51
|
Brown KA, Ham AJL, Clark CN, Meller N, Law BK, Chytil A, Cheng N, Pietenpol JA, Moses HL. Identification of novel Smad2 and Smad3 associated proteins in response to TGF-beta1. J Cell Biochem 2008; 105:596-611. [PMID: 18729074 PMCID: PMC2700048 DOI: 10.1002/jcb.21860] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transforming growth factor-beta 1 (TGF-beta1) is an important growth inhibitor of epithelial cells and insensitivity to this cytokine results in uncontrolled cell proliferation and can contribute to tumorigenesis. TGF-beta1 signals through the TGF-beta type I and type II receptors, and activates the Smad pathway via phosphorylation of Smad2 and Smad3. Since little is known about the selective activation of Smad2 versus Smad3, we set out to identify novel Smad2 and Smad3 interacting proteins in epithelial cells. A non-transformed human cell line was transduced with Myc-His(6)-Smad2 or Myc-His(6)-Smad3-expressing retrovirus and was treated with TGF-beta1. Myc-His(6)-Smad2 or Myc-His(6)-Smad3 was purified by tandem affinity purification, eluates were subject to SDS-PAGE and Colloidal Blue staining, and select protein bands were digested with trypsin. The resulting tryptic peptides were analyzed by liquid chromatography (LC) and tandem mass spectrometry (MS/MS) and the SEQUEST algorithm was employed to identify proteins in the bands. A number of proteins that are known to interact with Smad2 or Smad3 were detected in the eluates. In addition, a number of putative novel Smad2 and Smad3 associated proteins were identified that have functions in cell proliferation, apoptosis, actin cytoskeleton regulation, cell motility, transcription, and Ras or insulin signaling. Specifically, the interaction between Smad2/3 and the Cdc42 guanine nucleotide exchange factor, Zizimin1, was validated by co-immunoprecipitation. The discovery of these novel Smad2 and/or Smad3 associated proteins may reveal how Smad2 and Smad3 are regulated and/or uncover new functions of Smad2 and Smad3 in TGF-beta1 signaling.
Collapse
Affiliation(s)
- Kimberly A. Brown
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Amy-Joan L. Ham
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232
- Department of Biochemistry, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232
| | - Cara N. Clark
- Department of Pathology, Vanderbilt University, Nashville, TN 37232
| | - Nahum Meller
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Brian K. Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610
| | - Anna Chytil
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232
| | - Nikki Cheng
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232
| | - Jennifer A. Pietenpol
- Department of Biochemistry, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232
| | - Harold L. Moses
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
52
|
Abstract
Transforming growth factor-beta (TGF-beta) represents a large family of growth and differentiation factors that mobilize complex signaling networks to regulate cellular differentiation, proliferation, motility, adhesion, and apoptosis. TGF-beta signaling is tightly regulated by multiple complex mechanisms, and its deregulation plays a key role in the progression of many forms of cancer. Upon ligand binding, TGF-beta signals are transduced by Smad proteins, which in turn are tightly dependent on modulation by adaptor proteins such as embryonic liver fodrin, Smad anchor for receptor activation, filamin, and crkl. A further layer of regulation is imposed by ubiquitin-mediated targeting and proteasomal degradation of specific components of the TGF-beta signaling pathway. This review focuses on the ubiquitinators that regulate TGF-beta signaling and the association of these ubiquitin ligases with various forms of cancer. Delineating the role of ubiquitinators in the TGF-beta signaling pathway could yield powerful novel therapeutic targets for designing new cancer treatments.
Collapse
Affiliation(s)
- Eric Glasgow
- Laboratory of Cancer Genetics, Digestive Diseases, and GI Developmental Biology, Department of Surgery, Medicine and Lombardi Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA.
| | | |
Collapse
|
53
|
|
54
|
The etiopathogenesis of cleft lip and cleft palate: usefulness and caveats of mouse models. Curr Top Dev Biol 2008; 84:37-138. [PMID: 19186243 DOI: 10.1016/s0070-2153(08)00602-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cleft lip and cleft palate are frequent human congenital malformations with a complex multifactorial etiology. These orofacial clefts can occur as part of a syndrome involving multiple organs or as isolated clefts without other detectable defects. Both forms of clefting constitute a heavy burden to the affected individuals and their next of kin. Human and mouse facial traits are utterly dissimilar. However, embryonic development of the lip and palate are strikingly similar in both species, making the mouse a model of choice to study their normal and abnormal development. Human epidemiological and genetic studies are clearly important for understanding the etiology of lip and palate clefting. However, our current knowledge about the etiopathogenesis of these malformations has mainly been gathered throughout the years from mouse models, including those with mutagen-, teratogen- and targeted mutation-induced clefts as well as from mice with spontaneous clefts. This review provides a comprehensive description of the numerous mouse models for cleft lip and/or cleft palate. Despite a few weak points, these models have revealed a high order of molecular complexity as well as the stringent spatiotemporal regulations and interactions between key factors which govern the development of these orofacial structures.
Collapse
|
55
|
Ross S, Hill CS. How the Smads regulate transcription. Int J Biochem Cell Biol 2007; 40:383-408. [PMID: 18061509 DOI: 10.1016/j.biocel.2007.09.006] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 09/19/2007] [Accepted: 09/20/2007] [Indexed: 01/01/2023]
Abstract
The primary signalling pathway downstream of ligands of the transforming growth factor beta (TGF-beta) superfamily is the Smad pathway. Activated receptors phosphorylate receptor-regulated Smads, which form homomeric complexes and heteromeric complexes with Smad4. These activated Smad complexes accumulate in the nucleus, where they are directly involved in the regulation of transcription of target genes. This apparently very simple pathway is subject to complex regulation, much of which is at the level of post-translational modifications of pathway components, in particular, the Smads. The enzymes responsible may be constitutively active, may be cell type-specific or may be regulated by other signalling pathways or by the cell cycle. In this way, signals from TGF-beta superfamily ligands are integrated with signals from other growth factors and cytokines, are regulated by the cell cycle and are dependent on cell type. This may go some way to explaining the pleiotropic nature of TGF-beta superfamily responses. In this review we focus on the mechanisms whereby the Smads are modified and regulated. We then go on to discuss how the activated Smad complexes regulate transcription.
Collapse
Affiliation(s)
- Sarah Ross
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | |
Collapse
|
56
|
Podar K, Raje N, Anderson KC. Inhibition of the TGF-beta signaling pathway in tumor cells. RECENT RESULTS IN CANCER RESEARCH. FORTSCHRITTE DER KREBSFORSCHUNG. PROGRES DANS LES RECHERCHES SUR LE CANCER 2007; 172:77-97. [PMID: 17607937 DOI: 10.1007/978-3-540-31209-3_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Klaus Podar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Multiple Myeloma Center, Boston, MA 02115, USA
| | | | | |
Collapse
|
57
|
Ueki N, Zhang L, Hayman MJ, Haymann MJ. Ski can negatively regulates macrophage differentiation through its interaction with PU.1. Oncogene 2007; 27:300-7. [PMID: 17621263 PMCID: PMC2850268 DOI: 10.1038/sj.onc.1210654] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the hematopoietic cell system, the oncoprotein Ski dramatically affects growth and differentiation programs, in some cases leading to malignant leukemia. However, little is known about the interaction partners or signaling pathways involved in the Ski-mediated block of differentiation in hematopoietic cells. Here we show that Ski interacts with PU.1, a lineage-specific transcription factor essential for terminal myeloid differentiation, and thereby represses PU.1-dependent transcriptional activation. Consistent with this, Ski inhibits the biological function of PU.1 to promote myeloid cells to differentiate into macrophage colony-stimulating factor receptor (M-CSFR)-positive macrophages. Using a Ski mutant deficient in PU.1 binding, we demonstrate that Ski-PU.1 interaction is critical for Ski's ability to repress PU.1-dependent transcription and block macrophage differentiation. Furthermore, we provide evidence that Ski-mediated repression of PU.1 is due to Ski's ability to recruit histone deacetylase 3 to PU.1 bound to DNA. Since inactivation of PU.1 is closely related to the development of myeloid leukemia and Ski strongly inhibits PU.1 function, we propose that aberrant Ski expression in certain types of myeloid cell lineages might contribute to leukemogenesis.
Collapse
Affiliation(s)
- N Ueki
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | | | | | | |
Collapse
|
58
|
Brown KA, Pietenpol JA, Moses HL. A tale of two proteins: differential roles and regulation of Smad2 and Smad3 in TGF-beta signaling. J Cell Biochem 2007; 101:9-33. [PMID: 17340614 DOI: 10.1002/jcb.21255] [Citation(s) in RCA: 286] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is an important growth inhibitor of epithelial cells, and insensitivity to this cytokine results in uncontrolled cell proliferation and can contribute to tumorigenesis. Smad2 and Smad3 are direct mediators of TGF-beta signaling, however little is known about the selective activation of Smad2 versus Smad3. The Smad2 and Smad3 knockout mouse phenotypes and studies comparing Smad2 and Smad3 activation of TGF-beta target genes, suggest that Smad2 and Smad3 have distinct roles in TGF-beta signaling. The observation that TGF-beta inhibits proliferation of Smad3-null mammary gland epithelial cells, whereas Smad3 deficient fibroblasts are only partially growth inhibited, suggests that Smad3 has a different role in epithelial cells and fibroblasts. Herein, the current understanding of Smad2 and Smad3-mediated TGF-beta signaling and their relative roles are discussed, in addition to potential mechanisms for the selective activation of Smad2 versus Smad3. Since alterations in the TGF-beta signaling pathway play an important role in promoting tumorigenesis and cancer progression, methods for therapeutic targeting of the TGF-beta signaling pathway are being pursued. Determining how Smad2 or Smad3 differentially regulate the TGF-beta response may translate into developing more effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Kimberly A Brown
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
59
|
Barrio R, López-Varea A, Casado M, de Celis JF. Characterization of dSnoN and its relationship to Decapentaplegic signaling in Drosophila. Dev Biol 2007; 306:66-81. [PMID: 17434471 DOI: 10.1016/j.ydbio.2007.02.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 02/26/2007] [Accepted: 02/28/2007] [Indexed: 12/13/2022]
Abstract
Vertebrate members of the ski/snoN family of proto-oncogenes antagonize TGFbeta and BMP signaling in a variety of experimental situations. This activity of Ski/SnoN proteins is related to their ability to interact with Smads, the proteins acting as key mediators of the transcriptional response to the TGFbeta superfamily members. However, despite extensive efforts to identify the physiological roles of the Ski/SnoN proteins, it is not yet clear whether they participate in regulating Activin and/or BMP signaling during normal development. It is therefore crucial to examine their roles in vivo mostly because of the large number of known Ski/SnoN-interacting proteins and the association between the up-regulation of these genes and cancer progression. Here we characterize the Drosophila homolog to vertebrate ski and snoN genes. The Drosophila dSnoN protein retains the ability of its vertebrate counterparts to antagonize BMP signaling in vivo and in cultured cells. dSnoN does not interfere with Mad phosphorylation but it interacts genetically with Mad, Medea and dSmad2. Mutations in either the Smad2-3 or Smad4 putative binding sites of dSnoN prevent the antagonism of dSnoN towards Dpp signaling, although homozygous flies for these mutations or for a genetic deficiency of the locus are viable and have wings of normal size and pattern.
