51
|
Vejux A, Kahn E, Dumas D, Bessède G, Ménétrier F, Athias A, Riedinger JM, Frouin F, Stoltz JF, Ogier-Denis E, Todd-Pokropek A, Lizard G. 7-Ketocholesterol favors lipid accumulation and colocalizes with Nile Red positive cytoplasmic structures formed during 7-ketocholesterol-induced apoptosis: Analysis by flow cytometry, FRET biphoton spectral imaging microscopy, and subcellular fractionati. Cytometry A 2005; 64:87-100. [PMID: 15739183 DOI: 10.1002/cyto.a.20124] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Oxidized low-density lipoproteins play key roles in atherosclerosis. Their toxicity is at least in part due to 7-ketocholesterol (7KC), which is a potent inducer of apoptosis. In this study on human promonocytic U937 cells, we determined the effects and the interactions of 7KC with cellular lipids during 7KC-induced apoptosis. METHODS Morphologic and functional changes were investigated by microscopic and flow cytometric methods after staining with propidium iodide, 3,3'-dihexyloxacarbocyanine iodide, and Hoechst 33342. Cellular lipid content was identified by using filipin to quantify free cholesterol and Nile Red (NR), which emit a yellow or orange-red fluorescence in the presence of neutral and polar lipids, respectively. After staining with NR, interactions of 7KC with cellular lipids were identified by fluorescence resonance energy transfer biphoton spectral imaging confocal microscopy and by subcellular fractionation, gas chromatography, and mass spectrometry. RESULTS During 7KC-induced apoptosis the fluorescence from filipin and the ratio of measured (orange-red vs. yellow) fluorescence of NR were enhanced. Spectral analysis of images obtained in biphoton mode and resulting factor images demonstrated the occurrence of fluorescence resonance energy transfer between 7KC and NR and the subsequent colocalization of 7KC and NR. These data were in agreement with biochemical characterization and demonstrated that 7KC and neutral and polar lipids accumulate in NR-stained cytoplasmic structures. CONCLUSIONS During 7KC-induced apoptosis, 7KC modifies the cellular content of neutral and polar lipids, favors free cholesterol accumulation, and colocalizes with neutral and polar lipids that are inside NR-stained cytoplasmic structures.
Collapse
Affiliation(s)
- Anne Vejux
- INSERM U498, Hôpital du Bocage, Dijon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Dieter MZ, Maher JM, Cheng X, Klaassen CD. Expression and regulation of the sterol half-transporter genes ABCG5 and ABCG8 in rats. Comp Biochem Physiol C Toxicol Pharmacol 2004; 139:209-18. [PMID: 15683829 DOI: 10.1016/j.cca.2004.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 11/03/2004] [Accepted: 11/03/2004] [Indexed: 11/22/2022]
Abstract
The ABCG5 and ABCG8 genes encode half-transporter proteins that heterodimerize to form a transporter of plant sterols and cholesterol. The purpose of this study was to examine the expression and regulation of ABCG5 and ABCG8 at the mRNA level in Sprague-Dawley rats. Both ABCG5 and ABCG8 mRNA were expressed primarily in rat small intestine and liver, and gender-specific differences in expression were observed. The effects of treatment with a battery of microsomal enzyme inducers on ABCG5 and ABCG8 mRNA were examined; most treatments had no effect, but of three PXR ligands, PCN was an effective inducer, spironolactone was repressive, and dexamethasone was ineffective. The effects of a 1% cholesterol diet on the regulation of rat ABCG5 and ABCG8 were also examined, and compared with those in C57BL/6 mice. Cholesterol caused a suppression of ABCG5 and ABCG8 mRNA in rat liver, but the same treatment increased the expression of these genes in mouse liver. ABCG5 and ABCG8 mRNA was also induced by cholesterol in rat ileum, but not mouse ileum. These results suggest variation between rats and mice in regulatory mechanisms controlling ABCG5 and ABCG8 expression, and may explain some differences in lipid metabolism observed between these two species.
