51
|
Janiak V, Petersen M, Zentgraf M, Klebe G, Heine A. Structure and substrate docking of a hydroxy(phenyl)pyruvate reductase from the higher plant Coleus blumei Benth. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:593-603. [PMID: 20445235 DOI: 10.1107/s0907444910006360] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 02/18/2010] [Indexed: 01/17/2023]
Abstract
Hydroxy(phenyl)pyruvate reductase [H(P)PR] belongs to the family of D-isomer-specific 2-hydroxyacid dehydrogenases and catalyzes the reduction of hydroxyphenylpyruvates as well as hydroxypyruvate and pyruvate to the corresponding lactates. Other non-aromatic substrates are also accepted. NADPH is the preferred cosubstrate. The crystal structure of the enzyme from Coleus blumei (Lamiaceae) has been determined at 1.47 A resolution. In addition to the apoenzyme, the structure of a complex with NADP(+) was determined at a resolution of 2.2 A. H(P)PR is a dimer with a molecular mass of 34 113 Da per subunit. The structure is similar to those of other members of the enzyme family and consists of two domains separated by a deep catalytic cleft. To gain insights into substrate binding, several compounds were docked into the cosubstrate complex structure using the program AutoDock. The results show two possible binding modes with similar docking energy. However, only binding mode A provides the necessary environment in the active centre for hydride and proton transfer during reduction, leading to the formation of the (R)-enantiomer of lactate and/or hydroxyphenyllactate.
Collapse
Affiliation(s)
- Verena Janiak
- Institut für Pharmazeutische Biologie, Philipps-Universität Marburg, Deutschhausstrasse 17A, 35037 Marburg, Germany
| | | | | | | | | |
Collapse
|
52
|
Ueshima S, Muramatsu H, Nakajima T, Yamamoto H, Kato SI, Misono H, Nagata S. Identification, Cloning, and Characterization of l-Phenylserine Dehydrogenase from Pseudomonas syringae NK-15. Enzyme Res 2010; 2010:597010. [PMID: 21048868 PMCID: PMC2963168 DOI: 10.4061/2010/597010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/28/2009] [Accepted: 11/29/2009] [Indexed: 11/20/2022] Open
Abstract
The gene encoding d-phenylserine dehydrogenase from Pseudomonas syringae NK-15 was identified, and a 9,246-bp nucleotide sequence containing the gene was sequenced. Six ORFs were confirmed in the sequenced region, four of which were predicted to form an operon. A homology search of each ORF predicted that orf3 encoded l-phenylserine dehydrogenase. Hence, orf3 was cloned and overexpressed in Escherichia coli cells and recombinant ORF3 was purified to homogeneity and characterized. The purified ORF3 enzyme showed l-phenylserine dehydrogenase activity. The enzymological properties and primary structure of l-phenylserine dehydrogenase (ORF3) were quite different from those of d-phenylserine dehydrogenase previously reported. l-Phenylserine dehydrogenase catalyzed the NAD+-dependent oxidation of the β-hydroxyl group of l-β-phenylserine. l-Phenylserine and l-threo-(2-thienyl)serine were good substrates for l-phenylserine dehydrogenase. The genes encoding l-phenylserine dehydrogenase and d-phenylserine dehydrogenase, which is induced by phenylserine, are located in a single operon. The reaction products of both enzymatic reactions were 2-aminoacetophenone and CO2.
Collapse
Affiliation(s)
- Sakuko Ueshima
- The United Graduate School of Agricultural Science, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | | | | | | | | | | | | |
Collapse
|
53
|
Otagiri M, Ui S, Takusagawa Y, Ohtsuki T, Kurisu G, Kusunoki M. Structural basis for chiral substrate recognition by two 2,3-butanediol dehydrogenases. FEBS Lett 2009; 584:219-23. [DOI: 10.1016/j.febslet.2009.11.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 11/19/2009] [Accepted: 11/19/2009] [Indexed: 11/26/2022]
|
54
|
The final step of hygromycin A biosynthesis, oxidation of C-5''-dihydrohygromycin A, is linked to a putative proton gradient-dependent efflux. Antimicrob Agents Chemother 2009; 53:5163-72. [PMID: 19770276 DOI: 10.1128/aac.01069-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hygromycin A (HA) is an aminocyclitol antibiotic produced and excreted by Streptomyces hygroscopicus. Deletion of hyg26 from the hygromycin A biosynthetic gene cluster has previously been shown to result in a mutant that produces 5''-dihydrohygromycin A (DHHA). We report herein on the purification and characterization of Hyg26 expressed in Escherichia coli. The enzyme catalyzes an NAD(H)-dependent reversible interconversion of HA and DHHA, supporting the role of the reduced HA as the penultimate biosynthetic pathway intermediate and not a shunt product. The equilibrium for the Hyg26-catalyzed reaction heavily favors the DHHA intermediate. The high-titer production of the HA product by S. hygroscopicus must be dependent upon a subsequent energetically favorable enzyme-catalyzed process, such as the selective and efficient export of HA. hyg19 encodes a putative proton gradient-dependent transporter, and a mutant lacking this gene was observed to produce less HA and to produce the DHHA intermediate. The DHHA produced by either the Deltahyg19 or the Deltahyg26 mutant had slightly reduced activity against E. coli and reduced protein synthesis-inhibitory activity in vitro. The data indicate that Hyg26 and Hyg19 have evolved to produce and export the final potent HA product in a coordinated fashion.
Collapse
|
55
|
Zhang Q, Peng H, Gao F, Liu Y, Cheng H, Thompson J, Gao GF. Structural insight into the catalytic mechanism of gluconate 5-dehydrogenase from Streptococcus suis: Crystal structures of the substrate-free and quaternary complex enzymes. Protein Sci 2009; 18:294-303. [PMID: 19177572 DOI: 10.1002/pro.32] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gluconate 5-dehydrogenase (Ga5DH) is an NADP(H)-dependent enzyme that catalyzes a reversible oxidoreduction reaction between D-gluconate and 5-keto-D-gluconate, thereby regulating the flux of this important carbon and energy source in bacteria. Despite the considerable amount of physiological and biochemical knowledge of Ga5DH, there is little physical or structural information available for this enzyme. To this end, we herein report the crystal structures of Ga5DH from pathogenic Streptococcus suis serotype 2 in both substrate-free and liganded (NADP(+)/D-gluconate/metal ion) quaternary complex forms at 2.0 A resolution. Structural analysis reveals that Ga5DH adopts a protein fold similar to that found in members of the short chain dehydrogenase/reductase (SDR) family, while the enzyme itself represents a previously uncharacterized member of this family. In solution, Ga5DH exists as a tetramer that comprised four identical approximately 29 kDa subunits. The catalytic site of Ga5DH shows considerable architectural similarity to that found in other enzymes of the SDR family, but the S. suis protein contains an additional residue (Arg104) that plays an important role in the binding and orientation of substrate. The quaternary complex structure provides the first clear crystallographic evidence for the role of a catalytically important serine residue and also reveals an amino acid tetrad RSYK that differs from the SYK triad found in the majority of SDR enzymes. Detailed analysis of the crystal structures reveals important contributions of Ca(2+) ions to active site formation and of specific residues at the C-termini of subunits to tetramer assembly. Because Ga5DH is a potential target for therapy, our findings provide insight not only of catalytic mechanism, but also suggest a target of structure-based drug design.
Collapse
Affiliation(s)
- Qiangmin Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic Of China
| | | | | | | | | | | | | |
Collapse
|
56
|
Ziegler J, Brandt W, Geissler R, Facchini PJ. Removal of substrate inhibition and increase in maximal velocity in the short chain dehydrogenase/reductase salutaridine reductase involved in morphine biosynthesis. J Biol Chem 2009; 284:26758-67. [PMID: 19648114 DOI: 10.1074/jbc.m109.030957] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Salutaridine reductase (SalR, EC 1.1.1.248) catalyzes the stereospecific reduction of salutaridine to 7(S)-salutaridinol in the biosynthesis of morphine. It belongs to a new, plant-specific class of short-chain dehydrogenases, which are characterized by their monomeric nature and increased length compared with related enzymes. Homology modeling and substrate docking suggested that additional amino acids form a novel alpha-helical element, which is involved in substrate binding. Site-directed mutagenesis and subsequent studies on enzyme kinetics revealed the importance of three residues in this element for substrate binding. Further replacement of eight additional residues led to the characterization of the entire substrate binding pocket. In addition, a specific role in salutaridine binding by either hydrogen bond formation or hydrophobic interactions was assigned to each amino acid. Substrate docking also revealed an alternative mode for salutaridine binding, which could explain the strong substrate inhibition of SalR. An alternate arrangement of salutaridine in the enzyme was corroborated by the effect of various amino acid substitutions on substrate inhibition. In most cases, the complete removal of substrate inhibition was accompanied by a substantial loss in enzyme activity. However, some mutations greatly reduced substrate inhibition while maintaining or even increasing the maximal velocity. Based on these results, a double mutant of SalR was created that exhibited the complete absence of substrate inhibition and higher activity compared with wild-type SalR.
Collapse
Affiliation(s)
- Jörg Ziegler
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | | | |
Collapse
|
57
|
Brunskole M, Kristan K, Stojan J, Rizner TL. Mutations that affect coenzyme binding and dimer formation of fungal 17beta-hydroxysteroid dehydrogenase. Mol Cell Endocrinol 2009; 301:47-50. [PMID: 18775764 DOI: 10.1016/j.mce.2008.07.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 07/29/2008] [Accepted: 07/29/2008] [Indexed: 11/24/2022]
Abstract
The 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl) is an NADPH-dependent member of the short-chain dehydrogenase/reductase superfamily, and it functions as a dimer that is composed of two identical subunits. By constructing the appropriate mutants, we have examined the M204 residue that is situated in the coenzyme binding pocket, for its role in the binding of the coenzyme NADP(H). We have also studied the importance of hydrophobic interactions through F124, F132, F133 and F177 for 17beta-HSDcl dimer formation. The M204G substitution decreased the catalytic efficiency of 17beta-HSDcl, suggesting that M204 sterically coerces the nicotinamide moiety of the coenzyme into the appropriate position for further hydride transfer. Phenylalanine substitutions introduced at the dimer interface produced inactive aggregates and oligomers with high molecular masses, suggesting that these hydrophobic interactions have important roles in the formation of the active dimer.