Collapse
Affiliation(s)
- Rosa Barrio
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | | | | | | |
Collapse
|
60
|
Chen W, Lam SS, Srinath H, Schiffer CA, Royer WE, Lin K. Competition between Ski and CREB-binding protein for binding to Smad proteins in transforming growth factor-beta signaling. J Biol Chem 2007; 282:11365-76. [PMID: 17283070 DOI: 10.1074/jbc.m700186200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The family of Smad proteins mediates transforming growth factor-beta (TGF-beta) signaling in cell growth and differentiation. Smads repress or activate TGF-beta signaling by interacting with corepressors (e.g. Ski) or coactivators (e.g. CREB-binding protein (CBP)), respectively. Specifically, Ski has been shown to interfere with the interaction between Smad3 and CBP. However, it is unclear whether Ski competes with CBP for binding to Smads and whether they can interact with Smad3 at the same binding surface on Smad3. We investigated the interactions among purified constructs of Smad, Ski, and CBP in vitro by size-exclusion chromatography, isothermal titration calorimetry, and mutational studies. Here, we show that Ski-(16-192) interacted directly with a homotrimer of receptor-regulated Smad protein (R-Smad), e.g. Smad2 or Smad3, to form a hexamer; Ski-(16-192) interacted with an R-Smad.Smad4 heterotrimer to form a pentamer. CBP-(1941-1992) was also found to interact directly with an R-Smad homotrimer to form a hexamer and with an R-Smad.Smad4 heterotrimer to form a pentamer. Moreover, these domains of Ski and CBP competed with each other for binding to Smad3. Our mutational studies revealed that domains of Ski and CBP interacted with Smad3 at a portion of the binding surface of the Smad anchor for receptor activation. Our results suggest that Ski negatively regulates TGF-beta signaling by replacing CBP in R-Smad complexes. Our working model suggests that Smad protein activity is delicately balanced by Ski and CBP in the TGF-beta pathway.
Collapse
Affiliation(s)
- Weijun Chen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | | | | | | | | | |
Collapse
|
61
|
Kajino T, Omori E, Ishii S, Matsumoto K, Ninomiya-Tsuji J. TAK1 MAPK kinase kinase mediates transforming growth factor-beta signaling by targeting SnoN oncoprotein for degradation. J Biol Chem 2007; 282:9475-9481. [PMID: 17276978 PMCID: PMC2175395 DOI: 10.1074/jbc.m700875200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) regulates a variety of physiologic processes through essential intracellular mediators Smads. The SnoN oncoprotein is an inhibitor of TGF-beta signaling. SnoN recruits transcriptional repressor complex to block Smad-dependent transcriptional activation of TGF-beta-responsive genes. Following TGF-beta stimulation, SnoN is rapidly degraded, thereby allowing the activation of TGF-beta target genes. Here, we report the role of TAK1 as a SnoN protein kinase. TAK1 interacted with and phosphorylated SnoN, and this phosphorylation regulated the stability of SnoN. Inactivation of TAK1 prevented TGF-beta-induced SnoN degradation and impaired induction of the TGF-beta-responsive genes. These data suggest that TAK1 modulates TGF-beta-dependent cellular responses by targeting SnoN for degradation.
Collapse
Affiliation(s)
- Taisuke Kajino
- Department of Molecular Biology, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Emily Omori
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695-7633
| | - Shunsuke Ishii
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, Ibaraki 305-0074, Japan
| | - Kunihiro Matsumoto
- Department of Molecular Biology, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan; Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, Japan
| | - Jun Ninomiya-Tsuji
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695-7633; Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, Japan.
| |
Collapse
|
62
|
Amthor H, Macharia R, Navarrete R, Schuelke M, Brown SC, Otto A, Voit T, Muntoni F, Vrbóva G, Partridge T, Zammit P, Bunger L, Patel K. Lack of myostatin results in excessive muscle growth but impaired force generation. Proc Natl Acad Sci U S A 2007; 104:1835-40. [PMID: 17267614 PMCID: PMC1794294 DOI: 10.1073/pnas.0604893104] [Citation(s) in RCA: 302] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The lack of myostatin promotes growth of skeletal muscle, and blockade of its activity has been proposed as a treatment for various muscle-wasting disorders. Here, we have examined two independent mouse lines that harbor mutations in the myostatin gene, constitutive null (Mstn(-/-)) and compact (Berlin High Line, BEH(c/c)). We report that, despite a larger muscle mass relative to age-matched wild types, there was no increase in maximum tetanic force generation, but that when expressed as a function of muscle size (specific force), muscles of myostatin-deficient mice were weaker than wild-type muscles. In addition, Mstn(-/-) muscle contracted and relaxed faster during a single twitch and had a marked increase in the number of type IIb fibers relative to wild-type controls. This change was also accompanied by a significant increase in type IIB fibers containing tubular aggregates. Moreover, the ratio of mitochondrial DNA to nuclear DNA and mitochondria number were decreased in myostatin-deficient muscle, suggesting a mitochondrial depletion. Overall, our results suggest that lack of myostatin compromises force production in association with loss of oxidative characteristics of skeletal muscle.
Collapse
Affiliation(s)
- Helge Amthor
- Department of Paediatrics, University Hospital of Essen, Essen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Ramel MC, Emery CM, Emery CS, Foulger R, Goberdhan DCI, van den Heuvel M, Wilson C. Drosophila SnoN modulates growth and patterning by antagonizing TGF-beta signalling. Mech Dev 2006; 124:304-17. [PMID: 17289352 DOI: 10.1016/j.mod.2006.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 12/18/2006] [Accepted: 12/20/2006] [Indexed: 11/22/2022]
Abstract
Signalling by TGF-beta ligands through the Smad family of transcription factors is critical for developmental patterning and growth. Disruption of this pathway has been observed in various cancers. In vertebrates, members of the Ski/Sno protein family can act as negative regulators of TGF-beta signalling, interfering with the Smad machinery to inhibit the transcriptional output of this pathway. In some contexts ski/sno genes function as tumour suppressors, but they were originally identified as oncogenes, whose expression is up-regulated in many tumours. These growth regulatory effects and the normal physiological functions of Ski/Sno proteins have been proposed to result from changes in TGF-beta signalling. However, this model is controversial and may be over-simplified, because recent findings indicate that Ski/Sno proteins can affect other signalling pathways. To address this issue in an in vivo context, we have analyzed the function of the Drosophila Ski/Sno orthologue, SnoN. We found that SnoN inhibits growth when overexpressed, indicating a tumour suppressor role in flies. It can act in multiple tissues to selectively and cell autonomously antagonise signalling by TGF-beta ligands from both the BMP and Activin sub-families. By contrast, analysis of a snoN mutant indicates that the gene does not play a global role in TGF-beta-mediated functions, but specifically inhibits TGF-beta-induced wing vein formation. We propose that SnoN normally functions redundantly with other TGF-beta pathway antagonists to finely adjust signalling levels, but that it can behave as an extremely potent inhibitor of TGF-beta signalling when highly expressed, highlighting the significance of its deregulation in cancer cells.
Collapse
Affiliation(s)
- M-C Ramel
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK.
| | | | | | | | | | | | | |
Collapse
|
64
|
Nagata M, Goto K, Ehata S, Kobayashi N, Saitoh M, Miyoshi H, Imamura T, Miyazawa K, Miyazono K. Nuclear and cytoplasmic c-Ski differently modulate cellular functions. Genes Cells 2006; 11:1267-80. [PMID: 17054724 DOI: 10.1111/j.1365-2443.2006.01018.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
c-Ski is a proto-oncogene product that induces morphologic transformation, anchorage independence, and myogenic differentiation when it is over-expressed in mesenchymal cells. c-Ski also inhibits signaling of transforming growth factor-beta (TGF-beta) superfamily members through interaction with Smad proteins. Although c-Ski is predominantly localized in the nucleus, aberrant cytoplasmic localization of it has also been reported in some tumor tissues and cell lines. In the present study, we identified the nuclear localization signal (NLS) in c-Ski. By introducing a mutation to abolish NLS activity, we examined the function of cytoplasmic c-Ski. Although cytoplasmic c-Ski suppressed TGF-beta superfamily-induced Smad signaling through sequestration of activated Smad complex to the cytoplasm, it failed to exhibit some of the activities that require nuclear localization of c-Ski, including suppression of basal transcription of the Smad7 gene. These findings indicate that subcellular localization of c-Ski affects its biologic activities. We also found that c-Ski accumulated in the cytoplasm when proteasome activity was inhibited. Mapping of the regions required for cytoplasmic accumulation by proteasome inhibitors suggests that subcellular localization of c-Ski may be regulated by proteasome-sensitive processes through amino acid residues 94-210 and 491-548.
