51
|
Selective inhibition of HDAC6 promotes bladder cancer radiosensitization and mitigates the radiation-induced CXCL1 signalling. Br J Cancer 2023; 128:1753-1764. [PMID: 36810912 PMCID: PMC10133394 DOI: 10.1038/s41416-023-02195-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Although trimodality therapy resecting tumours followed by chemoradiotherapy is emerged for muscle-invasive bladder cancer (MIBC), chemotherapy produces toxicities. Histone deacetylase inhibitors have been identified as an effective strategy to enhance cancer radiotherapy (RT). METHODS We examined the role of HDAC6 and specific inhibition of HDAC6 on BC radiosensitivity by performing transcriptomic analysis and mechanism study. RESULTS HDAC6 knockdown or HDAC6 inhibitor (HDAC6i) tubacin exerted a radiosensitizing effect, including decreased clonogenic survival, increased H3K9ac and α-tubulin acetylation, and accumulated γH2AX, which are similar to the effect of panobinostat, a pan-HDACi, on irradiated BC cells. Transcriptomics of shHDAC6-transduced T24 under irradiation showed that shHDAC6 counteracted RT-induced mRNA expression of CXCL1, SERPINE1, SDC1 and SDC2, which are linked to cell migration, angiogenesis and metastasis. Moreover, tubacin significantly suppressed RT-induced CXCL1 and radiation-enhanced invasion/migration, whereas panobinostat elevated RT-induced CXCL1 expression and invasion/migration abilities. This phenotype was significantly abrogated by anti-CXCL1 antibody, indicating the key regulator of CXCL1 contributing to BC malignancy. Immunohistochemical evaluation of tumours from urothelial carcinoma patients supported the correlation between high CXCL1 expression and reduced survival. CONCLUSION Unlike pan-HDACi, the selective HDAC6i can enhance BC radiosensitization and effectively inhibit RT-induced oncogenic CXCL1-Snail-signalling, thus further advancing its therapeutic potential with RT.
Collapse
|
52
|
Epigenetic Regulation in Breast Cancer: Insights on Epidrugs. EPIGENOMES 2023; 7:epigenomes7010006. [PMID: 36810560 PMCID: PMC9953240 DOI: 10.3390/epigenomes7010006] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Breast cancer remains a common cause of cancer-related death in women. Therefore, further studies are necessary for the comprehension of breast cancer and the revolution of breast cancer treatment. Cancer is a heterogeneous disease that results from epigenetic alterations in normal cells. Aberrant epigenetic regulation is strongly associated with the development of breast cancer. Current therapeutic approaches target epigenetic alterations rather than genetic mutations due to their reversibility. The formation and maintenance of epigenetic changes depend on specific enzymes, including DNA methyltransferases and histone deacetylases, which are promising targets for epigenetic-based therapy. Epidrugs target different epigenetic alterations, including DNA methylation, histone acetylation, and histone methylation, which can restore normal cellular memory in cancerous diseases. Epigenetic-targeted therapy using epidrugs has anti-tumor effects on malignancies, including breast cancer. This review focuses on the importance of epigenetic regulation and the clinical implications of epidrugs in breast cancer.
Collapse
|
53
|
Zhao A, Zhou H, Yang J, Li M, Niu T. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct Target Ther 2023; 8:71. [PMID: 36797244 PMCID: PMC9935927 DOI: 10.1038/s41392-023-01342-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 02/18/2023] Open
Abstract
Hematologic malignancies are one of the most common cancers, and the incidence has been rising in recent decades. The clinical and molecular features of hematologic malignancies are highly heterogenous, and some hematologic malignancies are incurable, challenging the treatment, and prognosis of the patients. However, hematopoiesis and oncogenesis of hematologic malignancies are profoundly affected by epigenetic regulation. Studies have found that methylation-related mutations, abnormal methylation profiles of DNA, and abnormal histone deacetylase expression are recurrent in leukemia and lymphoma. Furthermore, the hypomethylating agents and histone deacetylase inhibitors are effective to treat acute myeloid leukemia and T-cell lymphomas, indicating that epigenetic regulation is indispensable to hematologic oncogenesis. Epigenetic regulation mainly includes DNA modifications, histone modifications, and noncoding RNA-mediated targeting, and regulates various DNA-based processes. This review presents the role of writers, readers, and erasers of DNA methylation and histone methylation, and acetylation in hematologic malignancies. In addition, this review provides the influence of microRNAs and long noncoding RNAs on hematologic malignancies. Furthermore, the implication of epigenetic regulation in targeted treatment is discussed. This review comprehensively presents the change and function of each epigenetic regulator in normal and oncogenic hematopoiesis and provides innovative epigenetic-targeted treatment in clinical practice.
Collapse
Affiliation(s)
- Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Hui Zhou
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Jinrong Yang
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Meng Li
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
54
|
Jolles S, Giralt S, Kerre T, Lazarus HM, Mustafa SS, Ria R, Vinh DC. Agents contributing to secondary immunodeficiency development in patients with multiple myeloma, chronic lymphocytic leukemia and non-Hodgkin lymphoma: A systematic literature review. Front Oncol 2023; 13:1098326. [PMID: 36824125 PMCID: PMC9941665 DOI: 10.3389/fonc.2023.1098326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/04/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction Patients with hematological malignancies (HMs), like chronic lymphocytic leukemia (CLL), multiple myeloma (MM), and non-Hodgkin lymphoma (NHL), have a high risk of secondary immunodeficiency (SID), SID-related infections, and mortality. Here, we report the results of a systematic literature review on the potential association of various cancer regimens with infection rates, neutropenia, lymphocytopenia, or hypogammaglobulinemia, indicative of SID. Methods A systematic literature search was performed in 03/2022 using PubMed to search for clinical trials that mentioned in the title and/or abstract selected cancer (CLL, MM, or NHL) treatments covering 12 classes of drugs, including B-lineage monoclonal antibodies, CAR T therapies, proteasome inhibitors, kinase inhibitors, immunomodulators, antimetabolites, anti-tumor antibiotics, alkylating agents, Bcl-2 antagonists, histone deacetylase inhibitors, vinca alkaloids, and selective inhibitors of nuclear export. To be included, a publication had to report at least one of the following: percentages of patients with any grade and/or grade ≥3 infections, any grade and/or grade ≥3 neutropenia, or hypogammaglobulinemia. From the relevant publications, the percentages of patients with lymphocytopenia and specific types of infection (fungal, viral, bacterial, respiratory [upper or lower respiratory tract], bronchitis, pneumonia, urinary tract infection, skin, gastrointestinal, and sepsis) were collected. Results Of 89 relevant studies, 17, 38, and 34 included patients with CLL, MM, and NHL, respectively. In CLL, MM, and NHL, any grade infections were seen in 51.3%, 35.9% and 31.1% of patients, and any grade neutropenia in 36.3%, 36.4%, and 35.4% of patients, respectively. The highest proportion of patients with grade ≥3 infections across classes of drugs were: 41.0% in patients with MM treated with a B-lineage monoclonal antibody combination; and 29.9% and 38.0% of patients with CLL and NHL treated with a kinase inhibitor combination, respectively. In the limited studies, the mean percentage of patients with lymphocytopenia was 1.9%, 11.9%, and 38.6% in CLL, MM, and NHL, respectively. Two studies reported the proportion of patients with hypogammaglobulinemia: 0-15.3% in CLL and 5.9% in NHL (no studies reported hypogammaglobulinemia in MM). Conclusion This review highlights cancer treatments contributing to infections and neutropenia, potentially related to SID, and shows underreporting of hypogammaglobulinemia and lymphocytopenia before and during HM therapies.
Collapse
Affiliation(s)
- Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| | - Sergio Giralt
- Division of Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Tessa Kerre
- Faculty of Medicine and Health Sciences, Ghent University Hospital, Ghent, Belgium
| | - Hillard M. Lazarus
- Department of Medicine, Hematology-Oncology, Case Western Reserve University, Cleveland, OH, United States
| | - S. Shahzad Mustafa
- Rochester Regional Health, Rochester, NY, United States
- Department of Medicine, Allergy/Immunology and Rheumatology, University of Rochester, Rochester, NY, United States
| | - Roberto Ria
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Donald C. Vinh
- Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
55
|
Georgiopoulos G, Makris N, Laina A, Theodorakakou F, Briasoulis A, Trougakos IP, Dimopoulos MA, Kastritis E, Stamatelopoulos K. Cardiovascular Toxicity of Proteasome Inhibitors: Underlying Mechanisms and Management Strategies: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2023; 5:1-21. [PMID: 36875897 PMCID: PMC9982226 DOI: 10.1016/j.jaccao.2022.12.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 02/24/2023] Open
Abstract
Proteasome inhibitors (PIs) are the backbone of combination treatments for patients with multiple myeloma and AL amyloidosis, while also indicated in Waldenström's macroglobulinemia and other malignancies. PIs act on proteasome peptidases, causing proteome instability due to accumulating aggregated, unfolded, and/or damaged polypeptides; sustained proteome instability then induces cell cycle arrest and/or apoptosis. Carfilzomib, an intravenous irreversible PI, exhibits a more severe cardiovascular toxicity profile as compared with the orally administered ixazomib or intravenous reversible PI such as bortezomib. Cardiovascular toxicity includes heart failure, hypertension, arrhythmias, and acute coronary syndromes. Because PIs are critical components of the treatment of hematological malignancies and amyloidosis, managing their cardiovascular toxicity involves identifying patients at risk, diagnosing toxicity early at the preclinical level, and offering cardioprotection if needed. Future research is required to elucidate underlying mechanisms, improve risk stratification, define the optimal management strategy, and develop new PIs with safe cardiovascular profiles.