Collapse
Affiliation(s)
- Mojca Brunskole
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
58
|
Biochemical and structural characterization of a short-chain dehydrogenase/reductase of Thermus thermophilus HB8. Chem Biol Interact 2009; 178:117-26. [DOI: 10.1016/j.cbi.2008.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 11/24/2022]
|
59
|
Ser67Asp and His68Asp substitutions in candida parapsilosis carbonyl reductase alter the coenzyme specificity and enantioselectivity of ketone reduction. Appl Environ Microbiol 2009; 75:2176-83. [PMID: 19201968 DOI: 10.1128/aem.02519-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A short-chain carbonyl reductase (SCR) from Candida parapsilosis catalyzes an anti-Prelog reduction of 2-hydroxyacetophenone to (S)-1-phenyl-1,2-ethanediol (PED) and exhibits coenzyme specificity for NADPH over NADH. By using site-directed mutagenesis, the mutants were designed with different combinations of Ser67Asp, His68Asp, and Pro69Asp substitutions inside or adjacent to the coenzyme binding pocket. All mutations caused a significant shift of enantioselectivity toward the (R)-configuration during 2-hydroxyacetophenone reduction. The S67D/H68D mutant produced (R)-PED with high optical purity and yield in the NADH-linked reaction. By kinetic analysis, the S67D/H68D mutant resulted in a nearly 10-fold increase and a 20-fold decrease in the k(cat)/K(m) value when NADH and NADPH were used as the cofactors, respectively, but maintaining a k(cat) value essentially the same with respect to wild-type SCR. The ratio of K(d) (dissociation constant) values between NADH and NADPH for the S67D/H68D mutant and SCR were 0.28 and 1.9 respectively, which indicates that the S67D/H68D mutant has a stronger preference for NADH and weaker binding for NADPH. Moreover, the S67D/H68D enzyme exhibited a secondary structure and melting temperature similar to the wild-type form. It was also found that NADH provided maximal protection against thermal and urea denaturation for S67D/H68D, in contrast to the effective protection by NADP(H) for the wild-type enzyme. Thus, the double point mutation S67D/H68D successfully converted the coenzyme specificity of SCR from NADP(H) to NAD(H) as well as the product enantioselectivity without disturbing enzyme stability. This work provides a protein engineering approach to modify the coenzyme specificity and enantioselectivity of ketone reduction for short-chain reductases.
Collapse
|
60
|
Hoffmann F, Maser E. Carbonyl Reductases and Pluripotent Hydroxysteroid Dehydrogenases of the Short-chain Dehydrogenase/reductase Superfamily. Drug Metab Rev 2008; 39:87-144. [PMID: 17364882 DOI: 10.1080/03602530600969440] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Carbonyl reduction of aldehydes, ketones, and quinones to their corresponding hydroxy derivatives plays an important role in the phase I metabolism of many endogenous (biogenic aldehydes, steroids, prostaglandins, reactive lipid peroxidation products) and xenobiotic (pharmacologic drugs, carcinogens, toxicants) compounds. Carbonyl-reducing enzymes are grouped into two large protein superfamilies: the aldo-keto reductases (AKR) and the short-chain dehydrogenases/reductases (SDR). Whereas aldehyde reductase and aldose reductase are AKRs, several forms of carbonyl reductase belong to the SDRs. In addition, there exist a variety of pluripotent hydroxysteroid dehydrogenases (HSDs) of both superfamilies that specifically catalyze the oxidoreduction at different positions of the steroid nucleus and also catalyze, rather nonspecifically, the reductive metabolism of a great number of nonsteroidal carbonyl compounds. The present review summarizes recent findings on carbonyl reductases and pluripotent HSDs of the SDR protein superfamily.
Collapse
Affiliation(s)
- Frank Hoffmann
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Strasse, Kiel, 10, 24105, Germany
| | | |
Collapse
|
61
|
Zhang R, Zhu G, Zhang W, Cao S, Ou X, Li X, Bartlam M, Xu Y, Zhang XC, Rao Z. Crystal structure of a carbonyl reductase from Candida parapsilosis with anti-Prelog stereospecificity. Protein Sci 2008; 17:1412-23. [PMID: 18566346 PMCID: PMC2492817 DOI: 10.1110/ps.035089.108] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 04/15/2008] [Accepted: 04/21/2008] [Indexed: 10/21/2022]
Abstract
A novel short-chain (S)-1-phenyl-1,2-ethanediol dehydrogenase (SCR) from Candida parapsilosis exhibits coenzyme specificity for NADPH over NADH. It catalyzes an anti-Prelog type reaction to reduce 2-hydroxyacetophenone into (S)-1-phenyl-1,2-ethanediol. The coding gene was overexpressed in Escherichia coli and the purified protein was crystallized. The crystal structure of the apo-form was solved to 2.7 A resolution. This protein forms a homo-tetramer with a broken 2-2-2 symmetry. The overall fold of each SCR subunit is similar to that of the known structures of other homologous alcohol dehydrogenases, although the latter usually form tetramers with perfect 2-2-2 symmetries. Additionally, in the apo-SCR structure, the entrance of the NADPH pocket is blocked by a surface loop. In order to understand the structure-function relationship of SCR, we carried out a number of mutagenesis-enzymatic analyses based on the new structural information. First, mutations of the putative catalytic Ser-Tyr-Lys triad confirmed their functional role. Second, truncation of an N-terminal 31-residue peptide indicated its role in oligomerization, but not in catalytic activity. Similarly, a V270D point mutation rendered the SCR as a dimer, rather than a tetramer, without affecting the enzymatic activity. Moreover, the S67D/H68D double-point mutation inside the coenzyme-binding pocket resulted in a nearly 10-fold increase and a 20-fold decrease in the k(cat) /K(M) value when NADH and NADPH were used as cofactors, respectively, with k(cat) remaining essentially the same. This latter result provides a new example of a protein engineering approach to modify the coenzyme specificity in SCR and short-chain dehydrogenases/reductases in general.
Collapse
Affiliation(s)
- Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Shearn CT, Fritz KS, Meier BW, Kirichenko OV, Thompson JA. Carbonyl Reductase Inactivation May Contribute to Mouse Lung Tumor Promotion by Electrophilic Metabolites of Butylated Hydroxytoluene: Protein Alkylation in Vivo and in Vitro. Chem Res Toxicol 2008; 21:1631-41. [DOI: 10.1021/tx800162p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Colin T. Shearn
- Department of Pharmaceutical Sciences, C238-L15, Anschutz Medical Campus, University of Colorado Denver, Box 6511, Aurora, Colorado 80045
| | - Kristofer S. Fritz
- Department of Pharmaceutical Sciences, C238-L15, Anschutz Medical Campus, University of Colorado Denver, Box 6511, Aurora, Colorado 80045
| | - Brent W. Meier
- Department of Pharmaceutical Sciences, C238-L15, Anschutz Medical Campus, University of Colorado Denver, Box 6511, Aurora, Colorado 80045
| | - Oleg V. Kirichenko
- Department of Pharmaceutical Sciences, C238-L15, Anschutz Medical Campus, University of Colorado Denver, Box 6511, Aurora, Colorado 80045
| | - John A. Thompson
- Department of Pharmaceutical Sciences, C238-L15, Anschutz Medical Campus, University of Colorado Denver, Box 6511, Aurora, Colorado 80045
| |
Collapse
|
63
|
Molecular basis for peroxisomal localization of tetrameric carbonyl reductase. Structure 2008; 16:388-97. [PMID: 18334214 DOI: 10.1016/j.str.2007.12.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 12/22/2007] [Accepted: 12/28/2007] [Indexed: 11/24/2022]
Abstract
Pig heart peroxisomal carbonyl reductase (PerCR) belongs to the short-chain dehydrogenase/reductase family, and its sequence comprises a C-terminal SRL tripeptide, which is a variant of the type 1 peroxisomal targeting signal (PTS1) Ser-Lys-Leu. PerCR is imported into peroxisomes of HeLa cells when the cells are transfected with vectors expressing the enzyme. However, PerCR does not show specific targeting when introduced into the cells with a protein transfection reagent. To understand the structural basis for peroxisomal localization of PerCR, we determined the crystal structure of PerCR. Our data revealed that the C-terminal PTS1 of each subunit of PerCR was involved in intersubunit interactions and was buried in the interior of the tetrameric molecule. These findings indicate that the PTS1 receptor Pex5p in the cytosol recognizes the monomeric form of PerCR whose C-terminal PTS1 is exposed, and that this PerCR is targeted into the peroxisome, thereby forming a tetramer.
Collapse
|
64
|
Characterization of human DHRS4: an inducible short-chain dehydrogenase/reductase enzyme with 3beta-hydroxysteroid dehydrogenase activity. Arch Biochem Biophys 2008; 477:339-47. [PMID: 18571493 DOI: 10.1016/j.abb.2008.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 05/31/2008] [Accepted: 06/03/2008] [Indexed: 11/22/2022]
Abstract
Human DHRS4 is a peroxisomal member of the short-chain dehydrogenase/reductase superfamily, but its enzymatic properties, except for displaying NADP(H)-dependent retinol dehydrogenase/reductase activity, are unknown. We show that the human enzyme, a tetramer composed of 27kDa subunits, is inactivated at low temperature without dissociation into subunits. The cold inactivation was prevented by a mutation of Thr177 with the corresponding residue, Asn, in cold-stable pig DHRS4, where this residue is hydrogen-bonded to Asn165 in a substrate-binding loop of other subunit. Human DHRS4 reduced various aromatic ketones and alpha-dicarbonyl compounds including cytotoxic 9,10-phenanthrenequinone. The overexpression of the peroxisomal enzyme in cultured cells did not increase the cytotoxicity of 9,10-phenanthrenequinone. While its activity towards all-trans-retinal was low, human DHRS4 efficiently reduced 3-keto-C(19)/C(21)-steroids into 3beta-hydroxysteroids. The stereospecific conversion to 3beta-hydroxysteroids was observed in endothelial cells transfected with vectors expressing the enzyme. The mRNA for the enzyme was ubiquitously expressed in human tissues and several cancer cells, and the enzyme in HepG2 cells was induced by peroxisome-proliferator-activated receptor alpha ligands. The results suggest a novel mechanism of cold inactivation and role of the inducible human DHRS4 in 3beta-hydroxysteroid synthesis and xenobiotic carbonyl metabolism.
Collapse
|
65
|
Abstract
This overview provides an illustrated, comprehensive survey of some commonly observed protein‐fold families and structural motifs, chosen for their functional significance. It opens with descriptions and definitions of the various elements of protein structure and associated terminology. Following is an introduction into web‐based structural bioinformatics that includes surveys of interactive web servers for protein fold or domain annotation, protein‐structure databases, protein‐structure‐classification databases, structural alignments of proteins, and molecular graphics programs available for personal computers. The rest of the overview describes selected families of protein folds in terms of their secondary, tertiary, and quaternary structural arrangements, including ribbon‐diagram examples, tables of representative structures with references, and brief explanations pointing out their respective biological and functional significance.