Collapse
Affiliation(s)
- Motoko Nagata
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Zhu Q, Krakowski AR, Dunham EE, Wang L, Bandyopadhyay A, Berdeaux R, Martin GS, Sun L, Luo K. Dual role of SnoN in mammalian tumorigenesis. Mol Cell Biol 2006; 27:324-39. [PMID: 17074815 PMCID: PMC1800653 DOI: 10.1128/mcb.01394-06] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SnoN is an important negative regulator of transforming growth factor beta signaling through its ability to interact with and repress the activity of Smad proteins. It was originally identified as an oncoprotein based on its ability to induce anchorage-independent growth in chicken embryo fibroblasts. However, the roles of SnoN in mammalian epithelial carcinogenesis have not been well defined. Here we show for the first time that SnoN plays an important but complex role in human cancer. SnoN expression is highly elevated in many human cancer cell lines, and this high level of SnoN promotes mitogenic transformation of breast and lung cancer cell lines in vitro and tumor growth in vivo, consistent with its proposed pro-oncogenic role. However, this high level of SnoN expression also inhibits epithelial-to-mesenchymal transdifferentiation. Breast and lung cancer cells expressing the shRNA for SnoN exhibited an increase in cell motility, actin stress fiber formation, metalloprotease activity, and extracellular matrix production as well as a reduction in adherens junction proteins. Supporting this observation, in an in vivo breast cancer metastasis model, reducing SnoN expression was found to moderately enhance metastasis of human breast cancer cells to bone and lung. Thus, SnoN plays both pro-tumorigenic and antitumorigenic roles at different stages of mammalian malignant progression. The growth-promoting activity of SnoN appears to require its ability to bind to and repress the Smad proteins, while the antitumorigenic activity can be mediated by both Smad-dependent and Smad-independent pathways and requires the activity of small GTPase RhoA. Our study has established the importance of SnoN in mammalian epithelial carcinogenesis and revealed a novel aspect of SnoN function in malignant progression.
Collapse
Affiliation(s)
- Qingwei Zhu
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720-3204, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Zhang L, Sato E, Amagasaki K, Nakao A, Naganuma H. Participation of an abnormality in the transforming growth factor-beta signaling pathway in resistance of malignant glioma cells to growth inhibition induced by that factor. J Neurosurg 2006; 105:119-28. [PMID: 16871886 DOI: 10.3171/jns.2006.105.1.119] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECT Malignant glioma cells secrete and activate transforming growth factor-beta (TGFbeta) and are resistant to growth inhibition by that factor. Nevertheless, the mechanism underlying this effect remains poorly understood. In this study, the mechanism of the resistance to growth inhibition induced by TGFbeta was investigated. METHODS The authors examined the expression of downstream components of the TGFbeta receptor, including Smad2, Smad3, Smad4, and Smad7, and the effect of TGFbeta1 treatment on the phosphorylation of Smad2 and the nuclear translocation of Smad2 and Smad3 by using 10 glioma cell lines and the A549 cell line, which is sensitive to TGFbeta-mediated growth inhibition. The expression of two transcriptional corepressor proteins, SnoN and Ski, and the effect of TGFbeta1 treatment on the expression of the SnoN protein and the cell cycle regulators p21, p15, cyclin-dependent kinase-4 (CDK4), and cyclin D1 were also examined. Expression of the Smad2 and Smad3 proteins was lower in the glioma cell lines than in the A549 cell line and in normal astrocytes. In particular, Smad3 expression was low or very low in nine of the 10 malignant glioma cell lines. Expression of Smad4 was low in four glioma cell lines, and expression of the Smad7 protein was similar when compared with protein expression in the A549 cell line and in normal astrocytes. The levels of Smad2 phosphorylation after TGFbeta1 treatment were lower in glioma cell lines than in the A549 cell line, except for one glioma cell line. Seven of the 10 glioma cell lines exhibited lower levels of nuclear translocation of Smad2 and Smad3, and two cell lines that expressed very low levels of Smad3 protein showed no nuclear translocation. All glioma cell lines expressed the SnoN protein and its expression was unaltered by treatment with TGFbeta1. Three glioma cell lines expressed high levels of the Ski protein. The expression of the p21(cip1), p15(INK4B), CDK4, and cyclin D1 proteins was not altered by TGFbeta1, treatment, except in one cell line that displayed a slight increase in p21 protein. Overall, the expression of the Smad2 and Smad3 proteins was low in the glioma cell lines, the phosphorylation and nuclear translocation of Smad2 and Smad3 were impaired, and the TGFbeta receptor signal did not affect the expression of the SnoN, p21, p15, cyclin D1, and CDK4 proteins. CONCLUSIONS These results suggest that the ability to resist TGFbeta-mediated growth inhibition in malignant glioma cells is due to abnormalities in the TGFbeta signaling pathway.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neurosurgery, University of Yamanashi, Faculty of Medicine, Yamanashi, Japan
| | | | | | | | | |
Collapse
|
67
|
Hsu YHR, Sarker KP, Pot I, Chan A, Netherton SJ, Bonni S. Sumoylated SnoN represses transcription in a promoter-specific manner. J Biol Chem 2006; 281:33008-18. [PMID: 16966324 DOI: 10.1074/jbc.m604380200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional modulator SnoN controls a diverse set of biological processes, including cell proliferation and differentiation. The mechanisms by which SnoN regulates these processes remain incompletely understood. Recent studies have shown that SnoN exerts positive or negative regulatory effects on transcription. Because post-translational modification of proteins by small ubiquitin-like modifier (SUMO) represents an important mechanism in the control of the activity of transcriptional regulators, we asked if this modification regulates SnoN function. Here, we show that SnoN is sumoylated. Our data demonstrate that the SUMO-conjugating E2 enzyme Ubc9 is critical for SnoN sumoylation and that the SUMO E3 ligase PIAS1 selectively interacts with and enhances the sumoylation of SnoN. We identify lysine residues 50 and 383 as the SUMO acceptor sites in SnoN. Analyses of SUMO "loss-of-function" and "gain-of-function" SnoN mutants in transcriptional reporter assays reveal that sumoylation of SnoN contributes to the ability of SnoN to repress gene expression in a promoter-specific manner. Although this modification has little effect on SnoN repression of the plasminogen activator inhibitor-1 promoter and only modestly potentiates SnoN repression of the p21 promoter, SnoN sumoylation robustly augments the ability of SnoN to suppress transcription of the myogenesis master regulatory gene myogenin. In addition, we show that the SnoN SUMO E3 ligase, PIAS1, at its endogenous levels, suppresses myogenin transcription. Collectively, our findings suggest that SnoN is directly regulated by sumoylation leading to the enhancement of the ability of SnoN to repress transcription in a promoter-specific manner. Our study also points to a physiological role for SnoN sumoylation in the control of myogenin expression in differentiating muscle cells.
Collapse
Affiliation(s)
- Ying-Han R Hsu
- Southern Alberta Cancer Research Institute and Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | |
Collapse
|
68
|
Chang C, Brivanlou AH, Harland RM. Function of the two Xenopus smad4s in early frog development. J Biol Chem 2006; 281:30794-803. [PMID: 16908518 DOI: 10.1074/jbc.m607054200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Signals from the transforming growth factor beta family members are transmitted in the cell through specific receptor-activated Smads and a common partner Smad4. Two Smad4 genes (alpha and beta/10, or smad4 and smad4.2) have been isolated from Xenopus, and conflicting data are reported for Smad4beta/10 actions in mesodermal and neural induction. To further understand the functions of the Smad4s in early frog development, we analyzed their activities in detail. We report that Smad10 is a mutant form of Smad4beta that harbors a missense mutation of a conserved arginine to histidine in the MH1 domain. The mutation results in enhanced association of Smad10 with the nuclear transcription corepressor Ski and leads to its neural inducing activity through inhibition of bone morphogenetic protein (BMP) signaling. In contrast to Smad10, both Smad4alpha and Smad4beta enhanced BMP signals in ectodermal explants. Using antisense morpholino oligonucleotides (MOs) to knockdown endogenous Smad4 protein levels, we discovered that Smad4beta was required for both activin- and BMP-mediated mesodermal induction in animal caps, whereas Smad4alpha affected only the BMP signals. Neither Smad4 was involved directly in neural induction. Expression of Smad4beta-MO in early frog embryos resulted in reduction of mesodermal markers and defects in axial structures, which were rescued by either Smad4alpha or Smad4beta. Smad4alpha-MO induced only minor deficiency at late stages. As Smad4beta, but not Smad4alpha, is expressed at high levels maternally and during early gastrulation, our data suggest that although Smad4alpha and Smad4beta may have similar activities, they are differentially utilized during frog embryogenesis, with only Smad4beta being essential for mesoderm induction.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA.
| | | | | |
Collapse
|
69
|
Pardali K, Moustakas A. Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta Rev Cancer 2006; 1775:21-62. [PMID: 16904831 DOI: 10.1016/j.bbcan.2006.06.004] [Citation(s) in RCA: 261] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2006] [Revised: 06/24/2006] [Accepted: 06/26/2006] [Indexed: 02/07/2023]
Abstract
Transforming growth factor-beta (TGF-beta) is a secreted polypeptide that signals via receptor serine/threonine kinases and intracellular Smad effectors. TGF-beta inhibits proliferation and induces apoptosis in various cell types, and accumulation of loss-of-function mutations in the TGF-beta receptor or Smad genes classify the pathway as a tumor suppressor in humans. In addition, various oncogenic pathways directly inactivate the TGF-beta receptor-Smad pathway, thus favoring tumor growth. On the other hand, all human tumors overproduce TGF-beta whose autocrine and paracrine actions promote tumor cell invasiveness and metastasis. Accordingly, TGF-beta induces epithelial-mesenchymal transition, a differentiation switch that is required for transitory invasiveness of carcinoma cells. Tumor-derived TGF-beta acting on stromal fibroblasts remodels the tumor matrix and induces expression of mitogenic signals towards the carcinoma cells, and upon acting on endothelial cells and pericytes, TGF-beta regulates angiogenesis. Finally, TGF-beta suppresses proliferation and differentiation of lymphocytes including cytolytic T cells, natural killer cells and macrophages, thus preventing immune surveillance of the developing tumor. Current clinical approaches aim at establishing novel cancer drugs whose mechanisms target the TGF-beta pathway. In conclusion, TGF-beta signaling is intimately implicated in tumor development and contributes to all cardinal features of tumor cell biology.