Collapse
Key Words
- ACE, angiotensin-converting enzyme
- ACS, acute coronary syndrome
- AE, adverse event
- AF, atrial fibrillation
- ARB, angiotensin receptor blocker
- ASCT, autologous stem cell transplantation
- BP, blood pressure
- CVAE, cardiovascular adverse event
- ESC, European Society of Cardiology
- FMD, flow-mediated dilatation
- GLS, global longitudinal strain
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- IHD, ischemic heart disease
- IMiD, immunomodulatory drug
- Kd, carfilzomib and dexamethasone
- LA, left atrial
- LV, left ventricular
- LVEF, left ventricular ejection fraction
- MM, multiple myeloma
- NO, nitric oxide
- NP, natriuretic peptide
- OS, overall survival
- PBMC, peripheral blood mononuclear cell
- PFS, progression-free survival
- PH, pulmonary hypertension
- PI, proteasome inhibitor
- PWV, pulse wave velocity
- PrA, proteasome activity
- RRMM, relapse or refractory multiple myeloma
- SBP, systolic blood pressure
- TMA, thrombotic microangiopathy
- UPP, ubiquitin proteasome pathway
- VTE, venous thromboembolism
- Vd, bortezomib and dexamethasone
- WM, Waldenström’s macroglobulinemia
- bortezomib
- cardiovascular toxicity
- carfilzomib
- eNOS, endothelial nitric oxide synthase
- ixazomib
- proteasome inhibition
Collapse
Affiliation(s)
- Georgios Georgiopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Nikolaos Makris
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ageliki Laina
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Theodorakakou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Briasoulis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | | | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
56
|
|
57
|
Jake Shortt, Galettis P, Cheah CY, Davis J, Ludford-Menting M, Link EK, Martin JH, Koldej R, Ritchie D. A phase 1 clinical trial of the repurposable acetyllysine mimetic, n-methyl-2-pyrrolidone (NMP), in relapsed or refractory multiple myeloma. Clin Epigenetics 2023; 15:15. [PMID: 36709310 PMCID: PMC9884426 DOI: 10.1186/s13148-023-01427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/13/2023] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND N-methyl-2-pyrrolidone (NMP) is an epigenetically active chemical fragment and organic solvent with numerous applications including use as a drug-delivery vehicle. Previously considered biologically inert, NMP demonstrates immunomodulatory and anti-myeloma properties that are partly explained by acetyllysine mimetic properties and non-specific bromodomain inhibition. We therefore evaluated orally administered NMP in a phase 1 dose-escalation trial to establish its maximum tolerated dose (MTD) in patients with relapsed/refractory multiple myeloma (RR-MM). Secondary endpoints were safety, pharmacokinetics (PK), overall response rate and immunological biomarkers of activity. RESULTS Thirteen patients received NMP at starting doses between 50 and 400 mg daily. Intra-patient dose escalation occurred in five patients, with one attaining the ceiling protocolised dose of 1 g daily. Median number of monthly cycles commenced was three (range 1-20). Grade 3-4 adverse events (AEs) were reported in seven (54%; 95% CI 25-81%) patients. Most common AEs (> 30% of patients) of any grade were nausea and musculoskeletal pain. The only dose limiting toxicity (DLT) was diarrhoea in a patient receiving 200 mg NMP (overall DLT rate 8%; 95% CI 0-36%). Hence, the MTD was not defined. Median progression-free and overall survival were 57 (range 29-539) days and 33 (95% CI 9.7- > 44) months, respectively. The best response of stable disease (SD) was achieved in nine patients (69%; 95% CI 39-91%). PK analysis demonstrated proportional dose-concentrations up to 400 mg daily, with a more linear relationship above 500 mg. Maximum plasma concentrations (Cmax) of 16.7 mg/L at the 800 mg dose were below those predicted to inhibit BET-bromodomains. Peripheral blood immune-profiling demonstrated maintenance of natural killer (NK) cells, and a gene expression signature suggestive of enhanced T, B and NK cell functions; a subject with prolonged exposure manifested sustained recovery of B and NK cells at 12 months. CONCLUSIONS NMP demonstrated potential disease stabilising and immunomodulatory activity at sub-BET inhibitory plasma concentrations and was well tolerated in RR-MM; an MTD was not determined up to a maximum dose of 1 g daily. Further dose-finding studies are required to optimise NMP dosing strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Jake Shortt
- grid.1002.30000 0004 1936 7857Blood Cancer Therapeutics Laboratory, Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC Australia ,grid.419789.a0000 0000 9295 3933Monash Haematology, Monash Health, Clayton, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC Australia
| | - Peter Galettis
- grid.266842.c0000 0000 8831 109XCentre for Drug Repurposing and Medicines Research, University of Newcastle, Callaghan, NSW Australia ,grid.413648.cHunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW Australia
| | - Chan Y. Cheah
- grid.3521.50000 0004 0437 5942Department of Haematology, Sir Charles Gairdner Hospital, Perth, WA Australia ,grid.1012.20000 0004 1936 7910Division of Internal Medicine, Medical School, University of Western Australia, Perth, WA Australia
| | - Joanne Davis
- grid.416153.40000 0004 0624 1200ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine, University of Melbourne, Melbourne, VIC Australia
| | - Mandy Ludford-Menting
- grid.416153.40000 0004 0624 1200ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine, University of Melbourne, Melbourne, VIC Australia
| | - Emma K. Link
- grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC Australia ,grid.1055.10000000403978434Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Jennifer H. Martin
- grid.266842.c0000 0000 8831 109XCentre for Drug Repurposing and Medicines Research, University of Newcastle, Callaghan, NSW Australia ,grid.413648.cHunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW Australia
| | - Rachel Koldej
- grid.416153.40000 0004 0624 1200ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine, University of Melbourne, Melbourne, VIC Australia
| | - David Ritchie
- grid.416153.40000 0004 0624 1200ACRF Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine, University of Melbourne, Melbourne, VIC Australia ,grid.1055.10000000403978434Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC Australia
| |
Collapse
|
58
|
Characterizing crosstalk in epigenetic signaling to understand disease physiology. Biochem J 2023; 480:57-85. [PMID: 36630129 PMCID: PMC10152800 DOI: 10.1042/bcj20220550] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Epigenetics, the inheritance of genomic information independent of DNA sequence, controls the interpretation of extracellular and intracellular signals in cell homeostasis, proliferation and differentiation. On the chromatin level, signal transduction leads to changes in epigenetic marks, such as histone post-translational modifications (PTMs), DNA methylation and chromatin accessibility to regulate gene expression. Crosstalk between different epigenetic mechanisms, such as that between histone PTMs and DNA methylation, leads to an intricate network of chromatin-binding proteins where pre-existing epigenetic marks promote or inhibit the writing of new marks. The recent technical advances in mass spectrometry (MS) -based proteomic methods and in genome-wide DNA sequencing approaches have broadened our understanding of epigenetic networks greatly. However, further development and wider application of these methods is vital in developing treatments for disorders and pathologies that are driven by epigenetic dysregulation.
Collapse
|
59
|
Goel U, Charalampous C, Kapoor P, Binder M, Buadi FK, Dingli D, Dispenzieri A, Fonder A, Gertz MA, Gonsalves WI, Hayman SR, Hobbs MA, Hwa YL, Kourelis T, Lacy MQ, Leung N, Lin Y, Warsame RM, Kyle RA, Rajkumar SV, Kumar SK. Defining drug/drug class refractoriness vs lines of therapy in relapsed/refractory multiple myeloma. Blood Cancer J 2023; 13:11. [PMID: 36631454 PMCID: PMC9834217 DOI: 10.1038/s41408-023-00785-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Affiliation(s)
- Utkarsh Goel
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Moritz Binder
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - David Dingli
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Amie Fonder
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Morie A Gertz
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Yi L Hwa
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Martha Q Lacy
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Nelson Leung
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Yi Lin
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Robert A Kyle
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Shaji K Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
60
|
Bui BP, Nguyen PL, Lee K, Cho J. Hypoxia-Inducible Factor-1: A Novel Therapeutic Target for the Management of Cancer, Drug Resistance, and Cancer-Related Pain. Cancers (Basel) 2022; 14:cancers14246054. [PMID: 36551540 PMCID: PMC9775408 DOI: 10.3390/cancers14246054] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor that regulates the transcription of many genes that are responsible for the adaptation and survival of tumor cells in hypoxic environments. Over the past few decades, tremendous efforts have been made to comprehensively understand the role of HIF-1 in tumor progression. Based on the pivotal roles of HIF-1 in tumor biology, many HIF-1 inhibitors interrupting expression, stabilization, DNA binding properties, or transcriptional activity have been identified as potential therapeutic agents for various cancers, yet none of these inhibitors have yet been successfully translated into clinically available cancer treatments. In this review, we briefly introduce the regulation of the HIF-1 pathway and summarize its roles in tumor cell proliferation, angiogenesis, and metastasis. In addition, we explore the implications of HIF-1 in the development of drug resistance and cancer-related pain: the most commonly encountered obstacles during conventional anticancer therapies. Finally, the current status of HIF-1 inhibitors in clinical trials and their perspectives are highlighted, along with their modes of action. This review provides new insights into novel anticancer drug development targeting HIF-1. HIF-1 inhibitors may be promising combinational therapeutic interventions to improve the efficacy of current cancer treatments and reduce drug resistance and cancer-related pain.
Collapse
|
61
|
Zhu S, Xing C, Zhang G, Peng H, Wang Z. CC1007, a small molecular compound, suppresses multiple myeloma via upregulation of Nur77. Bioorg Chem 2022; 129:106217. [PMID: 36283176 DOI: 10.1016/j.bioorg.2022.106217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/20/2022] [Accepted: 10/16/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Multiple myeloma (MM) is a hematological malignancy of plasma cells characterized by the production of monoclonal immunoglobulin protein. Despite significant advances in the treatment of MM, it remains an incurable disorder owing to its resistance to chemotherapy and refractory nature. Inhibitors of histone deacetylases (HDACIs) have been identified as promising therapeutic drugs for cancer treatment. At present, numerous HDACIs are under study for the treatment of MM in monotherapy or in conjunction with other agents. OBJECTIVES In the present study, we investigated the anti-MM effect of CC1007, which was designed to indirectly inhibit class IIa HDACs by binding to myocyte enhancer factor-2 (MEF2) and blocking the targets regulated by the HDAC-MEF2 complex. DESIGN The effect of CC1007 on human MM cell lines, namely U266 and MM1.S, and CD138+ cells collected from the bone marrow of patients with MM was evaluated. METHODS The cells were subjected to growth-inhibition assay, apoptosis assay, cell cycle analysis, real-time PCR, western blotting, immunofluorescence, co-immunoprecipitation, ChIP assay, and siRNA transfection. Statistical differences were compared using two-tailed t tests or one-way analysis of variance followed by the Bonferroni post hoc test. RESULTS CC1007 inhibited the proliferation of MM cell lines and primary MM cells and induced their apoptosis and cell cycle arrest. Furthermore, CC1007 decreased the expression of MEF2C and HDAC7, thereby disturbing their interaction and promoting the overexpression of Nur77, a target of MEF2C. The overexpression of Nur77 and its translocation from the nucleus to the cytoplasm resulted in its binding to B-cell lymphoma 2 on the mitochondrial surface, thereby inducing the release of cytochrome C and activating the mitochondrial apoptotic pathway. CONCLUSIONS Since CC1007 demonstrates remarkable anti-MM effect on MM cells, it may be a promising drug for the treatment of MM.
Collapse
Affiliation(s)
- Shicong Zhu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Molecular Hematology, Central South University, Changsha, China
| | - Cheng Xing
- Institute of Molecular Hematology, Central South University, Changsha, China; Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, China
| | - Guangsen Zhang
- Institute of Molecular Hematology, Central South University, Changsha, China; Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, China
| | - Hongling Peng
- Institute of Molecular Hematology, Central South University, Changsha, China; Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, China
| | - Zhihua Wang
- Institute of Molecular Hematology, Central South University, Changsha, China; Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, China.
| |
Collapse
|
62
|
Anestopoulos I, Kyriakou S, Tragkola V, Paraskevaidis I, Tzika E, Mitsiogianni M, Deligiorgi MV, Petrakis G, Trafalis DT, Botaitis S, Giatromanolaki A, Koukourakis MI, Franco R, Pappa A, Panayiotidis MI. Targeting the epigenome in malignant melanoma: Facts, challenges and therapeutic promises. Pharmacol Ther 2022; 240:108301. [PMID: 36283453 DOI: 10.1016/j.pharmthera.2022.108301] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Malignant melanoma is the most lethal type of skin cancer with high rates of mortality. Although current treatment options provide a short-clinical benefit, acquired-drug resistance highlights the low 5-year survival rate among patients with advanced stage of the disease. In parallel, the involvement of an aberrant epigenetic landscape, (e.g., alterations in DNA methylation patterns, histone modifications marks and expression of non-coding RNAs), in addition to the genetic background, has been also associated with the onset and progression of melanoma. In this review article, we report on current therapeutic options in melanoma treatment with a focus on distinct epigenetic alterations and how their reversal, by specific drug compounds, can restore a normal phenotype. In particular, we concentrate on how single and/or combinatorial therapeutic approaches have utilized epigenetic drug compounds in being effective against malignant melanoma. Finally, the role of deregulated epigenetic mechanisms in promoting drug resistance to targeted therapies and immune checkpoint inhibitors is presented leading to the development of newly synthesized and/or improved drug compounds capable of targeting the epigenome of malignant melanoma.
Collapse
Affiliation(s)
- I Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - S Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - V Tragkola
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - I Paraskevaidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - E Tzika
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | | | - M V Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - G Petrakis
- Saint George Hospital, Chania, Crete, Greece
| | - D T Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - S Botaitis
- Department of Surgery, Alexandroupolis University Hospital, Democritus University of Thrace School of Medicine, Alexandroupolis, Greece
| | - A Giatromanolaki
- Department of Pathology, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - M I Koukourakis
- Radiotherapy / Oncology, Radiobiology & Radiopathology Unit, Department of Medicine, School of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - R Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - A Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - M I Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.
| |
Collapse
|
63
|
Maneix L, Iakova P, Moree SE, Hsu JI, Mistry RM, Stossi F, Lulla P, Sun Z, Sahin E, Yellapragada SV, Catic A. Proteasome Inhibitors Silence Oncogenes in Multiple Myeloma through Localized Histone Deacetylase 3 (HDAC3) Stabilization and Chromatin Condensation. CANCER RESEARCH COMMUNICATIONS 2022; 2:1693-1710. [PMID: 36846090 PMCID: PMC9949381 DOI: 10.1158/2767-9764.crc-22-0255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Proteasome inhibitors have become the standard of care for multiple myeloma (MM). Blocking protein degradation particularly perturbs the homeostasis of short-lived polypeptides such as transcription factors and epigenetic regulators. To determine how proteasome inhibitors directly impact gene regulation, we performed an integrative genomics study in MM cells. We discovered that proteasome inhibitors reduce the turnover of DNA-associated proteins and repress genes necessary for proliferation through epigenetic silencing. Specifically, proteasome inhibition results in the localized accumulation of histone deacetylase 3 (HDAC3) at defined genomic sites, which reduces H3K27 acetylation and increases chromatin condensation. The loss of active chromatin at super-enhancers critical for MM, including the super-enhancer controlling the proto-oncogene c-MYC, reduces metabolic activity and cancer cell growth. Epigenetic silencing is attenuated by HDAC3 depletion, suggesting a tumor-suppressive element of this deacetylase in the context of proteasome inhibition. In the absence of treatment, HDAC3 is continuously removed from DNA by the ubiquitin ligase SIAH2. Overexpression of SIAH2 increases H3K27 acetylation at c-MYC-controlled genes, increases metabolic output, and accelerates cancer cell proliferation. Our studies indicate a novel therapeutic function of proteasome inhibitors in MM by reshaping the epigenetic landscape in an HDAC3-dependent manner. As a result, blocking the proteasome effectively antagonizes c-MYC and the genes controlled by this proto-oncogene.