Collapse
Affiliation(s)
- Matthew Z Dieter
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
53
|
Marchetti A, Mercanti V, Cornillon S, Alibaud L, Charette SJ, Cosson P. Formation of multivesicular endosomes in Dictyostelium. J Cell Sci 2004; 117:6053-9. [PMID: 15536120 DOI: 10.1242/jcs.01524] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multivesicular endosomes are present in virtually every eucaryotic cell, where they arise by intra-endosomal budding of the limiting endosomal membrane. Some genetic diseases such as Chediak-Higashi syndrome are characterized by enlarged membrane-filled endosomes. The same altered endosomal morphology can be observed in cells exposed to certain drugs, for example U18666A. The mechanisms involved are still poorly characterized, partially because this atypical budding event is particularly difficult to observe in mammalian cells. Taking advantage of the simplicity of the endosomal structure in Dictyostelium discoideum, we could visualize intraendosomal budding at the ultrastructural level. In this model organism, the drug U18666A was shown to stimulate intra-endosomal budding, while an inhibitor of PI 3-kinase activity was found to have no effect on this process. Inactivation of a Dictyostelium gene with similarity to the gene responsible for Chediak-Higashi syndrome did not alter the intra-endosomal budding or the accumulation of intra-endosomal membranes. Thus, although treatment with U18666A and inactivation of the Chediak-Higashi gene cause similar morphological defects in mammalian cells, observations in a different model reveal that their respective modes of action are different.
Collapse
Affiliation(s)
- Anna Marchetti
- Université de Genève, Centre Médical Universitaire, Département de Physiologie Cellulaire et Métabolisme, 1 rue Michel Servet, 1211 Genève 4, Switzerland
| | | | | | | | | | | |
Collapse
|
54
|
Davis W, Boyd JT, Ile KE, Tew KD. Human ATP-binding cassette transporter-2 (ABCA2) positively regulates low-density lipoprotein receptor expression and negatively regulates cholesterol esterification in Chinese hamster ovary cells. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1683:89-100. [PMID: 15238223 DOI: 10.1016/j.bbalip.2004.04.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 04/14/2004] [Accepted: 04/30/2004] [Indexed: 11/18/2022]
Abstract
We present evidence that the ATP binding-cassette transporter-2 (ABCA2) is a sterol-responsive gene that has a role in the trafficking of low-density lipoprotein-derived free cholesterol (LDL-FC). In HepG2 cells ABCA2 was coordinately expressed with other sterol-responsive genes. Stable constitutive expression of ABCA2 in Chinese hamster ovary cells (CHOA2) was accompanied by an increase the expression of the low-density lipoprotein receptor (LDLR) and other genes involved in the regulation of cholesterol homeostasis. LDLR mRNA was elevated greater than ninefold and 3-hydroxy-3-methylglutaryl CoA synthase (HMGCoA S) expression was elevated sevenfold in CHOA2 cells. The increase in LDLR expression was regulated at the level of transcription; however, culture of CHO and CHOA2 cells in medium containing lipoprotein-deficient serum (LPDS) results in similar levels of LDLR promoter expression. No differences were measured in the dose-dependent uptake of fluorescently labeled 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchorate-LDL (DiI-LDL) between CHO and CHOA2 cells cultured in medium containing LPDS. Ultraviolet microscopy revealed a similar distribution of the DiI-LDL label in cytoplasmic vesicles. We measured an LDL dose-dependent reduction in esterification of LDL-FC in intact CHOA2 cells cultured in medium containing LPDS, however, no significant difference was measured in acylcoenzyme A:cholesterol acyltransferase (ACAT) activity in cell-free extracts of CHO and CHOA2 cells. CHO cells or CHOA2 cells treated with the hydrophobic amine, U18666A, showed similar filipin staining of unesterified cholesterol in cytoplasmic vesicles. Addition of progesterone or U18666A to CHO cells elevated ABCA2 expression. Finally, we found that ABCA2 expression was elevated in Niemann-Pick type C1 (NPC1) fibroblasts and in Familial Hypercholesterolemia (FHC) fibroblasts.