Collapse
Affiliation(s)
- Katerina Pardali
- Ludwig Institute for Cancer Research, Box 595 Biomedical Center, Uppsala University, SE-751 24 Uppsala, Sweden
| | | |
Collapse
|
70
|
Stegmüller J, Konishi Y, Huynh MA, Yuan Z, Dibacco S, Bonni A. Cell-intrinsic regulation of axonal morphogenesis by the Cdh1-APC target SnoN. Neuron 2006; 50:389-400. [PMID: 16675394 DOI: 10.1016/j.neuron.2006.03.034] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 09/12/2005] [Accepted: 03/27/2006] [Indexed: 11/22/2022]
Abstract
Axonal growth is fundamental to the establishment of neuronal connectivity in the brain. However, the cell-intrinsic mechanisms that govern axonal morphogenesis remain to be elucidated. The ubiquitin ligase Cdh1-anaphase-promoting complex (Cdh1-APC) suppresses the growth of axons in postmitotic neurons. Here, we report that Cdh1-APC operates in the nucleus to inhibit axonal growth. We also identify the transcriptional corepressor SnoN as a key target of neuronal Cdh1-APC that promotes axonal growth. Cdh1 forms a physical complex with SnoN and stimulates the ubiquitin-dependent proteasomal degradation of SnoN in neurons. Knockdown of SnoN in neurons significantly reduces axonal growth and suppresses Cdh1 RNAi enhancement of axonal growth. In addition, SnoN knockdown in vivo suggests an essential function for SnoN in the development of granule neuron parallel fibers in the cerebellar cortex. These findings define Cdh1-APC and SnoN as components of a cell-intrinsic pathway that orchestrates axonal morphogenesis in a transcription-dependent manner in the mammalian brain.
Collapse
Affiliation(s)
- Judith Stegmüller
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
71
|
Melhuish TA, Wotton D. The Tgif2 gene contains a retained intron within the coding sequence. BMC Mol Biol 2006; 7:2. [PMID: 16436215 PMCID: PMC1402312 DOI: 10.1186/1471-2199-7-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 01/25/2006] [Indexed: 12/03/2022] Open
Abstract
Background TGIF and TGIF2 are homeodomain proteins, which act as TGFβ specific Smad transcriptional corepressors. TGIF recruits general repressors including mSin3 and CtBP. The related TGIF2 protein functions in a similar manner, but does not bind CtBP. In addition to repressing TGFβ activated gene expression, TGIF and TGIF2 repress gene expression by binding directly to DNA. TGIF and TGIF2 share two major blocks of similarity, encompassing the homeodomain, and a conserved carboxyl terminal repression domain. Here we characterize two splice variants of the Tgif2 gene from mouse and demonstrate that the Tgif2 gene contains a retained intron. Results By PCR from mouse cDNA, we identified two alternate splice forms of the Tgif2 gene. One splice variant encodes the full length 237 amino acid Tgif2, whereas the shorter form results in the removal of 39 codons from the centre of the coding region. The generation of this alternate splice form occurs with the mouse RNA, but not the human, and both splice forms are present in all mouse tissues analyzed. Human and mouse Tgif2 coding sequences contain a retained intron, which in mouse Tgif2 is removed by splicing from around 25–50% of RNAs, as assessed by RT-PCR. This splicing event is dependent on sequences within the mouse Tgif2 coding sequence. Both splice forms of mouse Tgif2 encode proteins which are active transcriptional repressors, and can repress both TGFβ dependent and independent transcription. In addition, we show that human and mouse Tgif2 interact with the transcriptional corepressor mSin3. Conclusion These data demonstrate that the Tgif2 gene contains a retained intron, within the second coding exon. This retained intron is not removed from the human mRNA at a detectable level, but is spliced out in a significant proportion of mouse RNAs. This alternate splicing is dependent entirely on sequences within the mouse Tgif2 coding sequence, suggesting the presence of an exonic splicing enhancer. Both splice forms of mouse Tgif2 produce proteins which are functional transcriptional repressors.
Collapse
Affiliation(s)
- Tiffany A Melhuish
- Department of Biochemistry and Molecular Genetics, Center for Cell Signaling, University of Virginia, Hospital West, Box 800577, HSC, Charlottesville VA 22908, USA
| | - David Wotton
- Department of Biochemistry and Molecular Genetics, Center for Cell Signaling, University of Virginia, Hospital West, Box 800577, HSC, Charlottesville VA 22908, USA
| |
Collapse
|
72
|
Abstract
Smad transcription factors lie at the core of one of the most versatile cytokine signaling pathways in metazoan biology-the transforming growth factor-beta (TGFbeta) pathway. Recent progress has shed light into the processes of Smad activation and deactivation, nucleocytoplasmic dynamics, and assembly of transcriptional complexes. A rich repertoire of regulatory devices exerts control over each step of the Smad pathway. This knowledge is enabling work on more complex questions about the organization, integration, and modulation of Smad-dependent transcriptional programs. We are beginning to uncover self-enabled gene response cascades, graded Smad response mechanisms, and Smad-dependent synexpression groups. Our growing understanding of TGFbeta signaling through the Smad pathway provides general principles for how animal cells translate complex inputs into concrete behavior.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | |
Collapse
|
73
|
Briones-Orta MA, Sosa-Garrocho M, Moreno-Alvarez P, Fonseca-Sánchez MA, Macías-Silva M. SnoN co-repressor binds and represses smad7 gene promoter. Biochem Biophys Res Commun 2006; 341:889-94. [PMID: 16442497 DOI: 10.1016/j.bbrc.2006.01.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 01/11/2006] [Indexed: 02/04/2023]
Abstract
SnoN and Ski oncoproteins are co-repressors for Smad proteins and repress TGF-beta-responsive gene expression. The smad7 gene is a TGF-beta target induced by Smad signaling, and its promoter contains the Smad-binding element (SBE) required for a positive regulation by the TGF-beta/Smad pathway. SnoN and Ski co-repressors also bind SBE but regulate negatively smad7 gene. Ski along with Smad4 binds and represses the smad7 promoter, whereas the repression mechanism by SnoN is not clear. Ski and SnoN overexpression inhibits smad7 reporter expression induced through TGF-beta signaling. Using chromatin immunoprecipitation assays, we found that SnoN binds smad7 promoter at the basal condition, whereas after a short TGF-beta treatment for 15-30 min SnoN is downregulated and no longer bound smad7 promoter. Interestingly, after a prolonged TGF-beta treatment SnoN is upregulated and returns to its position on the smad7 promoter, functioning probably as a negative feedback control. Thus, SnoN also seems to regulate negatively the TGF-beta-responsive smad7 gene by binding and repressing its promoter in a similar way to Ski.
Collapse
Affiliation(s)
- Marco A Briones-Orta
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | | | | | | | | |
Collapse
|
74
|
Ritter M, Kattmann D, Teichler S, Hartmann O, Samuelsson MKR, Burchert A, Bach JP, Kim TD, Berwanger B, Thiede C, Jäger R, Ehninger G, Schäfer H, Ueki N, Hayman MJ, Eilers M, Neubauer A. Inhibition of retinoic acid receptor signaling by Ski in acute myeloid leukemia. Leukemia 2006; 20:437-43. [PMID: 16424870 DOI: 10.1038/sj.leu.2404093] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with multiple different cytogenetic and molecular aberrations contributing to leukemic transformation. We compared gene expression profiles of 4608 genes using cDNA-arrays from 20 AML patients (nine with -7/del7q and 11 with normal karyotype) with 23 CD34+ preparations from healthy bone marrow donors. SKI, a nuclear oncogene, was highly up regulated. In a second set of 183 AML patients analyzed with real-time PCR, the highest expression level of SKI in AML with -7/del7q could be confirmed. As previously described, Ski associates with the retinoic acid receptor (RAR) complex and can repress transcription. We wanted to investigate the interference of Ski with RARalpha signaling in AML. Ski was co-immunoprecipitated and colocalized with RARalpha. We also found that overexpression of wild-type Ski inhibited the prodifferentiating effects of retinoic acid in U937 leukemia cells. Mutant Ski, lacking the N-CoR binding, was no more capable of repressing RARalpha signaling. The inhibition by wild-type Ski could partially be reverted by the histone deacetylase blocking agent valproic acid. In conclusion, Ski seems to be involved in the blocking of differentiation in AML via inhibition of RARalpha signaling.
Collapse
Affiliation(s)
- M Ritter
- Klinik für Innere Medizin mit SP Hämatologie, Onkologie und Immunologie, Philipps-Universität, Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Azuma H, Ehata S, Miyazaki H, Watabe T, Maruyama O, Imamura T, Sakamoto T, Kiyama S, Kiyama Y, Ubai T, Inamoto T, Takahara S, Itoh Y, Otsuki Y, Katsuoka Y, Miyazono K, Horie S. Effect of Smad7 expression on metastasis of mouse mammary carcinoma JygMC(A) cells. J Natl Cancer Inst 2005; 97:1734-46. [PMID: 16333029 DOI: 10.1093/jnci/dji399] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Transforming growth factor beta (TGF-beta) facilitates metastasis during the advanced stages of cancer. Smad6, Smad7, and c-Ski block signaling by the TGF-beta superfamily proteins through different modes of action. We used adenovirus-mediated gene transfer of these natural inhibitors in a mouse model of breast cancer to examine the roles of TGF-beta superfamily signaling in tumor growth and metastasis. METHODS We systemically administered, by intravenous injection, adenoviruses (AdCMV) containing the mouse cDNAs for Smad7, Smad6, c-Ski, the c-Ski mutant c-Ski (ARPG), or LacZ (control) to nude mice (>19 mice/group) bearing tumors derived from mouse mammary carcinoma JygMC(A) cells, which spontaneously metastasize to lung and liver, and examined their effects on survival and metastasis. High-throughput western blotting analysis was used to examine the expression levels for 47 signal transduction proteins in JygMC(A) cells and primary tumors. We also investigated the proliferation, migration, and invasion of JygMC(A) cells that stably overexpressed Smad6 or Smad7. Nonparametric comparisons were done by Kruskal-Wallis H statistic and Wilcoxon's rank sum tests. Parametric comparisons were done by one-way analysis of variance or two-sided unpaired Student's t tests. All statistical tests were two-sided. RESULTS Control mice bearing tumors derived from JygMC(A) cells showed many metastases to the lung and liver; all animals died by 50 days after cell inoculation. By contrast, mice treated with AdCMV-Smad7 or AdCMV-c-Ski demonstrated a dramatic decrease in metastasis and statistically significantly longer survival than control mice (Smad7 versus LacZ: medium survival = 55 days versus 41 days, difference = 14 days [95% confidence interval {CI} = 6 days to 22 days], P < .001), whereas mice treated with AdCMV-Smad6 or AdCMV-c-Ski (ARPG) did not. Expression of Smad7 in JygMC(A) cells was associated with increased expression of major components of adherens and tight junctions, including E-cadherin, decreased expression of N-cadherin, and decreases in the migratory and invasive abilities of the JygMC(A) cells. CONCLUSION Smad7 inhibits metastasis, possibly by regulating cell-cell adhesion. Systemic expression of Smad7 may be a novel strategy for the prevention of metastasis of advanced cancers.
