51
|
The cytomatrix protein bassoon contributes to fast transmission at conventional and ribbon synapses. Neuron 2011; 68:604-6. [PMID: 21092852 DOI: 10.1016/j.neuron.2010.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The presynaptic active zone contains a complex web of proteins involved in synaptic transmission. In this issue of Neuron, two articles show evidence that one of these proteins, Bassoon, coordinates multiple functions in a conventional and ribbon-type synapse.
Collapse
|
52
|
Hida Y, Ohtsuka T. CAST and ELKS proteins: structural and functional determinants of the presynaptic active zone. J Biochem 2010; 148:131-7. [DOI: 10.1093/jb/mvq065] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
53
|
Abstract
BACKGROUND AND PURPOSE There is increasing evidence that not only the monoaminergic but also the glutamatergic system is involved in the pathophysiology of attention-deficit hyperactivity disorder (ADHD). Hyperactivity of glutamate metabolism might be causally related to a hypoactive state in the dopaminergic system. Atomoxetine, a selective noradrenaline reuptake inhibitor, is the first non-stimulant approved for the treatment of this disorder. Here we have evaluated the effects of atomoxetine on glutamate receptors in vitro. EXPERIMENTAL APPROACH The whole-cell configuration of the patch-clamp technique was used to analyse the effect of atomoxetine on N-methyl-d-aspartate (NMDA) receptors in cultured rodent cortical and hippocampal neurons as well as on NMDA receptors heterologously expressed in human TsA cells. KEY RESULTS Atomoxetine blocked NMDA-induced membrane currents. Half-maximal inhibition emerged at about 3 microM which is in the range of clinically relevant concentrations found in plasma of patients treated with this drug. The inhibition was voltage-dependent, indicating an open-channel blocking mechanism. Furthermore, the inhibitory potency of atomoxetine did not vary when measured on NMDA receptors from different brain regions or with different subunit compositions. CONCLUSIONS AND IMPLICATIONS The effective NMDA receptor antagonism by atomoxetine at low micromolar concentrations may be relevant to its clinical effects in the treatment of ADHD. Our data provide further evidence that altered glutamatergic transmission might play a role in ADHD pathophysiology.
Collapse
|
54
|
Fernandez F, Torres V, Zamorano P. An evolutionarily conserved mechanism for presynaptic trapping. Cell Mol Life Sci 2010; 67:1751-4. [PMID: 20336344 PMCID: PMC11115947 DOI: 10.1007/s00018-010-0343-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/05/2010] [Accepted: 03/05/2010] [Indexed: 11/24/2022]
Abstract
Presynaptic differentiation takes place over three interrelated acts involving the biogenesis and trafficking of molecular complexes of active zone material, the "trapping" or stabilization of active zone sites, and the subsequent development of mature synapses. Although the identities of proteins involved with establishing presynaptic specializations have been increasingly delineated, the exact functional mechanisms by which the active zone is assembled remain poorly understood. Here, we discuss a theoretical model for how the trapping stage of presynaptic differentiation might occur in developing neurons. We suggest that subsets of active zone proteins containing polyglutamine domains undergo concentration-dependent prion-like conversions as they accumulate at the plasma membrane. This conversion might serve to aggregate the proteins into a singular structure, which is then able to recruit scaffolding agents necessary for regulated synaptic transmission. A brief informatics analysis in support of this 'Q' assembly hypothesis--across commonly used models of synaptogenesis--is presented.
Collapse
Affiliation(s)
- Fabian Fernandez
- Laboratorio de Neurobiología, Department of Biomedicine, Universidad de Antofagasta, Avenida Angamos 601, 1270300, Antofagasta, Chile.
| | | | | |
Collapse
|
55
|
Dondzillo A, Sätzler K, Horstmann H, Altrock WD, Gundelfinger ED, Kuner T. Targeted three-dimensional immunohistochemistry reveals localization of presynaptic proteins Bassoon and Piccolo in the rat calyx of Held before and after the onset of hearing. J Comp Neurol 2010; 518:1008-29. [PMID: 20127803 DOI: 10.1002/cne.22260] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bassoon and Piccolo contribute to the cytomatrix of active zones (AZ), the sites of neurotransmitter release in nerve terminals. Here, we examined the 3D localization of Bassoon and Piccolo in the rat calyx of Held between postnatal days 9 and 21, the period of hearing onset characterized by pronounced structural and functional changes. Bassoon and Piccolo were identified by immunohistochemistry (IHC) on slices of the brainstem harboring calyces labeled with membrane-anchored green fluorescent protein (mGFP). By using confocal microscopy and 3D reconstructions, we examined the distribution of Bassoon and Piccolo in calyces delineated by mGFP. This allowed us to discriminate calyceal IHC signals from noncalyceal signals located in the spaces between the calyceal stalks, which could mimic a calyx-like distribution. We found that both proteins were arranged in clusters resembling the size of AZs. These clusters were located along the presynaptic membrane facing the principal cell, close to or overlapping with synaptic vesicle (SV) clusters. Only about 60% of Bassoon and Piccolo clusters overlapped, whereas the remaining clusters contained predominantly Bassoon or Piccolo, suggesting differential targeting of these proteins within a single nerve terminal and potentially heterogeneous AZs functional properties. The total number of Bassoon and Piccolo clusters, which may approximate the number of AZs, was 405 +/- 35 at P9 and 601 +/- 45 at P21 (mean +/- SEM, n = 12). Normalized to calyx volume at P9 and P21, the density of clusters was similar, suggesting that the absolute number of clusters, not density, may contribute to the functional maturation associated with hearing onset.
Collapse
Affiliation(s)
- Anna Dondzillo
- Department of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
56
|
Rapid structural alterations of the active zone lead to sustained changes in neurotransmitter release. Proc Natl Acad Sci U S A 2010; 107:8836-41. [PMID: 20421490 DOI: 10.1073/pnas.0906087107] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The likelihood with which an action potential elicits neurotransmitter release, the release probability (p(r)), is an important component of synaptic strength. Regulatory mechanisms controlling several steps of synaptic vesicle (SV) exocytosis may affect p(r), yet their relative importance in determining p(r) and eliciting temporal changes in neurotransmitter release at individual synapses is largely unknown. We have investigated whether the size of the active zone cytomatrix is a major determinant of p(r) and whether changes in its size lead to corresponding alterations in neurotransmitter release. We have used a fluorescent sensor of SV exocytosis, synaptophysin-pHluorin, to measure p(r) at individual synapses with high accuracy and employed a fluorescently labeled cytomatrix protein, Bassoon, to quantify the amount of active zone cytomatrix present at these synapses. We find that, for synapses made by a visually identified presynaptic neuron, p(r) is indeed strongly correlated with the amount of active zone cytomatrix present at the presynaptic specialization. Intriguingly, active zone cytomatrices are frequently subject to synapse-specific changes in size on a time scale of minutes. These spontaneous alterations in active zone size are associated with corresponding changes in neurotransmitter release. Our results suggest that the size of the active zone cytomatrix has a large influence on the reliability of synaptic transmission. Furthermore, they implicate mechanisms leading to rapid structural alterations at active zones in synapse-specific forms of plasticity.
Collapse
|
57
|
Kawabe H, Neeb A, Dimova K, Young SM, Takeda M, Katsurabayashi S, Mitkovski M, Malakhova OA, Zhang DE, Umikawa M, Kariya KI, Goebbels S, Nave KA, Rosenmund C, Jahn O, Rhee J, Brose N. Regulation of Rap2A by the ubiquitin ligase Nedd4-1 controls neurite development. Neuron 2010; 65:358-72. [PMID: 20159449 DOI: 10.1016/j.neuron.2010.01.007] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2009] [Indexed: 11/29/2022]
Abstract
Nedd4-1 is a "neuronal precursor cell expressed and developmentally downregulated protein" and among the most abundant E3 ubiquitin ligases in mammalian neurons. In analyses of conventional and conditional Nedd4-1-deficient mice, we found that Nedd4-1 plays a critical role in dendrite formation. Nedd4-1, the serine/threonine kinase TNIK, and Rap2A form a complex that controls Nedd4-1-mediated ubiquitination of Rap2A. Ubiquitination by Nedd4-1 inhibits Rap2A function, which reduces the activity of Rap2 effector kinases of the TNIK family and promotes dendrite growth. We conclude that a Nedd4-1/Rap2A/TNIK signaling pathway regulates neurite growth and arborization in mammalian neurons.
