a "shape determinant" promoting spherical assembly, when they are present, or tubular assembly, when they are absent. We show that, unlike the NTD on its own, the extended NTD protein has no beta-hairpin loop at the N terminus of CA and that the molecule forms a dimer in which the amino-terminal extension forms the interface between monomers. Since dimerization of Gag has been inferred to be a critical step in assembly of spherical, immature Gag particles, the dimer interface may represent a structural feature that is essential in retrovirus assembly.
Collapse
Affiliation(s)
- Narayanasamy Nandhagopal
- Department of Biological Sciences, Lilly Hall, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Andrawiss M, Takeuchi Y, Hewlett L, Collins M. Murine leukemia virus particle assembly quantitated by fluorescence microscopy: role of Gag-Gag interactions and membrane association. J Virol 2003; 77:11651-60. [PMID: 14557651 PMCID: PMC229285 DOI: 10.1128/jvi.77.21.11651-11660.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to track the assembly of murine leukemia virus (MLV), we used fluorescence microscopy to visualize particles containing Gag molecules fused to fluorescent proteins (FPs). Gag-FP chimeras budded from cells to produce fluorescent spots, which passed through the same pore-size filters and sedimented at the same velocity as authentic MLV. N-terminal myristylation of Gag-FPs was necessary for particle formation unless wild-type Gag was coexpressed. By labeling nonmyristylated Gag with yellow FP and wild-type Gag with cyan FP, we could quantitate the coincorporation of two proteins into single particles. This experiment showed that nonmyristylated Gag was incorporated into mixed particles at approximately 50% the efficiency of wild-type Gag. Mutations that inhibit Gag-Gag interactions (K. Alin and S. P. Goff, Virology 216:418-424, 1996; K. Alin and S. P. Goff, Virology 222:339-351, 1996) were then introduced into the capsid (CA) region of Gag-FPs. The mutations P150L and R119C/P133L inhibited fluorescent particle formation by these Gag-FPs, but Gag-FPs containing these mutations could be efficiently incorporated into particles when coexpressed with wild-type Gag. When these mutations were introduced into nonmyristylated Gag-FPs, no incorporation into particles in the presence of wild-type Gag was detected. These data suggest that two independent mechanisms, CA interactions and membrane association following myristylation, cooperate in MLV Gag assembly and budding.
Collapse
Affiliation(s)
- Mariam Andrawiss
- Department of Immunology and Molecular Pathology, Windeyer Institute of Medical Science, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
83
|
del Alamo M, Neira JL, Mateu MG. Thermodynamic dissection of a low affinity protein-protein interface involved in human immunodeficiency virus assembly. J Biol Chem 2003; 278:27923-9. [PMID: 12761222 DOI: 10.1074/jbc.m304466200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homo-dimerization of the capsid protein CA of human immunodeficiency virus through its C-terminal domain constitutes an early crucial step in the virion assembly pathway and a potential target for antiviral inhibitors. We have truncated to alanine the 20 amino acid side chains per monomer that participate in intersubunit contacts at the CA dimer interface and analyzed their individual energetic contribution to protein association and stability. About half of the side chains in the contact epitope are critically involved in the energetic epitope as their truncation essentially prevented dimerization. However, dimerization affinity is kept low partly because of the presence of interfacial side chains whose individual truncation improves affinity by 2-20-fold. Many side chains at the interface are energetically important also for the folding of a monomeric intermediate and for its conformational rearrangement during dimerization. The thermodynamic description of this low affinity interface (dissociation constant of approximately 10 microm) was compared with those obtained for the other protein-protein interfaces, nearly all of them of much higher affinity, that have been systematically analyzed by mutation. The results reveal differences that may have been evolutionary selected and that may be exploited for the design of an effective interfacial inhibitor of human immunodeficiency virus assembly.