Collapse
Affiliation(s)
- Haruhito Azuma
- Department of Urology, Osaka Medical College, Takatsuki, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Wilson CA, Cajulis EE, Green JL, Olsen TM, Chung YA, Damore MA, Dering J, Calzone FJ, Slamon DJ. HER-2 overexpression differentially alters transforming growth factor-beta responses in luminal versus mesenchymal human breast cancer cells. Breast Cancer Res 2005; 7:R1058-79. [PMID: 16457687 PMCID: PMC1410754 DOI: 10.1186/bcr1343] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 09/27/2005] [Accepted: 10/06/2005] [Indexed: 12/29/2022] Open
Abstract
Introduction Amplification of the HER-2 receptor tyrosine kinase has been implicated in the pathogenesis and aggressive behavior of approximately 25% of invasive human breast cancers. Clinical and experimental evidence suggest that aberrant HER-2 signaling contributes to tumor initiation and disease progression. Transforming growth factor beta (TGF-β) is the dominant factor opposing growth stimulatory factors and early oncogene activation in many tissues, including the mammary gland. Thus, to better understand the mechanisms by which HER-2 overexpression promotes the early stages of breast cancer, we directly assayed the cellular and molecular effects of TGF-β1 on breast cancer cells in the presence or absence of overexpressed HER-2. Methods Cell proliferation assays were used to determine the effect of TGF-β on the growth of breast cancer cells with normal or high level expression of HER-2. Affymetrix microarrays combined with Northern and western blot analysis were used to monitor the transcriptional responses to exogenous TGF-β1 in luminal and mesenchymal-like breast cancer cells. The activity of the core TGF-β signaling pathway was assessed using TGF-β1 binding assays, phospho-specific Smad antibodies, immunofluorescent staining of Smad and Smad DNA binding assays. Results We demonstrate that cells engineered to over-express HER-2 are resistant to the anti-proliferative effect of TGF-β1. HER-2 overexpression profoundly diminishes the transcriptional responses induced by TGF-β in the luminal MCF-7 breast cancer cell line and prevents target gene induction by a novel mechanism that does not involve the abrogation of Smad nuclear accumulation, DNA binding or changes in c-myc repression. Conversely, HER-2 overexpression in the context of the mesenchymal MDA-MB-231 breast cell line potentiated the TGF-β induced pro-invasive and pro-metastatic gene signature. Conclusion HER-2 overexpression promotes the growth and malignancy of mammary epithelial cells, in part, by conferring resistance to the growth inhibitory effects of TGF-β. In contrast, HER-2 and TGF-β signaling pathways can cooperate to promote especially aggressive disease behavior in the context of a highly invasive breast tumor model.
Collapse
Affiliation(s)
- Cindy A Wilson
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | - Jennifer L Green
- Department of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Taylor M Olsen
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | - Judy Dering
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | - Dennis J Slamon
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
77
|
van Grunsven LA, Verstappen G, Huylebroeck D, Verschueren K. Smads and chromatin modulation. Cytokine Growth Factor Rev 2005; 16:495-512. [PMID: 15979924 DOI: 10.1016/j.cytogfr.2005.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 05/11/2005] [Indexed: 12/29/2022]
Abstract
Smad proteins are critical intracellular effector proteins and regulators of transforming growth factor type beta (TGFbeta) modulated gene transcription. They directly convey signals that initiate at ligand-bound receptor complexes and end in the nucleus with changes in programs of gene expression. Activated Smad proteins seem to recruit chromatin modifying proteins to target genes besides cooperating with DNA-bound transcription factors. We survey here the current and still emerging knowledge on Smad-binding factors, and their different mechanisms of chromatin modification in particular, in Smad-dependent TGFbeta signaling.
Collapse
Affiliation(s)
- Leo A van Grunsven
- Department of Developmental Biology (VIB7), Flanders Interuniversity Institute for Biotechnology (VIB) and Laboratory of Molecular Biology (Celgen), University of Leuven, Belgium
| | | | | | | |
Collapse
|
78
|
Choi SJ, Moon JH, Ahn YW, Ahn JH, Kim DU, Han TH. Tsc-22 enhances TGF-beta signaling by associating with Smad4 and induces erythroid cell differentiation. Mol Cell Biochem 2005; 271:23-8. [PMID: 15881652 DOI: 10.1007/s11010-005-3456-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tsc-22 was isolated as a TGF-beta-inducible gene by differential screening of the mouse osteoblastic cell cDNA library [J Biol Chem 267 (1992) 10219]. tsc-22 mRNA is expressed in almost all organs of mice and humans and its expression is induced in a variety of cell lines by many different factors including TGF-beta, phorbol ester, serum, and progestin. tsc-22 encodes a 18-kd protein that contains a leucine zipper motif and a Tsc-box. The leucine zipper motif of the Tsc-22 protein does not have a basic DNA binding motif and when the protein was fused to a heterologous DNA binding domain, it showed various transcription-modulating activities ranging from activation to repression [J Biol Chem 274 (1999) 27439, Biochem Biophys Res Commun 278 (2000) 659]. Although these results suggest that the Tsc-22 protein functions as a transcriptional regulator recruiting various coactivators or repressors, its mechanism is not known. In this study, we examined whether Tsc-22 modulates the TGF-beta-dependant signaling pathway and found that Tsc-22 binds to and modulate the transcriptional activity of Smad3 and Smad4. Its effect on cellular differentiation was also examined.
Collapse
Affiliation(s)
- So-Jung Choi
- Department of Molecular Cell Biology and Center for Molecular Medicine, SBRI, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
79
|
Edmiston JS, Yeudall WA, Chung TD, Lebman DA. Inability of transforming growth factor-beta to cause SnoN degradation leads to resistance to transforming growth factor-beta-induced growth arrest in esophageal cancer cells. Cancer Res 2005; 65:4782-8. [PMID: 15930298 DOI: 10.1158/0008-5472.can-04-4354] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is well established that loss of a growth inhibitory response to transforming growth factor-beta (TGF-beta) is a common feature of epithelial cancers including esophageal cancer. However, the molecular basis for the abrogation of this key homeostatic mechanism is poorly understood. In esophageal cancer cell lines that are resistant to TGF-beta-induced growth inhibition, TGF-beta also fails to decrease transcription of c-myc despite the presence of functional signaling components. Consequently, to gain a better understanding of the mechanisms leading to resistance to TGF-beta-induced growth arrest, the basis for the inability to decrease c-myc transcription was investigated. Regardless of sensitivity to TGF-beta-induced growth arrest, TGF-beta enhanced the ability of Smad3-protein complexes to bind c-myc regulatory elements. However, in a growth inhibition-resistant esophageal cancer cell line, the Smad3-protein complexes contained the SnoN oncoprotein. Furthermore, in esophageal cancer cell lines that are resistant to TGF-beta-induced growth arrest, TGF-beta does not cause degradation of SnoN. Analyses of the effect of modulating SnoN expression in both growth inhibition-sensitive and growth inhibition-resistant cell lines showed that degradation of SnoN is a prerequisite for both TGF-beta-induced repression of c-myc transcription and growth arrest. The data indicate that SnoN-Smad3 complexes do not cause repression of c-myc transcription but rather prevent functionality of active repressor complexes. Thus, these studies reveal a novel mechanism for resistance to TGF-beta-induced growth inhibition in esophageal cancer, namely the failure to degrade SnoN. In addition, they show that SnoN can block TGF-beta repression of gene transcription.
Collapse
Affiliation(s)
- Jeffery S Edmiston
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond 23298-0678, USA
| | | | | | | |
Collapse
|
80
|
Cui Q, Lim SK, Zhao B, Hoffmann FM. Selective inhibition of TGF-beta responsive genes by Smad-interacting peptide aptamers from FoxH1, Lef1 and CBP. Oncogene 2005; 24:3864-74. [PMID: 15750622 DOI: 10.1038/sj.onc.1208556] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Transforming growth factor beta (TGF-beta) stimulation results in the assembly of Smad-containing protein complexes that mediate activation or repression of TGF-beta responsive genes. To determine if disruption of specific Smad protein-protein interactions would selectively inhibit responses to TGF-beta or generally interfere with Smad-dependent signaling, we developed three Smad-binding peptide aptamers by introducing Smad interaction motifs from Smad-binding proteins CBP, FoxH1 and Lef1 into the scaffold protein E. coli thioredoxin A (Trx). All three classes of aptamers bound to Smads by GST pulldown assays and co-immunoprecipitation from mammalian cells. Expression of the aptamers in HepG2 cells did not generally inhibit Smad-dependent signaling as evaluated using seven TGF-beta responsive luciferase reporter genes. The Trx-xFoxH1b aptamer inhibited TGF-beta-induced expression from a reporter dependent on the Smad-FoxH1 interaction, A3-lux, by 50%. Trx-xFoxH1b also partially inhibited two reporters not dependent on a Smad-FoxH1 interaction, 3TP-lux and Twntop, and endogenous PAI-1 expression. Trx-Lef1 aptamer only inhibited expression of the Smad-Lef1 responsive reporter gene TwnTop. The Trx-CBP aptamer had no significant effect on reporter gene expression. The results suggest that Smad-binding peptide aptamers can be developed to selectively inhibit TGF-beta-induced gene expression.