Collapse
Affiliation(s)
- Laure Maneix
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Cell and Gene Therapy Program at the Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Polina Iakova
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Cell and Gene Therapy Program at the Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Shannon E. Moree
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Cell and Gene Therapy Program at the Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Joanne I. Hsu
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Cell and Gene Therapy Program at the Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Ragini M. Mistry
- Integrated Microscopy Core and GCC Center for Advanced Microscopy and Image Informatics, Baylor College of Medicine, Houston, Texas
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Integrated Microscopy Core and GCC Center for Advanced Microscopy and Image Informatics, Baylor College of Medicine, Houston, Texas
| | - Premal Lulla
- Cell and Gene Therapy Program at the Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Zheng Sun
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Ergun Sahin
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
| | - Sarvari V. Yellapragada
- Department of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - André Catic
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Cell and Gene Therapy Program at the Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| |
Collapse
|
64
|
Rathnam K, Saju SV, Honey SR. Management of Relapsed and Refractory Multiple Myeloma: Recent advances. Indian J Med Paediatr Oncol 2022. [DOI: 10.1055/s-0042-1758537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
AbstractMultiple myeloma (MM) accounts for ∼10% of total hematologic malignancies worldwide. In India, the incidence of MM has increased two-fold with marked heterogeneity. Significant improvements in terms of clinical outcomes have been observed in the management of MM in recent years. However, most patients develop a disease relapse with the first or subsequent treatments. A combination of immunomodulatory drugs (thalidomide and lenalidomide) and proteasome inhibitors (PIs; bortezomib) has been the mainstay for the therapeutic management of relapsed/refractory multiple myeloma (RRMM). This review highlights the management of RRMM with newer agents such as belantamab, carfilzomib, daratumumab, elotuzumab, ixazomib, mafadotin, selinexor, panobinostat, and venetoclax, with more focus on PIs. As a single agent and in combination with other drugs including dexamethasone and carfilzomib has been studied extensively and approved by the United States, European Union, and India. Clinical trials of these newer agents, either alone or in combination, for the treatment of RRMM in Western countries indicate survival, improved outcomes, and overall well-being. However, evidence in Indian patients is evolving from ongoing studies on carfilzomib and daratumumab, which will ascertain their efficacy and safety. Currently, several guidelines recommend carfilzomib-based, daratumumab-based, and panobinostat-based regimens in RRMM patients. Currently, with more accessible generic versions of these drugs, more Indian patients may attain survival benefits and improved quality of life.
Collapse
Affiliation(s)
- Krishnakumar Rathnam
- Department of Medical Oncology & BMT, Meenakshi Mission Hospital & Research Centre, Madurai, Tamil Nadu, India
| | - S V. Saju
- Department of Medical Oncology & BMT, Meenakshi Mission Hospital & Research Centre, Madurai, Tamil Nadu, India
| | - Susan Raju Honey
- Department of Medical Oncology & BMT, Meenakshi Mission Hospital & Research Centre, Madurai, Tamil Nadu, India
| |
Collapse
|
65
|
Abe T, Horisawa Y, Kikuchi O, Ozawa-Umeta H, Kishimoto A, Katsuura Y, Imaizumi A, Hashimoto T, Shirakawa K, Takaori-Kondo A, Yusa K, Asakura T, Kakeya H, Kanai M. Pharmacologic characterization of TBP1901, a prodrug form of aglycone curcumin, and CRISPR-Cas9 screen for therapeutic targets of aglycone curcumin. Eur J Pharmacol 2022; 935:175321. [PMID: 36228744 DOI: 10.1016/j.ejphar.2022.175321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Curcumin (aglycone curcumin) has antitumor properties in a variety of malignancies via the alteration of multiple cancer-related biological pathways; however, its clinical application has been hampered due to its poor bioavailability. To overcome this limitation, we have developed a synthesized curcumin β-D-glucuronide sodium salt (TBP1901), a prodrug form of aglycone curcumin. In this study, we aimed to clarify the pharmacologic characteristics of TBP1901. In β-glucuronidase (GUSB)-proficient mice, both curcumin β-D-glucuronide and its active metabolite, aglycone curcumin, were detected in the blood after TBP1901 injection, whereas only curcumin β-D-glucuronide was detected in GUSB-impaired mice, suggesting that GUSB plays a pivotal role in the conversion of TBP1901 into aglycone curcumin in vivo. TBP1901 itself had minimal antitumor effects in vitro, whereas it demonstrated significant antitumor effects in vivo. Genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 screen disclosed the genes associated with NF-κB signaling pathway and mitochondria were among the highest hit. In vitro, aglycone curcumin inhibited NF-kappa B signaling pathways whereas it caused production of reactive oxygen species (ROS). ROS scavenger, N-acetyl-L-cysteine, partially reversed antitumor effects of aglycone curcumin. In summary, TBP1901 can exert antitumor effects as a prodrug of aglycone curcumin through GUSB-dependent activation.
Collapse
Affiliation(s)
| | - Yoshihito Horisawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Kikuchi
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | - Kotaro Shirakawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosuke Yusa
- Stem Cell Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tadashi Asakura
- Radioisotope Research Facilities, Jikei University School of Medicine, Tokyo, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| | - Masashi Kanai
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
66
|
Markouli M, Strepkos D, Piperi C. Impact of Histone Modifications and Their Therapeutic Targeting in Hematological Malignancies. Int J Mol Sci 2022; 23:13657. [PMID: 36362442 PMCID: PMC9654260 DOI: 10.3390/ijms232113657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Hematologic malignancies are a large and heterogeneous group of neoplasms characterized by complex pathogenetic mechanisms. The abnormal regulation of epigenetic mechanisms and specifically, histone modifications, has been demonstrated to play a central role in hematological cancer pathogenesis and progression. A variety of epigenetic enzymes that affect the state of histones have been detected as deregulated, being either over- or underexpressed, which induces changes in chromatin compaction and, subsequently, affects gene expression. Recent advances in the field of epigenetics have revealed novel therapeutic targets, with many epigenetic drugs being investigated in clinical trials. The present review focuses on the biological impact of histone modifications in the pathogenesis of hematologic malignancies, describing a wide range of therapeutic agents that have been discovered to target these alterations and are currently under investigation in clinical trials.
Collapse
Affiliation(s)
| | | | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.M.); (D.S.)
| |
Collapse
|
67
|
Yi J, Liu R, Liu Y, Guo T, Li Y, Zhou Y. Integrative Transcriptomic Analysis Identify Potential m6A Pathway-Related Drugs That Inhibit Cancer Cell Proliferation. Genes (Basel) 2022; 13:2011. [PMID: 36360248 PMCID: PMC9690298 DOI: 10.3390/genes13112011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 09/01/2023] Open
Abstract
Recent studies have found that m6A modification of mRNA may play important roles in the progression of various types of cancers. However, current knowledge about drugs that can interfere with m6A methylation and inhibit cancer cell proliferation is still far from comprehensive. To this end, we performed integrative analysis on transcriptome data with perturbation of m6A writers or erasers and identified consensus m6A-related differentially expressed genes (DEGs). Comparative analysis of these m6A-related DEGs with Connectivity Map signatures highlight potential m6A-targeted drugs. Among them, we experimentally verified the inhibitory effects of AZ628 on the proliferation of human breast cancer cell lines and R428 on the proliferation of human melanoma cell lines. Both drugs can significantly reduce the cellular level of m6A modification. These results suggest an m6A-related new target pathway by AZ628 and R428 and provide new candidate m6A-related drugs that inhibit cancer cell proliferation.
Collapse
Affiliation(s)
- Jingkun Yi
- Department of Biomedical Informatics, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Rucong Liu
- Department of Biomedical Informatics, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University, Beijing 100191, China
| | - Yu Liu
- Department of Biomedical Informatics, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Ting Guo
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100021, China
| | - Yang Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University, Beijing 100191, China
| | - Yuan Zhou
- Department of Biomedical Informatics, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
68
|
Jo JH, Jung DE, Lee HS, Park SB, Chung MJ, Park JY, Bang S, Park SW, Cho S, Song SY. A phase I/II study of ivaltinostat combined with gemcitabine and erlotinib in patients with untreated locally advanced or metastatic pancreatic adenocarcinoma. Int J Cancer 2022; 151:1565-1577. [PMID: 35657348 PMCID: PMC9545559 DOI: 10.1002/ijc.34144] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 12/03/2022]
Abstract
This phase I/II study evaluated the safety and efficacy of a new histone deacetylase (HDAC) inhibitor, ivaltinostat, in combination with gemcitabine and erlotinib for advanced pancreatic ductal adenocarcinoma (PDAC). Patients diagnosed with unresectable, histologically confirmed PDAC who had not undergone previous therapy were eligible. Phase I had a 3 + 3 dose escalation design to determine the maximum tolerable dose (MTD) of ivaltinostat (intravenously on days 1, 8 and 15) with gemcitabine (1000 mg/m2 intravenously on days 1, 8 and 15) and erlotinib (100 mg/day, orally) for a 28-day cycle. In phase II, patients received a six-cycle treatment with the MTD of ivaltinostat determined in phase I. The primary endpoint was the objective response rate (ORR). Secondary endpoints included overall survival (OS), disease control rate (DCR) and progression-free survival (PFS). The MTD of ivaltinostat for the phase II trial was determined to be 250 mg/m2 . In phase II, 24 patients were enrolled. The median OS and PFS were 8.6 (95% confidence interval [CI]: 5.3-11.2) and 5.3 months (95% CI: 3.7-5.8). Of the 16 patients evaluated for response, ORR and DCR were 25.0% and 93.8% with a median OS/PFS of 10.8 (95% CI: 8.3-16.7)/5.8 (95% CI: 4.6-6.7) months. Correlative studies showed that mutation burden detected by cfDNA and specific blood markers such as TIMP1, pro-MMP10, PECAM1, proMMP-2 and IGFBP1 were associated with clinical outcomes. Although the result of a small study, a combination of ivaltinostat, gemcitabine and erlotinib appeared to be a potential treatment option for advanced PDAC.