Collapse
Affiliation(s)
- Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Schmeisser MJ, Grabrucker AM, Bockmann J, Boeckers TM. Synaptic cross-talk between N-methyl-D-aspartate receptors and LAPSER1-beta-catenin at excitatory synapses. J Biol Chem 2009; 284:29146-57. [PMID: 19703901 DOI: 10.1074/jbc.m109.020628] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Memory formation in the brain is thought to be depending upon long lasting plastic changes of synaptic contacts that require alterations on the transcriptional level. Here, we characterize LAPSER1, a putative cytokinetic tumor suppressor that binds directly to ProSAP2/Shank3 and the synaptic Rap-Gap protein SPAR1 as a novel postsynaptic density component. Postsynaptic LAPSER1 is in complex with all important members of the canonical Wnt pathway including beta-catenin. Upon N-methyl-D-aspartate receptor-dependent activation, LAPSER1 and beta-catenin comigrate from the postsynaptic density to the nucleus and induce the transcription and translation of known beta-catenin target genes, including Tcfe2a and c-Myc. The nuclear export and cytoplasmic redistribution of beta-catenin is tightly regulated by LAPSER1. We postulate a postsynaptic cross-talk between N-methyl-D-aspartate receptors and a LAPSER1-beta-catenin complex that results in a self-regulated, synaptic activity-dependent expression of beta-catenin target genes. This calls for a novel role of Tcfe2a and c-Myc in plastic changes of neural tissue.
Collapse
|
59
|
Abstract
Presynaptic nerve terminals pass through distinct stages of maturation after their initial assembly. Here we show that the postsynaptic cell adhesion molecule Neuroligin1 regulates key steps of presynaptic maturation. Presynaptic terminals from Neuroligin1-knockout mice remain structurally and functionally immature with respect to active zone stability and synaptic vesicle pool size, as analyzed in cultured hippocampal neurons. Conversely, overexpression of Neuroligin1 in immature neurons, that is within the first 5 days after plating, induced the formation of presynaptic boutons that had hallmarks of mature boutons. In particular, Neuroligin1 enhanced the size of the pool of recycling synaptic vesicles, the rate of synaptic vesicle exocytosis, the fraction of boutons responding to depolarization, as well as the responsiveness of the presynaptic release machinery to phorbol ester stimulation. Moreover, Neuroligin1 induced the formation of active zones that remained stable in the absence of F-actin, another hallmark of advanced maturation. Acquisition of F-actin independence of the active zone marker Bassoon during culture development or induced via overexpression of Neuroligin1 was activity-dependent. The extracellular domain of Neuroligin1 was sufficient to induce assembly of functional presynaptic terminals, while the intracellular domain was required for terminal maturation. These data show that induction of presynaptic terminal assembly and maturation involve mechanistically distinct actions of Neuroligins, and that Neuroligin1 is essential for presynaptic terminal maturation.
Collapse
|
60
|
Grabrucker AM, Vaida B, Bockmann J, Boeckers TM. Efficient targeting of proteins to post-synaptic densities of excitatory synapses using a novel pSDTarget vector system. J Neurosci Methods 2009; 181:227-34. [DOI: 10.1016/j.jneumeth.2009.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 05/14/2009] [Accepted: 05/15/2009] [Indexed: 11/16/2022]
|
61
|
Fejtova A, Davydova D, Bischof F, Lazarevic V, Altrock WD, Romorini S, Schöne C, Zuschratter W, Kreutz MR, Garner CC, Ziv NE, Gundelfinger ED. Dynein light chain regulates axonal trafficking and synaptic levels of Bassoon. ACTA ACUST UNITED AC 2009; 185:341-55. [PMID: 19380881 PMCID: PMC2700376 DOI: 10.1083/jcb.200807155] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bassoon and the related protein Piccolo are core components of the presynaptic cytomatrix at the active zone of neurotransmitter release. They are transported on Golgi-derived membranous organelles, called Piccolo-Bassoon transport vesicles (PTVs), from the neuronal soma to distal axonal locations, where they participate in assembling new synapses. Despite their net anterograde transport, PTVs move in both directions within the axon. How PTVs are linked to retrograde motors and the functional significance of their bidirectional transport are unclear. In this study, we report the direct interaction of Bassoon with dynein light chains (DLCs) DLC1 and DLC2, which potentially link PTVs to dynein and myosin V motor complexes. We demonstrate that Bassoon functions as a cargo adapter for retrograde transport and that disruption of the Bassoon-DLC interactions leads to impaired trafficking of Bassoon in neurons and affects the distribution of Bassoon and Piccolo among synapses. These findings reveal a novel function for Bassoon in trafficking and synaptic delivery of active zone material.
Collapse
Affiliation(s)
- Anna Fejtova
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, D-39118 Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Lardong K, Maas C, Kneussel M. Neuronal depolarization modifies motor protein mobility. Neuroscience 2009; 160:1-5. [PMID: 19250960 DOI: 10.1016/j.neuroscience.2009.02.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 01/28/2009] [Accepted: 02/14/2009] [Indexed: 12/21/2022]
Abstract
Active neuronal transport along microtubules participates in the targeting of mRNAs, proteins and organelles to their sites of action. Cytoplasmic dynein represents a minus-end-directed microtubule-dependent motor protein. Due to the polarity of microtubules in axonal and distal dendritic compartments, with microtubule minus-ends pointing toward the inside of the cell, dyneins mainly mediate retrograde transport pathways in neurons. Since dyneins transport synaptic proteins, we asked whether changes in neuronal activity would in general influence dynein transport. KCl-induced depolarization, a condition that mimics the effects of neuronal activity, or pharmacological blockade of neuronal action potentials, respectively, was combined with neuronal live cell imaging, using an autofluorescent dynein intermediate chain fusion (monomeric red fluorescent protein [mRFP]-dynein intermediate chain [DIC]) as a model protein. Notably, we found that induced activity significantly reduced dynein particle mobility, as well as both the total distance and velocity of movements in mouse cultured hippocampal neurons. In contrast, blockade of neuronal action potentials through TTX did not alter any of the parameters analyzed. Neuronal depolarization processes therefore represent candidate mechanisms to regulate intracellular transport of neuronal cargoes.
Collapse
Affiliation(s)
- K Lardong
- Zentrum für Molekulare Neurobiologie Hamburg, ZMNH, Universität Hamburg, Falkenried 94, D-20251 Hamburg, Germany
| | | | | |
Collapse
|
63
|
Exchange and redistribution dynamics of the cytoskeleton of the active zone molecule bassoon. J Neurosci 2009; 29:351-8. [PMID: 19144835 DOI: 10.1523/jneurosci.4777-08.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Presynaptic sites typically appear as varicosities (boutons) distributed along axons. Ultrastructurally, presynaptic boutons lack obvious physical barriers that separate them from the axon proper, yet activity-related and constitutive dynamics continuously promote the "reshuffling" of presynaptic components and even their dispersal into flanking axonal segments. How presynaptic sites manage to maintain their organization and individual characteristics over long durations is thus unclear. Conceivably, presynaptic tenacity might depend on the active zone (AZ), an electron-dense specialization of the presynaptic membrane, and particularly on the cytoskeletal matrix associated with the AZ (CAZ) that could act as a relatively stable "core scaffold" that conserves and dictates presynaptic organization. At present, however, little is known on the molecular dynamics of CAZ molecules, and thus, the factual basis for this hypothesis remains unclear. To examine the stability of the CAZ, we studied the molecular dynamics of the major CAZ molecule Bassoon in cultured hippocampal neurons. Fluorescence recovery after photobleaching and photoactivation experiments revealed that exchange rates of green fluorescent protein and photoactivatable green fluorescent protein-tagged Bassoon at individual presynaptic sites are very low (tau > 8 h). Exchange rates varied between boutons and were only slightly accelerated by stimulation. Interestingly, photoactivation experiments revealed that Bassoon lost from one synapse was occasionally assimilated into neighboring presynaptic sites. Our findings indicate that Bassoon is engaged in relatively stable associations within the CAZ and thus support the notion that the CAZ or some of its components might constitute a relatively stable presynaptic core scaffold.