Collapse
Affiliation(s)
- Warren Davis
- Department of Pharmacology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | |
Collapse
|
55
|
Nofer JR, Herminghaus G, Brodde M, Morgenstern E, Rust S, Engel T, Seedorf U, Assmann G, Bluethmann H, Kehrel BE. Impaired platelet activation in familial high density lipoprotein deficiency (Tangier disease). J Biol Chem 2004; 279:34032-7. [PMID: 15163665 DOI: 10.1074/jbc.m405174200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP binding cassette transporter A1 (ABCA1) is involved in regulation of intracellular lipid trafficking and export of cholesterol from cells to high density lipoproteins. ABCA1 defects cause Tangier disease, a disorder characterized by absence of high density lipoprotein and thrombocytopenia. In the present study we have demonstrated that ABCA1 is expressed in human platelets and that fibrinogen binding and CD62 surface expression in response to collagen and low concentrations of thrombin, but not to ADP, are defective in platelets from Tangier patients and ABCA1-deficient animals. The expression of platelet membrane receptors such as GPVI, alpha2beta1 integrin, and GPIIb/IIIa, the collagen-induced changes in phosphatidylserine and cholesterol distribution, and the collagen-induced signal transduction examined by phosphorylation of LAT and p72syk and by intracellular Ca2+ mobilization were unaltered in Tangier platelets. The electron microscopy of Tangier platelets revealed reduced numbers of dense bodies and the presence of giant granules typically encountered in platelets from Chediak-Higashi syndrome. Further studies demonstrated impaired release of dense body content in platelets from Tangier patients and ABCA1-deficient animals. In addition, Tangier platelets were characterized by defective surface exposure of dense body and lysosomal markers (CD63, LAMP-1, LAMP-2, CD68) during collagen- and thrombin-induced stimulation and by abnormally high lysosomal pH. We conclude that intact ABCA1 function is necessary for proper maturation of dense bodies in platelets. The impaired release of the content of dense bodies may explain the defective activation of Tangier platelets by collagen and low concentrations of thrombin, but not by ADP.
Collapse
Affiliation(s)
- Jerzy-Roch Nofer
- Institut für Klinische Chemie und Laboratoriumsmedizin, Westfälische Wilhelms-Universität, D-48129 Münster, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Sone H, Shimano H, Shu M, Nakakuki M, Takahashi A, Sakai M, Sakamoto Y, Yokoo T, Matsuzaka K, Okazaki H, Nakagawa Y, Iida KT, Suzuki H, Toyoshima H, Horiuchi S, Yamada N. Statins downregulate ATP-binding-cassette transporter A1 gene expression in macrophages. Biochem Biophys Res Commun 2004; 316:790-4. [PMID: 15033469 DOI: 10.1016/j.bbrc.2004.02.121] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2004] [Indexed: 10/26/2022]
Abstract
The ATP-binding-cassette transporter A1 (ABCA1) plays an essential role in cellular cholesterol efflux and helps prevent macrophages from becoming foam cells. The statins are widely used as cholesterol-lowering agents and have other anti-atherogenic actions. We tested the effects of four different statins (fluvastatin, atorvastatin, simvastatin, and lovastatin) on ABCA1 expression in macrophages in vitro. The statins suppressed ABCA1 mRNA expression in RAW246.7 and THP-1 macrophage cell lines and in mouse peritoneal macrophages. The effect was time- and dose-dependent and was abolished by the addition of the post-reductase product, mevalonate. These findings imply that there is a possible modulation of the well-known beneficial effects of the statins on the reverse cholesterol transport pathway.