Collapse
Affiliation(s)
- Peter D Sun
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | | | | |
Collapse
|
66
|
Belyaeva OB, Litvin FF. Photoactive pigment—enzyme complexes of chlorophyll precursor in plant leaves. BIOCHEMISTRY (MOSCOW) 2007; 72:1458-77. [DOI: 10.1134/s0006297907130044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
67
|
Favia AD, Nobeli I, Glaser F, Thornton JM. Molecular docking for substrate identification: the short-chain dehydrogenases/reductases. J Mol Biol 2007; 375:855-74. [PMID: 18036612 DOI: 10.1016/j.jmb.2007.10.065] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 10/24/2007] [Indexed: 10/22/2022]
Abstract
Protein ligand docking has recently been investigated as a tool for protein function identification, with some success in identifying both known and unknown substrates of proteins. However, identifying a protein's substrate when cross-docking a large number of enzymes and their cognate ligands remains a challenge. To explore a more limited yet practically important and timely problem in more detail, we have used docking for identifying the substrates of a single protein family with remarkable substrate diversity, the short-chain dehydrogenases/reductases. We examine different protocols for identifying candidate substrates for 27 short-chain dehydrogenase/reductase proteins of known catalytic function. We present the results of docking >900 metabolites from the human metabolome to each of these proteins together with their known cognate substrates and products, and we investigate the ability of docking to (a) reproduce a viable binding mode for the substrate and (b) to rank the substrate highly amongst the dataset of other metabolites. In addition, we examine whether our docking results provide information about the nature of the substrate, based on the best-scoring metabolites in the dataset. We compare two different docking methods and two alternative scoring functions for one of the docking methods, and we attempt to rationalise both successes and failures. Finally, we introduce a new protocol, whereby we dock only a set of representative structures (medoids) to each of the proteins, in the hope of characterising each binding site in terms of its ligand preferences, with a reduced computational cost. We compare the results from this protocol with our original docking experiments, and we find that although the rank of the representatives correlates well with the mean rank of the clusters to which they belong, a simple structure-based clustering is too naive for the purpose of substrate identification. Many clusters comprise ligands with widely varying affinities for the same protein; hence important candidates can be missed if a single representative is used.
Collapse
Affiliation(s)
- Angelo D Favia
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | | | | | | |
Collapse
|
68
|
Katz A, Heiblum R, Meidan R, Robinzon B. Distinct features of dehydrocorticosterone reduction into corticosterone in the liver and duodenum of the domestic fowl (Gallus gallus domesticus). Gen Comp Endocrinol 2007; 154:67-74. [PMID: 17673214 DOI: 10.1016/j.ygcen.2007.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 06/15/2007] [Accepted: 06/20/2007] [Indexed: 10/23/2022]
Abstract
The mammalian 11-beta hydroxysteroid dehydrogenase type 1 (11 betaHSD1) reduces glucocorticoids (GC) at C11 from the 11-keto-GC nonactive form to the 11-hydroxy-GC active form, an action essential for survival. Whereas GC metabolism at C11 and the role of 11 betaHSD1 are studied extensively in mammals, information about these in birds is scattered. Herein, we report the GC bidirectional metabolism in chickens. In hens' liver and duodenal mucosa, 11 betaHSD1-like mRNA expression was detected; and 11 betaHSD1-like immunoreactivity was found linked to membranes of hepatocytes and duodenal enterocytes. With either NADH or NADPH, the membranal fraction of liver and duodenal mucosa converted dehydrocorticosterone (A) into corticosterone (B) with K(m) (1.1-8.7 microM) and V(max) (10-40 pmol/mg protein/min) values similar to those reported for mammalian 11 betaHSD1. In the presence of NADP(+) or NAD(+), these membranal fractions oxidized B into A. With either NADPH or NADH, the cytosol of chicken liver and duodenal mucosa reduced A into B (K(m) of 1.1 - 2.3 microM and V(max) of 260-960 pmol/mg protein/min). These cytosolic fractions did not convert any amount of B into A when incubated with either NADP(+) or NAD(+). This may suggest that chicken liver and duodenal mucosa express 11 betaHSD1 that is a membrane-bound oxoreductase which uses both NADPH/NADP(+) and NADH/NAD(+) as cosubstrates. The substantial reduction of A into B (but no conversion of B into A) found in the cytosol is most likely executed by a unidirectional soluble reductase, different than 11 betaHSD1.
Collapse
Affiliation(s)
- A Katz
- Department of Animal Sciences, The Faculty of Agricultural, Food and Environmental Quality Science, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel.
| | | | | | | |
Collapse
|
69
|
Shao H, Dixon RA, Wang X. Crystal structure of vestitone reductase from alfalfa (Medicago sativa L.). J Mol Biol 2007; 369:265-76. [PMID: 17433362 DOI: 10.1016/j.jmb.2007.03.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/12/2007] [Accepted: 03/14/2007] [Indexed: 11/16/2022]
Abstract
Isoflavonoids are commonly found in leguminous plants, where they play important roles in plant defense and have significant health benefits for animals and humans. Vestitone reductase catalyzes a stereospecific NADPH-dependent reduction of (3R)-vestitone in the biosynthesis of the antimicrobial isoflavonoid phytoalexin medicarpin. The crystal structure of alfalfa (Medicago sativa L.) vestitone reductase has been determined at 1.4 A resolution. The structure contains a classic Rossmann fold domain in the N terminus and a small C-terminal domain. Sequence and structural analysis showed that vestitone reductase is a member of the short-chain dehydrogenase/reductase (SDR) superfamily despite the low levels of sequence identity, and the prominent structural differences from other SDR enzymes with known structures. The putative binding sites for the co-factor NADPH and the substrate (3R)-vestitone were defined and located in a large cleft formed between the N and C-terminal domains of enzyme. Potential key residues for enzyme activity were also identified, including the catalytic triad Ser129-Tyr164-Lys168. A molecular docking study showed that (3R)-vestitone, but not the (3S) isomer, forms favored interactions with the co-factor and catalytic triad, thus providing an explanation for the enzyme's strict substrate stereo-specificity.
Collapse
Affiliation(s)
- Hui Shao
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | | | |
Collapse
|
70
|
Hoffmann F, Sotriffer C, Evers A, Xiong G, Maser E. Understanding oligomerization in 3α-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni: An in silico approach and evidence for an active protein. J Biotechnol 2007; 129:131-9. [PMID: 17258342 DOI: 10.1016/j.jbiotec.2006.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 10/05/2005] [Accepted: 12/23/2005] [Indexed: 10/23/2022]
Abstract
3alpha-Hydroxysteroid dehydrogenase/carbonyl reductase (3alpha-HSD/CR) from Comamonas testosteroni belongs to the short chain dehydrogenase/reductase (SDR) protein superfamily and catalyzes the oxidoreduction of a variety of steroid substrates, including the steroid antibiotic fusidic acid. The enzyme also mediates the carbonyl reduction of non-steroidal aldehydes and ketones such as a novel insecticide. It is suggested that 3alpha-HSD/CR contributes to the bioremediation of natural and synthetic toxicants by C. testosteroni. Crystallization and structure analysis showed that 3alpha-HSD/CR is active as a dimer. Dimerization takes place via an interface axis which has exclusively been observed in homotetrameric SDRs but never in the structure of a homodimeric SDR. The formation of a tetramer is blocked in 3alpha-HSD/CR by the presence of a predominantly alpha-helical subdomain which is missing in all other SDRs of known structure. For example, 3alpha/20beta-HSD from Streptomyces hydrogenans exhibits two main subunit interfaces arranged about two non-crystallographic two-fold axes which are perpendicular to each other and referred to as P and Q. This mode of dimerization is, however, sterically impossible in 3alpha-HSD/CR because of a 28 amino acids insertion into the classical Rossmann-fold motif between strand betaE and helix alphaF. This insertion is masking helices alphaE and alphaF, thus preventing the formation of a four helix bundle and enables the dimerization via a P-axis interface. This type of dimerization in SDRs has never been observed in a crystal structure so far. The aim of this study was to investigate whether the lack of this predominantly alpha-helical subdomain keeps 3alpha-HSD/CR to be an active enzyme and whether, by an in silico approach, the formation of a homotetramer or even a novel oligomerization mode can be expected. Redesign of this interface was performed on the basis of site directed mutagenesis and according to other SDR structures by an approach combining "in silico" and "wet chemistry". Simulations of sterical and structural effects after different mutations, by applying a combination of homology modelling and molecular dynamic simulations, provided an effective tool for extensive mutagenesis studies and indicated the possibility of tetramer formation of truncated 3alpha-HSD/CR. In addition, despite lacking the extra loop domain, mutant 3alpha-HSD/CR was shown to be active towards a variety of standard substrates.
Collapse
Affiliation(s)
- Frank Hoffmann
- Department of Pharmacology and Toxicology, Philipps University Marburg, Karl v Frisch Str 1, D-35033 Marburg, Germany
| | | | | | | | | |
Collapse
|
71
|
Meier BW, Gomez JD, Kirichenko OV, Thompson JA. Mechanistic basis for inflammation and tumor promotion in lungs of 2,6-di-tert-butyl-4-methylphenol-treated mice: electrophilic metabolites alkylate and inactivate antioxidant enzymes. Chem Res Toxicol 2007; 20:199-207. [PMID: 17305404 PMCID: PMC2570584 DOI: 10.1021/tx060214f] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An established model for mechanistic analysis of lung carcinogenesis involves administration of 3-methylcholanthrene to mice followed by several weekly injections of the tumor promoter 2,6-di-tert-butyl-4-methylphenol (BHT). BHT is metabolized to quinone methides (QMs) responsible for promoting tumor formation. QMs are strongly electrophilic and readily form adducts with proteins. The goal of the present study was to identify adducted proteins in the lungs of mice injected with BHT and to assess the potential impact of these modifications on tumorigenesis. Cytosolic proteins from treated mouse lungs were separated by two-dimensional electrophoresis, adducts detected by immunoblotting, and proteins identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Eight adducts were detected in the lungs of most, or all, of six experimental groups of BALB mice. Of these adducts, several were structural proteins, but others, namely, peroxiredoxin 6 (Prx6), Cu,Zn-superoxide dismutase (SOD1), carbonyl reductase, and selenium-binding protein 1, have direct or indirect antioxidant functions. When the 9000g supernatant fraction of mouse lung was treated with BHT-QM (2,6-di-tert-butyl-4-methylene-2,5-cyclohexadienone), substantial lipid peroxidation and increases in hydrogen peroxide and superoxide formation were observed. Studies with human Prx6 and bovine SOD1 demonstrated inhibition of enzyme activity concomitant with adduct formation. LC-MS/MS analysis of digests of adducted Prx6 demonstrated adduction of both Cys 91 and Cys 47; the latter residue is essential for peroxidatic activity. Analysis of QM-treated bovine SOD1 by matrix-assisted laser desorption/ionization time-of-flight MS demonstrated the predominance of a monoadduct at His 78. This study provides evidence that indicates Prx6, SOD1, and possibly other antioxidant enzymes in mouse lung are inhibited by BHT-derived QMs leading to enhanced levels of reactive oxygen species and inflammation and providing a mechanistic basis for the effects of BHT on lung tumorigenesis.