Collapse
Affiliation(s)
- Qiqi Cui
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
81
|
Alliston T, Ko TC, Cao Y, Liang YY, Feng XH, Chang C, Derynck R. Repression of Bone Morphogenetic Protein and Activin-inducible Transcription by Evi-1. J Biol Chem 2005; 280:24227-37. [PMID: 15849193 DOI: 10.1074/jbc.m414305200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smads, key effectors of transforming growth factor (TGF)-beta, activin, and bone morphogenetic protein (BMP) signaling, regulate gene expression and interact with coactivators and corepressors that modulate Smad activity. The corepressor Evi-1 exerts its oncogenic effects by repressing TGF-beta/Smad3-mediated transcription, thereby blocking TGF-beta-induced growth arrest. Because Evi-1 interacts with the highly conserved MH2 domain of Smad3, we investigated the physical and functional interaction of Evi-1 with Smad1 and Smad2, downstream targets of BMP and activin signaling, respectively. Evi-1 interacted with and repressed the receptor-activated transcription through Smad1 and Smad2, similarly to Smad3. In addition, Evi-1 repressed BMP/Smad1- and activin/Smad2-mediated induction of endogenous Xenopus gene expression, suggesting a role of repression of BMP and activin signals by Evi-1 in vertebrate embryogenesis. Evi-1 also repressed the induction of endogenous Smad7 expression by TGF-beta family ligands. In the course of these studies, we observed Evi-1 repression of Smad transactivation even when Smad binding to DNA was kept constant. We therefore explored the mechanism of Evi-1 repression of TGF-beta family-inducible transcription. Evi-1 repression did not result from displacement of Smad binding to DNA or to CREB-binding protein but from the recruitment of Evi-1 by Smad3 and CREB-binding protein to DNA. Following TGF-beta stimulation, Evi-1 and the associated corepressor CtBP were recruited to the endogenous Smad7 promoter. Evi-1 recruitment to the promoter decreased TGF-beta-induced histone acetylation, coincident with its repression of Smad7 gene expression. In this way, Evi-1 acts as a general Smad corepressor to inhibit TGF-beta-, activin-, and BMP-inducible transcription.
Collapse
Affiliation(s)
- Tamara Alliston
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, California 94143-0512, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Nudi M, Ouimette JF, Drouin J. Bone morphogenic protein (Smad)-mediated repression of proopiomelanocortin transcription by interference with Pitx/Tpit activity. Mol Endocrinol 2005; 19:1329-42. [PMID: 15695370 DOI: 10.1210/me.2004-0425] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The signaling molecules bone morphogenic protein (BMP) 4 and 2 have been implicated in early organogenesis and cell differentiation of the pituitary. However, the use of different experimental paradigms has led to conflicting interpretations with regard to the action of these factors on differentiation of corticotroph cells and on expression of the proopiomelanocortin (POMC) gene. We have now directly assessed the action of BMP signaling on POMC expression and found that BMP4 represses POMC mRNA levels and promoter activity. This repression appears to be dependent on the classical BMP signaling pathway that involves the activin-like kinase 3/6 receptors and the Smad1/4 transcription factors. The repression is reversed by overexpression of the inhibitory Smads, Smad6 or Smad7. Collectively, the evidence suggests that autocrine BMP signaling may be acting upon AtT-20 cells to set the level of POMC expression. Upon BMP4 stimulation, activated phospho-Smad1 is recruited to the POMC promoter, where it apparently acts through interactions with the Pitx and Tpit transcription factors. It is postulated that these interactions interfere with the transcriptional activity of Pitx and/or Tpit, thus resulting in transcriptional repression.
Collapse
Affiliation(s)
- Maria Nudi
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, Québec, Canada H2W 1R7
| | | | | |
Collapse
|
83
|
Abstract
Transforming growth factor beta (TGF-beta) is a ubiquitous and essential regulator of cellular and physiologic processes including proliferation, differentiation, migration, cell survival, angiogenesis, and immunosurveillance. Alterations in the TGF-beta signaling pathway, including mutation or deletion of members of the signaling pathway and resistance to TGF-beta-mediated inhibition of proliferation are frequently observed in human cancers. Although these alterations define a tumor suppressor role for the TGF-beta pathway in human cancer, TGF-beta also mediates tumor-promoting effects, either through differential effects on tumor and stromal cells or through a fundamental alteration in the TGF-beta responsiveness of the tumor cells themselves. TGF-beta and members of the TGF-beta signaling pathway are being evaluated as prognostic or predictive markers for cancer patients. Ongoing advances in understanding the TGF-beta signaling pathway will enable targeting of this pathway for the chemoprevention and treatment of human cancers.
Collapse
Affiliation(s)
- Rebecca L Elliott
- Department of Medicine and Pharmacology and Cancer Biology, Duke University Medical Center, 221 BMSRB Research Drive, Box 2631 DUMC, Durham, NC 27710, USA
| | | |
Collapse
|
84
|
Wilkinson DS, Ogden SK, Stratton SA, Piechan JL, Nguyen TT, Smulian GA, Barton MC. A direct intersection between p53 and transforming growth factor beta pathways targets chromatin modification and transcription repression of the alpha-fetoprotein gene. Mol Cell Biol 2005; 25:1200-12. [PMID: 15657445 PMCID: PMC544019 DOI: 10.1128/mcb.25.3.1200-1212.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We purified the oncoprotein SnoN and found that it functions as a corepressor of the tumor suppressor p53 in the regulation of the hepatic alpha-fetoprotein (AFP) tumor marker gene. p53 promotes SnoN and histone deacetylase interaction at an overlapping Smad binding, p53 regulatory element (SBE/p53RE) in AFP. Comparison of wild-type and p53-null mouse liver tissue by using chromatin immunoprecipitation (ChIP) reveals that the absence of p53 protein correlates with the disappearance of SnoN at the SBE/p53RE and loss of AFP developmental repression. Treatment of AFP-expressing hepatoma cells with transforming growth factor-beta1 (TGF-beta1) induced SnoN transcription and Smad2 activation, concomitant with AFP repression. ChIP assays show that TGF-beta1 stimulates p53, Smad4, P-Smad2 binding, and histone H3K9 deacetylation and methylation, at the SBE/p53RE. Depletion, by small interfering RNA, of SnoN and/or p53 in hepatoma cells disrupted repression of AFP transcription. These findings support a model of cooperativity between p53 and TGF-beta effectors in chromatin modification and transcription repression of an oncodevelopmental tumor marker gene.
Collapse
Affiliation(s)
- Deepti S Wilkinson
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
85
|
Wilson JJ, Malakhova M, Zhang R, Joachimiak A, Hegde RS. Crystal structure of the dachshund homology domain of human SKI. Structure 2005; 12:785-92. [PMID: 15130471 DOI: 10.1016/j.str.2004.02.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 02/11/2004] [Accepted: 02/11/2004] [Indexed: 11/28/2022]
Abstract
The nuclear protooncoprotein SKI negatively regulates transforming growth factor-beta (TGF-beta) signaling in cell growth and differentiation. It directly interacts with the Smads and, by various mechanisms, represses the transcription of TGF-beta-responsive genes. SKI is a multidomain protein that includes a domain bearing high sequence similarity with the retinal determination protein Dachshund (the Dachshund homology domain, DHD). The SKI-DHD has been implicated in SMAD-2/3, N-CoR, SKIP, and PML-RARalpha binding. The 1.65 A crystal structure of the Dachshund homology domain of human SKI is reported here. The SKI-DHD adopts a mixed alpha/beta structure which includes features found in the forkhead/winged-helix family of DNA binding proteins, although SKI-DHD is not a DNA binding domain. Residues that form a contiguous surface patch on SKI-DHD are conserved within the Ski/Sno family and with Dachshund, suggesting that this domain may mediate intermolecular interactions common to these proteins.
Collapse
Affiliation(s)
- Jeffrey J Wilson
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
86
|
Abstract
Myostatin is a secreted protein that acts as a negative regulator of skeletal muscle mass. During embryogenesis, myostatin is expressed by cells in the myotome and in developing skeletal muscle and acts to regulate the final number of muscle fibers that are formed. During adult life, myostatin protein is produced by skeletal muscle, circulates in the blood, and acts to limit muscle fiber growth. The existence of circulating tissue-specific growth inhibitors of this type was hypothesized over 40 years ago to explain how sizes of individual tissues are controlled. Skeletal muscle appears to be the first example of a tissue whose size is controlled by this type of regulatory mechanism, and myostatin appears to be the first example of the long-sought chalone.
Collapse
Affiliation(s)
- Se-Jin Lee
- Johns Hopkins University School of Medicine, Department of Molecular Biology and Genetics, Baltimore, MD 21205, USA.
| |
Collapse
|
87
|
Pan D, Estévez-Salmerón LD, Stroschein SL, Zhu X, He J, Zhou S, Luo K. The integral inner nuclear membrane protein MAN1 physically interacts with the R-Smad proteins to repress signaling by the transforming growth factor-{beta} superfamily of cytokines. J Biol Chem 2005; 280:15992-6001. [PMID: 15647271 DOI: 10.1074/jbc.m411234200] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smad proteins are critical intracellular mediators of the transforming growth factor-beta, bone morphogenic proteins (BMPs), and activin signaling. Upon ligand binding, the receptor-associated R-Smads are phosphorylated by the active type I receptor serine/threonine kinases. The phosphorylated R-Smads then form heteromeric complexes with Smad4, translocate into the nucleus, and interact with various transcription factors to regulate the expression of downstream genes. Interaction of Smad proteins with cellular partners in the cytoplasm and nucleus is a critical mechanism by which the activities and expression of the Smad proteins are modulated. Here we report a novel step of regulation of the R-Smad function at the inner nuclear membrane through a physical interaction between the integral inner nuclear membrane protein MAN1 and R-Smads. MAN1, through the RNA recognition motif, associates with R-Smads but not Smad4 at the inner nuclear membrane in a ligand-independent manner. Overexpression of MAN1 results in inhibition of R-Smad phosphorylation, heterodimerization with Smad4 and nuclear translocation, and repression of transcriptional activation of the TGFbeta, BMP2, and activin-responsive promoters. This repression of TGFbeta, BMP2, and activin signaling is dependent on the MAN1-Smad interaction because a point mutation that disrupts this interaction abolishes the transcriptional repression by MAN1. Thus, MAN1 represents a new class of R-Smad regulators and defines a previously unrecognized regulatory step at the nuclear periphery.