Collapse
Affiliation(s)
- Marta del Alamo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
84
|
Rue SM, Roos JW, Amzel LM, Clements JE, Barber SA. Hydrogen bonding at a conserved threonine in lentivirus capsid is required for virus replication. J Virol 2003; 77:8009-18. [PMID: 12829840 PMCID: PMC161920 DOI: 10.1128/jvi.77.14.8009-8018.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The N terminus of the capsid protein (CA) undergoes a considerable conformational change when the human immunodeficiency virus (HIV) protease cleaves it free from the Pr55(Gag) polyprotein. This rearrangement is thought to facilitate the establishment of specific CA-CA interactions that are required for the formation of the mature viral core. Substitution of amino acids that are critical for this refolding of the N terminus is generally detrimental to virus replication and mature virion core morphology. Here, we identify a conserved threonine in simian immunodeficiency virus (SIV) CA, T(47)(CA), that is requisite for viral replication. Replacement of T(47)(CA) in the infectious viral clone SIVmac239 with amino acids with different hydrogen-bonding capabilities and analysis of the effects of these substitutions at key steps in the viral life cycle demonstrate that hydrogen bonding at this position is important for virus infectivity and virion release. In the HIV-based homology model of the mature SIV CA N terminus presented in this study, T(47)(CA) forms several hydrogen bonds with a proximal aspartate, D(50)(CA). This model, coupled with strong phenotypic similarities between viral substitution mutants of each of these two residues in all of the virological assays described herein, indicates that hydrogen bonding between T(47)(CA) and D(50)(CA) is likely required for viral replication. As hydrogen bonding between these two residues is present in HIV CA as well, this interaction presents a potential target for antiviral drug design.
Collapse
Affiliation(s)
- Sarah M Rue
- Department of Comparative Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
85
|
Ganser BK, Cheng A, Sundquist WI, Yeager M. Three-dimensional structure of the M-MuLV CA protein on a lipid monolayer: a general model for retroviral capsid assembly. EMBO J 2003; 22:2886-92. [PMID: 12805204 PMCID: PMC162131 DOI: 10.1093/emboj/cdg276] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although retroviruses from different genera form morphologically distinct capsids, we have proposed that all of these structures are composed of similar hexameric arrays of capsid (CA) protein subunits and that their distinct morphologies reflect different distributions of pentameric declinations that allow the structures to close. Consistent with this model, CA proteins from both HIV-1 and Rous sarcoma virus (RSV) form similar hexagonal lattices. However, recent structural studies have suggested that the Moloney murine leukemia virus (M-MuLV) CA protein may assemble differently. We now report an independent three-dimensional reconstruction of two-dimensional crystals of M-MuLV CA. This new reconstruction reveals a hexameric lattice that is similar to those formed by HIV-1 and RSV CA, supporting a generalized model for retroviral capsid assembly.
Collapse
Affiliation(s)
- Barbie K Ganser
- Department of Biochemistry, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
86
|
Rumlová M, Ruml T, Pohl J, Pichová I. Specific in vitro cleavage of Mason-Pfizer monkey virus capsid protein: evidence for a potential role of retroviral protease in early stages of infection. Virology 2003; 310:310-8. [PMID: 12781718 DOI: 10.1016/s0042-6822(03)00128-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Processing of Gag polyproteins by viral protease (PR) leads to reorganization of immature retroviral particles and formation of a ribonucleoprotein core. In some retroviruses, such as HIV and RSV, cleavage of a spacer peptide separating capsid and nucleocapsid proteins is essential for the core formation. We show here that no similar spacer peptide is present in the capsid-nucleocapsid (CA-NC) region of Mason-Pfizer monkey virus (M-PMV) and that the CA protein is cleaved in vitro by the PR within the major homology region (MHR) and the NC protein in several sites at the N-terminus. The CA cleavage product was also identified shortly after penetration of M-PMV into COS cells, suggesting that the protease-catalyzed cleavage is involved in core disintegration.
Collapse
Affiliation(s)
- Michaela Rumlová
- Department of Protein Biochemistry, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | |
Collapse
|
87
|
Cheslock SR, Poon DTK, Fu W, Rhodes TD, Henderson LE, Nagashima K, McGrath CF, Hu WS. Charged assembly helix motif in murine leukemia virus capsid: an important region for virus assembly and particle size determination. J Virol 2003; 77:7058-66. [PMID: 12768025 PMCID: PMC156152 DOI: 10.1128/jvi.77.12.7058-7066.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified a region near the C terminus of capsid (CA) of murine leukemia virus (MLV) that contains many charged residues. This motif is conserved in various lengths in most MLV-like viruses. One exception is that spleen necrosis virus (SNV) does not contain a well-defined domain of charged residues. When 33 amino acids of the MLV motif were deleted to mimic SNV CA, the resulting mutant produced drastically reduced amounts of virions and the virions were noninfectious. Furthermore, these viruses had abnormal sizes, often contained punctate structures resembling those in the cell cytoplasm, and packaged both ribosomal and viral RNA. When 11 or 15 amino acids were deleted to modify the MLV CA to resemble those from other gammaretroviruses, the deletion mutants produced virions at levels comparable to those of the wild-type virus and were able to complete one round of virus replication without detectable defects. We generated 10 more mutants that displayed either the wild-type or mutant phenotype. The distribution of the wild-type or mutant phenotype did not directly correlate with the number of amino acids deleted, suggesting that the function of the motif is determined not simply by its length but also by its structure. Structural modeling of the wild-type and mutant proteins suggested that this region forms alpha-helices; thus, we termed this motif the "charged assembly helix." This is the first description of the charged assembly helix motif in MLV CA and demonstration of its role in virus budding and assembly.