Collapse
|
64
|
Polarized targeting of neurexins to synapses is regulated by their C-terminal sequences. J Neurosci 2009; 28:12969-81. [PMID: 19036990 DOI: 10.1523/jneurosci.5294-07.2008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two families of cell-adhesion molecules, predominantly presynaptic neurexins and postsynaptic neuroligins, are important for the formation and functioning of synapses in the brain, and mutations in several genes encoding these transmembrane proteins have been found in autism patients. However, very little is known about how neurexins are targeted to synapses and which mechanisms regulate this process. Using various epitope-tagged neurexins in primary hippocampal neurons of wild-type and knock-out mice in vitro and in transgenic animals in vivo, we show that neurexins are trafficked throughout neurons via transport vesicles and the plasma membrane insertion of neurexins occurs preferentially in the axonal/synaptic compartment. We also observed that exit of neurexins from the ER/Golgi and correct targeting require their PDZ-binding motif at the C terminus, whereas two presumptive ER retention signals are inactive. The ubiquitous presence of neurexin-positive transport vesicles and absence of bassoon colabeling demonstrate that these carriers are not active zone precursor vesicles, but colocalization with CASK, RIM1alpha, and calcium channels suggests that they may carry additional components of the exocytotic machinery. Our data indicate that neurexins are delivered to synapses by a polarized and regulated targeting process that involves PDZ-domain mediated interactions, suggesting a novel pathway for the distribution of neurexins and other synaptic proteins.
Collapse
|
65
|
Lee SH, Peng IF, Ng YG, Yanagisawa M, Bamji SX, Elia LP, Balsamo J, Lilien J, Anastasiadis PZ, Ullian EM, Reichardt LF. Synapses are regulated by the cytoplasmic tyrosine kinase Fer in a pathway mediated by p120catenin, Fer, SHP-2, and beta-catenin. ACTA ACUST UNITED AC 2008; 183:893-908. [PMID: 19047464 PMCID: PMC2592841 DOI: 10.1083/jcb.200807188] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Localization of presynaptic components to synaptic sites is critical for hippocampal synapse formation. Cell adhesion–regulated signaling is important for synaptic development and function, but little is known about differentiation of the presynaptic compartment. In this study, we describe a pathway that promotes presynaptic development involving p120catenin (p120ctn), the cytoplasmic tyrosine kinase Fer, the protein phosphatase SHP-2, and β-catenin. Presynaptic Fer depletion prevents localization of active zone constituents and synaptic vesicles and inhibits excitatory synapse formation and synaptic transmission. Depletion of p120ctn or SHP-2 similarly disrupts synaptic vesicle localization with active SHP-2, restoring synapse formation in the absence of Fer. Fer or SHP-2 depletion results in elevated tyrosine phosphorylation of β-catenin. β-Catenin overexpression restores normal synaptic vesicle localization in the absence of Fer or SHP-2. Our results indicate that a presynaptic signaling pathway through p120ctn, Fer, SHP-2, and β-catenin promotes excitatory synapse development and function.
Collapse
Affiliation(s)
- Seung-Hye Lee
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Biochemical evidence for the differential association of metabotropic glutamate receptors within synaptic complexes. Neurosci Lett 2008; 444:27-30. [DOI: 10.1016/j.neulet.2008.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 08/02/2008] [Accepted: 08/05/2008] [Indexed: 01/19/2023]
|
67
|
Yoshida T, Mishina M. Zebrafish orthologue of mental retardation protein IL1RAPL1 regulates presynaptic differentiation. Mol Cell Neurosci 2008; 39:218-28. [PMID: 18657618 DOI: 10.1016/j.mcn.2008.06.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/13/2008] [Accepted: 06/21/2008] [Indexed: 01/10/2023] Open
Abstract
IL1-receptor accessory protein-like 1 (IL1RAPL1), a member of interleukin-1/toll receptor (TIR) family, is responsible for a nonsyndromic form of mental retardation (MR). The zebrafish orthologue of mammalian IL1RAPL1, designated as Il1rapl1b, was expressed widely in the brain and in the olfactory placode. We employed an olfactory sensory neuron-specific gene manipulation system in combination with in vivo imaging of transparent zebrafish embryos to examine the functional role of Il1rapl1b in synaptic vesicle accumulation and subsequent morphological remodeling of axon terminals, the characteristic features of presynaptic differentiation of zebrafish olfactory sensory neurons during synapse formation. Antisense morpholino oligonucleotide against il1rapl1b suppressed both the synaptic vesicle accumulation and axon terminal remodeling. Consistently, the overexpression of Il1rapl1b stimulated synaptic vesicle accumulation. Swapping the carboxyl-terminal domain of Il1rapl1b with that of mouse IL-1 receptor accessory protein abolished the stimulatory effect. On the other hand, a substitution mutation in the TIR domain suppressed the morphological remodeling of axon terminals. Thus, the regulation of synaptic vesicle accumulation and subsequent morphological remodeling by Il1rapl1b appeared to be mediated by distinct domains. These results suggest that Il1rapl1b plays an important role in presynaptic differentiation during synapse formation.
Collapse
Affiliation(s)
- Tomoyuki Yoshida
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
68
|
Differential effects of Th1, monocyte/macrophage and Th2 cytokine mixtures on early gene expression for glial and neural-related molecules in central nervous system mixed glial cell cultures: neurotrophins, growth factors and structural proteins. J Neuroinflammation 2007; 4:30. [PMID: 18088439 PMCID: PMC2228280 DOI: 10.1186/1742-2094-4-30] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 12/18/2007] [Indexed: 01/19/2023] Open
Abstract
Background In multiple sclerosis, inflammatory cells are found in both active and chronic lesions, and it is increasingly clear that cytokines are involved directly and indirectly in both formation and inhibition of lesions. We propose that cytokine mixtures typical of Th1 or Th2 lymphocytes, or monocyte/macrophages each induce unique molecular changes in glial cells. Methods To examine changes in gene expression that might occur in glial cells exposed to the secreted products of immune cells, we have used gene array analysis to assess the early effects of different cytokine mixtures on mixed CNS glia in culture. We compared the effects of cytokines typical of Th1 and Th2 lymphocytes and monocyte/macrophages (M/M) on CNS glia after 6 hours of treatment. Results In this paper we focus on changes with potential relevance for neuroprotection and axon/glial interactions. Each mixture of cytokines induced a unique pattern of changes in genes for neurotrophins, growth and maturation factors and related receptors; most notably an alternatively spliced form of trkC was markedly downregulated by Th1 and M/M cytokines, while Th2 cytokines upregulated BDNF. Genes for molecules of potential importance in axon/glial interactions, including cell adhesion molecules, connexins, and some molecules traditionally associated with neurons showed significant changes, while no genes for myelin-associated genes were regulated at this early time point. Unexpectedly, changes occurred in several genes for proteins initially associated with retina, cancer or bone development, and not previously reported in glial cells. Conclusion Each of the three cytokine mixtures induced specific changes in gene expression that could be altered by pharmacologic strategies to promote protection of the central nervous system.