Collapse
Affiliation(s)
- Deng Pan
- Department of Molecular and Cell Biology, University of California, Berkeley and Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
88
|
Ueki N, Zhang L, Hayman MJ. Ski negatively regulates erythroid differentiation through its interaction with GATA1. Mol Cell Biol 2005; 24:10118-25. [PMID: 15542823 PMCID: PMC529047 DOI: 10.1128/mcb.24.23.10118-10125.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ski oncoprotein dramatically affects cell growth, differentiation, and/or survival. Recently, Ski was shown to act in distinct signaling pathways including those involving nuclear receptors, transforming growth factor beta, and tumor suppressors. These divergent roles of Ski are probably dependent on Ski's capacity to bind multiple partners with disparate functions. In particular, Ski alters the growth and differentiation program of erythroid progenitor cells, leading to malignant leukemia. However, the mechanism underlying this important effect has remained elusive. Here we show that Ski interacts with GATA1, a transcription factor essential in erythropoiesis. Using a Ski mutant deficient in GATA1 binding, we show that this Ski-GATA1 interaction is critical for Ski's ability to repress GATA1-mediated transcription and block erythroid differentiation. Furthermore, the repression of GATA1-mediated transcription involves Ski's ability to block DNA binding of GATA1. This finding is in marked contrast to those in previous reports on the mechanism of repression by Ski, which have described a model involving the recruitment of corepressors into DNA-bound transcription complexes. We propose that Ski cooperates in the process of transformation in erythroid cells by interfering with GATA1 function, thereby contributing to erythroleukemia.
Collapse
Affiliation(s)
- Nobuhide Ueki
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | | | | |
Collapse
|
89
|
Buess M, Terracciano L, Reuter J, Ballabeni P, Boulay JL, Laffer U, Metzger U, Herrmann R, Rochlitz C. Amplification of SKI is a prognostic marker in early colorectal cancer. Neoplasia 2004; 6:207-12. [PMID: 15153332 PMCID: PMC1502098 DOI: 10.1593/neo.03442] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Improved risk stratification of early colorectal cancer might help to better select patients for adjuvant treatment. Alterations in the transforming growth factor-beta (TGF-beta) pathway have frequently been found in colorectal cancer, but their impact on prognosis remains controversial. We therefore analyzed two transcriptional corepressors of the TGF-beta signaling pathway with respect to prognosis and prediction of chemotherapy benefit in early colorectal cancer. METHODS The gene copy status of SKI and SNON was analyzed by use of quantitative real-time polymerase chain reaction in 179 colorectal tumor biopsies, which had been collected from a randomized multicenter trial of the Swiss Group for Clinical Cancer Research (SAKK). RESULTS Partial or complete allelic loss was found in 41.5% and 55.2% for SKI and SNON, whereas amplification was found in 10.1% and 15.1%, respectively. Multivariate Cox analysis showed that gene amplification of SKI independently predicted reduced relapse-free [hazard ratio (HR) for relapse 2.08, P =.049] and overall survival (HR for death 2.62, P =.012). In contrast, deletion of SKI and the gene copy status of SNON were not significantly correlated with prognosis. CONCLUSION Amplification of SKI is a negative prognostic marker in early-stage colorectal cancer. This marker should help to improve risk stratification to better select patients for adjuvant therapy. Confirmatory investigations are warranted.
Collapse
Affiliation(s)
- Martin Buess
- Departments of Oncology and Research, University Hospital of Basel, Basel CH-4031, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Mizuhara E, Nakatani T, Minaki Y, Sakamoto Y, Ono Y. Corl1, a novel neuronal lineage-specific transcriptional corepressor for the homeodomain transcription factor Lbx1. J Biol Chem 2004; 280:3645-55. [PMID: 15528197 DOI: 10.1074/jbc.m411652200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During development, neuronal identity is determined by a combination of numerous transcription factors. However, the mechanisms of synergistic action of these factors in transcriptional regulation and subsequent cell fate specification are largely unknown. In this study, we identified a novel gene, Corl1, encoding a nuclear protein with homology to the Ski oncoprotein. Corl1 was highly selectively expressed in the central nervous system (CNS). In the embryonic CNS, Corl1 was expressed in a certain subset of postmitotic neurons generated posterior to the midbrain-hindbrain border. In the developing spinal cord, Corl1 was selectively expressed in the dorsal horn interneurons where a homeodomain transcription factor, Lbx1, is required for proper specification. Corl1 was localized in a nuclear dot-like structure and interacted with general transcriptional corepressors. In addition, Corl1 showed transcriptional repression activity in the GAL4-fusion system, indicating its involvement in the regulation of transcriptional repression. Furthermore, Corl1 interacted with Lbx1 and cooperatively repressed transcription, suggesting that it acts as a transcriptional corepressor for Lbx1 in regulating cell fate determination in the dorsal spinal cord. Corl1 corepressor activity did not depend on Gro/TLE activity, and Gro/TLE also functioned as a corepressor for Lbx1. Thus, Lbx1 can select two independent partners, Corl1 and Gro/TLE, as corepressors. Identification of a novel transcriptional corepressor with neuronal subtype-restricted expression might provide insights into the mechanisms of cell fate determination in neurons.
Collapse
Affiliation(s)
- Eri Mizuhara
- KAN Research Institute Inc., 93 Chudoji-Awata-cho, Shimogyo-ku, Kyoto 600-8815, Japan
| | | | | | | | | |
Collapse
|
91
|
Longerich T, Breuhahn K, Odenthal M, Petmecky K, Schirmacher P. Factors of transforming growth factor beta signalling are co-regulated in human hepatocellular carcinoma. Virchows Arch 2004; 445:589-96. [PMID: 15455231 DOI: 10.1007/s00428-004-1118-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 08/04/2004] [Indexed: 01/06/2023]
Abstract
Transforming growth factor beta (TGFbeta) is a central mitoinhibitory factor for epithelial cells, and alterations of TGFbeta signalling have been demonstrated in many different human cancers. We have analysed human hepatocellular carcinomas (HCCs) for potential pro-tumourigenic alterations in regard to expression of Smad4 and mutations and expression changes of the pro-oncogenic transcriptional co-repressors Ski and SnoN, as well as mRNA levels of matrix metalloproteinase-2 (MMP2), which is transcriptionally regulated by TGFbeta. Smad4 mRNA was detected in all HCCs; while, using immunohistology, loss of Smad4 expression was found in 10% of HCCs. Neither mutations in the transformation-relevant sequences nor significant pro-tumourigenic expression changes of the Ski and SnoN genes were detected. In HCC cell lines, expression of both genes was regulated, potentially involving phosphorylation. Ski showed a distinct nuclear speckled pattern, indicating recruitment to active transcription complexes. MMP2 mRNA levels were increased in 19% of HCCs, whereas MMP2 mRNA was not detectable in HCC cell lines, suggesting that MMP2 was derived only from tumour stroma cells. Transcript levels of Smad4, Ski, SnoN and MMP2 correlated well. These data argue against a significant role of Ski and SnoN in human hepatocarcinogenesis and suggest that, in the majority of HCCs, the analysed factors are co-regulated by an upstream mechanism, potentially by TGFbeta itself.
Collapse
Affiliation(s)
- Thomas Longerich
- Institute of Pathology, University of Cologne, Joseph-Stelzmann-Strasse 9, 50931 Cologne, Germany
| | | | | | | | | |
Collapse
|
92
|
Macdonald M, Wan Y, Wang W, Roberts E, Cheung TH, Erickson R, Knuesel MT, Liu X. Control of cell cycle-dependent degradation of c-Ski proto-oncoprotein by Cdc34. Oncogene 2004; 23:5643-53. [PMID: 15122324 DOI: 10.1038/sj.onc.1207733] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is known that excess amounts of Ski, or any member of its proto-oncoprotein family, causes disruption of the transforming growth factor beta signal transduction pathway, thus causing oncogenic transformation of cells. Previous studies indicate that Ski is a relatively unstable protein whose expression levels can be regulated by ubiquitin-mediated proteolysis. Here, we investigate the mechanism by which the stability of Ski is regulated. We show that the steady-state levels of Ski protein are controlled post-translationally by cell cycle-dependent proteolysis, wherein Ski is degraded during the interphase of the cell cycle but is relatively stable during mitosis. Furthermore, we demonstrate that the ubiquitin-conjugating enzyme Cdc34 mediates cell cycle-dependent Ski degradation both in vitro and in vivo. Overexpression of dominant-negative Cdc34 stabilizes Ski and enhances its ability to antagonize TGF-beta signaling. Our data suggest that regulated proteolysis of Ski is one of the key mechanisms that control the threshold levels of this proto-oncoprotein, and thus prevents epithelial cells from becoming TGF-beta resistant.
Collapse
Affiliation(s)
- Mara Macdonald
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, CO 80309, USA
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Han C, Demetris AJ, Liu Y, Shelhamer JH, Wu T. Transforming growth factor-beta (TGF-beta) activates cytosolic phospholipase A2alpha (cPLA2alpha)-mediated prostaglandin E2 (PGE)2/EP1 and peroxisome proliferator-activated receptor-gamma (PPAR-gamma)/Smad signaling pathways in human liver cancer cells. A novel mechanism for subversion of TGF-beta-induced mitoinhibition. J Biol Chem 2004; 279:44344-54. [PMID: 15294900 DOI: 10.1074/jbc.m404852200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) potently inhibits the growth of human epithelial cells. However, neoplastic epithelial cells become resistant to TGF-beta-mediated mitoinhibition, and the mechanisms for this alteration during tumorigenesis are not fully understood. This study was designed to determine whether there is an association between the cytosolic phospholipase A2alpha (cPLA2alpha)-controlled eicosanoid metabolism and the growth response to TGF-beta in human liver cancer cells. TGF-beta treatment induced simultaneous Smad-mediated gene transcription and phosphorylation of cPLA2alpha. Whereas Smad activation inhibited tumor cell growth, phosphorylation of cPLA2 alpha promoted growth and counteracted Smad-mediated mitoinhibition. TGF-beta1 failed to prevent the growth of cells with high basal expression of cPLA2alpha, but inhibition of cPLA2 alpha, cyclooxygenase-2 (COX-2), or EP1 receptor restored mitoinhibition by TGF-beta1 in these cells. These results suggest that resistance of tumor cells to TGF-beta-mediated mitoinhibition involves activation of cPLA2alpha/COX-2/EP1 signaling. Furthermore, the TGF-beta1-induced Smad transcriptional activity and mitoinhibition were blocked by overexpression of cPLA2alpha or peroxisome proliferator-activated receptor-gamma (PPAR-gamma) but enhanced by depletion of cPLA2alpha or PPAR-gamma. These findings, along with the observations that cPLA2alpha activates PPAR-gamma and that PPAR-gamma binds Smad3, illustrate novel cPLA2alpha/COX-2/EP1 and cPLA2alpha/PPAR-gamma/Smad signaling pathways that counteract the mitoinhibition by TGF-beta in human cancer cells.