Collapse
Affiliation(s)
- Brent W. Meier
- Department of Pharmaceutical Sciences, Box C238 University of Colorado Health Sciences Center Denver, CO 80262
| | - Jose D. Gomez
- Department of Pharmaceutical Sciences, Box C238 University of Colorado Health Sciences Center Denver, CO 80262
| | - Oleg V. Kirichenko
- Department of Pharmaceutical Sciences, Box C238 University of Colorado Health Sciences Center Denver, CO 80262
| | - John A. Thompson
- Department of Pharmaceutical Sciences, Box C238 University of Colorado Health Sciences Center Denver, CO 80262
| |
Collapse
|
72
|
Cho H, Huang L, Hamza A, Gao D, Zhan CG, Tai HH. Role of glutamine 148 of human 15-hydroxyprostaglandin dehydrogenase in catalytic oxidation of prostaglandin E2. Bioorg Med Chem 2006; 14:6486-91. [PMID: 16828555 DOI: 10.1016/j.bmc.2006.06.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2006] [Revised: 06/03/2006] [Accepted: 06/08/2006] [Indexed: 11/30/2022]
Abstract
NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a member of the short-chain dehydrogenase/reductase (SDR) family, catalyzes the first step in the catabolic pathways of prostaglandins and lipoxins. This enzyme oxidizes the C-15 hydroxyl group of prostaglandins and lipoxins to produce 15-keto metabolites which exhibit greatly reduced biological activities. A three-dimensional (3D) structure of 15-PGDH based on the crystal structures of the levodione reductase and tropinone reductase-II was generated and used for docking study with NAD+ coenzyme and PGE2 substrate. Three well-conserved residues among SDR family which correspond to Ser-138, Tyr-151, and Lys-155 of 15-PGDH have been shown to participate in the catalytic reaction. Based on the molecular interactions observed from 3D structure of 15-PGDH, we further propose that Gln-148 in 15-PGDH is important in properly positioning the 15-hydroxyl group of PGE2 by hydrogen bonding with the side-chain oxygen atom of Gln-148. This residue is found to be less conserved and replaceable by glutamyl, histidinyl, and asparaginyl residues in SDR family. Accordingly, site-directed mutagenesis of Gln-148 of 15-PGDH to alanine, glutamic acid, histidine, and asparagine (Q148A, Q148E, Q148H, and Q148N) was carried out. The activity of mutant Q148A was not detectable, whereas those of mutants Q148E, Q148H, and Q148N were comparable to or higher than the wild type. This indicates that the side-chain oxygen or nitrogen atom at position 148 of 15-PGDH plays an important role in anchoring C-15 hydroxyl group of PGE2 through hydrogen bonding for catalytic reaction.
Collapse
Affiliation(s)
- Hoon Cho
- Polymer Science Engineering, Chosun University, Gwangju 501-579, Republic of Korea
| | | | | | | | | | | |
Collapse
|
73
|
Booth MPS, Conners R, Rumsby G, Brady RL. Structural basis of substrate specificity in human glyoxylate reductase/hydroxypyruvate reductase. J Mol Biol 2006; 360:178-89. [PMID: 16756993 DOI: 10.1016/j.jmb.2006.05.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 05/04/2006] [Accepted: 05/08/2006] [Indexed: 11/18/2022]
Abstract
Human glyoxylate reductase/hydroxypyruvate reductase (GRHPR) is a D-2-hydroxy-acid dehydrogenase that plays a critical role in the removal of the metabolic by-product glyoxylate from within the liver. Deficiency of this enzyme is the underlying cause of primary hyperoxaluria type 2 (PH2) and leads to increased urinary oxalate levels, formation of kidney stones and renal failure. Here we describe the crystal structure of human GRHPR at 2.2 A resolution. There are four copies of GRHPR in the crystallographic asymmetric unit: in each homodimer, one subunit forms a ternary (enzyme+NADPH+reduced substrate) complex, and the other a binary (enzyme+NADPH) form. The spatial arrangement of the two enzyme domains is the same in binary and ternary forms. This first crystal structure of a true ternary complex of an enzyme from this family demonstrates the relationship of substrate and catalytic residues within the active site, confirming earlier proposals of the mode of substrate binding, stereospecificity and likely catalytic mechanism for these enzymes. GRHPR has an unusual substrate specificity, preferring glyoxylate and hydroxypyruvate, but not pyruvate. A tryptophan residue (Trp141) from the neighbouring subunit of the dimer is projected into the active site region and appears to contribute to the selectivity for hydroxypyruvate. This first crystal structure of a human GRHPR enzyme also explains the deleterious effects of naturally occurring missense mutations of this enzyme that lead to PH2.
Collapse
Affiliation(s)
- Michael P S Booth
- Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
74
|
Matsunaga T, Shintani S, Hara A. Multiplicity of mammalian reductases for xenobiotic carbonyl compounds. Drug Metab Pharmacokinet 2006; 21:1-18. [PMID: 16547389 DOI: 10.2133/dmpk.21.1] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A variety of carbonyl compounds are present in foods, environmental pollutants, and drugs. These xenobiotic carbonyl compounds are metabolized into the corresponding alcohols by many mammalian NAD(P)H-dependent reductases, which belong to the short-chain dehydrogenase/reductase (SDR) and aldo-keto reductase superfamilies. Recent genomic analysis, cDNA isolation and characterization of the recombinant enzymes suggested that, in humans, the six members of each of the two superfamilies, i.e., total of 12 enzymes, are involved in the reductive metabolism of xenobiotic carbonyl compounds. They comprise three types of carbonyl reductase, dehydrogenase/reductase (SDR family) member 4, 11beta-hydroxysteroid dehydrogenase type 1, L-xylulose reductase, two types of aflatoxin B1 aldehyde reductase, 20alpha-hydroxysteroid dehydrogenase, and three types of 3alpha-hydroxysteroid dehydrogenase. Accumulating data on the human enzymes provide new insights into their roles in cellular and molecular reactions including xenobiotic metabolism. On the other hand, mice and rats lack the gene for a protein corresponding to human 3alpha-hydroxysteroid dehydrogenase type 3, but instead possess additional five or six genes encoding proteins that are structurally related to human hydroxysteroid dehydrogenases. Characterization of the additional enzymes suggested their involvement in species-specific biological events and species differences in the metabolism of xenobiotic carbonyl compounds.
Collapse
|
75
|
Guo K, Lukacik P, Papagrigoriou E, Meier M, Lee WH, Adamski J, Oppermann U. Characterization of Human DHRS6, an Orphan Short Chain Dehydrogenase/Reductase Enzyme. J Biol Chem 2006; 281:10291-7. [PMID: 16380372 DOI: 10.1074/jbc.m511346200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human DHRS6 is a previously uncharacterized member of the short chain dehydrogenases/reductase family and displays significant homologies to bacterial hydroxybutyrate dehydrogenases. Substrate screening reveals sole NAD(+)-dependent conversion of (R)-hydroxybutyrate to acetoacetate with K(m) values of about 10 mm, consistent with plasma levels of circulating ketone bodies in situations of starvation or ketoacidosis. The structure of human DHRS6 was determined at a resolution of 1.8 A in complex with NAD(H) and reveals a tetrameric organization with a short chain dehydrogenases/reductase-typical folding pattern. A highly conserved triad of Arg residues ("triple R" motif consisting of Arg(144), Arg(188), and Arg(205)) was found to bind a sulfate molecule at the active site. Docking analysis of R-beta-hydroxybutyrate into the active site reveals an experimentally consistent model of substrate carboxylate binding and catalytically competent orientation. GFP reporter gene analysis reveals a cytosolic localization upon transfection into mammalian cells. These data establish DHRS6 as a novel, cytosolic type 2 (R)-hydroxybutyrate dehydrogenase, distinct from its well characterized mitochondrial type 1 counterpart. The properties determined for DHRS6 suggest a possible physiological role in cytosolic ketone body utilization, either as a secondary system for energy supply in starvation or to generate precursors for lipid and sterol synthesis.
Collapse
Affiliation(s)
- Kunde Guo
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7LD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
76
|
Wang X, He X, Lin J, Shao H, Chang Z, Dixon RA. Crystal structure of isoflavone reductase from alfalfa (Medicago sativa L.). J Mol Biol 2006; 358:1341-52. [PMID: 16600295 DOI: 10.1016/j.jmb.2006.03.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 03/03/2006] [Accepted: 03/08/2006] [Indexed: 11/30/2022]
Abstract
Isoflavonoids play important roles in plant defense and exhibit a range of mammalian health-promoting activities. Isoflavone reductase (IFR) specifically recognizes isoflavones and catalyzes a stereospecific NADPH-dependent reduction to (3R)-isoflavanone. The crystal structure of Medicago sativa IFR with deletion of residues 39-47 has been determined at 1.6A resolution. Structural analysis, molecular modeling and docking, and comparison with the structures of other NADPH-dependent enzymes, defined the putative binding sites for co-factor and substrate and potential key residues for enzyme activity and substrate specificity. Further mutagenesis has confirmed the role of Lys144 as a catalytic residue. This study provides a structural basis for understanding the enzymatic mechanism and substrate specificity of IFRs as well as the functions of IFR-like proteins.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA.
| | | | | | | | | | | |
Collapse
|
77
|
Supangat S, Seo KH, Choi YK, Park YS, Son D, Han CD, Lee KH. Structure of Chlorobium tepidum sepiapterin reductase complex reveals the novel substrate binding mode for stereospecific production of L-threo-tetrahydrobiopterin. J Biol Chem 2006; 281:2249-56. [PMID: 16308317 DOI: 10.1074/jbc.m509343200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sepiapterin reductase (SR) is involved in the last step of tetrahydrobiopterin (BH(4)) biosynthesis by reducing the di-keto group of 6-pyruvoyl tetrahydropterin. Chlorobium tepidum SR (cSR) generates a distinct BH(4) product, L-threo-BH(4) (6R-(1'S,2'S)-5,6,7,8-BH(4)), whereas animal enzymes produce L-erythro-BH(4) (6R-(1'R,2'S)-5,6,7,8-BH(4)) although it has high amino acid sequence similarities to the other animal enzymes. To elucidate the structural basis for the different reaction stereospecificities, we have determined the three-dimensional structures of cSR alone and complexed with NADP and sepiapterin at 2.1 and 1.7 A resolution, respectively. The overall folding of the cSR, the binding site for the cofactor NADP(H), and the positions of active site residues were quite similar to the mouse and the human SR. However, significant differences were found in the substrate binding region of the cSR. In comparison to the mouse SR complex, the sepiapterin in the cSR is rotated about 180 degrees around the active site and bound between two aromatic side chains of Trp-196 and Phe-99 so that its pterin ring is shifted to the opposite side, but its side chain position is not changed. The swiveled sepiapterin binding results in the conversion of the side chain configuration, exposing the opposite face for hydride transfer from NADPH. The different sepiapterin binding mode within the conserved catalytic architecture presents a novel strategy of switching the reaction stereospecificities in the same protein fold.