Collapse
Affiliation(s)
- Hirohito Sone
- Department of Internal Medicine, Institute of Clinical Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Murthy S, Born E, Mathur SN, Field FJ. Liver-X-receptor-mediated increase in ATP-binding cassette transporter A1 expression is attenuated by fatty acids in CaCo-2 cells: effect on cholesterol efflux to high-density lipoprotein. Biochem J 2004; 377:545-52. [PMID: 14604434 PMCID: PMC1223917 DOI: 10.1042/bj20030903] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Revised: 10/31/2003] [Accepted: 11/04/2003] [Indexed: 11/17/2022]
Abstract
The effect of fatty acids on LXR (liver X receptors)-mediated enhancement of ABCA1 (ATP-binding cassette transporter A1) expression and cholesterol efflux was investigated in human intestinal cells CaCo-2. LXR activation by T0901317 increased basolateral cholesterol efflux to lipoprotein particles isolated at a density of 1.21 g/ml or higher. Oleic and arachidonic acids attenuated the amount of cholesterol isolated from these particles. Stearic, linoleic and docosahexaenoic acids also decreased cholesterol efflux from basolateral membranes, with the polyunsaturated fatty acids being the most potent. Although oleic, arachidonic and docosahexaenoic acids modestly decreased ABCA1 mRNA levels in response to LXR activation, stearic and linoleic acids did not. Except for oleic acid, all fatty acids substantially attenuated an increase in ABCA1 mass secondary to LXR activation. Inhibiting acyl-CoA:cholesterol acyltransferase activity prevented the decrease in cholesterol efflux caused by oleic acid. Thus, in response to LXR activation, all fatty acids decreased the efflux of cholesterol from the basolateral membrane of CaCo-2 cells. Although modest suppression of ABCA1 gene expression by oleic, arachidonic and docosahexaenoic acids cannot be completely excluded as a mechanism, the predominant effect of fatty acids on ABCA1 expression and cholesterol efflux is at a post-transcriptional level.
Collapse
Affiliation(s)
- Shubha Murthy
- Department of Veterans Affairs and Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
58
|
Zhu YQ, Xu KX, Luo B, Wang JW, Chen XY. An ATP-binding cassette transporter GhWBC1 from elongating cotton fibers. PLANT PHYSIOLOGY 2003; 133:580-8. [PMID: 12972649 PMCID: PMC219034 DOI: 10.1104/pp.103.027052] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Revised: 06/16/2003] [Accepted: 06/18/2003] [Indexed: 05/21/2023]
Abstract
We have isolated a cDNA (GhWBC1) from cotton (Gossypium hirsutum) that encodes an ATP-binding cassette transporter of the WBC (white/brown complex) subfamily. Members of this subfamily are half-sized transporters and are reported to mediate lipid and drug excretion in human (Homo sapiens). GhWBC1 is highly expressed in developing fiber cells, but transcripts were also detectable in other tissues except roots. The transcript level peaked in rapidly expanding fibers from 5 to 9 DPA and then decreased. The GhWBC1 expression was weak in fiber cells of an li (ligon-lintless) mutant, which is defective in fiber cell elongation. These data indicate that GhWBC1 gene expression correlates with cotton fiber elongation. Transient expression of enhanced green fluorescence protein-GhWBC1 fusion protein in onion (Allium cepa) epidermal cells revealed plasma membrane localization. The GhWBC1 cDNA driven by a constitutive 35S promoter was introduced into Arabidopsis. About 13% of the transformants produced short siliques (SSs), whereas others had normal siliques (long siliques [LSs]). In siliques of SS lines, most embryos were severely shriveled, and only several seeds per silique could be found at maturity. The transgene expression level was higher in SS lines than in LS lines. Expression of AtWBC11, the closest homolog of GhWBC1 in Arabidopsis, was not altered in either SS or LS transgenic plants examined. These data suggest that GhWBC1 interferes with substance translocation that is required for Arabidopsis seed and silique development. Characterization of Arabidopsis WBC members, particularly AtWBC11, will help to dissect the role of GhWBC1 in cotton fiber development and elongation.