Collapse
Affiliation(s)
- Jung Hyun Jo
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Dawoon E. Jung
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Hee Seung Lee
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Soo Been Park
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Moon Jae Chung
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Jeong Youp Park
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Seungmin Bang
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Seung Woo Park
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| | - Sangsook Cho
- CG PharmaceuticalsOrindaCaliforniaUSA
- CrystalGenomicsSeongnamsi, GyeonggidoSouth Korea
| | - Si Young Song
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea
| |
Collapse
|
69
|
Nooka AK, Lonial S. EXABS-123-MM Additional Agents for RRMM - How Do/Will They Fit. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22 Suppl 2:S24-S26. [PMID: 36163819 DOI: 10.1016/s2152-2650(22)00649-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Ajay K Nooka
- Emory University Winship Cancer Institute, 1365B Clifton Rd NE, Atlanta, GA 30322, USA
| | - Sagar Lonial
- Emory University Winship Cancer Institute, 1365B Clifton Rd NE, Atlanta, GA 30322, USA
| |
Collapse
|
70
|
Design, Synthesis, and biological evaluation of HDAC6 inhibitors based on Cap modification strategy. Bioorg Chem 2022; 125:105874. [DOI: 10.1016/j.bioorg.2022.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/05/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022]
|
71
|
Maouche N, Kishore B, Bhatti Z, Basu S, Karim F, Sundararaman S, Collings F, Tseu B, Leary H, Ryman N, Reddy U, Vallance GD, Kothari J, Ramasamy K. Panobinostat in combination with bortezomib and dexamethasone in multiply relapsed and refractory myeloma; UK routine care cohort. PLoS One 2022; 17:e0270854. [PMID: 35797277 PMCID: PMC9262230 DOI: 10.1371/journal.pone.0270854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
The combination of panobinostat, bortezomib and dexamethasone (PanBorDex) is available as a treatment option for relapsed refractory multiple myeloma (RRMM) based on the PANORAMA-1 trial which investigated this triplet in early relapse. In routine clinical care, PanBorDex is used primarily in later relapses and is commonly administered in attenuated dosing schedules to mitigate the treatment-related toxicity. We set out to evaluate efficacy and safety outcomes with PanBorDex later in the disease course and evaluate the role of attenuated dosing schedules. This was a retrospective evaluation of patients treated in routine clinical practice between 2016–2019 across seven heamatology centres in the UK; patients who received at least one dose of PanBorDex were eligible for inclusion. The dosing schedule of panobinostat (10mg, 15mg or 20mg, twice or three times a week) and bortezomib (0.7mg/m2, 1mg/m2 or 1.3mg/m2 once or twice weekly) was as per treating physician choice. Patients received treatment until disease progression or unacceptable toxicity. The primary outcome is response rates according to IMWG criteria. Key secondary endpoints include progression-free survival (PFS) and overall survival (OS). Other secondary endpoints include rates of adverse events according to CTCAE criteria. In total, 61 patients were eligible for inclusion and received PanBorDex primarily as ≥5th line of treatment. One third of patients received PanBorDex at full dose, for the remaining two thirds, treatment was given in reduced dose intensities. The overall response rate was 44.2%, including 14.7% very good partial response (VGPR) rates; 68.8% of patients derived clinical benefit with stable disease or better. The median PFS was 3.4 months; non-refractory patients and those who achieved VGPR benefited from prolonged PFS of 11.4 months and 17.7 months, respectively. The median OS was 9.5 months. The triplet was associated with 45% and 18% incidence of grade 3–4 thrombocytopenia and diarrhea, respectively.
Collapse
Affiliation(s)
- Nadjoua Maouche
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- * E-mail:
| | - Bhuvan Kishore
- Department of Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Zara Bhatti
- Department of Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Supratik Basu
- Department of Haematology, The Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom
| | - Farheen Karim
- Department of Haematology, The Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom
| | - Sharadha Sundararaman
- Department of Haematology, The Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom
| | - Freya Collings
- Department of Haematology, Great Western Hospitals NHS Foundation Trust, Swindon, United Kingdom
| | - Bing Tseu
- Department of Haematology, Buckinghamshire Healthcare NHS Trust, Bucks, United Kingdom
| | - Heather Leary
- Department of Haematology, Milton Keynes University Hospital NHS Foundation Trust, Milton Keynes, United Kingdom
| | - Noel Ryman
- Department of Haematology, Hampshire Hospitals NHS Foundation Trust, Basingstoke, United Kingdom
| | - Udaya Reddy
- Department of Haematology, Hampshire Hospitals NHS Foundation Trust, Basingstoke, United Kingdom
| | - Grant D. Vallance
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Jaimal Kothari
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Karthik Ramasamy
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
72
|
Efficace F, Cottone F, Sparano F, Caocci G, Vignetti M, Chakraborty R. Patient-Reported Outcomes in Randomized Controlled Trials of Patients with Multiple Myeloma: A Systematic Literature Review of Studies Published Between 2014 and 2021. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:442-459. [PMID: 35183476 DOI: 10.1016/j.clml.2022.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND We performed a systematic literature review to identify the most recently published randomized controlled trials (RCTs) in multiple myeloma (MM) with a patient-reported outcome (PRO) endpoint, and to summarize both clinical and PRO results, as well as to examine the quality of reporting by phase of disease. We also aimed to describe main type of PRO analysis used and interpretation of clinical significance of PRO findings. MATERIALS AND METHODS We searched PubMed and the Cochrane Central Register of Controlled Trials to identify RCTs of cancer-directed therapy in patients with MM published between January 2014 and April 2021. RESULTS Thirty-two RCTs with a total of 19,798 patients enrolled were identified in our review. In all studies, PROs were secondary or exploratory endpoints. Half of the studies (n = 16) included newly diagnosed patients, 15 RCTs included patients with relapsed/refractory MM, and one study included patients with smoldering MM. Progression-free survival was the most frequently used primary endpoint. All studies provided unique PRO information that could be used to more comprehensively assess the risk/benefit of the newly tested drugs. However, the identified RCTs were heterogeneous regarding the presentation, and interpretation of PRO results. CONCLUSION The number of RCTs including PROs in MM research has notably increased in recent years. However, more consistency in the methodological approach to PRO assessment, and interpretation of outcomes is needed to ensure that PRO findings will be more impactful on patient care.
Collapse
Affiliation(s)
- Fabio Efficace
- Italian Group for Adult Hematologic Diseases (GIMEMA), Data Center and Health Outcomes Research Unit, Rome, Italy.
| | - Francesco Cottone
- Italian Group for Adult Hematologic Diseases (GIMEMA), Data Center and Health Outcomes Research Unit, Rome, Italy
| | - Francesco Sparano
- Italian Group for Adult Hematologic Diseases (GIMEMA), Data Center and Health Outcomes Research Unit, Rome, Italy
| | - Giovanni Caocci
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Marco Vignetti
- Italian Group for Adult Hematologic Diseases (GIMEMA), Data Center and Health Outcomes Research Unit, Rome, Italy
| | - Rajshekhar Chakraborty
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
73
|
Yang P, Qu Y, Wang M, Chu B, Chen W, Zheng Y, Niu T, Qian Z. Pathogenesis and treatment of multiple myeloma. MedComm (Beijing) 2022; 3:e146. [PMID: 35665368 PMCID: PMC9162151 DOI: 10.1002/mco2.146] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple myeloma (MM) is the second‐ranking malignancy in hematological tumors. The pathogenesis of MM is complex with high heterogeneity, and the development of the disease is a multistep process. Chromosomal translocations, aneuploidy, genetic mutations, and epigenetic aberrations are essential in disease initiation and progression. The correlation between MM cells and the bone marrow microenvironment is associated with the survival, progression, migration, and drug resistance of MM cells. In recent decades, there has been a significant change in the paradigm for the management of MM. With the development of proteasome inhibitors, immunomodulatory drugs, monoclonal antibodies, chimeric antigen receptor T‐cell therapies, and novel agents, the survival of MM patients has been significantly improved. In addition, nanotechnology acts as both a nanocarrier and a treatment tool for MM. The properties and responsive conditions of nanomedicine can be tailored to reach different goals. Nanomedicine with a precise targeting property has offered great potential for drug delivery and assisted in tumor immunotherapy. In this review, we summarize the pathogenesis and current treatment options of MM, then overview recent advances in nanomedicine‐based systems, aiming to provide more insights into the treatment of MM.
Collapse
Affiliation(s)
- Peipei Yang
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Ying Qu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Mengyao Wang
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Bingyang Chu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Wen Chen
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Yuhuan Zheng
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Ting Niu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Zhiyong Qian
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
74
|
Sellin M, Berg S, Hagen P, Zhang J. The molecular mechanism and challenge of targeting XPO1 in treatment of relapsed and refractory myeloma. Transl Oncol 2022; 22:101448. [PMID: 35660848 PMCID: PMC9166471 DOI: 10.1016/j.tranon.2022.101448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/14/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Significant progress has been made on the treatment of MM during past two decades. Acquired drug-resistance continues to drive early relapse in primary refractory MM. XPO1 over-expression and cargo mislocalization are associated with drug-resistance. XPO1 inhibitor selinexor restores drug sensitivity to subsets of RR-MM cells.
Multiple myeloma (MM) treatment regimens have vastly improved since the introduction of immunomodulators, proteasome inhibitors, and anti-CD38 monoclonal antibodies; however, MM is considered an incurable disease due to inevitable relapse and acquired drug resistance. Understanding the molecular mechanism by which drug resistance is acquired will help create novel strategies to prevent relapse and help develop novel therapeutics to treat relapsed/refractory (RR)-MM patients. Currently, only homozygous deletion/mutation of TP53 gene due to “double-hits” on Chromosome 17p region is consistently associated with a poor prognosis. The exciting discovery of XPO1 overexpression and mislocalization of its cargos in the RR-MM cells has led to a novel treatment options. Clinical studies have demonstrated that the XPO1 inhibitor selinexor can restore sensitivity of RR-MM to PIs and dexamethasone. We will elaborate on the problems of MM treatment strategies and discuss the mechanism and challenges of using XPO1 inhibitors in RR-MM therapies while deliberating potential solutions.
Collapse
Affiliation(s)
- Mark Sellin
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Loyola University Chicago, USA
| | - Stephanie Berg
- Loyola University Chicago, Department of Cancer Biology and Internal Medicine, Cardinal Bernardin Cancer Center, Stritch School of Medicine, Maywood, IL, USA.
| | - Patrick Hagen
- Department of Medicine, Division of Hematology/Oncology, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, USA
| |
Collapse
|
75
|
van Beurden-Tan CHY, Sonneveld P, Groot CAUD. Multinomial network meta-analysis using response rates: relapsed/refractory multiple myeloma treatment rankings differ depending on the choice of outcome. BMC Cancer 2022; 22:591. [PMID: 35637452 PMCID: PMC9150316 DOI: 10.1186/s12885-022-09571-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Due to the fast growing relapsed/refractory multiple myeloma (RRMM) treatment landscape, a comparison of all the available treatments was warranted. For clinical practice it is important to consider both immediate effects such as response quality and prolonged benefits such as progression-free survival (PFS) in a meta-analysis. The objective of this study was to assess the impact of the choice of outcome on the treatment rankings in RRMM. METHODS A multinomial logistic network meta-analysis was conducted to estimate the ranking of sixteen treatments based on both complete and objective response rates (CRR and ORR). Seventeen phase III randomized controlled trials from a previously performed systematic literature review were included. Treatment ranking was based on the surface under the cumulative ranking curve (SUCRA). Sensitivity analysis was conducted. RESULTS The ranking of treatments differed when comparing PFS hazard ratios rankings with rankings based on CRR. Pomalidomide, bortezomib and dexamethasone ranked highest, while a substantial lower ranking was observed for the triplet elotuzumab, lenalidomide, dexamethasone. The ranking of treatments did not differ when comparing PFS hazard ratios and ORR. The scenario analyses showed that the results were robust. In all scenarios the top three was dominated by the same triplets. The treatment with the highest probability of having the best PFS and ORR was the triplet daratumumab, lenalidomide plus dexamethasone in the base case. CONCLUSION This analysis shows that depending on the chosen outcome treatment rankings in RRMM may differ. When conducting NMAs, the response rate, a clinically recognized outcome, should therefore be more frequently considered.
Collapse
Affiliation(s)
| | | | - Carin A Uyl-de Groot
- Erasmus School of Health Policy & Management /Institute for Medical Technology Assessment, Erasmus University Rotterdam, The Netherlands, Rotterdam
| |
Collapse
|
76
|
Allegra A, Casciaro M, Barone P, Musolino C, Gangemi S. Epigenetic Crosstalk between Malignant Plasma Cells and the Tumour Microenvironment in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14112597. [PMID: 35681577 PMCID: PMC9179362 DOI: 10.3390/cancers14112597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
In multiple myeloma, cells of the bone marrow microenvironment have a relevant responsibility in promoting the growth, survival, and drug resistance of multiple myeloma plasma cells. In addition to the well-recognized role of genetic lesions, microenvironmental cells also present deregulated epigenetic systems. However, the effect of epigenetic changes in reshaping the tumour microenvironment is still not well identified. An assortment of epigenetic regulators, comprising histone methyltransferases, histone acetyltransferases, and lysine demethylases, are altered in bone marrow microenvironmental cells in multiple myeloma subjects participating in disease progression and prognosis. Aberrant epigenetics affect numerous processes correlated with the tumour microenvironment, such as angiogenesis, bone homeostasis, and extracellular matrix remodelling. This review focuses on the interplay between epigenetic alterations of the tumour milieu and neoplastic cells, trying to decipher the crosstalk between these cells. We also evaluate the possibility of intervening specifically in modified signalling or counterbalancing epigenetic mechanisms.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (P.B.); (C.M.)