Collapse
Affiliation(s)
- Chang Han
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
94
|
Atanasoski S, Notterpek L, Lee HY, Castagner F, Young P, Ehrengruber MU, Meijer D, Sommer L, Stavnezer E, Colmenares C, Suter U. The Protooncogene Ski Controls Schwann Cell Proliferation and Myelination. Neuron 2004; 43:499-511. [PMID: 15312649 DOI: 10.1016/j.neuron.2004.08.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 06/29/2004] [Accepted: 07/28/2004] [Indexed: 01/11/2023]
Abstract
Schwann cell proliferation and subsequent differentiation to nonmyelinating and myelinating cells are closely linked processes. Elucidating the molecular mechanisms that control these events is key to the understanding of nerve development, regeneration, nerve-sheath tumors, and neuropathies. We define the protooncogene Ski, an inhibitor of TGF-beta signaling, as an essential component of the machinery that controls Schwann cell proliferation and myelination. Functional Ski overexpression inhibits TGF-beta-mediated proliferation and prevents growth-arrested Schwann cells from reentering the cell cycle. Consistent with these findings, myelinating Schwann cells upregulate Ski during development and remyelination after injury. Myelination is blocked in myelin-competent cultures derived from Ski-deficient animals, and genes encoding myelin components are downregulated in Ski-deficient nerves. Conversely, overexpression of Ski in Schwann cells causes an upregulation of myelin-related genes. The myelination-regulating transcription factor Oct6 is involved in a complex modulatory relationship with Ski. We conclude that Ski is a crucial signal in Schwann cell development and myelination.
Collapse
Affiliation(s)
- Suzana Atanasoski
- Institute of Cell Biology, Department of Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Suzuki H, Yagi K, Kondo M, Kato M, Miyazono K, Miyazawa K. c-Ski inhibits the TGF-beta signaling pathway through stabilization of inactive Smad complexes on Smad-binding elements. Oncogene 2004; 23:5068-76. [PMID: 15107821 DOI: 10.1038/sj.onc.1207690] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
c-Ski inhibits transforming growth factor-beta (TGF-beta) signaling through interaction with Smad proteins. c-Ski represses Smad-mediated transcriptional activation, probably through its action as a transcriptional co-repressor. c-Ski also inhibits TGF-beta-induced downregulation of genes such as c-myc. However, mechanisms for transcriptional regulation of target genes by c-Ski have not been fully determined. In this study, we examined how c-Ski inhibits both TGF-beta-induced transcriptional activation and repression. DNA-affinity precipitation analysis revealed that c-Ski enhances the binding of Smad2 and 4, and to a lesser extent Smad3, to both CAGA and TGF-beta1 inhibitory element probes. A c-Ski mutant, which is unable to interact with Smad4, failed to enhance the binding of Smad complex on these probes and to inhibit the Smad-responsive promoter. These results suggest that stabilization of inactive Smad complexes on DNA is a critical event in c-Ski-mediated inhibition of TGF-beta signaling.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
96
|
Abstract
Ski and SnoN are unique proto-oncoproteins in that they can induce both oncogenic transformation and terminal muscle differentiation when expressed at high levels. Recent studies using in vitro and in vivo approaches have begun to unravel the complex roles of Ski and SnoN in tumorigenesis and embryonic development. The identification of Ski and SnoN as important negative regulators of signal transduction by the transforming growth factor-beta superfamily of cytokines provides a valuable molecular basis for the complex functions of Ski and SnoN.
Collapse
Affiliation(s)
- Kunxin Luo
- Life Sciences Division, Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 237 Hildebrand Hall, Mail code 3206, Berkeley, CA 94720-3206, USA.
| |
Collapse
|
97
|
Abstract
The Ski protein has been proposed to serve as a corepressor for Smad4 to maintain a transforming growth factor-beta (TGF-beta)-responsive promoter at a repressed, basal level. However, there have been no reports so far that it indeed acts on a natural promoter. We have previously cloned the human Smad7 promoter and shown that it contains the 8-base pair palindromic Smad-binding element (SBE) necessary for TGF-beta induction. In this report, we have characterized the negative regulation of Smad7 promoter basal activity by Ski. We show that Ski inhibits the Smad7 promoter basal activity in a SBE-dependent manner. Mutation of the SBE abrogates the inhibitory effect of Ski on the Smad7 promoter. Moreover, mutation of the SBE increases the Smad7 promoter basal activity. Using the chromatin immunoprecipitation assay, we further show that Ski together with Smad4 binds to the endogenous Smad7 promoter. Finally, we show that RNAi knockdown of Ski increases Smad7 reporter gene activity in transient transfection assays as well as elevating the endogenous level of Smad7 mRNA. Taken together, our results provide the first evidence that Ski is indeed a corepressor for Smad4, which can inhibit a natural TGF-beta responsive gene at the basal state.
Collapse
Affiliation(s)
- Natalia G Denissova
- Center for Advanced Biotechnology and Medicine, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 679 Hoes Land, Piscataway, NJ 08854, USA
| | | |
Collapse
|
98
|
MacDonald PN, Dowd DR, Zhang C, Gu C. Emerging insights into the coactivator role of NCoA62/SKIP in Vitamin D-mediated transcription. J Steroid Biochem Mol Biol 2004; 89-90:179-86. [PMID: 15225769 DOI: 10.1016/j.jsbmb.2004.03.097] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
NCoA62/SKIP was discovered as a nuclear protein that interacts with the Vitamin D receptor (VDR) and the SKI oncoprotein. NCoA62/SKIP expresses properties consistent with other nuclear receptor transcriptional coactivator proteins. For example, NCoA62/SKIP interacts selectively with the VDR-RXR heterodimer, it forms a ternary complex with liganded VDR and steroid receptor coactivator (SRC) proteins, and it synergizes with SRCs to augment 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)]- and VDR-activated transcription. Chromatin immunoprecipitation studies show that NCoA62/SKIP is recruited in a 1,25-(OH)(2)D(3)-dependent manner to native Vitamin D responsive gene promoters and it enters these promoter complexes after VDR and SRC entry. This suggests that NCoA62/SKIP functions at a distal step in the transactivation process. Recent studies indicate that NCoA62/SKIP is a component of the spliceosome machinery and interacts with important splicing factors such as prp8 and the U5 200kDa helicase. Functional studies also support an involvement of NCoA62/SKIP in mRNA splicing. Collectively, these data suggest a pivotal role for NCoA62/SKIP in coupling transcriptional regulation by VDR to RNA splicing. They further solidify an important role for VDR/NR-interactors downstream of the transcription process in determining the overall response of Vitamin D and steroid hormone regulated genes.
Collapse
Affiliation(s)
- Paul N MacDonald
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
99
|
Ingham RJ, Gish G, Pawson T. The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture. Oncogene 2004; 23:1972-84. [PMID: 15021885 DOI: 10.1038/sj.onc.1207436] [Citation(s) in RCA: 390] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuronal precursor cell-expressed developmentally downregulated 4 (Nedd4) is the prototypical protein in a family of E3 ubiquitin ligases that have a common domain architecture. They are comprised of a catalytic C-terminal HECT domain and N-terminal C2 domain and WW domains responsible for cellular localization and substrate recognition. These proteins are found throughout eukaryotes and regulate diverse biological processes through the targeted degradation of proteins that generally have a PPxY motif for WW domain recognition, and are found in the nucleus and at the plasma membrane. Whereas the yeast Saccharomyces cerevisiae uses a single protein, Rsp5p, to carry out these functions, evolution has provided higher eukaryotes with several related Nedd4 proteins that appear to have specialized roles. In this review we discuss how knowledge of individual domain function has provided insight into the physiological roles of the Nedd4 proteins and describe recent results that suggest discrete functions for individual family members.
Collapse
Affiliation(s)
- Robert J Ingham
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada M5G 1X5.
| | | | | |
Collapse
|
100
|
Frederick JP, Liberati NT, Waddell DS, Shi Y, Wang XF. Transforming growth factor beta-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element. Mol Cell Biol 2004; 24:2546-59. [PMID: 14993291 PMCID: PMC355825 DOI: 10.1128/mcb.24.6.2546-2559.2004] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Revised: 05/20/2003] [Accepted: 12/19/2003] [Indexed: 12/15/2022] Open
Abstract
Smad proteins are the most well-characterized intracellular effectors of the transforming growth factor beta (TGF-beta) signal. The ability of the Smads to act as transcriptional activators via TGF-beta-induced recruitment to Smad binding elements (SBE) within the promoters of TGF-beta target genes has been firmly established. However, the elucidation of the molecular mechanisms involved in TGF-beta-mediated transcriptional repression are only recently being uncovered. The proto-oncogene c-myc is repressed by TGF-beta, and this repression is required for the manifestation of the TGF-beta cytostatic program in specific cell types. We have shown that Smad3 is required for both TGF-beta-induced repression of c-myc and subsequent growth arrest in keratinocytes. The transcriptional repression of c-myc is dependent on direct Smad3 binding to a novel Smad binding site, termed a repressive Smad binding element (RSBE), within the TGF-beta inhibitory element (TIE) of the c-myc promoter. The c-myc TIE is a composite element, comprised of an overlapping RSBE and a consensus E2F site, that is capable of binding at least Smad3, Smad4, E2F-4, and p107. The RSBE is distinct from the previously defined SBE and may partially dictate, in conjunction with the promoter context of the overlapping E2F site, whether the Smad3-containing complex actively represses, as opposed to transactivates, the c-myc promoter.
Collapse
Affiliation(s)
- Joshua P Frederick
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|