Collapse
Affiliation(s)
- Yong-Qing Zhu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, People's Republic of China
| | | | | | | | | |
Collapse
|
59
|
Parodi-Talice A, Araújo JM, Torres C, Pérez-Victoria JM, Gamarro F, Castanys S. The overexpression of a new ABC transporter in Leishmania is related to phospholipid trafficking and reduced infectivity. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1612:195-207. [PMID: 12787938 DOI: 10.1016/s0005-2736(03)00131-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This paper reports the characterization of a new ABC transporter (LtrABC1.1), related to the human ABCA subfamily, in the protozoan parasite Leishmania tropica. LtrABC1.1 is a tandem duplicated gene flanked by inverted repeats. LtrABC1.1 is expressed mainly in the flagellar pocket of the parasite. Drug resistance studies in Leishmania overexpressing LtrABC1.1 showed the transporter not to confer resistance to a range of unrelated drugs. LtrABC1.1 appears to be involved in lipid movements across the plasma membrane of the parasite since overexpression reduces the accumulation of fluorescent phospholipid analogues. The activity of this protein may also affect membrane movement processes since secreted acid phosphatase (SAP) activity was significantly lower in promastigotes overexpressing LtrABC1.1. In vitro infection experiments with macrophages indicated LtrABC1.1-transfected parasites to be significantly less infective. Together, these results suggest that this new ABC transporter could play a role in lipid movements across the plasma membrane, and that its activity might influence vesicle trafficking. This is the first ABCA-like transporter described in unicellular eukaryotes.
Collapse
Affiliation(s)
- Adriana Parodi-Talice
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, c/Ventanilla 11, Granada 18001, Spain
| | | | | | | | | | | |
Collapse
|
60
|
Lee CY, Krimbou L, Vincent J, Bernard C, Larramée P, Genest J, Marcil M. Compound heterozygosity at the sphingomyelin phosphodiesterase-1 (SMPD1) gene is associated with low HDL cholesterol. Hum Genet 2003; 112:552-62. [PMID: 12607113 DOI: 10.1007/s00439-002-0893-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2002] [Accepted: 11/18/2002] [Indexed: 10/25/2022]
Abstract
Type A and B forms of Niemann-Pick disease (NPD) are lipid storage disorders caused by deficient activity of the enzyme acid sphingomyelinase (aSMase) and the resulting accumulation of sphingomyelin in tissues. In the present study, we investigated two family members who had been diagnosed with Type B NPD and who had a severe decrease in plasma high density lipoprotein cholesterol (HDL-C). The proband (a 48-year-old male) had an HDL-C of 0.30 mmol/l (12 mg/dl) and his sister had values of 0.45 mmol/l (17 mg/dl) with severe premature coronary artery disease (CAD). Hypertriglyceridemia was found in both cases. aSMase activity measured in skin fibroblasts appeared markedly depressed. The SMPD1 gene, coding for aSMase, was sequenced in affected subjects and all family members. Compound heterozygosity (DeltaR608 and R441X) was identified in both affected patients. Carriers of the DeltaR608 mutation tended to have moderately to severe decreased HDL-C levels, whereas carriers of the R441X mutation, although present only in young subjects (<20 years of age) had normal HDL-C levels. To investigate the cause of the low HDL-C level in these patients, we studied apoA-I-mediated cellular cholesterol efflux in fibroblasts. Unlike patients with Tangier disease, cholesterol efflux was found to be normal under the experimental conditions used in the present study. On the other hand, we observed a significant increase in the free cholesterol:esterified cholesterol ratio in HDL fraction from these patients and a decrease in endogenous lecithin-cholesterol acyltransferase (LCAT) activity, as determined by the fractional esterification rate. Taken together, these results suggest that (1) compound heterozygosity at the SMPD1 gene causes a severe decrease in aSMase activity and in HDL-C and increases the risk of CAD, (2) this lipoprotein abnormality is not attributable to defective cellular cholesterol efflux, (3) abnormal HDL composition might cause a decrease in LCAT activity and a lack of HDL maturation.