Collapse
|
69
|
Bluem R, Schmidt E, Corvey C, Karas M, Schlicksupp A, Kirsch J, Kuhse J. Components of the Translational Machinery Are Associated with Juvenile Glycine Receptors and Are Redistributed to the Cytoskeleton upon Aging and Synaptic Activity. J Biol Chem 2007; 282:37783-93. [DOI: 10.1074/jbc.m708301200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
70
|
Spilker C, Acuña Sanhueza GA, Böckers TM, Kreutz MR, Gundelfinger ED. SPAR2, a novel SPAR-related protein with GAP activity for Rap1 and Rap2. J Neurochem 2007; 104:187-201. [PMID: 17961154 DOI: 10.1111/j.1471-4159.2007.04991.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spine-associated RapGAP 2 (SPAR2) is a novel GTPase activating protein (GAP) for the small GTPase Rap that shows significant sequence homology to SPAR, a synaptic RapGAP that was reported to regulate spine morphology in hippocampal neurons. SPAR2, like SPAR, interacts with the recently described synaptic scaffolding protein ProSAP-interacting protein (ProSAPiP), which in turn binds to the PDZ domain of ProSAP/Shank post-synaptic density proteins. In subcellular fractionation experiments, SPAR2 is enriched in synaptosomes and post-synaptic density fractions indicating that it is a synaptic protein. Furthermore, we could show using in vitro GAP assays that SPAR2 has GAP activity for Rap1 and Rap2. Expression in COS-7 cells, however, revealed different actin-binding properties of SPAR2 and SPAR. Additionally, over-expression of SPAR2 in cultured hippocampal neurons did not affect spine morphology as it was reported for SPAR. In situ hybridization studies also revealed a differential tissue distribution of SPAR and SPAR2 with SPAR2 transcripts being mainly expressed in cerebellar and hippocampal granule cells. Moreover, in the cerebellum SPAR2 is developmentally regulated with a peak of expression around the period of synapse formation. Our results imply that SPAR2 is a new RapGAP with specific functions in cerebellar and hippocampal granule cells.
Collapse
Affiliation(s)
- Christina Spilker
- Project Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
71
|
Investigating interactions mediated by the presynaptic protein bassoon in living cells by Foerster's resonance energy transfer and fluorescence lifetime imaging microscopy. Biophys J 2007; 94:1483-96. [PMID: 17933880 DOI: 10.1529/biophysj.107.111674] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuronal synapses are highly specialized structures for communication between nerve cells. Knowledge about their molecular organization and dynamics is still incomplete. The large multidomain protein Bassoon plays a major role in scaffolding and organizing the cytomatrix at the active zone of neurotransmitter release in presynaptic boutons. Utilizing immunofluorescence techniques, we show that Bassoon is essential for corecruitment of its synaptic interaction partners, C-terminal binding protein 1/brefeldin A-dependent ADP-ribosylation substrate and CAZ-associated structural protein, into protein complexes upon heterologous expression in COS-7 cells. A combination of Foerster's resonance energy transfer and fluorescence lifetime imaging microscopy in the time domain was adopted to investigate the potential for the association of these proteins in the same complexes. A direct physical association between Bassoon and CtBP1 could also be observed at synapses of living hippocampal neurons. Simultaneous analysis of fluorescence decays of the donor and the acceptor probes along with their decay-associated spectra allowed a clear discrimination of energy transfer.
Collapse
|
72
|
Kremer T, Kempf C, Wittenmayer N, Nawrotzki R, Kuner T, Kirsch J, Dresbach T. Mover is a novel vertebrate-specific presynaptic protein with differential distribution at subsets of CNS synapses. FEBS Lett 2007; 581:4727-33. [PMID: 17869247 DOI: 10.1016/j.febslet.2007.08.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 08/07/2007] [Accepted: 08/29/2007] [Indexed: 11/24/2022]
Abstract
Presynaptic nerve terminals contain scaffolding proteins that orchestrate neurotransmitter release at active zones. Here we describe mover, a yet unknown non-transmembrane protein that is targeted to presynaptic terminals when overexpressed in cultured neurons. Confocal immunomicroscopy revealed that mover colocalizes with presynaptic markers in the calyx of Held. In the hippocampus, mover localizes to mossy fibre terminals, but is absent from inhibitory nerve terminals. By contrast, mover localizes to inhibitory terminals throughout the cerebellar cortex. Our results suggest that mover may act in concert with generally expressed scaffolding proteins in distinct sets of presynaptic terminals.
Collapse
Affiliation(s)
- Thomas Kremer
- Institute for Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
73
|
Cai Q, Pan PY, Sheng ZH. Syntabulin-kinesin-1 family member 5B-mediated axonal transport contributes to activity-dependent presynaptic assembly. J Neurosci 2007; 27:7284-96. [PMID: 17611281 PMCID: PMC6794594 DOI: 10.1523/jneurosci.0731-07.2007] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanism by which microtubule-based axonal transport regulates activity-dependent presynaptic plasticity in developing neurons remains mostly unknown. Our previous studies established that syntabulin is an adaptor capable of conjoining the kinesin family member 5B (KIF5B) motor and syntaxin-1. We now report that the complex of syntaxin-1-syntabulin-KIF5B mediates axonal transport of the active zone (AZ) components essential for presynaptic assembly. Syntabulin associates with AZ precursor carriers and colocalizes and comigrates with green fluorescent protein (GFP)-Bassoon-labeled AZ transport cargos within developing axons. Knock-down of syntabulin or disruption of the syntaxin-1-syntabulin-KIF5B complex impairs the anterograde transport of GFP-Bassoon out of the soma and reduces the axonal densities of synaptic vesicle (SV) clusters and FM4-64 [N-(3-triethylammoniumpropyl)-4-(p-dibutylaminostyryl)pyridinium, dibromide] loading. Furthermore, syntabulin loss of function results in a reduction in both the amplitude of postsynaptic currents and the frequency of asynchronous quantal events, and abolishes the activity-induced recruitment of new GFP-Bassoon into the axons and subsequent coclustering with SVs. Consequently, syntabulin loss of function blocks the formation of new presynaptic boutons during activity-dependent synaptic plasticity in developing neurons. These studies establish that a kinesin motor-adaptor complex is critical for the anterograde axonal transport of AZ components, thus contributing to activity-dependent presynaptic assembly during neuronal development.
Collapse
Affiliation(s)
- Qian Cai
- Synaptic Function Unit, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-3701
| | - Ping-Yue Pan
- Synaptic Function Unit, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-3701
| | - Zu-Hang Sheng
- Synaptic Function Unit, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-3701
| |
Collapse
|
74
|
Thies E, Mandelkow EM. Missorting of tau in neurons causes degeneration of synapses that can be rescued by the kinase MARK2/Par-1. J Neurosci 2007; 27:2896-907. [PMID: 17360912 PMCID: PMC6672561 DOI: 10.1523/jneurosci.4674-06.2007] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Early hallmarks of Alzheimer's disease include the loss of synapses, which precedes the loss of neurons and the pathological phosphorylation and aggregation of tau protein. Mitochondrial dysfunction has been suggested as a reason, but evidence on the role of tau was lacking. Here, we show that transfection of tau in mature hippocampal neurons leads to an improper distribution of tau into the somatodendritic compartment with concomitant degeneration of synapses, as seen by the disappearance of spines and of presynaptic and postsynaptic markers. This is accompanied by transport inhibition of vesicles and organelles, concomitant with an increase and bundling of microtubules. Mitochondria degenerate, thus causing ATP levels to decrease. The tau-induced synaptic decay can be relieved by the activation of the kinase MARK2 (microtubule-associated protein/microtubule affinity regulating kinase 2)/Par-1 (protease-activated receptor 1), which can remove tau from the microtubule tracks and reverses the transport block. This leads to the rescue of dendritic spines, synapses, mitochondrial transport and ATP levels.