Collapse
|
88
|
von Schwedler UK, Stray KM, Garrus JE, Sundquist WI. Functional surfaces of the human immunodeficiency virus type 1 capsid protein. J Virol 2003; 77:5439-50. [PMID: 12692245 PMCID: PMC153941 DOI: 10.1128/jvi.77.9.5439-5450.2003] [Citation(s) in RCA: 362] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The human immunodeficiency virus type 1 initially assembles and buds as an immature particle that is organized by the viral Gag polyprotein. Gag is then proteolyzed to produce the smaller capsid protein CA, which forms the central conical capsid that surrounds the RNA genome in the mature, infectious virus. To define CA surfaces that function at different stages of the viral life cycle, a total of 48 different alanine-scanning surface mutations in CA were tested for their effects on Gag protein expression, processing, particle production and morphology, capsid assembly, and infectivity. The 27 detrimental mutations fall into three classes: 13 mutations significantly diminished or altered particle production, 9 mutations failed to assemble normal capsids, and 5 mutations supported normal viral assembly but were nevertheless reduced more than 20-fold in infectivity. The locations of the assembly-defective mutations implicate three different CA surfaces in immature particle assembly: one surface encompasses helices 4 to 6 in the CA N-terminal domain (NTD), a second surrounds the crystallographically defined CA dimer interface in the C-terminal domain (CTD), and a third surrounds the loop preceding helix 8 at the base of the CTD. Mature capsid formation required a distinct surface encompassing helices 1 to 3 in the NTD, in good agreement with a recent structural model for the viral capsid. Finally, the identification of replication-defective mutants with normal viral assembly phenotypes indicates that CA also performs important nonstructural functions at early stages of the viral life cycle.
Collapse
|
89
|
Arvidson B, Seeds J, Webb M, Finlay L, Barklis E. Analysis of the retrovirus capsid interdomain linker region. Virology 2003; 308:166-77. [PMID: 12706100 DOI: 10.1016/s0042-6822(02)00142-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In structural studies, the retrovirus capsid interdomain linker region has been shown as a flexible connector between the CA N-terminal domain and its C-terminal domain. To analyze the function of the linker region, we have examined the effects of three Moloney murine leukemia virus (M-MuLV) capsid linker mutations/variations in vivo, in the context of the full-length M-MuLV structural precursor protein (PrGag). Two mutations, A1SP and A5SP, respectively, inserted three and seven additional codons within the linker region to test the effects of increased linker lengths. The third variant, HIV/Mo, represented a chimeric HIV-1/M-MuLV PrGag protein, fused at the linker region. When expressed in cells, the three variants reduced the efficiency of virus particle assembly, with PrGag proteins and particles accumulating at the cellular plasma membranes. Although PrGag recognition of viral RNA was not impaired, the capsid linker variant particles were abnormal, with decreased stabilities, anomalous densities, and aberrant multiple lobed and tubular morphologies. Additionally, rather than crosslinking as PrGag dimers, particle-associated A1SP, A5SP, and HIV/Mo proteins showed an increased propensity to crosslink as trimers. Our results suggest that a wild-type retrovirus capsid linker region is required for the proper alignment of capsid protein domains.