Collapse
Affiliation(s)
- Supangat Supangat
- Division of Applied Life Science, Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | | | | | |
Collapse
|
78
|
Mdluli K, Booth MPS, Brady RL, Rumsby G. A preliminary account of the properties of recombinant human Glyoxylate reductase (GRHPR), LDHA and LDHB with glyoxylate, and their potential roles in its metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1753:209-16. [PMID: 16198644 DOI: 10.1016/j.bbapap.2005.08.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 07/08/2005] [Accepted: 08/08/2005] [Indexed: 11/19/2022]
Abstract
Human lactate dehydrogenase (LDH) is thought to contribute to the oxidation of glyoxylate to oxalate and thus to the pathogenesis of disorders of endogenous oxalate overproduction. Glyoxylate reductase (GRHPR) has a potentially protective role metabolising glyoxylate to the less reactive glycolate. In this paper, the kinetic parameters of recombinant human LDHA, LDHB and GR have been compared with respect to their affinity for glyoxylate and related substrates. The Km values and specificity constants (Kcat/K(M)) of purified recombinant human LDHA, LDHB and GRHPR were determined for the reduction of glyoxylate and hydroxypyruvate. K(M) values with glyoxylate were 29.3 mM for LDHA, 9.9 mM for LDHB and 1.0 mM for GRHPR. For the oxidation of glyoxylate, K(M) values were 0.18 mM and 0.26 mM for LDHA and LDHB respectively with NAD+ as cofactor. Overall, under the same reaction conditions, the specificity constants suggest there is a fine balance between the reduction and oxidation reactions of these substrates, suggesting that control is most likely dictated by the ambient concentrations of the respective intracellular cofactors. Neither LDHA nor LDHB utilised glycolate as substrate and NADPH was a poor cofactor with a relative activity less than 3% that of NADH. GRHPR had a higher affinity for NADPH than NADH (K(M) 0.011 mM vs. 2.42 mM). The potential roles of LDH isoforms and GRHPR in oxalate synthesis are discussed.
Collapse
Affiliation(s)
- K Mdluli
- Department of Immunology and Molecular Pathology, University College London, UK
| | | | | | | |
Collapse
|
79
|
Schlieben NH, Niefind K, Müller J, Riebel B, Hummel W, Schomburg D. Atomic Resolution Structures of R-specific Alcohol Dehydrogenase from Lactobacillus brevis Provide the Structural Bases of its Substrate and Cosubstrate Specificity. J Mol Biol 2005; 349:801-13. [PMID: 15896805 DOI: 10.1016/j.jmb.2005.04.029] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Revised: 04/08/2005] [Accepted: 04/14/2005] [Indexed: 11/15/2022]
Abstract
The R-specific alcohol dehydrogenase (RADH) from Lactobacillus brevis is an NADP-dependent, homotetrameric member of the extended enzyme family of short-chain dehydrogenases/reductases (SDR) with a high biotechnological application potential. Its preferred in vitro substrates are prochiral ketones like acetophenone with almost invariably a small methyl group as one substituent and a bulky (often aromatic) moiety as the other. On the basis of an atomic-resolution structure of wild-type RADH in complex with NADP and acetophenone, we designed the mutant RADH-G37D, which should possess an improved cosubstrate specificity profile for biotechnological purposes, namely, a preference for NAD rather than NADP. Comparative kinetic measurements with wild-type and mutant RADH showed that this aim was achieved. To characterize the successful mutant structurally, we determined several, partly atomic-resolution, crystal structures of RADH-G37D both as an apo-enzyme and as ternary complex with NAD or NADH and phenylethanol. The increased affinity of RADH-G37D for NAD(H) depends on an interaction between the adenosine ribose moiety of NAD and the inserted aspartate side-chain. A structural comparison between RADH-G37D as apo-enzyme and as a part of a ternary complex revealed significant rearrangements of Ser141, Glu144, Tyr189 and Met205 in the vicinity of the active site. This plasticity contributes to generate a small hydrophobic pocket for the methyl group typical for RADH substrates, and a hydrophobic coat for the second, more variable and often aromatic, substituent. Around Ser141 we even found alternative conformations in the backbone. A structural adaptability in this region, which we describe here for the first time for an SDR enzyme, is probably functionally important, because it concerns Ser142, a member of the highly conserved catalytic tetrad typical for SDR enzymes. Moreover, it affects an extended proton relay system that has been identified recently as a critical element for the catalytic mechanism in SDR enzymes.
Collapse
Affiliation(s)
- Nils Helge Schlieben
- Universität zu Köln, Institut für Biochemie, Zülpicher Strasse 47, D-50674 Köln, Germany
| | | | | | | | | | | |
Collapse
|
80
|
El-Kabbani O, Carbone V, Darmanin C, Ishikura S, Hara A. Structure of the tetrameric form of human L-Xylulose reductase: Probing the inhibitor-binding site with molecular modeling and site-directed mutagenesis. Proteins 2005; 60:424-32. [PMID: 15906319 DOI: 10.1002/prot.20487] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
L-Xylulose reductase (XR) is a member of the short-chain dehydrogenase/reductase (SDR) superfamily. In this study we report the structure of the biological tetramer of human XR in complex with NADP(+) and a competitive inhibitor solved at 2.3 A resolution. A single subunit of human XR is formed by a centrally positioned, seven-stranded, parallel beta-sheet surrounded on either side by two arrays of three alpha-helices. Two helices located away from the main body of the protein form the variable substrate-binding cleft, while the dinucleotide coenzyme-binding motif is formed by a classical Rossmann fold. The tetrameric structure of XR, which is held together via salt bridges formed by the guanidino group of Arg203 from one monomer and the carboxylate group of the C-terminal residue Cys244 from the neighboring monomer, explains the ability of human XR to prevent the cold inactivation seen in the rodent forms of the enzyme. The orientations of Arg203 and Cys244 are maintained by a network of hydrogen bonds and main-chain interactions of Gln137, Glu238, Phe241, and Trp242. These interactions are similar to those defining the quaternary structure of the closely related carbonyl reductase from mouse lung. Molecular modeling and site-directed mutagenesis identified the active site residues His146 and Trp191 as forming essential contacts with inhibitors of XR. These results could provide a structural basis in the design of potent and specific inhibitors for human XR.
Collapse
Affiliation(s)
- Ossama El-Kabbani
- Department of Medicinal Chemistry, Victorian College of Pharmacy, Monash University, Parkville, Victoria, Australia.
| | | | | | | | | |
Collapse
|
81
|
Abstract
CC3 (TIP30) is a protein with pro-apoptotic and anti-metastatic properties. The tumor suppressor effect of CC3 has been suggested to result from inhibition of nuclear transport by binding to importin betas or by regulating transcription through interaction in a complex with co-activator independent of AF-2 function (CIA) and the c-myc gene. Previous biochemical studies indicated that CC3 has protein kinase activity, and a structural similarity to cAMP-dependent protein kinase catalytic subunit was proposed. By contrast, bioinformatics studies suggested a relationship of CC3 to the short chain dehydrogenase reductase family. To clarify details of the CC3 structural family and ligand binding properties, we have determined the crystal structure of CC3 at 1.7-A resolution. CC3 has a short chain dehydrogenase reductase fold and binding specificity for NADPH, yet it is unlikely to be normally enzymatically active because it is monomeric. These structural results, in conjunction with data from earlier mutagenesis work on the nucleotide binding motif, suggest that NADPH binding is important for the biological activity of CC3, including interaction with importins and with the CIA/c-myc system. CC3 provides an example of the adaptation of a metabolic enzyme fold to include a regulatory role, as also seen in the case of the NADH-binding co-repressor CtBP.
Collapse
Affiliation(s)
- Kamel El Omari
- Structural Biology Division and Oxford Protein Production Facility, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | | | | | | | | |
Collapse
|
82
|
Alphey MS, Yu W, Byres E, Li D, Hunter WN. Structure and Reactivity of Human Mitochondrial 2,4-Dienoyl-CoA Reductase. J Biol Chem 2005; 280:3068-77. [PMID: 15531764 DOI: 10.1074/jbc.m411069200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fatty acid catabolism by beta-oxidation mainly occurs in mitochondria and to a lesser degree in peroxisomes. Poly-unsaturated fatty acids are problematic for beta-oxidation, because the enzymes directly involved are unable to process all the different double bond conformations and combinations that occur naturally. In mammals, three accessory proteins circumvent this problem by catalyzing specific isomerization and reduction reactions. Central to this process is the NADPH-dependent 2,4-dienoyl-CoA reductase. We present high resolution crystal structures of human mitochondrial 2,4-dienoyl-CoA reductase in binary complex with cofactor, and the ternary complex with NADP(+) and substrate trans-2,trans-4-dienoyl-CoA at 2.1 and 1.75 A resolution, respectively. The enzyme, a homotetramer, is a short-chain dehydrogenase/reductase with a distinctive catalytic center. Close structural similarity between the binary and ternary complexes suggests an absence of large conformational changes during binding and processing of substrate. The site of catalysis is relatively open and placed beside a flexible loop thereby allowing the enzyme to accommodate and process a wide range of fatty acids. Seven single mutants were constructed, by site-directed mutagenesis, to investigate the function of selected residues in the active site thought likely to either contribute to the architecture of the active site or to catalysis. The mutant proteins were overexpressed, purified to homogeneity, and then characterized. The structural and kinetic data are consistent and support a mechanism that derives one reducing equivalent from the cofactor, and one from solvent. Key to the acquisition of a solvent-derived proton is the orientation of substrate and stabilization of a dienolate intermediate by Tyr-199, Asn-148, and the oxidized nicotinamide.