- Correspondence:
| | - Marco Casciaro
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| | - Paola Barone
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (P.B.); (C.M.)
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (P.B.); (C.M.)
| | - Sebastiano Gangemi
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| |
Collapse
|
77
|
Transcriptome Profiling Analysis Identifies LCP1 as a Contributor for Chidamide Resistance in Gastric Cancer. Pharm Res 2022; 39:867-876. [PMID: 35578065 DOI: 10.1007/s11095-022-03291-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Gastric cancer (GC) remains a significant health problem and carries with it substantial morbidity and mortality. Chidamide is a novel and orally administered histone deacetylase (HDAC) inhibitor and has been demonstrated its anti-tumor efficacy on different kinds of hematological and solid tumors. However, the underlying mechanism of chidamide resistance is still poorly characterized. METHODS We established chidamide resistant GC cell lines, AGS ChiR and MGC803 ChiR and investigated the toxicologic effects through cell survival, colony formation and flow cytometry assays in vitro, and a subcutaneous xenograft model in vivo. RNA-sequence was then performed to screen chidamide resistance-associated genes between AGS and AGS ChiR cells. The role of Lymphocyte cytosolic protein 1 (LCP1) in chidamide resistance was explored by gain- and loss-of-function analyses. RESULTS We found that chidamide significantly inhibited cell proliferation and induced the apoptosis in a concentration-dependent manner in wild-type GC cell lines as compared to chidamide resistant cell lines. The transcriptomic profiling, quantitative RT-PCR, and western blot data revealed that LCP1 was upregulated in AGS ChiR cells compared with parental cells. Overexpression of LCP1 conferred and knockdown of LCP1 attenuated the chidamide resistance of GC cells. Epigenetic derepression of LCP1 by chidamide may be a possible reason for the contribution of LCP1 to chidamide resistance. CONCLUSIONS These findings illustrated that LCP1 may play a chidamide resistance role in GC, suggesting that LCP1 could be a potential target for the therapy of GC combined with chidamide.
Collapse
|
78
|
Robinson RM, Basar AP, Reyes L, Duncan RM, Li H, Dolloff NG. PDI inhibitor LTI6426 enhances panobinostat efficacy in preclinical models of multiple myeloma. Cancer Chemother Pharmacol 2022; 89:643-653. [PMID: 35381875 PMCID: PMC9054865 DOI: 10.1007/s00280-022-04425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/10/2022] [Indexed: 11/04/2022]
Abstract
The histone deacetylase inhibitor (HDACi), panobinostat (Pano), is approved by the United States Food and Drug Administration (FDA) and European Medicines Agency (EMA) for treatment of relapsed/refractory multiple myeloma (MM). Despite regulatory approvals, Pano is used on a limited basis in MM due largely to an unfavorable toxicity profile. The MM treatment landscape continues to evolve, and for Pano to maintain a place in that paradigm it will be necessary to identify treatment regimens that optimize its effectiveness, particularly those that permit dose reductions to eliminate unwanted toxicity. Here, we propose such a regimen by combining Pano with LTI6426, a first-in-class orally bioavailable protein disulfide isomerase (PDI) inhibitor. We show that LTI6426 dramatically enhances the anti-MM activity of Pano in vitro and in vivo using a proteasome inhibitor resistant mouse model of MM and a low dose of Pano that exhibited no signs of toxicity. We go on to characterize a transcriptional program that is induced by the LTI6426/Pano combination, demonstrating a convergence of the two drugs on endoplasmic reticulum (ER) stress pathway effectors ATF3 (Activating Transcription Factor 3), DDIT3/CHOP (DNA Damage Inducible Transcript 3, a.k.a. C/EBP Homologous Protein), and DNAJB1 (DnaJ homolog subfamily B member 1, a.k.a. HSP40). We conclude that LTI6426 may safely enhance low-dose Pano regimens and that ATF3, DDIT3/CHOP, and DNAJB1 are candidate pharmacodynamic biomarkers of response to this novel treatment regimen.
Collapse
Affiliation(s)
- Reeder M Robinson
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Ave, MSC509, Charleston, SC, 29425, USA
| | - Ashton P Basar
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Ave, MSC509, Charleston, SC, 29425, USA
| | - Leticia Reyes
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Ave, MSC509, Charleston, SC, 29425, USA
| | - Ravyn M Duncan
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Ave, MSC509, Charleston, SC, 29425, USA
| | - Hong Li
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Nathan G Dolloff
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Ave, MSC509, Charleston, SC, 29425, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
79
|
Vekemans MC, Doyen C, Caers J, Wu K, Kentos A, Mineur P, Michaux L, Delforge M, Meuleman N. Recommendations on the management of multiple myeloma in 2020. Acta Clin Belg 2022; 77:445-461. [PMID: 33355041 DOI: 10.1080/17843286.2020.1860411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
With the introduction of immunomodulatory drugs, proteasome inhibitors, and anti-CD38 monoclonal antibodies, major improvements have been achieved in the treatment of multiple myeloma (MM), with a significant impact on the outcome of this disease. Different treatment combinations are now in use and other therapies are being developed. Based on an extensive review of the recent literature, we propose practical recommendations on myeloma management, to be used by hematologists as a reference for daily practice.
Collapse
Affiliation(s)
| | - Chantal Doyen
- Centre Hospitalier Universitaire de Namur, UCL, Yvoir, Belgium
| | - Jo Caers
- Centre Hospitalier Universitaire de Liège, Ulg, Liège, Belgium
| | - Kalung Wu
- Zienkenhuis Netwerk Antwerpen, Antwerp, Belgium
| | | | | | - Lucienne Michaux
- Universitair Ziekenhuis Leuven Gasthuisberg, KUL, Leuven, Belgium
| | - Michel Delforge
- Universitair Ziekenhuis Leuven Gasthuisberg, KUL, Leuven, Belgium
| | | |
Collapse
|
80
|
Rock A, Ali S, Chow WA. Systemic Therapy for Chondrosarcoma. Curr Treat Options Oncol 2022; 23:199-209. [PMID: 35190971 DOI: 10.1007/s11864-022-00951-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
OPINION STATEMENT Clinical trial enrollment should be actively encouraged in all patients diagnosed with advanced, surgically unresectable chondrosarcoma (CS) due to the lack of consensus treatment recommendations. In the absence of an appropriate clinical trial, treatments are determined based on histologic subtype of CS with consideration given to targetable mutations (i.e., IDH1). Conventional CS is inherently resistant to cytotoxic chemotherapy and patients may benefit from antiangiogenic therapy including off-label use of pazopanib. Individuals harboring an IDH1 mutation may derive clinical benefit from ivosidenib, an IDH1 inhibitor. Upon progression and with functional status permitting, alternative options include mTOR inhibitors (sirolimus, temsirolimus) or other tyrosine kinase inhibitors (dasatinib), though no clear sequencing data exists. For dedifferentiated CS, conventional chemotherapies with osteosarcoma-like regimens are upfront options although prospective data is limited with minimal overall benefit. Alternative treatment options include immunotherapy with pembrolizumab or ivosidenib in IDH1-mutant, dedifferentiated CS, but questionable efficacy was observed in small sample sizes with either approach. In mesenchymal CS, treatment with Ewing sarcoma-like chemotherapy regimens may be considered, although data supporting its use is even more limited given its rarity.
Collapse
Affiliation(s)
- Adam Rock
- Harbor-UCLA Medical Center, 1000 W. Carson St, Torrance, CA, 90502, USA
| | - Sana Ali
- Harbor-UCLA Medical Center, 1000 W. Carson St, Torrance, CA, 90502, USA
| | - Warren A Chow
- University of California Irvine, 101 The City Drive South, Orange, CA, 92868, USA. .,UCI Health, 101 The City Drive South, Building 63, Room 412, ZOT 4061, Orange, CA, 92868, USA.
| |
Collapse
|
81
|
Re: Arcuri and Americo "Treatment of relapsed/refractory multiple myeloma in the bortezomib and lenalidomide era: a systematic review and network meta-analysis". Ann Hematol 2022; 101:1599-1601. [PMID: 35179641 PMCID: PMC9203368 DOI: 10.1007/s00277-022-04792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/07/2022] [Indexed: 11/30/2022]
|
82
|
Combination of Histone Deacetylase Inhibitor Panobinostat (LBH589) with β-Catenin Inhibitor Tegavivint (BC2059) Exerts Significant Anti-Myeloma Activity Both In Vitro and In Vivo. Cancers (Basel) 2022; 14:cancers14030840. [PMID: 35159107 PMCID: PMC8834319 DOI: 10.3390/cancers14030840] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/06/2023] Open
Abstract
Over the last three decades changes in the treatment paradigm for newly diagnosed multiple myeloma (MM) have led to a significant increase in overall survival. Despite this, the majority of patients relapse after one or more lines of treatment while acquiring resistance to available therapies. Panobinostat, a pan-histone deacetylase inhibitor, was approved by the FDA in 2015 for patients with relapsed MM but how to incorporate panobinostat most effectively into everyday practice remains unclear. Dysregulation of the Wnt canonical pathway, and its key mediator β-catenin, has been shown to be important for the evolution of MM and the acquisition of drug resistance, making it a potentially attractive therapeutic target. Despite concerns regarding the safety of Wnt pathway inhibitors, we have recently shown that the β-catenin inhibitor Tegavivint is deliverable and effective in in vivo models of MM. In this study we show that the combination of low concentrations of panobinostat and Tegavivint have significant in vitro and in vivo anti-MM effects including in the context of proteasome inhibitor resistance, by targeting both aerobic glycolysis and mitochondrial respiration and the down-regulation of down-stream β-catenin targets including myc, cyclinD1, and cyclinD2. The significant anti-MM effect of this novel combination warrants further evaluation for the treatment of MM patients with relapsed and/or refractory MM.
Collapse
|
83
|
HDAC Inhibition for Optimized Cellular Immunotherapy of NY-ESO-1-Positive Soft Tissue Sarcoma. Biomedicines 2022; 10:biomedicines10020373. [PMID: 35203582 PMCID: PMC8962361 DOI: 10.3390/biomedicines10020373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/10/2022] Open
Abstract
Adoptive cell therapy with NY-ESO-1-specific T cells is a promising option for the treatment of soft tissue sarcoma (STS) but achieves only transient tumor control in the majority of cases. A strategy to optimize this cell therapeutic approach might be the modulation of the expression of the cancer-testis antigen NY-ESO-1 using histone deacetylase inhibitors (HDACis). In this study, the ex vivo effect of combining NY-ESO-1-specific T cells with the clinically approved pan HDACis panobinostat or vorionstat was investigated. Our data demonstrated that STS cells were sensitive to HDACis. Administration of HDACi prior to NY-ESO-1-specific T cells exerted enhanced lysis against the NY-ESO-1+ STS cell line SW982. This correlated with an increase in the NY-ESO-1 and HLA-ABC expression of SW982 cells, as well as increased CD25 expression on NY-ESO-1-specific T cells. Furthermore, the immune reactivity of NY-ESO-1-specific CD8+ T cells in terms of cytokine release was enhanced by HDACis. In summary, pretreatment with HDACis represents a potential means of enhancing the cytotoxic efficacy of NY-ESO-1-specific T cells against NY-ESO-1-positive STS.