Collapse
Affiliation(s)
- Brian Arvidson
- Vollum Institute and Department of Microbiology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098, USA
| | | | | | | | | |
Collapse
|
90
|
Mayo K, Huseby D, McDermott J, Arvidson B, Finlay L, Barklis E. Retrovirus capsid protein assembly arrangements. J Mol Biol 2003; 325:225-37. [PMID: 12473464 DOI: 10.1016/s0022-2836(02)01176-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
During retrovirus particle assembly and morphogenesis, the retrovirus structural (Gag) proteins organize into two different arrangements: an immature form assembled by precursor Gag (PrGag) proteins; and a mature form, composed of proteins processed from PrGag. Central to both Gag protein arrangements is the capsid (CA) protein, a domain of PrGag, which is cleaved from the precursor to yield a mature Gag protein composed of an N-terminal domain (NTD), a flexible linker region, and a C-terminal domain (CTD). Because Gag interactions have proven difficult to examine in virions, a number of investigations have focused on the analysis of structures assembled in vitro. We have used electron microscope (EM) image reconstruction techniques to examine assembly products formed by two different CA variants of both human immunodeficiency virus type 1 (HIV-1) and the Moloney murine leukemia virus (M-MuLV). Interestingly, two types of hexameric protein arrangements were observed for each virus type. One organizational scheme featured hexamers composed of putative NTD dimer subunits, with sharing of subunits between neighbor hexamers. The second arrangement used apparent NTD monomers to coordinate hexamers, involved no subunit sharing, and employed putative CTD interactions to connect hexamers. Conversion between the two assembly forms may be achieved by making or breaking the proposed symmetric NTD dimer contacts in a process that appears to mimic viral morphogenesis.
Collapse
Affiliation(s)
- Keith Mayo
- Vollum Institute and Department of Microbiology MC L220, Oregon Health and Science University, 31814 SW Sam Jackson Park Rd, Portland, OR 97201-3098, USA
| | | | | | | | | | | |
Collapse
|
91
|
Lanman J, Sexton J, Sakalian M, Prevelige PE. Kinetic analysis of the role of intersubunit interactions in human immunodeficiency virus type 1 capsid protein assembly in vitro. J Virol 2002; 76:6900-8. [PMID: 12072491 PMCID: PMC136311 DOI: 10.1128/jvi.76.14.6900-6908.2002] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) capsid protein (CA) plays a crucial role in both assembly and maturation of the virion. Numerous recent studies have focused on either the soluble form of CA or the polymer end product of in vitro CA assembly. The CA polymer, in particular, has been used to study CA-CA interactions because it is a good model for the CA interactions within the virion core. However, analysis of the process of in vitro CA assembly can yield valuable insights into CA-CA interactions and the mechanism of core assembly. We describe here a method for the analysis of CA assembly kinetics wherein the progress of assembly is monitored by using turbidity. At pH 7.0 the addition of either of the isolated CA domains (i.e., the N or the C domain) to an assembly reaction caused a decrease in the assembly rate by competing for binding to the full-length CA protein. At pH 8.0 the addition of the isolated C domain had a similar inhibitory affect on CA assembly. However, at pH 8.0 the isolated N domain had no affect on the rate of CA assembly but, when mixed with the C domain, it alleviated the C-domain inhibition. These data provide biochemical evidence for a pH-sensitive homotypic N-domain interaction, as well as for an N- and C-domain interaction.
Collapse
Affiliation(s)
- Jason Lanman
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-2170, USA
| | | | | | | |
Collapse
|
92
|
Mayo K, McDermott J, Barklis E. Hexagonal organization of Moloney murine leukemia virus capsid proteins. Virology 2002; 298:30-8. [PMID: 12093170 DOI: 10.1006/viro.2002.1452] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To help elucidate the mechanisms by which retrovirus structural proteins associate to form virus particles, we have examined membrane-bound assemblies of Moloney murine leukemia virus (M-MuLV) capsid (CA) proteins. Electron microscopy and image reconstruction techniques showed that CA dimers appear to function as organizational subunits of the cage-like, membrane-bound protein arrays. However, new three-dimensional (3D) data also were consistent with hexagonal (p6) assembly models. The p6 3D reconstructions of membrane-bound M-MuLV CA proteins gave unit cells of a = b = 80.3 A, c = 110 A, gamma = 120 degrees, in which six dimer units formed a cage lattice. Neighbor cage hole-to-hole distances were 45 A, while distances between hexagonal cage holes corresponded to unit cell lengths (80.3 A). The hexagonal model predicts two types of cage holes (trimer and hexamer holes), uses symmetric head-to-head dimer building blocks, and permits the introduction of lattice curvature by conversion of hexamer to pentamer units. The M-MuLV CA lattice is similar to those formed in helical tubes by HIV CA in that hexamer units surround cage holes of 25-30 A, but differs in that M-MuLV hexamer units appear to be CA dimers, whereas HIV CA units appear to be monomers. These results suggest that while general assembly principles apply to different retroviruses, clear assembly distinctions exist between these virus types.