Collapse
Affiliation(s)
- Magnus S Alphey
- Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | | | | | | | | |
Collapse
|
83
|
Sgraja T, Ulschmid J, Becker K, Schneuwly S, Klebe G, Reuter K, Heine A. Structural insights into the neuroprotective-acting carbonyl reductase Sniffer of Drosophila melanogaster. J Mol Biol 2004; 342:1613-24. [PMID: 15364585 DOI: 10.1016/j.jmb.2004.08.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 07/30/2004] [Accepted: 08/09/2004] [Indexed: 11/17/2022]
Abstract
In vivo studies with the fruit-fly Drosophila melanogaster have shown that the Sniffer protein prevents age-dependent and oxidative stress-induced neurodegenerative processes. Sniffer is a NADPH-dependent carbonyl reductase belonging to the enzyme family of short-chain dehydrogenases/reductases (SDRs). The crystal structure of the homodimeric Sniffer protein from Drosophila melanogaster in complex with NADP+ has been determined by multiple-wavelength anomalous dispersion and refined to a resolution of 1.75 A. The observed fold represents a typical dinucleotide-binding domain as detected for other SDRs. With respect to the cofactor-binding site and the region referred to as substrate-binding loop, the Sniffer protein shows a striking similarity to the porcine carbonyl reductase (PTCR). This loop, in both Sniffer and PTCR, is substantially shortened compared to other SDRs. In most enzymes of the SDR family this loop adopts a well-defined conformation only after substrate binding and remains disordered in the absence of any bound ligands or even if only the dinucleotide cofactor is bound. In the structure of the Sniffer protein, however, the conformation of this loop is well defined, although no substrate is present. Molecular modeling studies provide an idea of how binding of substrate molecules to Sniffer could possibly occur.
Collapse
Affiliation(s)
- Tanja Sgraja
- Institute of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
84
|
Ylianttila MS, Qin YM, Hiltunen JK, Glumoff T. Site-directed mutagenesis to enable and improve crystallizability of Candida tropicalis (3R)-hydroxyacyl-CoA dehydrogenase. Biochem Biophys Res Commun 2004; 324:25-30. [PMID: 15464977 DOI: 10.1016/j.bbrc.2004.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Indexed: 11/27/2022]
Abstract
The N-terminal part of Candida tropicalis MFE-2 (MFE-2(h2Delta)) having two (3R)-hydroxyacyl-CoA dehydrogenases with different substrate specificities has been purified and crystallized as a recombinant protein. The expressed construct was modified so that a stabile, homogeneous protein could be obtained instead of an unstabile wild-type form with a large amount of cleavage products. Cubic crystals with unit cell parameters a=74.895, b=78.340, c=95.445, and alpha=beta=gamma=90 degrees were obtained by using PEG 4000 as a precipitant. The crystals exhibit the space group P2(1)2(1)2(1) and contain one molecule, consisting of two different (3R)-hydroxyacyl-CoA dehydrogenases, in the asymmetric unit. The crystals diffract to a resolution of 2.2A at a conventional X-ray source.
Collapse
Affiliation(s)
- Mari S Ylianttila
- Biocenter Oulu and Department of Biochemistry, University of Oulu, P.O. Box 3000, FIN-90014 University of Oulu, Finland
| | | | | | | |
Collapse
|
85
|
Doorn JA, Maser E, Blum A, Claffey DJ, Petersen DR. Human Carbonyl Reductase Catalyzes Reduction of 4-Oxonon-2-enal†. Biochemistry 2004; 43:13106-14. [PMID: 15476404 DOI: 10.1021/bi049136q] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
4-Oxonon-2-enal (4ONE) was demonstrated to be a product of lipid peroxidation, and previous studies found that it was highly reactive toward DNA and protein. The present study sought to determine whether carbonyl reductase (CR) catalyzes reduction of 4ONE, representing a potential pathway for metabolism of the lipid peroxidation product. Recombinant CR was cloned from a human liver cDNA library, expressed in Escherichia coli, and purified by metal chelate chromatography. Both 4ONE and its glutathione conjugate were found to be substrates for CR, and kinetic parameters were calculated. TLC analysis of reaction products revealed the presence of three compounds, two of which were identified as 4-hydroxynon-2-enal (4HNE) and 1-hydroxynon-2-en-4-one (1HNO). GC/MS analysis confirmed 4HNE and 1HNO and identified the unknown reaction product as 4-oxononanal (4ONA). Analysis of oxime derivatives of the reaction products via LC/MS confirmed the unknown as 4ONA. The time course for CR-mediated, NADPH-dependent 4ONE reduction and appearance of 4HNE and 1HNO was determined using HPLC, demonstrating 4HNE to be a major product and 1HNO and 4ONA to be minor products. Simulated structures of 4ONE in the active site of CR/NADPH calculated via docking experiments predict the ketone positioned as primary hydride acceptor. Results of the present study demonstrate that 4ONE is a substrate for CR/NADPH and the enzyme may represent a pathway for biotransformation of the lipid. Furthermore, these findings reveal that CR catalyzes hydride transfer selectively to the ketone but also to the aldehyde and C=C of 4ONE, resulting in 4HNE, 1HNO, and 4ONA, respectively.
Collapse
Affiliation(s)
- Jonathan A Doorn
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
86
|
El-Kabbani O, Ishikura S, Darmanin C, Carbone V, Chung RPT, Usami N, Hara A. Crystal structure of human L-xylulose reductase holoenzyme: probing the role of Asn107 with site-directed mutagenesis. Proteins 2004; 55:724-32. [PMID: 15103634 DOI: 10.1002/prot.20047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
L-Xylulose reductase (XR), an enzyme in the uronate cycle of glucose metabolism, belongs to the short-chain dehydrogenase/reductase (SDR) superfamily. Among the SDR enzymes, XR shows the highest sequence identity (67%) with mouse lung carbonyl reductase (MLCR), but the two enzymes show different substrate specificities. The crystal structure of human XR in complex with reduced nicotinamide adenine dinucleotide phosphate (NADPH) was determined at 1.96 A resolution by using the molecular replacement method and the structure of MLCR as the search model. Features unique to human XR include electrostatic interactions between the N-terminal residues of subunits related by the P-axis, termed according to SDR convention, and an interaction between the hydroxy group of Ser185 and the pyrophosphate of NADPH. Furthermore, identification of the residues lining the active site of XR (Cys138, Val143, His146, Trp191, and Met200) together with a model structure of XR in complex with L-xylulose, revealed structural differences with other members of the SDR family, which may account for the distinct substrate specificity of XR. The residues comprising a recently proposed catalytic tetrad in the SDR enzymes are conserved in human XR (Asn107, Ser136, Tyr149, and Lys153). To examine the role of Asn107 in the catalytic mechanism of human XR, mutant forms (N107D and N107L) were prepared. The two mutations increased K(m) for the substrate (>26-fold) and K(d) for NADPH (95-fold), but only the N107L mutation significantly decreased k(cat) value. These results suggest that Asn107 plays a critical role in coenzyme binding rather than in the catalytic mechanism.
Collapse
Affiliation(s)
- Ossama El-Kabbani
- Department of Medicinal Chemistry, Victorian College of Pharmacy, Monash University (Parkville Campus), Parkville, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
87
|
Ueda S, Oda M, Imamura S, Ohnishi M. Transient-phase kinetic studies on the nucleotide binding to 3alpha-hydroxysteroid dehydrogenase from Pseudomonas sp. B-0831 using fluorescence stopped-flow procedures. ACTA ACUST UNITED AC 2004; 271:1774-80. [PMID: 15096216 DOI: 10.1111/j.1432-1033.2004.04089.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The dual nucleotide cofactor-specific enzyme, 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) from Pseudomonas sp. B-0831, is a member of the short-chain dehydrogenase/reductase (SDR) superfamily. Transient-phase kinetic studies using the fluorescence stopped-flow method were conducted with 3alpha-HSD to characterize the nucleotide binding mechanism. The binding of oxidized nucleotides, NAD(+), NADP(+) and nicotinic acid adenine dinucleotide (NAAD(+)), agreed well with a one-step mechanism, while that of reduced nucleotide, NADH, showed a two-step mechanism. This difference draws attention to previous characteristic findings on rat liver 3alpha-HSD, which is a member of the aldo-keto reductase (AKR) superfamily. Although functionally similar, AKRs are structurally different from SDRs. The dissociation rate constants associated with the enzyme-nucleotide complex formation were larger than the k(cat) values for either oxidation or reduction of substrates, indicating that the release of cofactors is not rate-limiting overall. It should also be noted that k(cat) for a substrate, cholic acid, with NADP(+) was only 6% of that with NAD(+), and no catalytic activity was detectable with NAAD(+), despite the similar binding affinities of nucleotides. These results suggest that a certain type of nucleotide can modulate nucleotide-binding mode and further the catalytic function of the enzyme.