Collapse
Affiliation(s)
- Ching Yin Lee
- Cardiovascular Genetics Laboratory, Royal Victoria Hospital, McGill University Health Centre, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
61
|
Denis M, Bissonnette R, Haidar B, Krimbou L, Bouvier M, Genest J. Expression, regulation, and activity of ABCA1 in human cell lines. Mol Genet Metab 2003; 78:265-74. [PMID: 12706378 DOI: 10.1016/s1096-7192(03)00020-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mutations in the ATP-binding cassette transporter A1 (ABCA1) gene cause familial high-density lipoprotein deficiency and Tangier disease. ABCA1 plays a crucial role in active apolipoprotein A-I (apoA-I) lipidation, a key step in reverse cholesterol transport. We compared ABCA1 transcriptional regulation and cholesterol efflux in human skin fibroblasts, monocyte-derived macrophages and hepatocytes (HepG2). 8-Br-cAMP did not increase ABCA1 transcription in these tissues compared to mouse macrophages. We found that ABCA1 is differentially regulated among tissues. While transcription in HepG2 appears to be constitutive, sterols stimulate ABCA1 transcription in fibroblasts and monocyte-derived macrophages. ApoA-I promoted cholesterol efflux in fibroblasts, macrophages, and HepG2. Cholesterol homeostasis in fibroblasts is tightly regulated, and ABCA1 mRNA closely follows the cellular mass of free cholesterol (dose- and time-dependent manner). To further determine the mechanism used by fibroblasts to maintain sterol balance, we used a competitive inhibition approach with geranylgeranyl pyrophosphate (GGPP) to block the LXR induction pathway. GGPP blocked basal, 22-(R)-hydroxycholesterol- and cholesterol-induced ABCA1 expression. Taken together, these results demonstrate that: (1) ABCA1 expression varies among tissues, and (2) cholesterol conversion to hydroxycholesterol is an important mechanism for the maintenance of cholesterol homeostasis in fibroblasts.
Collapse
Affiliation(s)
- Maxime Denis
- Cardiovascular Genetics Laboratory, McGill University Health Center, Royal Victoria Hospital, 687 Pine Avenue West, Montréal, Quebec, Canada H3A 1A1
| | | | | | | | | | | |
Collapse
|
62
|
Laffitte BA, Joseph SB, Chen M, Castrillo A, Repa J, Wilpitz D, Mangelsdorf D, Tontonoz P. The phospholipid transfer protein gene is a liver X receptor target expressed by macrophages in atherosclerotic lesions. Mol Cell Biol 2003; 23:2182-91. [PMID: 12612088 PMCID: PMC149472 DOI: 10.1128/mcb.23.6.2182-2191.2003] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The liver X receptors (LXRs) are members of the nuclear receptor superfamily that are activated by oxysterols. In response to ligand binding, LXRs regulate a variety of genes involved in the catabolism, transport, and uptake of cholesterol and its metabolites. Here we demonstrate that LXRs also regulate plasma lipoprotein metabolism through control of the phospholipid transfer protein (PLTP) gene. LXR ligands induce the expression of PLTP in cultured HepG2 cells and mouse liver in vivo in a coordinate manner with known LXR target genes. Moreover, plasma phospholipid transfer activity is increased in mice treated with the synthetic LXR ligand GW3965. Unexpectedly, PLTP expression was also highly inducible by LXR in macrophages, a cell type not previously recognized to express this enzyme. The ability of synthetic and oxysterol ligands to regulate PLTP mRNA in macrophages and liver is lost in animals lacking both LXRalpha and LXRbeta, confirming the critical role of these receptors. We further demonstrate that the PLTP promoter contains a high-affinity LXR response element that is bound by LXR/RXR heterodimers in vitro and is activated by LXR/RXR in transient-transfection studies. Finally, immunohistochemistry studies reveal that PLTP is highly expressed by macrophages within human atherosclerotic lesions, suggesting a potential role for this enzyme in lipid-loaded macrophages. These studies outline a novel pathway whereby LXR and its ligands may modulate lipoprotein metabolism.