Collapse
Affiliation(s)
- Keith Mayo
- Vollum Institute and Department of Microbiology, Oregon Health Sciences University, Portland 97201-3098, USA
| | | | | |
Collapse
|
93
|
Ma YM, Vogt VM. Rous sarcoma virus Gag protein-oligonucleotide interaction suggests a critical role for protein dimer formation in assembly. J Virol 2002; 76:5452-62. [PMID: 11991973 PMCID: PMC137052 DOI: 10.1128/jvi.76.11.5452-5462.2002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structural protein Gag is the only viral product required for retrovirus assembly. Purified Gag proteins or fragments of Gag are able in vitro to spontaneously form particles resembling immature virions, but this process requires nucleic acid, as well as the nucleocapsid domain of Gag. To examine the role of nucleic acid in the assembly in vitro, we used a purified, slightly truncated version of the Rous sarcoma virus Gag protein, Delta MBD Delta PR, and DNA oligonucleotides composed of the simple repeating sequence GT. Apparent binding constants were determined for oligonucleotides of different lengths, and from these values the binding site size of the protein on the DNA was calculated. The ability of the oligonucleotides to promote assembly in vitro was assessed with a quantitative assay based on electron microscopy. We found that excess zinc or magnesium ion inhibited the formation of virus-like particles without interfering with protein-DNA binding, implying that interaction with nucleic acid is necessary but not sufficient for assembly in vitro. The binding site size of the Delta MBD Delta PR protein, purified in the presence of EDTA to remove zinc ions at the two cysteine-histidine motifs, was estimated to be 11 nucleotides (nt). This value decreased to 8 nt when the protein was purified in the presence of low concentrations of zinc ions. The minimum length of DNA oligonucleotide that promoted efficient assembly in vitro was 22 nt for the zinc-free form of the protein and 16 nt for the zinc-bound form. To account for this striking 1:2 ratio between binding site size and oligonucleotide length requirement, we propose a model in which the role of nucleic acid in assembly is to promote formation of a species of Gag dimer, which itself is a critical intermediate in the polymerizaton of Gag to form the protein shell of the immature virion.
Collapse
Affiliation(s)
- Yu May Ma
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
94
|
Mayo K, Vana ML, McDermott J, Huseby D, Leis J, Barklis E. Analysis of Rous sarcoma virus capsid protein variants assembled on lipid monolayers. J Mol Biol 2002; 316:667-78. [PMID: 11866525 DOI: 10.1006/jmbi.2001.5354] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During assembly and morphogenesis of Rous sarcoma virus (RSV), proteolytic processing of the structural precursor (Pr76Gag) protein generates three capsid (CA) protein variants, CA476, CA479, and CA488. The proteins share identical N-terminal domains (NTDs), but are truncated at residues corresponding to gag codons 476, 479, and 488 in their CA C-terminal domains (CTDs). To characterize oligomeric forms of the RSV CA variants, we examined 2D crystals of the capsid proteins, assembled on lipid monolayers. Using electron microscopy and image analysis approaches, the CA proteins were observed to organize in hexagonal (p6) arrangements, where rings of membrane-proximal NTD hexamers were spaced at 95 A intervals. Differences between the oligomeric structures of the CA variants were most evident in membrane-distal regions, where apparent CTDs interconnect hexamer rings. In this region, CA488 connections were observed readily, while CA476 and CA479 contacts were resolved poorly, suggesting that in vivo processing of CA488 to the shorter forms may permit virions to adopt a dissembly-competent conformation. In addition to crystalline arrays, the CA479 and CA488 proteins formed small spherical particles with diameters of 165-175 A. The spheres appear to be arranged from hexamer or hexamer plus pentamer ring subunits that are related to the 2D crystal forms. Our results implicate RSV CA hexamer rings as basic elements in the assembly of RSV virus cores.