Collapse
|
84
|
Cowan AJ, Green DJ, Kwok M, Lee S, Coffey DG, Holmberg LA, Tuazon S, Gopal AK, Libby EN. Diagnosis and Management of Multiple Myeloma: A Review. JAMA 2022; 327:464-477. [PMID: 35103762 DOI: 10.1001/jama.2022.0003] [Citation(s) in RCA: 524] [Impact Index Per Article: 174.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE Multiple myeloma is a hematologic malignancy characterized by presence of abnormal clonal plasma cells in the bone marrow, with potential for uncontrolled growth causing destructive bone lesions, kidney injury, anemia, and hypercalcemia. Multiple myeloma is diagnosed in an estimated 34 920 people in the US and in approximately 588 161 people worldwide each year. OBSERVATIONS Among patients with multiple myeloma, approximately 73% have anemia, 79% have osteolytic bone disease, and 19% have acute kidney injury at the time of presentation. Evaluation of patients with possible multiple myeloma includes measurement of hemoglobin, serum creatinine, serum calcium, and serum free light chain levels; serum protein electrophoresis with immunofixation; 24-hour urine protein electrophoresis; and full-body skeletal imaging with computed tomography, positron emission tomography, or magnetic resonance imaging. The Revised International Staging System combines data from the serum biomarkers β2 microglobulin, albumin, and lactate dehydrogenase in conjunction with malignant plasma cell genomic features found on fluorescence in situ hybridization-t(4;14), del(17p), and t(14;16)-to assess estimated progression-free survival and overall survival. At diagnosis, 28% of patients are classified as having Revised International Staging stage I multiple myeloma, and these patients have a median 5-year survival of 82%. Among all patients with multiple myeloma, standard first-line (induction) therapy consists of a combination of an injectable proteasome inhibitor (ie, bortezomib), an oral immunomodulatory agent (ie, lenalidomide), and dexamethasone and is associated with median progression-free survival of 41 months, compared with historical reports of 8.5 months without therapy. This induction therapy combined with autologous hematopoietic stem cell transplantation followed by maintenance lenalidomide is standard of care for eligible patients. CONCLUSIONS AND RELEVANCE Approximately 34 920 people in the US and 155 688 people worldwide are diagnosed with multiple myeloma each year. Induction therapy with an injectable proteasome inhibitor, an oral immunomodulatory agent and dexamethasone followed by treatment with autologous hematopoietic stem cell transplantation, and maintenance therapy with lenalidomide are among the treatments considered standard care for eligible patients.
Collapse
Affiliation(s)
- Andrew J Cowan
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Seattle Cancer Care Alliance, Seattle, Washington
| | - Damian J Green
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Seattle Cancer Care Alliance, Seattle, Washington
| | - Mary Kwok
- Seattle Cancer Care Alliance, Seattle, Washington
- Division of Hematology, Department of Medicine, University of Washington, Seattle
| | - Sarah Lee
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Seattle Cancer Care Alliance, Seattle, Washington
| | - David G Coffey
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida
| | - Leona A Holmberg
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Seattle Cancer Care Alliance, Seattle, Washington
| | - Sherilyn Tuazon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Now with Bristol Myers Squibb, Seattle, Washington
| | - Ajay K Gopal
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Seattle Cancer Care Alliance, Seattle, Washington
| | - Edward N Libby
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Seattle Cancer Care Alliance, Seattle, Washington
| |
Collapse
|
85
|
Consensus guidelines and recommendations for infection prevention in multiple myeloma: a report from the International Myeloma Working Group. Lancet Haematol 2022; 9:e143-e161. [DOI: 10.1016/s2352-3026(21)00283-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022]
|
86
|
Epstein M, Morrison C. Practical guidance for new multiple myeloma treatment regimens: A nursing perspective. Semin Oncol 2022; 49:103-117. [PMID: 35197198 PMCID: PMC9149030 DOI: 10.1053/j.seminoncol.2022.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/23/2022] [Indexed: 11/11/2022]
Abstract
As is the case for solid tumors, treatment paradigms have shifted from non-specific chemotherapeutic agents towards novel targeted drugs in the treatment of patients with multiple myeloma (MM). Currently, multiple targeted therapies are available to treat patients augmenting the arsenal of modalities which also includes chemotherapy, immunotherapy, radiation therapy, hematopoietic stem cell transplantation (HSCST) and chimeric antigen T-cell therapy (CAR-T). These novel, targeted agents have dramatically increased optimism for patients, who may now be treated over many years with successive regimens. As fortunate as we are to have these new therapies available for our patients, this advantage is juxtaposed with the challenges involved with delivering them safely. While each class of agents has demonstrated efficacy, in terms of response rates and survival, they also exert class effects which pose risks for toxicity. In addition, newer generation agents within the classes often have slightly different toxicity profiles than did their predecessors. These factors must be addressed, and their risks mitigated by the multidisciplinary team. This review presents a summary of the evolution of drug development for MM. For each targeted agent, the efficacy data from pivotal trials and highlights of the risks that were demonstrated in trials, as well as during post-marketing surveillance, are presented. Specific risks associated with agents within the classes, that are not shared with all new class members, are described. A table presenting these potential risks, with recommended nursing actions to mitigate toxicity, is provided as a quick reference that nurses may use during the planning, and provision, of patient care.
Collapse
Affiliation(s)
- Monica Epstein
- National Cancer Institute, Office of Research Nursing, Bethesda, MD.
| | - Candis Morrison
- United States Food and Drug Administration, 10903 New Hampshire Ave, Building 22 Room 2319 Silver Spring Maryland 20993
| |
Collapse
|
87
|
Gordon MS, Shapiro GI, Sarantopoulos J, Juric D, Lu B, Zarotiadou A, Connarn JN, Le Bruchec Y, Dumitru CD, Harvey RD. Phase Ib Study of the Histone Deacetylase 6 Inhibitor Citarinostat in Combination With Paclitaxel in Patients With Advanced Solid Tumors. Front Oncol 2022; 11:786120. [PMID: 35070991 PMCID: PMC8779022 DOI: 10.3389/fonc.2021.786120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Citarinostat (CC-96241; previously ACY-241), an oral inhibitor of histone deacetylases (HDACs) with selectivity for HDAC6, has demonstrated synergistic anticancer activity with paclitaxel in multiple solid tumor models. Combination therapy using citarinostat with paclitaxel was evaluated in this phase Ib 3 + 3 dose-escalation study in patients with advanced solid tumors. METHODS Patients with previously treated advanced solid tumors received citarinostat 180, 360, or 480 mg once daily on days 1 to 21 plus paclitaxel 80 mg/m2 on days 1, 8, and 15 of 28-day cycles until disease progression or unacceptable toxicity. The primary endpoint was determination of the maximum tolerated dose (MTD). Secondary endpoints included safety, antitumor activity, pharmacokinetics, and pharmacodynamics. RESULTS Twenty patients were enrolled and received study treatment; 15 had received prior taxane therapy. No dose-limiting toxicities were reported at any dose; therefore, the MTD was not identified. Citarinostat 360 vs 480 mg was associated with reduced incidence and severity of neutropenia. Three patients experienced a confirmed partial response and 13 achieved stable disease. Pharmacokinetic parameters were linear up to citarinostat 360 mg, the dose at which the highest levels of histone and tubulin acetylation were observed in peripheral blood mononuclear cells. CONCLUSIONS The combination of citarinostat plus paclitaxel showed an acceptable safety profile, with no unexpected or dose-limiting toxicities and potential evidence of antitumor activity in patients with heavily pretreated advanced solid tumors. Citarinostat 360 mg once daily is considered the recommended phase II dose for use in combination with paclitaxel 80 mg/m2 every 3 of 4 weeks. This trial is registered on ClinicalTrials.gov (NCT02551185).
Collapse
Affiliation(s)
- Michael S Gordon
- Departments of Hematology and Medical Oncology, HonorHealth Research Institute, Scottsdale, AZ, United States
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - John Sarantopoulos
- Department of Medicine, Division of Medical Oncology & Hematology, Institute for Drug Development, Mays Cancer Center at UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX, United States
| | - Dejan Juric
- Massachusetts General Hospital Cancer Center, Boston, MA, United States.,Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Brian Lu
- Bristol Myers Squibb, Princeton, NJ, United States
| | - Angeliki Zarotiadou
- Celgene Research S.L.U., a Bristol-Myers Squibb Company, Boudry, Switzerland
| | | | | | | | - R Donald Harvey
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University and Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
88
|
Hernández-Rivas JÁ, Ríos-Tamayo R, Encinas C, Alonso R, Lahuerta JJ. The changing landscape of relapsed and/or refractory multiple myeloma (MM): fundamentals and controversies. Biomark Res 2022; 10:1. [PMID: 35000618 PMCID: PMC8743063 DOI: 10.1186/s40364-021-00344-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 12/13/2022] Open
Abstract
The increase in the number of therapeutic alternatives for both newly diagnosed and relapsed/refractory multiple myeloma (RRMM) patients has widened the clinical scenario, leading to a level of complexity that no algorithm has been able to cover up to date. At present, this complexity increases due to the wide variety of clinical situations found in MM patients before they reach the status of relapsed/refractory disease. These different backgrounds may include primary refractoriness, early relapse after completion of first-line therapy with latest-generation agents, or very late relapse after chemotherapy or autologous transplantation. It is also important to bear in mind that many patient profiles are not fully represented in the main randomized clinical trials (RCT), and this further complicates treatment decision-making. In RRMM patients, the choice of previously unused drugs and the number and duration of previous therapeutic regimens until progression has a greater impact on treatment efficacy than the adverse biological characteristics of MM itself. In addition to proteasome inhibitors, immunomodulatory drugs, anti-CD38 antibodies and corticosteroids, a new generation of drugs such as XPO inhibitors, BCL-2 inhibitors, new alkylators and, above all, immunotherapy based on conjugated anti-BCMA antibodies and CAR-T cells, have been developed to fight RRMM. This comprehensive review addresses the fundamentals and controversies regarding RRMM, and discusses the main aspects of management and treatment. The basis for the clinical management of RRMM (complexity of clinical scenarios, key factors to consider before choosing an appropriate treatment, or when to treat), the arsenal of new drugs with no cross resistance with previously administered standard first line regimens (main phase 3 clinical trials), the future outlook including the usefulness of abandoned resources, together with the controversies surrounding the clinical management of RRMM patients will be reviewed in detail.
Collapse
Affiliation(s)
| | - Rafael Ríos-Tamayo
- Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria, Granada, Spain
| | - Cristina Encinas
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Rafael Alonso
- Hospital Universitario 12 de Octubre, Instituto de Investigación del Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Juan-José Lahuerta
- Hospital Universitario 12 de Octubre, Instituto de Investigación del Hospital Universitario 12 de Octubre, Madrid, Spain.
| |
Collapse
|
89
|
Singh S, Jain K, Sharma R, Singh J, Paul D. Epigenetic Modifications in Myeloma: Focused Review of Current Data and Potential Therapeutic Applications. Indian J Med Paediatr Oncol 2021. [DOI: 10.1055/s-0041-1732861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
AbstractMultiple myeloma is a common hematologic malignancy with an incidence of 1 per 100,000 population and is characterized by a nearly 100% risk of relapse, necessitating treatment with newer therapeutic agents at each instance of progression. However, use of newer agents is often precluded by cost and accessibility in a resource-constrained setting. Description of newer pathways of disease pathogenesis potentially provides opportunities for identification of therapeutic targets and a better understanding of disease biology. Identification of epigenetic changes in myeloma is an emerging premise, with several pathways contributing to pathogenesis and progression of disease. Greater understanding of epigenetic alterations provides opportunities to detect several targetable enzymes or pathways that can be of clinical use.
Collapse
Affiliation(s)
- Suvir Singh
- Department of Clinical Hematology and Stem Cell Transplantation, Dayanand Medical College, Ludhiana, Punjab, India
| | - Kunal Jain
- Department of Medical Oncology, Dayanand Medical College, Ludhiana, Punjab, India
| | - Rintu Sharma
- Department of Clinical Hematology and Stem Cell Transplantation, Dayanand Medical College, Ludhiana, Punjab, India
| | - Jagdeep Singh
- Department of Medical Oncology, Dayanand Medical College, Ludhiana, Punjab, India
| | - Davinder Paul
- Department of Medical Oncology, Dayanand Medical College, Ludhiana, Punjab, India
| |
Collapse
|
90
|
Moscvin M, Ho M, Bianchi G. Overcoming drug resistance by targeting protein homeostasis in multiple myeloma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:1028-1046. [PMID: 35265794 PMCID: PMC8903187 DOI: 10.20517/cdr.2021.93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Multiple myeloma (MM) is a plasma cell disorder typically characterized by abundant synthesis of clonal immunoglobulin or free light chains. Although incurable, a deeper understanding of MM pathobiology has fueled major therapeutical advances over the past two decades, significantly improving patient outcomes. Proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies are among the most effective anti-MM drugs, targeting not only the cancerous cells, but also the bone marrow microenvironment. However, de novo resistance has been reported, and acquired resistance is inevitable for most patients over time, leading to relapsed/refractory disease and poor outcomes. Sustained protein synthesis coupled with impaired/insufficient proteolytic mechanisms makes MM cells exquisitely sensitive to perturbations in protein homeostasis, offering us the opportunity to target this intrinsic vulnerability for therapeutic purposes. This review highlights the scientific rationale for the clinical use of FDA-approved and investigational agents targeting protein homeostasis in MM.