Collapse
MESH Headings
- Animals
- Anticholesteremic Agents/pharmacology
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Arteriosclerosis/metabolism
- Benzoates/pharmacology
- Benzylamines/pharmacology
- Carrier Proteins/analysis
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cells, Cultured/metabolism
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/pathology
- DNA-Binding Proteins
- Dimerization
- Gene Expression Profiling
- Gene Expression Regulation
- Humans
- Ligands
- Lipoproteins, HDL/metabolism
- Liver/metabolism
- Liver X Receptors
- Macrophages/metabolism
- Macrophages, Peritoneal/metabolism
- Male
- Membrane Proteins/analysis
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Oligonucleotide Array Sequence Analysis
- Organic Chemicals
- Orphan Nuclear Receptors
- Phospholipid Transfer Proteins
- Promoter Regions, Genetic
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Retinoic Acid/chemistry
- Receptors, Retinoic Acid/metabolism
- Recombinant Fusion Proteins/physiology
- Retinoid X Receptors
- Transcription Factors/chemistry
- Transcription Factors/metabolism
- Transfection
Collapse
Affiliation(s)
- Bryan A Laffitte
- Howard Hughes Medical Institute, School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095-1662, USA
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Chroni A, Liu T, Gorshkova I, Kan HY, Uehara Y, Von Eckardstein A, Zannis VI. The central helices of ApoA-I can promote ATP-binding cassette transporter A1 (ABCA1)-mediated lipid efflux. Amino acid residues 220-231 of the wild-type ApoA-I are required for lipid efflux in vitro and high density lipoprotein formation in vivo. J Biol Chem 2003; 278:6719-30. [PMID: 12488454 DOI: 10.1074/jbc.m205232200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have mapped the domains of lipid-free apoA-I that promote cAMP-dependent and cAMP-independent cholesterol and phospholipid efflux. The cAMP-dependent lipid efflux in J774 mouse macrophages was decreased by approximately 80-92% by apoA-I[delta(185-243)], only by 15% by apoA-I[delta(1-41)] or apoA-I[delta(1-59)], and was restored to 75-80% of the wild-type apoA-I control value by double deletion mutants apoA-I[delta(1-41)delta(185-243)] and apoA-I[delta(1-59)delta(185-243)]. Similar results were obtained in HEK293 cells transfected with an ATP-binding cassette transporter A1 (ABCA1) expression plasmid. The double deletion mutant of apoA-I had reduced thermal and chemical stability compared with wild-type apoA-I. Sequential carboxyl-terminal deletions showed that cAMP-dependent cholesterol efflux was diminished in all the mutants tested, except the apoA-I[delta(232-243)] which had normal cholesterol efflux. In cAMP-untreated or in mock-transfected cells, cholesterol efflux was not affected by the amino-terminal deletions, but decreased by 30-40% and 50-65% by the carboxyl-terminal and double deletions, respectively. After adenovirus-mediated gene transfer in apoA-I-deficient mice, wild-type apoA-I and apoA-I[delta(1-41)] formed spherical high density lipoprotein (HDL) particles, whereas apoA-I[delta(1-41)delta(185-243)] formed discoidal HDL. The findings suggest that although the central helices of apoA-I alone can promote ABCA1-mediated lipid efflux, residues 220-231 are necessary to allow functional interactions between the full-length apoA-I and ABCA1 that are required for lipid efflux and HDL biogenesis.