Collapse
Affiliation(s)
- Shigeru Ueda
- Department Diagnostics Research and Development, Division of Fine Chemicals and Diagnostics, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | | | | | | |
Collapse
|
88
|
Cho H, Oliveira MA, Tai HH. Critical residues for the coenzyme specificity of NAD+-dependent 15-hydroxyprostaglandin dehydrogenase. Arch Biochem Biophys 2004; 419:139-46. [PMID: 14592457 DOI: 10.1016/j.abb.2003.09.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a member of the short chain dehydrogenase/reductase (SDR) family, is responsible for the biological inactivation of prostaglandins. Sequence alignment within SDR coupled with molecular modeling analysis has suggested that Gln-15, Asp-36, and Trp-37 of 15-PGDH may determine the coenzyme specificity of this enzyme. Site-directed mutagenesis was used to examine the important roles of these residues. Several single mutants (Q15K, Q15R, W37K, and W37R), double mutants (Q15K-W37K, Q15K-W37R, Q15R-W37K, and Q15R-W37R), and triple mutants (Q15K-D36A-W37R and Q15K-D36S-W37R) were prepared and expressed as glutathione S-transferase (GST) fusion proteins in Escherichia coli and purified by GSH-agarose affinity chromatography. Mutants Q15K, Q15R, W37K, W37R, Q15K-W37K, and Q15R-W37K were found to be inactive or almost inactive with NADP+ but still retained substantial activity with NAD+. Mutant Q15K-W37R and mutant Q15R-W37R showed comparable activity for NAD+ and NADP+ with an increase in activity nearly 3-fold over that of the wild type. However, approximately 30-fold higher in K(m) for NADP+ than that of the wild type enzyme for NAD+ was found for mutants Q15K-W37R and Q15R-W37R. Similarly, the K(m) values for PGE(2) of mutants were also shown to increase over that of the wild type. Further mutation of Asp-36 to either an alanine or a serine of the double mutant Q15K-W37R (i.e., triple mutants Q15K-D36A-W37R and Q15K-D36S-W37R) rendered the mutants exhibiting exclusive activity with NADP+ but not with NAD+. The triple mutants showed a decrease in K(m) for NADP+ but an increase in K(m) for PGE(2). Further mutation at Ala-14 to a serine of a triple mutant (Q15K-D36S-W37R) decreased the K(m) values for both NADP+ and PGE(2) to levels comparable to those of the wild type. These results indicate that the coenzyme specificity of 15-PGDH can be altered from NAD+ to NADP+ by changing a few critical residues near the N-terminal end.
Collapse
Affiliation(s)
- Hoon Cho
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, USA
| | | | | |
Collapse
|
89
|
Duax WL, Pletnev V, Addlagatta A, Bruenn J, Weeks CM. Rational proteomics I. Fingerprint identification and cofactor specificity in the short-chain oxidoreductase (SCOR) enzyme family. Proteins 2004; 53:931-43. [PMID: 14635134 DOI: 10.1002/prot.10512] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The short-chain oxidoreductase (SCOR) family of enzymes includes over 2000 members identified in sequenced genomes. Of these enzymes, approximately 200 have been characterized functionally, and the three-dimensional crystal structures of approximately 40 have been reported. Since some SCOR enzymes are involved in hypertension, diabetes, breast cancer, and polycystic kidney disease, it is important to characterize the other members of the family for which the biological functions are currently unknown. Although the SCOR family appears to have only a single fully conserved residue, it was possible, using bioinformatics methods, to determine characteristic fingerprints composed of 30-40 residues that are conserved at the 70% or greater level in SCOR subgroups. These fingerprints permit reliable prediction of several important structure-function features including NAD/NADP cofactor preference. For example, the correlation of aspartate or arginine residues with NAD or NADP binding, respectively, predicts the cofactor preference of more than 70% of the SCOR proteins with unknown function. The analysis of conserved residues surrounding the cofactor has revealed the presence of previously undetected CH em leader O hydrogen bonds in the majority of the SCOR crystal structures, predicts the presence of similar hydrogen bonds in 90% of the SCOR proteins of unknown function, and suggests that these hydrogen bonds may play a critical role in the catalytic functions of these enzymes.
Collapse
Affiliation(s)
- William L Duax
- Hauptman-Woodward Medical Research Institute and Department of Structural Biology, SUNY at Buffalo, Buffalo, New York, USA.
| | | | | | | | | |
Collapse
|
90
|
Moll W, Lanwert C, Stratmann A, Strelau J, Jeserich G. Molecular cloning, tissue expression, and partial characterization of the major fish CNS myelin protein 36k. Glia 2003; 44:57-66. [PMID: 12951657 DOI: 10.1002/glia.10269] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A full-length cDNA clone encoding the major structural protein of trout CNS myelin 36K was isolated and sequenced. The deduced amino acid sequence did not reveal a putative transmembrane domain and exhibited no structural homology with any of the known myelin proteins. 36K instead shared characteristic structural elements with enzymes of the short-chain dehydrogenase family. The highest similarity in the database (60%), however, was obtained with a human protein of unknown function. By Northern blotting, a single mRNA species of about 2 kb was identified, which was expressed in brain tissue but not in liver. By in situ hybridization, a selective labeling of myelinating glial cells in the trout CNS but not in the PNS was revealed. The developmental appearance of the 36K transcript closely coincided with a period of active myelin deposition in most regions of the trout brain. As a first step in elucidating the structural and biochemical role of 36K for myelin formation and maintenance, we have overexpressed it in Escherichia coli as a soluble His-tag fusion protein and purified it in high yield by Ni+-chelated affinity chromatography. By SDS-PAGE, a single band of the expected molecular size was revealed, which heavily cross-reacted with polyclonal antibodies generated against the native protein. The results of circular dichroism spectroscopy are compatible with a betaalphabeta-barrel structure (Rossman fold), confirming the results of computer-assisted secondary structure predictions.
Collapse
Affiliation(s)
- Wolfgang Moll
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | | | | | | | | |
Collapse
|
91
|
Yasutake Y, Watanabe S, Yao M, Takada Y, Fukunaga N, Tanaka I. Crystal structure of the monomeric isocitrate dehydrogenase in the presence of NADP+: insight into the cofactor recognition, catalysis, and evolution. J Biol Chem 2003; 278:36897-904. [PMID: 12855708 DOI: 10.1074/jbc.m304091200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NADP+-dependent monomeric isocitrate dehydrogenase (IDH) from the nitrogen-fixing bacterium Azotobacter vinelandii (AvIDH) is one of members of the beta-decarboxylating dehydrogenase family and catalyzes the dehydration and decarboxylation of isocitrate to yield 2-oxoglutrate and CO2 in the Krebs cycle. We solved the crystal structure of the AvIDH in complex with cofactor NADP+ (AvIDH-NADP+ complex). The final refined model shows the closed form that has never been detected in any previously solved structures of beta-decarboxylating dehydrogenases. The structure also reveals all of the residues that interact with NADP+. The structure-based sequence alignment reveals that these residues were not conserved in any other dimeric NADP+-dependent IDHs. Therefore the NADP+ specificity of the monomeric and dimeric IDHs was independently acquired through the evolutional process. The AvIDH was known to show an exceptionally high turnover rate. The structure of the AvIDH-NADP+ complex indicates that one loop, which is not present in the Escherichia coli IDHs, reliably stabilizes the conformation of the nicotinamide mononucleotide of the bound NADP+ by forming a few hydrogen bonds, and such interactions are considered to be important for the monomeric enzyme to initiate the hydride transfer reaction immediately. Finally, the structure of the AvIDH is compared with that of other dimeric NADP-IDHs. Several structural features demonstrate that the monomeric IDHs are structurally more related to the eukaryotic dimeric IDHs than to the bacterial dimeric IDHs.
Collapse
Affiliation(s)
- Yoshiaki Yasutake
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | | | | | | | | | | |
Collapse
|
92
|
Lamb HK, Leslie K, Dodds AL, Nutley M, Cooper A, Johnson C, Thompson P, Stammers DK, Hawkins AR. The negative transcriptional regulator NmrA discriminates between oxidized and reduced dinucleotides. J Biol Chem 2003; 278:32107-14. [PMID: 12764138 DOI: 10.1074/jbc.m304104200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NmrA, a transcription repressor involved in the regulation of nitrogen metabolism in Aspergillus nidulans,is a member of the short-chain dehydrogenase reductase superfamily. Isothermal titration calorimetry and differential scanning calorimetry have been used to show NmrA binds NAD+ and NADP+ with similar affinity (average KD 65 microM) but has a greatly reduced affinity for NADH and NADPH (average KD 6.0 mM). The structure of NmrA in a complex with NADP+ reveals how repositioning a His-37 side chain allows the different conformations of NAD+ and NADP+ to be accommodated. Modeling NAD(P)H into NmrA indicated that steric clashes, attenuation of electrostatic interactions, and loss of aromatic ring stacking can explain the differing affinities of NAD(P)+/NAD(P)H. The ability of NmrA to discriminate between the oxidized and reduced forms of the dinucleotides may be linked to a possible role in redox sensing. Isothermal titration calorimetry demonstrated that NmrA and a C-terminal fragment of the GATA transcription factor AreA interacted with a 1:1 stoichiometry and an apparent KD of 0.26 microM. NmrA was unable to bind the nitrogen metabolite repression signaling molecules ammonium or glutamine.
Collapse
Affiliation(s)
- Heather K Lamb
- School of Cell and Molecular Biosciences, Catherine Cookson Building, University of Newcastle upon Tyne, Framlington Place, NE2 4HH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Ishikura S, Usami N, El-Kabbani O, Hara A. Structural determinant for cold inactivation of rodent L-xylulose reductase. Biochem Biophys Res Commun 2003; 308:68-72. [PMID: 12890481 DOI: 10.1016/s0006-291x(03)01336-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
L-Xylulose reductase (XR) is a homotetramer belonging to the short-chain dehydrogenase/reductase family. Human XR is stable at low temperature, whereas the enzymes of mouse, rat, guinea pig, and hamster are rapidly dissociated into their inactive dimeric forms. In order to identify amino acid residues that cause cold inactivation of the rodent XRs, we have here selected Asp238, Leu242, and Thr244 in the C-terminal regions of rodent XRs and performed site-directed mutagenesis of the residues of mouse XR to the corresponding residues (Glu, Trp, and Cys) of the human enzyme. Cold inactivation was prevented partially by the single mutation of L242W and the double mutation of L242W/T244C, and completely by the double mutation of D238E/L242W. The L242W and L242W/T244C mutants existed in both tetrameric and dimeric forms at low temperature and the D238E/L242W mutant retained its tetrameric structure. No preventive effect was exerted by the mutations of D238E and T244C, which were dissociated into their dimeric forms upon cooling. Crystallographic analysis of human XR revealed that Glu238 and Trp242 contribute to proper orientation of the guanidino group of Arg203 of the same subunit to the C-terminal carboxylate group of Cys244 of another subunit through the neighboring residues, Gln137 and Phe241. Thus, the determinants for cold inactivation of rodent XRs are Asp238 and Leu242 with small side chains, which weaken the salt bridges between Arg203 and the C-terminal carboxylate group, and lead to cold inactivation.