Collapse
Affiliation(s)
- Edda Thies
- Max-Planck-Unit for Structural Molecular Biology, 22607 Hamburg, Germany
| | | |
Collapse
|
75
|
Kalla S, Stern M, Basu J, Varoqueaux F, Reim K, Rosenmund C, Ziv NE, Brose N. Molecular dynamics of a presynaptic active zone protein studied in Munc13-1-enhanced yellow fluorescent protein knock-in mutant mice. J Neurosci 2007; 26:13054-66. [PMID: 17167095 PMCID: PMC6674949 DOI: 10.1523/jneurosci.4330-06.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GFP (green fluorescent protein) fusion proteins have revolutionized research on protein dynamics at synapses. However, corresponding analyses usually involve protein expression methods that override endogenous regulatory mechanisms, and therefore cause overexpression and temporal or spatial misexpression of exogenous fusion proteins, which may seriously compromise the physiological validity of such experiments. These problems can be circumvented by using knock-in mutagenesis of the endogenous genomic locus to tag the protein of interest with a fluorescent protein. We generated knock-in mice expressing a fusion protein of the presynaptic active zone protein Munc13-1 and enhanced yellow fluorescent protein (EYFP) from the Munc13-1 locus. Munc13-1-EYFP-containing nerve cells and synapses are functionally identical to those of wild-type mice. However, their presynaptic active zones are distinctly fluorescent and readily amenable for imaging. We demonstrated the usefulness of these mice by studying the molecular dynamics of Munc13-1-EYFP at individual presynaptic sites. Fluorescence recovery after photobleaching (FRAP) experiments revealed that Munc13-1-EYFP is rapidly and continuously lost from and incorporated into active zones (tau1 approximately 3 min; tau2 approximately 80 min). Munc13-1-EYFP steady-state levels and exchange kinetics were not affected by proteasome inhibitors or acute synaptic stimulation, but exchange kinetics were reduced by chronic suppression of spontaneous activity. These experiments, performed in a minimally perturbed system, provide evidence that presynaptic active zones of mammalian CNS synapses are highly dynamic structures. They demonstrate the usefulness of the knock-in approach in general and of Munc13-1-EYFP knock-in mice in particular for imaging synaptic protein dynamics.
Collapse
Affiliation(s)
| | - Michal Stern
- Department of Physiology and Rappaport Family Institute for Research in the Medical Sciences, Technion Faculty of Medicine, Haifa 31096, Israel, and
| | - Jayeeta Basu
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | | | | | - Christian Rosenmund
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Noam E. Ziv
- Department of Physiology and Rappaport Family Institute for Research in the Medical Sciences, Technion Faculty of Medicine, Haifa 31096, Israel, and
| | - Nils Brose
- Department of Molecular Neurobiology
- Deutsche Forschungsgemeinschaft Research Center for Molecular Physiology of the Brain, Max-Planck-Institute of Experimental Medicine, D-37075 Göttingen, Germany
| |
Collapse
|
76
|
Esapa CT, Waite A, Locke M, Benson MA, Kraus M, McIlhinney RAJ, Sillitoe RV, Beesley PW, Blake DJ. SGCE missense mutations that cause myoclonus-dystonia syndrome impair ε-sarcoglycan trafficking to the plasma membrane: modulation by ubiquitination and torsinA. Hum Mol Genet 2007; 16:327-42. [PMID: 17200151 DOI: 10.1093/hmg/ddl472] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Myoclonus-dystonia syndrome (MDS) is a genetically heterogeneous disorder characterized by myoclonic jerks often seen in combination with dystonia and psychiatric co-morbidities and epilepsy. Mutations in the gene encoding epsilon-sarcoglycan (SGCE) have been found in some patients with MDS. SGCE is a maternally imprinted gene with the disease being inherited in an autosomal dominant pattern with reduced penetrance upon maternal transmission. In the central nervous system, epsilon-sarcoglycan is widely expressed in neurons of the cerebral cortex, basal ganglia, hippocampus, cerebellum and the olfactory bulb. epsilon-Sarcoglycan is located at the plasma membrane in neurons, muscle and transfected cells. To determine the effect of MDS-associated mutations on the function of epsilon-sarcoglycan we examined the biosynthesis and trafficking of wild-type and mutant proteins in cultured cells. In contrast to the wild-type protein, disease-associated epsilon-sarcoglycan missense mutations (H36P, H36R and L172R) produce proteins that are undetectable at the cell surface and are retained intracellularly. These mutant proteins become polyubiquitinated and are rapidly degraded by the proteasome. Furthermore, torsinA, that is mutated in DYT1 dystonia, a rare type of primary dystonia, binds to and promotes the degradation of epsilon-sarcoglycan mutants when both proteins are co-expressed. These data demonstrate that some MDS-associated mutations in SGCE impair trafficking of the mutant protein to the plasma membrane and suggest a role for torsinA and the ubiquitin proteasome system in the recognition and processing of misfolded epsilon-sarcoglycan.
Collapse
Affiliation(s)
- Christopher T Esapa
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Taverna E, Saba E, Linetti A, Longhi R, Jeromin A, Righi M, Clementi F, Rosa P. Localization of synaptic proteins involved in neurosecretion in different membrane microdomains. J Neurochem 2006; 100:664-77. [PMID: 17144906 DOI: 10.1111/j.1471-4159.2006.04225.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A number of proteins and signalling molecules modulate voltage-gated calcium channel activity and neurosecretion. As recent findings have indicated the presence of Ca(v)2.1 (P/Q-type) channels and soluble N-ethyl-maleimide-sensitive fusion protein attachment protein receptors (SNAREs) in the cholesterol-enriched microdomains of neuroendocrine and neuronal cells, we investigated whether molecules known to modulate neurosecretion, such as the heterotrimeric G proteins and neuronal calcium sensor-1 (NCS-1), are also localized in these microdomains. After immuno-isolation, flotation gradients from Triton X-100-treated synaptosomal membranes revealed the presence of different detergent-resistant membranes (DRMs) containing proteins of the exocytic machinery (Ca(v)2.1 channels and SNAREs) or NCS-1; both DRM subtypes contained aliquots of heterotrimeric G protein subunits and phosphatidylinositol-4,5-bisphosphate. In line with the biochemical data, confocal imaging of immunolabelled membrane sheets revealed the localization of SNARE proteins and NCS-1 in different dot-like structures. This distribution was largely impaired by treatment with methyl-beta-cyclodextrin, thus suggesting the localization of all three proteins in cholesterol-dependent domains. Finally, bradykinin (which is known to activate the NCS-1 pathway) caused a significant increase in NCS-1 in the DRMs. These findings suggest that different membrane microdomains are involved in the spatial organization of the complex molecular network that converges on calcium channels and the secretory machinery.
Collapse
Affiliation(s)
- Elena Taverna
- CNR Institute of Neuroscience, Department of Medical Pharmacology, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Schoch S, Gundelfinger ED. Molecular organization of the presynaptic active zone. Cell Tissue Res 2006; 326:379-91. [PMID: 16865347 DOI: 10.1007/s00441-006-0244-y] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 05/10/2006] [Indexed: 11/26/2022]
Abstract
The exocytosis of neurotransmitter-filled synaptic vesicles is under tight temporal and spatial control in presynaptic nerve terminals. The fusion of synaptic vesicles is restricted to a specialized area of the presynaptic plasma membrane: the active zone. The protein network that constitutes the cytomatrix at the active zone (CAZ) is involved in the organization of docking and priming of synaptic vesicles and in mediating use-dependent changes in release during short-term and long-term synaptic plasticity. To date, five protein families whose members are highly enriched at active zones (Munc13s, RIMs, ELKS proteins, Piccolo and Bassoon, and the liprins-alpha), have been characterized. These multidomain proteins are instrumental for the diverse functions performed by the presynaptic active zone.