Collapse
Affiliation(s)
- Keith Mayo
- Vollum Institute and Department of Microbiology, Oregon Health & Science University, Portland, OR 97201-3098, USA
| | | | | | | | | | | |
Collapse
|
95
|
Rumlová M, Benedíková J, Cubínková R, Pichová I, Ruml T. Comparison of classical and affinity purification techniques of Mason-Pfizer monkey virus capsid protein: the alteration of the product by an affinity tag. Protein Expr Purif 2001; 23:75-83. [PMID: 11570848 DOI: 10.1006/prep.2001.1488] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The efficiencies of different procedures for purification of the capsid protein (CA) of Mason-Pfizer monkey virus are compared. Plasmids encoding both wild-type CA and two C-terminally modified sequences of CA suitable for affinity chromatography purification were prepared. CA was expressed in Escherichia coli (i) as a wild-type protein, (ii) C-terminally extended with a six-histidine tag (CA 6His), and (iii) as a protein containing a C-terminal fusion to a viral protease cleavage site followed by a six-histidine tag (CA 6aa6His). Electron microscopy was used for comparison of the resulting proteins, as CA is a structural protein with no enzymatic activity. We have found that these C-terminal fusions dramatically influenced the properties and morphology of structures formed by CA protein in E. coli. The formation of amorphous aggregates of CA was abolished and CA 6His and CA 6aa6His proteins formed organized structures. CA and CA 6aa6His accumulated in bacteria in inclusion bodies as insoluble proteins, CA 6His was found in a soluble form. Both six-histidine-tagged proteins were purified using affinity chromatography under either native (CA 6His) or denaturing (CA 6aa6His) conditions. CA protein was purified under denaturing conditions using gel-filtration chromatography followed by refolding. All proteins were obtained at a purity >98%. Both aforementioned C-terminal extensions led to dramatic changes in behavior of the products and they also affected the tendency to form organized structures within E. coli. We show here that the widely used histidine anchor may significantly alter the properties of the protein of interest.
Collapse
Affiliation(s)
- M Rumlová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic.
| | | | | | | | | |
Collapse
|
96
|
Kingston RL, Olson NH, Vogt VM. The organization of mature Rous sarcoma virus as studied by cryoelectron microscopy. J Struct Biol 2001; 136:67-80. [PMID: 11858708 DOI: 10.1006/jsbi.2001.4423] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have studied the organization of mature infectious Rous sarcoma virus (RSV), suspended in vitreous ice, using transmission electron microscopy. The enveloped virions are spherical in shape, have a mean diameter of 127 nm, and vary significantly in size. Image processing reveals the presence of the viral matrix protein underlying the lipid bilayer and the viral envelope proteins external to the lipid bilayer. In the interior of the virus, the characteristic mature retroviral core is clearly imaged. In contrast to lentiviruses, such as human immunodeficiency virus, the core of RSV is essentially isometric. The capsid, or external shell of the core, has a faceted, almost polygonal appearance in electron micrographs, but many capsids also exhibit continuous surface curvature. Cores are not uniform in size or shape. Serrations observed along the projected faces of the core suggest a repetitive molecular structure. Some isolated cores were observed in the sample, confirming that cores are at least transiently stable in the absence of the viral envelope. Using an approach grounded in geometric probability, we estimate the size of the viral core from the projection data. We show that the size of the core is not tightly controlled and that core size and virion size are positively correlated. From estimates of RNA packing density we conclude that either the RNA within the core is loosely packed or, more probably, that it does not fill the core.
Collapse
Affiliation(s)
- R L Kingston
- Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA.
| | | | | |
Collapse
|
97
|
Parker SD, Wall JS, Hunter E. Analysis of Mason-Pfizer monkey virus Gag particles by scanning transmission electron microscopy. J Virol 2001; 75:9543-8. [PMID: 11533218 PMCID: PMC114523 DOI: 10.1128/jvi.75.19.9543-9548.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mason-Pfizer monkey virus immature capsids selected from the cytoplasm of baculovirus-infected cells were imaged by scanning transmission electron microscopy. The masses of individual selected Gag particles were measured, and the average mass corresponded to 1,900 to 2,100 Gag polyproteins per particle. A large variation in Gag particle mass was observed within each population measured.