Collapse
Affiliation(s)
- Angeliki Chroni
- Section of Molecular Genetics, Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Favari E, Bernini F, Tarugi P, Franceschini G, Calabresi L. The C-terminal domain of apolipoprotein A-I is involved in ABCA1-driven phospholipid and cholesterol efflux. Biochem Biophys Res Commun 2002; 299:801-5. [PMID: 12470649 DOI: 10.1016/s0006-291x(02)02745-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ABCA1, a member of the ATP-binding cassette family, mediates the efflux of cellular lipids to free apolipoproteins, mainly apoA-I. The role of the C-terminal domain of apoA-I in this process has been evaluated by measuring the efflux capacity of a truncated form (apoA-I-(1-192)) versus intact apoA-I in different cellular models. In stimulated J774 macrophages, cholesterol efflux to apoA-I-(1-192) was remarkably lower than that to the intact apoA-I. The truncated apoA-I, lacking an important lipid-binding domain, was also significantly less efficient in removing phospholipids from stimulated macrophages. No difference was detected with stimulated Tangier fibroblasts that do not express functional ABCA1. The C-terminal domain of apoA-I is clearly involved in ABCA1-driven lipid efflux. Independent of the interaction with the cell surface, it may be the decreased ability of the truncated apoA-I to recruit membrane phospholipids that impairs its capacity to promote cell cholesterol efflux.
Collapse
Affiliation(s)
- Elda Favari
- Department of Pharmacological and Biological Sciences, and Applied Chemistry, University of Parma, Parco Area delle Scienze 27/A, 43100 Parma, Italy
| | | | | | | | | |
Collapse
|
65
|
Plōsch T, Kok T, Bloks VW, Smit MJ, Havinga R, Chimini G, Groen AK, Kuipers F. Increased hepatobiliary and fecal cholesterol excretion upon activation of the liver X receptor is independent of ABCA1. J Biol Chem 2002; 277:33870-7. [PMID: 12105210 DOI: 10.1074/jbc.m206522200] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP-binding cassette transporter ABCA1 is essential for high density lipoprotein (HDL) formation and considered rate-controlling for reverse cholesterol transport. Expression of the Abca1 gene is under control of the liver X receptor (LXR). We have evaluated effects of LXR activation by the synthetic agonist T0901317 on hepatic and intestinal cholesterol metabolism in C57BL/6J and DBA/1 wild-type mice and in ABCA1-deficient DBA/1 mice. In wild-type mice, T0901317 increased expression of Abca1 in liver and intestine, which was associated with an approximately 60% rise in HDL. Biliary cholesterol excretion rose 2.7-fold upon treatment, and fecal neutral sterol output was increased by 150-300%. Plasma cholesterol levels also increased in treated Abca1(-/-) mice (+120%), but exclusively in very low density lipoprotein-sized fractions. Despite the absence of HDL, hepatobiliary cholesterol output was stimulated upon LXR activation in Abca1(-/-) mice, leading to a 250% increase in the biliary cholesterol/phospholipid ratio. Most importantly, fecal neutral sterol loss was induced to a similar extent (+300%) by the LXR agonist in DBA/1 wild-type and Abca1(-/-) mice. Expression of Abcg5 and Abcg8, recently implicated in biliary excretion of cholesterol and its intestinal absorption, was induced in T0901317-treated mice. Thus, activation of LXR in mice leads to enhanced hepatobiliary cholesterol secretion and fecal neutral sterol loss independent of (ABCA1-mediated) elevation of HDL and the presence of ABCA1 in liver and intestine.
Collapse
Affiliation(s)
- Torsten Plōsch
- Center for Liver, Digestive, and Metabolic Diseases, Groningen University Institute for Drug Exploration, Department of Pediatrics, University Hospital Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|