Collapse
Affiliation(s)
- Susanne Schoch
- Emmy Noether Research Group, Institute of Neuropathology and Department of Epileptology, University of Bonn Medical Center, Sigmund Freud Strasse 25, 53105 Bonn, Germany.
| | | |
Collapse
|
79
|
Inoue E, Mochida S, Takagi H, Higa S, Deguchi-Tawarada M, Takao-Rikitsu E, Inoue M, Yao I, Takeuchi K, Kitajima I, Setou M, Ohtsuka T, Takai Y. SAD: a presynaptic kinase associated with synaptic vesicles and the active zone cytomatrix that regulates neurotransmitter release. Neuron 2006; 50:261-75. [PMID: 16630837 DOI: 10.1016/j.neuron.2006.03.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 09/02/2005] [Accepted: 03/13/2006] [Indexed: 11/25/2022]
Abstract
A serine/threonine kinase SAD-1 in C. elegans regulates synapse development. We report here the isolation and characterization of mammalian orthologs of SAD-1, named SAD-A and SAD-B, which are specifically expressed in the brain. SAD-B is associated with synaptic vesicles and, like the active zone proteins CAST and Bassoon, is tightly associated with the presynaptic cytomatrix in nerve terminals. A short conserved region (SCR) in the COOH-terminus is required for the synaptic localization of SAD-B. Overexpression of SAD-B in cultured rat hippocampal neurons significantly increases the frequency of miniature excitatory postsynaptic current but not its amplitude. Introduction of SCR into presynaptic superior cervical ganglion neurons in culture significantly inhibits evoked synaptic transmission. Moreover, SCR decreases the size of the readily releasable pool measured by applying hypertonic sucrose. Furthermore, SAD-B phosphorylates the active zone protein RIM1 but not Munc13-1. These results suggest that mammalian SAD kinase presynaptically regulates neurotransmitter release.
Collapse
Affiliation(s)
- Eiji Inoue
- KAN Research Institute, Kyoto 600-8815, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
John N, Krügel H, Frischknecht R, Smalla KH, Schultz C, Kreutz MR, Gundelfinger ED, Seidenbecher CI. Brevican-containing perineuronal nets of extracellular matrix in dissociated hippocampal primary cultures. Mol Cell Neurosci 2006; 31:774-84. [PMID: 16503162 DOI: 10.1016/j.mcn.2006.01.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 12/29/2005] [Accepted: 01/11/2006] [Indexed: 10/25/2022] Open
Abstract
Perineuronal nets (PNN) are specialized extracellular matrix structures enwrapping CNS neurons, which are important regulators for neuronal and synaptic functions. Brevican, a chondroitin sulfate proteoglycan, is an integral component of PNN. Here, we have investigated the appearance of these structures in hippocampal primary cultures. The expression profile of brevican in mixed cultures resembles the in vivo pattern with a strong upregulation of all isoforms during the second and 3rd weeks in culture. Brevican is primarily synthesized by co-cultured glial fibrillary acidic protein (GFAP-)-positive astrocytes and co-assembles with its interaction partners in PNN-like structures on neuronal somata and neurites as identified by counterstaining with the PNN marker Vicia villosa lectin. Both excitatory and inhibitory synapses are embedded into PNN. Furthermore, axon initial segments are strongly covered by a dense brevican coat. Altogether, we show that mature primary cultures can form PNN, and that basic features of these extracellular matrix structures may be studied in vitro.
Collapse
Affiliation(s)
- Nora John
- Department for Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Yoshida T, Mishina M. Distinct roles of calcineurin-nuclear factor of activated T-cells and protein kinase A-cAMP response element-binding protein signaling in presynaptic differentiation. J Neurosci 2006; 25:3067-79. [PMID: 15788763 PMCID: PMC6725083 DOI: 10.1523/jneurosci.3738-04.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Synaptic vesicle accumulation and morphological changes are characteristic features of axon terminal differentiation during synaptogenesis. To investigate the regulatory mechanism that orchestrates synaptic molecules to form mature presynaptic terminals, we visualized a single axon terminal of zebrafish olfactory sensory neurons in vivo and examined the effects of the neuron-specific gene manipulations on the axon terminal differentiation. Synaptic vesicles visualized with vesicle-associated membrane protein 2 (VAMP2)-enhanced green fluorescent protein (EGFP) fusion protein gradually accumulated in axon terminals, whereas the axon terminals visualized with GAP43 fused with EGFP remodeled from complex shapes with filopodia to simple shapes without filopodia from 50 h postfertilization (hpf) to 84 hpf. Expression of dominant-negative protein kinase A (PKA) or cAMP response element-binding protein (CREB) suppressed the VAMP2-EGFP punctum formation in axon terminals during synaptogenesis. Consistently, constitutively active PKA or CREB stimulated VAMP2-EGFP puncta formation. On the other hand, cyclosporine A treatment or suppression of nuclear factor of activated T cells (NFAT) activation prevented the axon terminal remodeling from complex to simple shapes during synaptogenesis. Consistently, expression of constitutively active calcineurin accelerated the axon terminal remodeling. These results suggest that calcineurin-NFAT signaling regulates axon terminal remodeling, and PKA-CREB signaling controls synaptic vesicle accumulation.
Collapse
Affiliation(s)
- Tomoyuki Yoshida
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, and Solution-Oriented Research for Science and Technology, Japan Science and Technology Corporation, Tokyo 113-0033, Japan
| | | |
Collapse
|
82
|
Fejtova A, Gundelfinger ED. Molecular organization and assembly of the presynaptic active zone of neurotransmitter release. Results Probl Cell Differ 2006; 43:49-68. [PMID: 17068967 DOI: 10.1007/400_012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
At chemical synapses, neurotransmitter is released at a restricted region of the presynaptic plasma membrane, called the active zone. At the active zone, a matrix of proteins is assembled, which is termed the presynaptic grid or cytomatrix at the active zone (CAZ). Components of the CAZ are thought to localize and organize the synaptic vesicle cycle, a series of membrane trafficking events underlying regulated neurotransmitter exocytosis. This review is focused on a set of specific proteins involved in the structural and functional organization of the CAZ. These include the multi-domain Rab3-effector proteins RIM1alpha and RIM2alpha; Bassoon and Piccolo, two multi-domain CAZ scaffolding proteins of enormous size; as well as members of the CAST/ERC family of CAZ-specific structural proteins. Studies on ribbon synapses of retinal photoreceptor cells have fostered understanding the molecular design of the CAZ. In addition, the analysis of the delivery pathways for Bassoon and Piccolo to presynaptic sites during development has produced new insights into assembly mechanisms of brain synapses during development. Based on these studies, the active zone transport vesicle hypothesis was formulated, which postulates that active zones, at least in part, are pre-assembled in neuronal cell bodies and transported as so-called Piccolo-Bassoon transport vesicles (PTVs) to sites of synaptogenesis. Several PTVs can fuse on demand with the presynaptic membrane to rapidly form an active zone.