Collapse
Affiliation(s)
- S D Parker
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
98
|
Bowzard JB, Wills JW, Craven RC. Second-site suppressors of Rous sarcoma virus Ca mutations: evidence for interdomain interactions. J Virol 2001; 75:6850-6. [PMID: 11435564 PMCID: PMC114412 DOI: 10.1128/jvi.75.15.6850-6856.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The capsid (CA) protein, the major structural component of retroviruses, forms a shell that encases the ribonucleoprotein complex in the virion core. The most conserved region of CA, approximately 20 amino acids of the major homology region (MHR), lies within the carboxy-terminal domain of the protein. Structural and sequence similarities among CA proteins of retroviruses and the CA-like proteins of hepatitis B virus and various retrotransposons suggest that the MHR is involved in an aspect of replication common to these reverse-transcribing elements. Conservative substitutions in this region of the Rous sarcoma virus protein were lethal due to a severe deficiency in reverse transcription, in spite of the presence of an intact genome and active reverse transcriptase in the particles. This finding suggests that the mutations interfered with normal interactions among these constituents. A total of four genetic suppressors of three lethal MHR mutations have now been identified. All four map to the sequence encoding the CA-spacer peptide (SP) region of Gag. The F167Y mutation in the MHR was fully suppressed by a single amino acid change in the alpha helix immediately downstream of the MHR, a region that forms the major dimer interface in human immunodeficiency virus CA. This finding suggests that the F167Y mutation indirectly interfered with dimerization. The F167Y defect could also be repaired by a second, independent suppressor in the C-terminal SP that was removed from CA during maturation. This single residue change, which increased the rate of SP cleavage, apparently corrected the F167Y defect by modifying the maturation pathway. More surprising was the isolation of suppressors of the R170Q and L171V MHR mutations, which mapped to the N-terminal domain of the CA protein. This finding suggests that the two domains, which in the monomeric protein are separated by a flexible linker, must communicate with each other at some unidentified point in the viral replication cycle.
Collapse
Affiliation(s)
- J B Bowzard
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, M. S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
99
|
Xiang Y, Thorick R, Vana ML, Craven R, Leis J. Proper processing of avian sarcoma/leukosis virus capsid proteins is required for infectivity. J Virol 2001; 75:6016-21. [PMID: 11390603 PMCID: PMC114317 DOI: 10.1128/jvi.75.13.6016-6021.2001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The formation of the mature carboxyl terminus of CA in avian sarcoma/leukemia virus is the result of a sequence of cleavage events at three PR sites that lie between CA and NC in the Gag polyprotein. The initial cleavage forms the amino terminus of the NC protein and releases an immature CA, named CA1, with a spacer peptide at its carboxyl terminus. Cleavage of either 9 or 12 amino acids from the carboxyl terminus creates two mature CA species, named CA2 and CA3, that can be detected in avian sarcoma/leukemia virus (R. B. Pepinsky, I. A. Papayannopoulos, E. P. Chow, N. K. Krishna, R. C. Craven, and V. M. Vogt, J. Virol. 69:6430-6438, 1995). To study the importance of each of the three CA proteins, we introduced amino acid substitutions into each CA cleavage junction and studied their effects on CA processing as well as virus assembly and infectivity. Preventing cleavage at any of the three sites produced noninfectious virus. In contrast, a mutant in which cleavage at site 1 was enhanced so that particles contained CA2 and CA3 but little detectable CA1 was infectious. These results support the idea that infectivity of the virus is closely linked to proper processing of the carboxyl terminus to form two mature CA proteins.
Collapse
Affiliation(s)
- Y Xiang
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | | | | | | | |
Collapse
|
100
|
Maxwell KL, Yee AA, Booth V, Arrowsmith CH, Gold M, Davidson AR. The solution structure of bacteriophage lambda protein W, a small morphogenetic protein possessing a novel fold. J Mol Biol 2001; 308:9-14. [PMID: 11302702 DOI: 10.1006/jmbi.2001.4582] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein W (gpW) from bacteriophage lambda is required for the stabilization of DNA within the phage head and for attachment of tails onto the head during morphogenesis. Although comprised of only 68 residues, it likely interacts with at least two other proteins in the mature phage and with DNA. Thus, gpW is an intriguing subject for detailed structural studies. We have determined its solution structure using NMR spectroscopy and have found it to possesses a novel fold consisting of two alpha-helices and a single two-stranded beta-sheet arranged around a well-packed hydrophobic core. The 14 C-terminal residues of gpW, which are essential for function, are unstructured in solution.
Collapse
Affiliation(s)
- K L Maxwell
- Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|