Collapse
Affiliation(s)
- Shuhei Ishikura
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan
| | | | | | | |
Collapse
|
94
|
Ahn HJ, Kim HW, Yoon HJ, Lee BI, Suh SW, Yang JK. Crystal structure of tRNA(m1G37)methyltransferase: insights into tRNA recognition. EMBO J 2003; 22:2593-603. [PMID: 12773376 PMCID: PMC156765 DOI: 10.1093/emboj/cdg269] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
tRNA(m(1)G37)methyltransferase (TrmD) catalyzes the transfer of a methyl group from S-adenosyl-L- methionine (AdoMet) to G(37) within a subset of bacterial tRNA species, which have a G residue at the 36th position. The modified guanosine is adjacent to and 3' of the anticodon and is essential for the maintenance of the correct reading frame during translation. Here we report four crystal structures of TrmD from Haemophilus influenzae, as binary complexes with either AdoMet or S-adenosyl-L-homocysteine (AdoHcy), as a ternary complex with AdoHcy and phosphate, and as an apo form. This first structure of TrmD indicates that it functions as a dimer. It also suggests the binding mode of G(36)G(37) in the active site of TrmD and the catalytic mechanism. The N-terminal domain has a trefoil knot, in which AdoMet or AdoHcy is bound in a novel, bent conformation. The C-terminal domain shows structural similarity to trp repressor. We propose a plausible model for the TrmD(2)-tRNA(2) complex, which provides insights into recognition of the general tRNA structure by TrmD.
Collapse
Affiliation(s)
- Hyung Jun Ahn
- Structural Proteomics Laboratory, School of Chemistry and Molecular Engineering, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | |
Collapse
|
95
|
Carbone V, Darmanin C, Ishikura S, Hara A, El-Kabbani O. Structure-based design of inhibitors of human L-xylulose reductase modelled into the active site of the enzyme. Bioorg Med Chem Lett 2003; 13:1469-74. [PMID: 12668014 DOI: 10.1016/s0960-894x(03)00166-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The program GRID was used to design potential inhibitors of human L-xylulose reductase based on a model of the holoenzyme in complex with n-butyric acid. The inclusion of phosphate or carboxylate functional groups in the ligand suggested an increase in the net binding energy of the complex up to 2.8- and 4.0-fold, respectively. This study may be useful in the development of potent and specific inhibitors of the enzyme.
Collapse
Affiliation(s)
- Vincenzo Carbone
- Department of Medicinal Chemistry, Victorian College of Pharmacy, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | |
Collapse
|
96
|
Persson B, Kallberg Y, Oppermann U, Jörnvall H. Coenzyme-based functional assignments of short-chain dehydrogenases/reductases (SDRs). Chem Biol Interact 2003; 143-144:271-8. [PMID: 12604213 DOI: 10.1016/s0009-2797(02)00223-5] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Short-chain dehydrogenases/reductases (SDRs) are enzymes of great functional diversity. In spite of a residue identity of only 15-30%, the folds are conserved to a large extent, with specific sequence motifs detectable. We have developed an assignment scheme based on these motifs and detect five families. Only two of these were known before, called 'Classical' and 'Extended', but are now distinguished at a further level based on patterns of charged residues in the coenzyme-binding region, giving seven subfamilies of classical SDRs and three subfamilies of extended SDRs. Three further families are novel entities, denoted 'Intermediate', 'Divergent' and 'Complex', encompassing short-chain alcohol dehydrogenases, enoyl reductases and multifunctional enzymes, respectively. The assignment scheme was applied to the genomes of human, mouse, D. melanogaster, C. elegans, A. thaliana and S. cerevisiae. In the animal genomes, genes corresponding to the extended SDRs amount to around one quarter or less of the total number of SDR genes, while in those of A. thaliana and S. cerevisiae, the extended members constitute about 40% of the SDR forms. The NAD(H)-dependent SDRs are about equally many as the NADP(H)-dependent ones in human, mouse and plant, while the proportions of NAD(H)-dependent enzymes are much lower in fruit fly, worm and yeast. We also find that NADP(H) is the preferred coenzyme among most classical SDRs, while NAD(H) is that preferred among most extended SDRs.
Collapse
Affiliation(s)
- Bengt Persson
- IFM Bioinformatics, Linköping University, S-581 83, Linköping, Sweden.
| | | | | | | |
Collapse
|
97
|
Ishikura S, Isaji T, Usami N, Nakagawa J, El-Kabbani O, Hara A. Identification of amino acid residues involved in substrate recognition of L-xylulose reductase by site-directed mutagenesis. Chem Biol Interact 2003; 143-144:543-50. [PMID: 12604240 DOI: 10.1016/s0009-2797(02)00217-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
L-Xylulose reductase (XR) catalyzes the oxidoreduction between xylitol and L-xylulose in the uronate cycle. The enzyme has been shown to be identical to diacetyl reductase, an enzyme that reduces alpha-dicarbonyl compounds. XR belongs to the short-chain dehydrogenase/reductase family, and shows high sequence identity with mouse lung carbonyl reductase (MLCR), an enzyme that reduces 3-ketosteroids but not sugars. In this study, we have confirmed the roles of Ser136, Tyr149 and Lys153 of XR as the catalytic triad by drastic loss of activity resulting from the mutagenesis of S136A, Y149F and K153M in rat XR. We have also constructed several mutant XRs, in which putative substrate binding residues from rat XR were substituted with those found in the corresponding positions of MLCR, in order to identify amino acids responsible for the different substrate recognition of the enzymes. While single mutants at positions 137, 143, 146, 190 and 191 caused little or moderate change in substrate specificity, a double mutant (N190V and W191S) and triple mutant (Q137M, L143F and H146L) resulted in almost loss of activity for only the sugars. In addition, the triple mutant exhibited 3-ketosteroid reductase activity, which was further enhanced by quintuple mutagenesis of the above five residues. These results suggest the importance of the size and hydrophobicity of the five residues for substrate recognition by XR and MLCR. Furthermore, the mutant enzymes containing a Q137M mutation were stable against cooling, which provides a structural mechanism of the cold inactivation that is a characteristic of the rodent XR.
Collapse
Affiliation(s)
- Shuhei Ishikura
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, 502-8585, Gifu, Japan
| | | | | | | | | | | |
Collapse
|
98
|
Kristan K, Rizner TL, Stojan J, Gerber JK, Kremmer E, Adamski J. Significance of individual amino acid residues for coenzyme and substrate specificity of 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus. Chem Biol Interact 2003; 143-144:493-501. [PMID: 12604235 DOI: 10.1016/s0009-2797(02)00205-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
17beta-Hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl) is a NADPH dependent member of the short-chain dehydrogenase reductase (SDR) superfamily. Recently, we prepared a homology-built structural model of 17beta-HSDcl using the known three-dimensional structure of homologous 1,3,8-trihydroxynaphthalene reductase from the fungus Magnaporthe grisea. This model structure directed our studies of structure-function relationship of the fungal 17beta-HSD, as one of the model enzymes of the SDR superfamily. In this work, we investigated the significance of individual amino acid residues for coenzyme and substrate specificity. We performed site directed mutagenesis of R28, a basic residue conserved in most NADPH dependent SDR structures; T200, found only in Streptomyces hydrogenans 3alpha,20beta-HSD and Drosophila alcohol dehydrogenases; and H230, a residue corresponding to the substrate specificity important H221 in human 17beta-HSD type 1. All recombinant proteins were expressed in Escherichia coli and purified to homogeneity. Kinetic evaluation of individual mutations was performed by analysis of progress curves of interconversions between 4-estrene-3,17-dione and 4-estrene-17beta-ol-3-one, in the presence of NADPH and NADP(+); according to the Theorell-Chance reaction mechanism. The results demonstrate the role of the selected amino acid residues; R28 seems to interact with the NADPH 2'-phosphate group; T200 may be involved in binding and dissociation of NADPH/NADP(+); while H230 and the neighboring A231 appears not to be responsible for substrate specificity of 17beta-HSDcl.
Collapse
Affiliation(s)
- Katja Kristan
- Medical Faculty, Institute of Biochemistry, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
99
|
Yang JK, Park MS, Waldo GS, Suh SW. Directed evolution approach to a structural genomics project: Rv2002 from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2003; 100:455-60. [PMID: 12524453 PMCID: PMC141016 DOI: 10.1073/pnas.0137017100] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the serious bottlenecks in structural genomics projects is overexpression of the target proteins in soluble form. We have applied the directed evolution technique and prepared soluble mutants of the Mycobacterium tuberculosis Rv2002 gene product, the wild type of which had been expressed as inclusion bodies in Escherichia coli. A triple mutant I6TV47MT69K (Rv2002-M3) was chosen for structural and functional characterizations. Enzymatic assays indicate that the Rv2002-M3 protein has a high catalytic activity as a NADH-dependent 3alpha, 20beta-hydroxysteroid dehydrogenase. We have determined the crystal structures of a binary complex with NAD(+) and a ternary complex with androsterone and NADH. The structure reveals that Asp-38 determines the cofactor specificity. The catalytic site includes the triad Ser-140Tyr-153Lys-157. Additionally, it has an unusual feature, Glu-142. Enzymatic assays of the E142A mutant of Rv2002-M3 indicate that Glu-142 reverses the effect of Lys-157 in influencing the pKa of Tyr-153. This study suggests that the Rv2002 gene product is a unique member of the SDR family and is likely to be involved in steroid metabolism in M. tuberculosis. Our work demonstrates the power of the directed evolution technique as a general way of overcoming the difficulties in overexpressing the target proteins in soluble form.
Collapse
Affiliation(s)
- Jin Kuk Yang
- Structural Proteomics Laboratory, School of Chemistry and Molecular Engineering, Seoul National University, Seoul 151-742, South Korea
| | | | | | | |
Collapse
|
100
|
Heyes DJ, Ruban AV, Hunter CN. Protochlorophyllide oxidoreductase: "dark" reactions of a light-driven enzyme. Biochemistry 2003; 42:523-8. [PMID: 12525180 DOI: 10.1021/bi0268448] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The light-driven enzyme NADPH:protochlorophyllide oxidoreductase (POR) catalyzes the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide), a key regulatory step in the chlorophyll biosynthesis pathway. As POR is light activated, it allows intermediates in the reaction pathway to be observed by initiating catalysis with illumination at low temperatures, a technique that has recently been used to study the initial photochemistry. Here, we use low-temperature spectroscopy to show that the catalytic mechanism of POR involves two additional steps, which do not require light and have been termed the "dark" reactions. The first of these involves the conversion of the product of the initial light-driven reaction, a nonfluorescent radical species, into a new intermediate that has an absorbance maximum at 681 nm and a fluorescence peak at 684 nm. During the second dark step this species gradually blue shifts to yield the product, Chlide. The temperature dependence for each of these two processes was measured; the data revealed that these steps could only occur close to or above the "glass transition" temperature of proteins, suggesting that domain movements and/or reorganization of the protein are required for these stages of the catalytic mechanism.
Collapse
Affiliation(s)
- Derren J Heyes
- Robert Hill Institute for Photosynthesis and Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom.
| | | | | |
Collapse
|