Collapse
Affiliation(s)
- Anna Fejtova
- Leibniz Institute for Neurobiology, Department of Neurochemistry and Molecular Biology, Magdeburg, Germany.
| | | |
Collapse
|
83
|
Dresbach T, Torres V, Wittenmayer N, Altrock WD, Zamorano P, Zuschratter W, Nawrotzki R, Ziv NE, Garner CC, Gundelfinger ED. Assembly of active zone precursor vesicles: obligatory trafficking of presynaptic cytomatrix proteins Bassoon and Piccolo via a trans-Golgi compartment. J Biol Chem 2005; 281:6038-47. [PMID: 16373352 DOI: 10.1074/jbc.m508784200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurotransmitter release from presynaptic nerve terminals is restricted to specialized areas of the plasma membrane, so-called active zones. Active zones are characterized by a network of cytoplasmic scaffolding proteins involved in active zone generation and synaptic transmission. To analyze the modes of biogenesis of this cytomatrix, we asked how Bassoon and Piccolo, two prototypic active zone cytomatrix molecules, are delivered to nascent synapses. Although these proteins may be transported via vesicles, little is known about the importance of a vesicular pathway and about molecular determinants of cytomatrix molecule trafficking. We found that Bassoon and Piccolo co-localize with markers of the trans-Golgi network in cultured neurons. Impairing vesicle exit from the Golgi complex, either using brefeldin A, recombinant proteins, or a low temperature block, prevented transport of Bassoon out of the soma. Deleting a newly identified Golgi-binding region of Bassoon impaired subcellular targeting of recombinant Bassoon. Overexpressing this region to specifically block Golgi binding of the endogenous protein reduced the concentration of Bassoon at synapses. These results suggest that, during the period of bulk synaptogenesis, a primordial cytomatrix assembles in a trans-Golgi compartment. They further indicate that transport via Golgi-derived vesicles is essential for delivery of cytomatrix proteins to the synapse. Paradigmatically this establishes Golgi transit as an obligatory step for subcellular trafficking of distinct cytoplasmic scaffolding proteins.
Collapse
Affiliation(s)
- Thomas Dresbach
- Leibniz Institute for Neurobiology, Brenneckestrasse 6, D-39118 Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Reim K, Wegmeyer H, Brandstätter JH, Xue M, Rosenmund C, Dresbach T, Hofmann K, Brose N. Structurally and functionally unique complexins at retinal ribbon synapses. ACTA ACUST UNITED AC 2005; 169:669-80. [PMID: 15911881 PMCID: PMC2171701 DOI: 10.1083/jcb.200502115] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ribbon synapses in retinal sensory neurons maintain large pools of readily releasable synaptic vesicles. This allows them to release several hundreds of vesicles per second at every presynaptic release site. The molecular components that cause this high transmitter release efficiency of ribbon synapses are unknown. In the present study, we identified and characterized two novel vertebrate complexins (CPXs), CPXs III and IV, that are the only CPX isoforms present in retinal ribbon synapses. CPXs III and IV are COOH-terminally farnesylated, and, like CPXs I and II, bind to SNAP receptor complexes. CPXs III and IV can functionally replace CPXs I and II, and their COOH-terminal farnesylation regulates their synaptic targeting and modulatory function in transmitter release. The novel CPXs III and IV may contribute to the unique release efficacy of retinal sensory neurons.
Collapse
Affiliation(s)
- Kerstin Reim
- Department of Molecular Neurobiology, Max-Planck-Institute for Experimental Medicine, D-37075 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Kleinhenz B, Fabienke M, Swiniarski S, Wittenmayer N, Kirsch J, Jockusch BM, Arnold HH, Illenberger S. Raver2, a new member of the hnRNP family. FEBS Lett 2005; 579:4254-8. [PMID: 16051233 DOI: 10.1016/j.febslet.2005.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 07/04/2005] [Accepted: 07/05/2005] [Indexed: 01/22/2023]
Abstract
Raver2 was identified as a novel member of the hnRNP family based on sequence homology within three RNA recognition motifs and its general domain organization reminiscent of the previously described raver1 protein. Like raver1, raver2 contains two putative nuclear localization signals and a potential nuclear export sequence, and also displays nucleo-cytoplasmic shuttling in a heterokaryon assay. In glia cells and neurons, raver2 localizes to the nucleus. Moreover, the protein interacts with polypyrimidine tract binding protein (PTB) suggesting that it may participate in PTB-mediated nuclear functions. In contrast to ubiquitously expressed raver1, raver2 exerts a distinct spatio-temporal expression pattern during embryogenesis and is essentially restricted to brain, lung, and kidney in the adult mouse.
Collapse
Affiliation(s)
- Berenike Kleinhenz
- Cell Biology, Zoological Institute, Technical University of Braunschweig, D-38092 Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Verdier Y, Huszár E, Penke B, Penke Z, Woffendin G, Scigelova M, Fülöp L, Szucs M, Medzihradszky K, Janáky T. Identification of synaptic plasma membrane proteins co-precipitated with fibrillar β-amyloid peptide. J Neurochem 2005; 94:617-28. [PMID: 16001971 DOI: 10.1111/j.1471-4159.2005.03158.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The beta-amyloid peptide that is overproduced in Alzheimer's disease rapidly forms fibrils, which are able to interact with various molecular partners. This study aimed to identify abundant synaptosomal proteins binding to the fibrillar beta-amyloid (fAbeta) 1-42. Triton X-100-soluble proteins were extracted from the rat synaptic plasma membrane fraction. Interacting proteins were isolated by co-precipitation with fAbeta, or with fibrillar crystallin as a negative control. Protein identification was accomplished (1) by separating the tryptically digested peptides of the protein pellet by one-dimensional reversed-phase HPLC and analysing them using an ion-trap mass spectrometer with electrospray ionization; and (2) by subjecting the precipitated proteins to gel electrophoretic fractionation, in-gel tryptic digestion and to matrix-assisted laser desorption/ionization time-of-flight mass measurements and post-source decay analysis. Six different synaptosomal proteins co-precipitated with fAbeta were identified by both methods: vacuolar proton-pump ATP synthase, glyceraldehyde-3-phosphate dehydrogenase, synapsins I and II, beta-tubulin and 2',3'-cyclic nucleotide 3'-phosphodiesterase. Most of these proteins have already been associated with Alzheimer's disease, and the biological and pathophysiological significance of their interaction with fAbeta is discussed.
Collapse
Affiliation(s)
- Yann Verdier
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Boeckers TM, Liedtke T, Spilker C, Dresbach T, Bockmann J, Kreutz MR, Gundelfinger ED. C-terminal synaptic targeting elements for postsynaptic density proteins ProSAP1/Shank2 and ProSAP2/Shank3. J Neurochem 2005; 92:519-24. [PMID: 15659222 DOI: 10.1111/j.1471-4159.2004.02910.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Synapses are specialized contact sites mediating communication between neurons. Synaptogenesis requires the specific assembly of protein clusters at both sides of the synaptic contact by mechanisms that are barely understood. We studied the synaptic targeting of multi-domain proteins of the ProSAP/Shank family thought to serve as master scaffolding molecules of the postsynaptic density. In contrast to Shank1, expression of green-fluorescent protein (GFP)-tagged ProSAP1/Shank2 and ProSAP2/Shank3 deletion constructs in hippocampal neurons revealed that their postsynaptic localization relies on the integrity of the C-termini. The shortest construct that was perfectly targeted to synaptic sites included the last 417 amino acids of ProSAP1/Shank2 and included the C-terminal sterile alpha motif (SAM) domain. Removal of 54 residues from the N-terminus of this construct resulted in a diffuse distribution in the cytoplasm. Altogether, our data delineate a hitherto unknown targeting signal in both ProSAP1/Shank2 and ProSAP2/Shank3 and provide evidence for an implication of these proteins and their close homologue, Shank1, in distinct molecular pathways.