Collapse
Affiliation(s)
- Maria Moscvin
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Matthew Ho
- Department of Medicine, Mayo Clinic, Rochester, MN 240010, USA
| | - Giada Bianchi
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
91
|
Chai P, Jia R, Li Y, Zhou C, Gu X, Yang L, Shi H, Tian H, Lin H, Yu J, Zhuang A, Ge S, Jia R, Fan X. Regulation of epigenetic homeostasis in uveal melanoma and retinoblastoma. Prog Retin Eye Res 2021; 89:101030. [PMID: 34861419 DOI: 10.1016/j.preteyeres.2021.101030] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
Uveal melanoma (UM) and retinoblastoma (RB), which cause blindness and even death, are the most frequently observed primary intraocular malignancies in adults and children, respectively. Epigenetic studies have shown that changes in the epigenome contribute to the rapid progression of both UM and RB following classic genetic changes. The loss of epigenetic homeostasis plays an important role in oncogenesis by disrupting the normal patterns of gene expression. The targetable nature of epigenetic modifications provides a unique opportunity to optimize treatment paradigms and establish new therapeutic options for both UM and RB with these aberrant epigenetic modifications. We aimed to review the research findings regarding relevant epigenetic changes in UM and RB. Herein, we 1) summarize the literature, with an emphasis on epigenetic alterations, including DNA methylation, histone modifications, RNA modifications, noncoding RNAs and an abnormal chromosomal architecture; 2) elaborate on the regulatory role of epigenetic modifications in biological processes during tumorigenesis; and 3) propose promising therapeutic candidates for epigenetic targets and update the list of epigenetic drugs for the treatment of UM and RB. In summary, we endeavour to depict the epigenetic landscape of primary intraocular malignancy tumorigenesis and provide potential epigenetic targets in the treatment of these tumours.
Collapse
Affiliation(s)
- Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ruobing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Chuandi Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Hanhan Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Huimin Lin
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China.
| |
Collapse
|
92
|
Merz M, Goldschmidt H, Hari P, Agha M, Diels J, Ghilotti F, Perualila NJ, Cabrieto J, Haefliger B, Sliwka H, Schecter JM, Jackson CC, Olyslager Y, Akram M, Nesheiwat T, Kellermann L, Jagannath S. Adjusted Comparison of Outcomes between Patients from CARTITUDE-1 versus Multiple Myeloma Patients with Prior Exposure to PI, Imid and Anti-CD-38 from a German Registry. Cancers (Basel) 2021; 13:5996. [PMID: 34885106 PMCID: PMC8656798 DOI: 10.3390/cancers13235996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Ciltacabtagene autoleucel (cilta-cel) is a Chimeric antigen receptor T-cell therapy with the potential for long-term disease control in heavily pre-treated patients with relapsed/refractory multiple myeloma (RRMM). As cilta-cel was assessed in the single-arm CARTITUDE-1 clinical trial, we used an external cohort of patients from the Therapie Monitor registry fulfilling the CARTITUDE-1 inclusion criteria to evaluate the effectiveness of cilta-cel for overall survival (OS) and time to next treatment (TTNT) vs. real-world clinical practice. Individual patient data allowed us to adjust the comparisons between both cohorts, using the inverse probability of treatment weighting (IPW; average treatment effect in the treated population (ATT) and overlap population (ATO) weights) and multivariable Cox proportional hazards regression. Outcomes were compared in intention-to-treat (HR, IPW-ATT: TTNT: 0.13 (95% CI: 0.07, 0.24); OS: 0.14 (95% CI: 0.07, 0.25); IPW-ATO: TTNT: 0.24 (95% CI: 0.12, 0.49); OS: 0.26 (95% CI: 0.13, 0.54)) and modified intention-to-treat (HR, IPW-ATT: TTNT: 0.24 (95% CI: 0.09, 0.67); OS: 0.26 (95% CI: 0.08, 0.84); IPW-ATO: TTNT: 0.26 (95% CI: 0.11, 0.59); OS: 0.31 (95% CI: 0.12, 0.79)) populations. All the comparisons were statistically significant in favor of cilta-cel. These results highlight cilta-cel's potential as a novel, effective treatment to address unmet needs in patients with RRMM.
Collapse
Affiliation(s)
- Maximilian Merz
- Cell Therapy and Hemostaseology, Department of Hematology, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Hartmut Goldschmidt
- Internal Medicine V and National Center for Tumor Diseases, University Clinic Heidelberg, 69120 Heidelberg, Germany;
| | | | - Mounzer Agha
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Joris Diels
- Janssen Pharmaceutica NV, 2340 Beerse, Belgium; (J.D.); (N.J.P.); (J.C.); (Y.O.)
| | | | - Nolen J. Perualila
- Janssen Pharmaceutica NV, 2340 Beerse, Belgium; (J.D.); (N.J.P.); (J.C.); (Y.O.)
| | - Jedelyn Cabrieto
- Janssen Pharmaceutica NV, 2340 Beerse, Belgium; (J.D.); (N.J.P.); (J.C.); (Y.O.)
| | | | | | | | | | - Yunsi Olyslager
- Janssen Pharmaceutica NV, 2340 Beerse, Belgium; (J.D.); (N.J.P.); (J.C.); (Y.O.)
| | - Muhammad Akram
- Legend Biotech USA, Inc., Piscataway, NJ 08854, USA; (M.A.); (T.N.)
| | - Tonia Nesheiwat
- Legend Biotech USA, Inc., Piscataway, NJ 08854, USA; (M.A.); (T.N.)
| | | | | |
Collapse
|
93
|
Jeryczynski G, Bolomsky A, Agis H, Krauth MT. Stratification for RRMM and Risk-Adapted Therapy: Sequencing of Therapies in RRMM. Cancers (Basel) 2021; 13:5886. [PMID: 34885001 PMCID: PMC8657274 DOI: 10.3390/cancers13235886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
The treatment landscape for relapsed multiple myeloma (RRMM) has experienced an unprecedented wave of innovation. Implementation of numerous new substances and drug classes with different modes of action is made possible in routine clinical practice. Next generation proteasome inhibitors, monoclonal antibodies, as well as first in class agents such as selinexor and venetoclax have widened the therapeutic spectrum. This has led to an increase in progression-free and overall survival. Consequently, new challenges for treating physicians in choosing the right treatment at the right stage of the disease have been generated. Several trials support the use of novel agents in the frontline treatment of newly diagnosed multiple myeloma. The use of lenalidomide or bortezomib as a backbone in the first-line setting, requires strategies for treatment once these patients relapse and are refractory to these drugs. Despite the variety of options, selecting the optimal treatment strategy is difficult, since multiple factors have to be considered: patient-specific factors such as age and co-morbidities, as well as myeloma/tumor specific factors such as cytogenetics and relapse kinetics. This review intends to summarize the existing data and guidelines regarding the optimal sequencing of treatments of RRMM using already approved agents as well as agents under investigation.
Collapse
Affiliation(s)
- Georg Jeryczynski
- Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
| | - Arnold Bolomsky
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Hermine Agis
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, 1080 Vienna, Austria;
| | - Maria-Theresa Krauth
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, 1080 Vienna, Austria;
| |
Collapse
|
94
|
Mostofa A, Distler A, Meads MB, Sahakian E, Powers JJ, Achille A, Noyes D, Wright G, Fang B, Izumi V, Koomen J, Rampakrishnan R, Nguyen TP, De Avila G, Silva AS, Sudalagunta P, Canevarolo RR, Siqueira Silva MDC, Alugubelli RR, Dai HA, Kulkarni A, Dalton WS, Hampton OA, Welsh EA, Teer JK, Tungesvik A, Wright KL, Pinilla-Ibarz J, Sotomayor EM, Shain KH, Brayer J. Plasma cell dependence on histone/protein deacetylase 11 reveals a therapeutic target in multiple myeloma. JCI Insight 2021; 6:151713. [PMID: 34793338 PMCID: PMC8783683 DOI: 10.1172/jci.insight.151713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
The clinical utility of histone/protein deacetylase (HDAC) inhibitors in combinatorial regimens with proteasome inhibitors for patients with relapsed and refractory multiple myeloma (MM) is often limited by excessive toxicity due to HDAC inhibitor promiscuity with multiple HDACs. Therefore, more selective inhibition minimizing off-target toxicity may increase the clinical effectiveness of HDAC inhibitors. We demonstrated that plasma cell development and survival are dependent upon HDAC11, suggesting this enzyme is a promising therapeutic target in MM. Mice lacking HDAC11 exhibited markedly decreased plasma cell numbers. Accordingly, in vitro plasma cell differentiation was arrested in B cells lacking functional HDAC11. Mechanistically, we showed that HDAC11 is involved in the deacetylation of IRF4 at lysine103. Further, targeting HDAC11 led to IRF4 hyperacetylation, resulting in impaired IRF4 nuclear localization and target promoter binding. Importantly, transient HDAC11 knockdown or treatment with elevenostat, an HDAC11-selective inhibitor, induced cell death in MM cell lines. Elevenostat produced similar anti-MM activity in vivo, improving survival among mice inoculated with 5TGM1 MM cells. Elevenostat demonstrated nanomolar ex vivo activity in 34 MM patient specimens and synergistic activity when combined with bortezomib. Collectively, our data indicated that HDAC11 regulates an essential pathway in plasma cell biology establishing its potential as an emerging theraputic vulnerability in MM.
Collapse
Affiliation(s)
- Agm Mostofa
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Allison Distler
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Mark B Meads
- Department of Chemical Biology & Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Eva Sahakian
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - John J Powers
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Alexandra Achille
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - David Noyes
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Gabriela Wright
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Bin Fang
- Proteomics and Metabolomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Victoria Izumi
- Proteomics and Metabolomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - John Koomen
- Department of Chemical Biology & Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Rupal Rampakrishnan
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Tuan P Nguyen
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Gabriel De Avila
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Ariosto S Silva
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Praneeth Sudalagunta
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Rafael Renatino Canevarolo
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Maria D Coelho Siqueira Silva
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Raghunandan Reddy Alugubelli
- Department of Chemical Biology & Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | | | | | | | | | - Eric A Welsh
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Alexandre Tungesvik
- Department of Chemical Biology & Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Kenneth L Wright
- Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Javier Pinilla-Ibarz
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Eduardo M Sotomayor
- School of Medicine and Health Sciences, George Washington University Cancer Center, Washington DC, United States of America
| | - Kenneth H Shain
- Department of Chemical Biology & Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Jason Brayer
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| |
Collapse
|
95
|
Seefat MR, Cucchi DGJ, Dirven S, Groen K, Zweegman S, Blommestein HM. A Systematic Review of Cost-Effectiveness Analyses of Novel Agents in the Treatment of Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13225606. [PMID: 34830761 PMCID: PMC8615675 DOI: 10.3390/cancers13225606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary New treatments in multiple myeloma are embraced by patients and physicians but are also associated with substantial higher costs. To ensure the affordability and accessibility of health care, an evaluation of the outcomes in relation to the costs is increasingly requested. However, an up-to-date summary and assessment of the cost-effectiveness evidence for multiple myeloma treatments is currently lacking. We identified the cost-effectiveness studies currently available and show that novel treatments could improve survival with almost 4 years compared to standard of care. However, additional costs compared to standard of care could increase up to USD 535,530 per patient. The ratio between outcomes and costs is above currently accepted willingness to pay thresholds. Our results show cost-effectiveness ratios should be either improved or less favorable ratios should be accepted to ensure accessibility to promising treatments. Abstract Background: Novel therapies for multiple myeloma (MM) promise to improve outcomes but are also associated with substantial increasing costs. Evidence regarding cost-effectiveness of novel treatments is necessary, but a comprehensive up-to-date overview of the cost-effectiveness evidence of novel treatments is currently lacking. Methods: We searched Embase, Medline via Ovid, Web of Science and EconLIT ProQuest to identify all cost-effectiveness evaluations of novel pharmacological treatment of MM reporting cost per quality-adjusted life year (QALY) and cost per life year (LY) gained since 2005. Quality and completeness of reporting was assessed using the Consolidated Health Economic Evaluation Reporting Standards. Results: We identified 13 economic evaluations, comprising 32 comparisons. Our results show that novel agents generate additional LYs (range: 0.311–3.85) and QALYs (range: 0.1–2.85) compared to backbone regimens and 0.02 to 1.10 LYs and 0.01 to 0.91 QALYs for comparisons between regimens containing two novel agents. Lifetime healthcare costs ranged from USD 60,413 to 1,434,937 per patient. The cost-effectiveness ratios per QALY gained ranged from dominating to USD 1,369,062 for novel agents compared with backbone therapies and from dominating to USD 618,018 for comparisons between novel agents. Conclusions: Cost-effectiveness ratios of novel agents were generally above current willingness-to-pay thresholds. To ensure access, cost-effectiveness should be improved or cost-effectiveness ratios above current thresholds should be accepted.