Collapse
Affiliation(s)
- Tobias M Boeckers
- Institute of Anatomy and Cell Biology, University of Ulm, Albert Einstein Allee 11, 89081 Ulm, Germany.
| | | | | | | | | | | | | |
Collapse
|
88
|
tom Dieck S, Altrock WD, Kessels MM, Qualmann B, Regus H, Brauner D, Fejtová A, Bracko O, Gundelfinger ED, Brandstätter JH. Molecular dissection of the photoreceptor ribbon synapse: physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex. ACTA ACUST UNITED AC 2005; 168:825-36. [PMID: 15728193 PMCID: PMC2171818 DOI: 10.1083/jcb.200408157] [Citation(s) in RCA: 314] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ribbon complex of retinal photoreceptor synapses represents a specialization of the cytomatrix at the active zone (CAZ) present at conventional synapses. In mice deficient for the CAZ protein Bassoon, ribbons are not anchored to the presynaptic membrane but float freely in the cytoplasm. Exploiting this phenotype, we dissected the molecular structure of the photoreceptor ribbon complex. Identifiable CAZ proteins segregate into two compartments at the ribbon: a ribbon-associated compartment including Piccolo, RIBEYE, CtBP1/BARS, RIM1, and the motor protein KIF3A, and an active zone compartment including RIM2, Munc13-1, a Ca2+ channel α1 subunit, and ERC2/CAST1. A direct interaction between the ribbon-specific protein RIBEYE and Bassoon seems to link the two compartments and is responsible for the physical integrity of the photoreceptor ribbon complex. Finally, we found the RIBEYE homologue CtBP1 at ribbon and conventional synapses, suggesting a novel role for the CtBP/BARS family in the molecular assembly and function of central nervous system synapses.
Collapse
Affiliation(s)
- Susanne tom Dieck
- Department of Neuroanatomy, Max Planck Institute for Brain Research, D-60528 Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Dresbach T, Neeb A, Meyer G, Gundelfinger ED, Brose N. Synaptic targeting of neuroligin is independent of neurexin and SAP90/PSD95 binding. Mol Cell Neurosci 2005; 27:227-35. [PMID: 15519238 DOI: 10.1016/j.mcn.2004.06.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 06/18/2004] [Accepted: 06/29/2004] [Indexed: 10/26/2022] Open
Abstract
Synaptic cell adhesion and synaptogenesis are thought to involve the interaction of neuroligin, a postsynaptic transmembrane protein, with its presynaptic ligand neurexin. Neuroligin also interacts with SAP90/PSD95, a multidomain scaffolding protein thought to recruit proteins to postsynaptic sites. Using expression of GFP-tagged versions of neuroligin in cultured hippocampal neurons, we find that neuroligin is targeted to synapses via intracellular sequences distinct from its SAP90/PSD95 binding site. A neuroligin mutant lacking the intracellular domain fails to target to synapses. These data indicate that postsynaptic targeting of neuroligin does not rely on the scaffolding action of SAP90/PSD95 and is not induced by binding to presynaptic neurexin. Neuroligin is rather targeted to synapses via a postsynaptic mechanism, which may precede and be necessary for subsequent recruitment of neurexin and other neuroligin interactors such as SAP90/PSD95, suggesting a pivotal position for neuroligin in a putative hierarchy of interactions assembling or stabilizing synapses.
Collapse
Affiliation(s)
- Thomas Dresbach
- Institute for Anatomy and Cell Biology, Ruprecht-Karls-University Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
90
|
Takao-Rikitsu E, Mochida S, Inoue E, Deguchi-Tawarada M, Inoue M, Ohtsuka T, Takai Y. Physical and functional interaction of the active zone proteins, CAST, RIM1, and Bassoon, in neurotransmitter release. ACTA ACUST UNITED AC 2004; 164:301-11. [PMID: 14734538 PMCID: PMC2172332 DOI: 10.1083/jcb.200307101] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We have recently isolated a novel cytomatrix at the active zone (CAZ)–associated protein, CAST, and found it directly binds another CAZ protein RIM1 and indirectly binds Munc13-1 through RIM1; RIM1 and Munc13-1 directly bind to each other and are implicated in priming of synaptic vesicles. Here, we show that all the CAZ proteins thus far known form a large molecular complex in the brain, including CAST, RIM1, Munc13-1, Bassoon, and Piccolo. RIM1 and Bassoon directly bind to the COOH terminus and central region of CAST, respectively, forming a ternary complex. Piccolo, which is structurally related to Bassoon, also binds to the Bassoon-binding region of CAST. Moreover, the microinjected RIM1- or Bassoon-binding region of CAST impairs synaptic transmission in cultured superior cervical ganglion neurons. Furthermore, the CAST-binding domain of RIM1 or Bassoon also impairs synaptic transmission in the cultured neurons. These results indicate that CAST serves as a key component of the CAZ structure and is involved in neurotransmitter release by binding these CAZ proteins.
Collapse
|
91
|
Seidenbecher CI, Landwehr M, Smalla KH, Kreutz M, Dieterich DC, Zuschratter W, Reissner C, Hammarback JA, Böckers TM, Gundelfinger ED, Kreutz MR. Caldendrin but not calmodulin binds to light chain 3 of MAP1A/B: an association with the microtubule cytoskeleton highlighting exclusive binding partners for neuronal Ca(2+)-sensor proteins. J Mol Biol 2004; 336:957-70. [PMID: 15095872 DOI: 10.1016/j.jmb.2003.12.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 12/15/2003] [Accepted: 12/18/2003] [Indexed: 11/19/2022]
Abstract
Caldendrin is a neuronal Ca(2+)-sensor protein (NCS), which represents the closest homologue of calmodulin (CaM) in nerve cells. It is tightly associated with the somato-dendritic cytoskeleton of neurons and highly enriched in the postsynaptic cytomatrix. Here, we report that caldendrin specifically associates with the microtubule cytoskeleton via an interaction with light chain 3 (LC3), a microtubule component with sequence homology to the GABAA receptor-associated protein (GABARAP), which is, like LC3, probably involved in cellular transport processes. Interestingly, two binding sites exist in LC3 for caldendrin from which only one exhibits a strict Ca(2+)-dependency for the interaction to take place but both require the presence of the first two EF-hands of caldendrin. CaM, however, is not capable of binding to LC3 at both sites despite its high degree of primary structure similarity with caldendrin. Computer modelling suggests that this might be explained by an altered distribution of surface charges at the first two EF-hands rendering each molecule, in principle, specific for a discrete set of binding partners. These findings provide molecular evidence that NCS can transduce signals to a specific target interaction irrespective of Ca(2+)-concentrations and CaM-levels.
Collapse
Affiliation(s)
- Constanze I Seidenbecher
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry/Molecular Biology, Leibniz Institute for Neurobiology, Brenneckestr. 6 39118 Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Bresler T, Shapira M, Boeckers T, Dresbach T, Futter M, Garner CC, Rosenblum K, Gundelfinger ED, Ziv NE. Postsynaptic density assembly is fundamentally different from presynaptic active zone assembly. J Neurosci 2004; 24:1507-20. [PMID: 14960624 PMCID: PMC6730341 DOI: 10.1523/jneurosci.3819-03.2004] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cellular mechanisms involved in the formation of the glutamatergic postsynaptic density (PSD) are mainly unknown. Previous studies have indicated that PSD assembly may occur in situ by a gradual recruitment of postsynaptic molecules, whereas others have suggested that the PSD may be assembled from modular transport packets assembled elsewhere. Here we used cultured hippocampal neurons and live cell imaging to examine the process by which PSD molecules from different layers of the PSD are recruited to nascent postsynaptic sites. GFP-tagged NR1, the essential subunit of the NMDA receptor, and ProSAP1/Shank2 and ProSAP2/Shank3, scaffolding molecules thought to reside at deeper layers of the PSD, were recruited to new synaptic sites in gradual manner, with no obvious involvement of discernible discrete transport particles. The recruitment kinetics of these three PSD molecules were remarkably similar, which may indicate that PSD assembly rate is governed by a common upstream rate-limiting process. In contrast, the presynaptic active zone (AZ) molecule Bassoon was observed to be recruited to new presynaptic sites by means of a small number of mobile packets, in full agreement with previous studies. These findings indicate that the assembly processes of PSDs and AZs may be fundamentally different.
Collapse
Affiliation(s)
- Tal Bresler
- Rappaport Institute and the Department of Anatomy and Cell Biology, Technion Faculty of Medicine, Haifa 31096, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|