Collapse
Affiliation(s)
- Maarten R. Seefat
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (D.G.J.C.); (S.D.); (K.G.); (S.Z.)
- Correspondence:
| | - David G. J. Cucchi
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (D.G.J.C.); (S.D.); (K.G.); (S.Z.)
| | - Stijn Dirven
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (D.G.J.C.); (S.D.); (K.G.); (S.Z.)
| | - Kaz Groen
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (D.G.J.C.); (S.D.); (K.G.); (S.Z.)
| | - Sonja Zweegman
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (D.G.J.C.); (S.D.); (K.G.); (S.Z.)
| | - Hedwig M. Blommestein
- Erasmus School of Health Policy and Management, Erasmus University Rotterdam, 3062 PA Rotterdam, The Netherlands;
| |
Collapse
|
96
|
Binder M, Nandakumar B, Rajkumar SV, Kapoor P, Buadi FK, Dingli D, Lacy MQ, Gertz MA, Hayman SR, Leung N, Fonder A, Hobbs M, Hwa YL, Muchtar E, Warsame R, Kourelis TV, Gonsalves WI, Russell S, Lin Y, Siddiqui M, Kyle RA, Dispenzieri A, Kumar SK. Mortality trends in multiple myeloma after the introduction of novel therapies in the United States. Leukemia 2021; 36:801-808. [PMID: 34702976 DOI: 10.1038/s41375-021-01453-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/09/2022]
Abstract
Advances in the understanding of disease biology, drug development, and supportive care have led to improved outcomes in multiple myeloma. Given that these improvements have been reported in clinical trial and referral center populations, questions remain about the generalizability of this observation to patients treated in the community. Contrasting the overall survival experience of 3783 patients seen at Mayo Clinic and 57,654 patients followed in the Surveillance, Epidemiology, and End Results Program (SEER) between 2004 and 2018, we observed different mortality trends across patient populations and subgroups. Early mortality decreased and estimated 5-year overall survival increased over time in both patient populations. Excess mortality (compared to the general population) declined over time in Mayo Clinic patients and remained largely unchanged in SEER patients. Improvements over time were primarily observed in patients with favorable disease characteristics and older patients with multiple myeloma remain a vulnerable population with significant excess mortality compared to the United States general population. Patients with unfavorable disease characteristics have derived disproportionately less benefit from recent advances in the field. Future efforts need to focus on the development of safe and effective therapies for these patients and on increasing timely access to specialized care for patients in the community.
Collapse
Affiliation(s)
- Moritz Binder
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - David Dingli
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Martha Q Lacy
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Morie A Gertz
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Nelson Leung
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Amie Fonder
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Miriam Hobbs
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Yi Lisa Hwa
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Eli Muchtar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Rahma Warsame
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Yi Lin
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Robert A Kyle
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Shaji K Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
97
|
Bobin A, Gruchet C, Guidez S, Gardeney H, Nsiala Makunza L, Vonfeld M, Lévy A, Cailly L, Sabirou F, Systchenko T, Moya N, Leleu X. Novel Non-Immunologic Agents for Relapsed and Refractory Multiple Myeloma: A Review Article. Cancers (Basel) 2021; 13:5210. [PMID: 34680358 PMCID: PMC8534104 DOI: 10.3390/cancers13205210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Novel treatments are needed to address the lack of options for patients with relapsed or refractory multiple myeloma. Even though immunotherapy-based treatments have revolutionized the field in recent years, offering new opportunities for patients, there is still no curative therapy. Thus, non-immunologic agents, which have proven effective for decades, are still central to the treatment of multiple myeloma, especially for advanced disease. Building on their efficacy in myeloma, the development of proteasome inhibitors and immunomodulatory drugs has been pursued, and has led to the emergence of a novel generation of agents (e.g., carfilzomib, ixazomib, pomalidomide). The use of alkylating agents is decreasing in most treatment regimens, but melflufen, a peptide-conjugated alkylator with a completely new mechanism of action, offers interesting opportunities. Moreover, with the identification of novel targets, new drug classes have entered the myeloma armamentarium, such as XPO1 inhibitors (selinexor), HDAC inhibitors (panobinostat), and anti-BCL-2 agents (venetoclax). New pathways are still being explored, especially the possibility of a mutation-driven strategy, as biomarkers and targeted treatments are increasing. Though multiple myeloma is still considered incurable, the treatment options are expanding and are progressively becoming more diverse, largely because of the continuous development of non-immunologic agents.
Collapse
Affiliation(s)
- Arthur Bobin
- Department of Hematology, CIC 1402, University Hospital, 86000 Poitiers, France; (C.G.); (S.G.); (H.G.); (L.N.M.); (M.V.); (A.L.); (L.C.); (F.S.); (T.S.); (N.M.); (X.L.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Management of Adverse Events and Supportive Therapy in Relapsed/Refractory Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13194978. [PMID: 34638462 PMCID: PMC8508369 DOI: 10.3390/cancers13194978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Multiple myeloma (MM) patients with relapsing and/or refractory (RR) disease are exposed for a prolonged time to multiple drugs, which increase the risk of toxicity. In addition to tumor response, preserving the quality of life represents an important goal for this patient population. Therefore, supportive therapy plays a pivotal role in their treatment by limiting disease- and drug-related complications. The aim of this review is to outline current standards and future strategies to prevent and treat renal insufficiency, anemia, bone disease, and infection, including COVID-19, in RRMM patients. In addition, the incidence and treatment of side effects of novel anti-MM agents will be discussed. Abstract Relapsed/refractory (RR) multiple myeloma (MM) patients are a fragile population because of prolonged drug exposure and advanced age. Preserving a good quality of life is of high priority for these patients and the treatment of disease- and treatment-related complications plays a key role in their management. By preventing and limiting MM-induced complications, supportive care improves patients’ outcome. Erythropoietin-stimulating agents and bisphosphonates are well-established supportive strategies, yet novel agents are under investigation, such as anabolic bone agents and activin receptor-like kinase (ALK) inhibitors. The recent dramatic changes in the treatment landscape of MM pose an additional challenge for the routine care of RRMM patients. Multidrug combinations in first and later lines increase the risk for long-lasting toxicities, including adverse cardiovascular and neurological events. Moreover, recently approved first-in-class drugs have unique side-effect profiles, such as ocular toxicity of belantamab mafodotin or gastrointestinal toxicity of selinexor. This review discusses current standards in supportive treatment of RRMM patients, including recommendations in light of the recent SARS-CoV-19 pandemic, and critically looks at the incidence and management of side effects of standard as well as next generation anti-MM agents.
Collapse
|
99
|
Loo SY, Syn NL, Koh APF, Teng JCF, Deivasigamani A, Tan TZ, Thike AA, Vali S, Kapoor S, Wang X, Wang JW, Tan PH, Yip GW, Sethi G, Huang RYJ, Hui KM, Wang L, Goh BC, Kumar AP. Epigenetic derepression converts PPARγ into a druggable target in triple-negative and endocrine-resistant breast cancers. Cell Death Discov 2021; 7:265. [PMID: 34580286 PMCID: PMC8476547 DOI: 10.1038/s41420-021-00635-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 01/04/2023] Open
Abstract
Clinical trials repurposing peroxisome proliferator-activated receptor-gamma (PPARγ) agonists as anticancer agents have exhibited lackluster efficacy across a variety of tumor types. Here, we report that increased PPARG expression is associated with a better prognosis but is anticorrelated with histone deacetylase (HDAC) 1 and 2 expressions. We show that HDAC overexpression blunts anti-proliferative and anti-angiogenic responses to PPARγ agonists via transcriptional and post-translational mechanisms, however, these can be neutralized with clinically approved and experimental HDAC inhibitors. Supporting this notion, concomitant treatment with HDAC inhibitors was required to license the tumor-suppressive effects of PPARγ agonists in triple-negative and endocrine-refractory breast cancer cells, and combination therapy also restrained angiogenesis in a tube formation assay. This combination was also synergistic in estrogen receptor-alpha (ERα)-positive cells because HDAC blockade abrogated ERα interference with PPARγ-regulated transcription. Following a pharmacokinetics optimization study, the combination of rosiglitazone and a potent pan-HDAC inhibitor, LBH589, stalled disease progression in a mouse model of triple-negative breast cancer greater than either of the monotherapies, while exhibiting a favorable safety profile. Our findings account for historical observations of de-novo resistance to PPARγ agonist monotherapy and propound a therapeutically cogent intervention against two aggressive breast cancer subtypes.
Collapse
Affiliation(s)
- Ser Yue Loo
- Cancer Science Institute of Singapore and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Nicholas L Syn
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Angele Pei-Fern Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Janet Cheng-Fei Teng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amudha Deivasigamani
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Aye Aye Thike
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Shireen Vali
- Cellworks Research India Pvt. Ltd., Bengaluru, India
| | - Shweta Kapoor
- Cellworks Research India Pvt. Ltd., Bengaluru, India
| | - Xiaoyuan Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cardiovascular Research Institute (CVRI), National University Heart Centre, Singapore (NUHCS), National University Health System, Singapore, Singapore
| | - Jiong Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Puay Hoon Tan
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - George W Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kam Man Hui
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University Cancer Institute, National University Health System, Singapore, Singapore.,Department of Haematology-Oncology, National University Hospital, National University Health System, Singapore, Singapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,National University Cancer Institute, National University Health System, Singapore, Singapore.
| |
Collapse
|
100
|
Targeting the Interplay between HDACs and DNA Damage Repair for Myeloma Therapy. Int J Mol Sci 2021; 22:ijms221910406. [PMID: 34638744 PMCID: PMC8508842 DOI: 10.3390/ijms221910406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
Multiple myeloma (MM) is a malignancy of terminally differentiated plasma cells, and accounts for 10% of all hematologic malignancies and 1% of all cancers. MM is characterized by genomic instability which results from DNA damage with certain genomic rearrangements being prognostic factors for the disease and patients’ clinical response. Following genotoxic stress, the evolutionary conserved DNA damage response (DDR) is activated and, in turn, coordinates DNA repair with cell-cycle events. However, the process of carcinogenesis cannot be attributed only to the genetic alterations, but also involves epigenetic processes. Regulation of expression and activity of key players in DNA repair and checkpoint proteins are essential and mediated partly by posttranslational modifications (PTM), such as acetylation. Crosstalk between different PTMs is important for regulation of DNA repair pathways. Acetylation, which is mediated by acetyltransferases (HAT) and histone deacetylases (HDAC), not only affects gene expression through its modulation of histone tails but also has recently been implicated in regulating non-histone proteins. Currently, several HDAC inhibitors (HDACi) have been developed both in pre-clinical and clinical studies, with some of them exhibiting significant anti-MM activities. Due to reversibility of epigenetic changes during the evolutionary process of myeloma genesis, the potency of epigenetic therapies seems to be of great importance. The aim of the present paper is the summary of all data on the role of HDACi in DDR, the interference with each DNA repair mechanism and the therapeutic implications of HDACi in MM.
Collapse
|