51
|
Coulibaly D, Kone AK, Traore K, Niangaly A, Kouriba B, Arama C, Zeguime A, Dolo A, Lyke KE, Plowe CV, Abebe Y, Potter GE, Kennedy JK, Galbiati SM, Nomicos E, Deye GA, Richie TL, James ER, KC N, Sim BKL, Hoffman SL, Doumbo OK, Thera MA, Laurens MB. PfSPZ-CVac malaria vaccine demonstrates safety among malaria-experienced adults: A randomized, controlled phase 1 trial. EClinicalMedicine 2022; 52:101579. [PMID: 35928033 PMCID: PMC9343417 DOI: 10.1016/j.eclinm.2022.101579] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Plasmodium falciparum (Pf) Sporozoite (SPZ) Chemoprophylaxis Vaccine (PfSPZ-CVac) involves concurrently administering infectious PfSPZ and malaria drug, often chloroquine (CQ), to kill liver-emerging parasites. PfSPZ-CVac (CQ) protected 100% of malaria-naïve participants against controlled human malaria infection. We investigated the hypothesis that PfSPZ-CVac (CQ) is safe and efficacious against seasonal, endemic Pf in malaria-exposed adults. METHODS Healthy 18-45 year olds were enrolled in a double-blind, placebo-controlled trial in Bougoula-Hameau, Mali, randomized 1:1 to 2.048 × 105 PfSPZ (PfSPZ Challenge) or normal saline administered by direct venous inoculation at 0, 4, 8 weeks. Syringes were prepared by pharmacy staff using online computer-based enrolment that randomized allocations. Clinical team and participant masking was assured by identical appearance of vaccine and placebo. Participants received chloroquine 600mg before first vaccination, 10 weekly 300mg doses during vaccination, then seven daily doses of artesunate 200mg before 24-week surveillance during the rainy season. Safety outcomes were solicited adverse events (AEs) and related unsolicited AEs within 12 days of injections, and all serious AEs. Pf infection was detected by thick blood smears performed every four weeks and during febrile illness over 48 weeks. Primary vaccine efficacy (VE) endpoint was time to infection at 24 weeks. NCT02996695. FINDINGS 62 participants were enrolled in April/May 2017. Proportions of participants experiencing at least one solicited systemic AE were similar between treatment arms: 6/31 (19.4%, 95%CI 9.2-36.3) of PfSPZ-CVac recipients versus 7/31 (22.6%, 95%CI 29.2-62.2) of controls (p value = 1.000). Two/31 (6%) in each group reported related, unsolicited AEs. One unrelated death occurred. Of 59 receiving 3 immunizations per protocol, fewer vaccinees (16/29, 55.2%) became infected than controls (22/30, 73.3%). VE was 33.6% by hazard ratio (p = 0.21, 95%CI -27·9, 65·5) and 24.8% by risk ratio (p = 0.10, 95%CI -4·8, 54·3). Antibody responses to PfCSP were poor; 28% of vaccinees sero-converted. INTERPRETATION PfSPZ-CVac (CQ) was well-tolerated. The tested dosing regimen failed to significantly protect against Pf infection in this very high transmission setting. FUNDING U.S. National Institutes of Health, Sanaria. REGISTRATION NUMBER ClinicalTrials.gov identifier (NCT number): NCT02996695.
Collapse
Key Words
- ALT, alanine aminotransferase
- CHMI, Controlled Human Malaria Infection
- CQ, chloroquine
- CSP, circumsporozoite protein
- DOT, directly observed therapy
- DVI, direct venous inoculation
- ELISA, enzyme linked immunosorbent assay
- HR, hazard ratio
- Malaria vaccine
- PCR, polymerase chain reaction
- Pf, Plasmodium falciparum
- PfSPZ Vaccine
- PfSPZ-CVac
- PfSPZ-CVac, Plasmodium falciparum Sporozoite Chemoprophylaxis Vaccine
- Plasmodium falciparum
- SMC, safety monitoring committee
- SPZ, sporozoite
- Sporozoite
- TBS, thick blood smear
- VE, vaccine efficacy
Collapse
Affiliation(s)
- Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
- Corresponding author.
| | - Abdoulaye K. Kone
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Karim Traore
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Charles Arama
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amatigue Zeguime
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amagana Dolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Kirsten E. Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Christopher V. Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | - Effie Nomicos
- Parasitic and International Programs Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, U. S. National Institutes of Health, Bethesda, MD, United States
| | - Gregory A. Deye
- Parasitic and International Programs Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, U. S. National Institutes of Health, Bethesda, MD, United States
| | | | | | | | | | | | - Ogobara K. Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Mahamadou A. Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Matthew B. Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
52
|
Rotich AK, Takashima E, Yanow SK, Gitaka J, Kanoi BN. Towards identification and development of alternative vaccines against pregnancy-associated malaria based on naturally acquired immunity. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.988284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pregnant women are particularly susceptible to Plasmodium falciparum malaria, leading to substantial maternal and infant morbidity and mortality. While highly effective malaria vaccines are considered an essential component towards malaria elimination, strides towards development of vaccines for pregnant women have been minimal. The leading malaria vaccine, RTS,S/AS01, has modest efficacy in children suggesting that it needs to be strengthened and optimized if it is to be beneficial for pregnant women. Clinical trials against pregnancy-associated malaria (PAM) focused on the classical VAR2CSA antigen are ongoing. However, additional antigens have not been identified to supplement these initiatives despite the new evidence that VAR2CSA is not the only molecule involved in pregnancy-associated naturally acquired immunity. This is mainly due to a lack of understanding of the immune complexities in pregnancy coupled with difficulties associated with expression of malaria recombinant proteins, low antigen immunogenicity in humans, and the anticipated complications in conducting and implementing a vaccine to protect pregnant women. With the accelerated evolution of molecular technologies catapulted by the global pandemic, identification of novel alternative vaccine antigens is timely and feasible. In this review, we discuss approaches towards novel antigen discovery to support PAM vaccine studies.
Collapse
|
53
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
54
|
Owalla TJ, Hergott DEB, Seilie AM, Staubus W, Chavtur C, Chang M, Kublin JG, Egwang TG, Murphy SC. Rethinking detection of pre-existing and intervening Plasmodium infections in malaria clinical trials. Front Immunol 2022; 13:1003452. [PMID: 36203582 PMCID: PMC9531235 DOI: 10.3389/fimmu.2022.1003452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 02/02/2023] Open
Abstract
Pre-existing and intervening low-density Plasmodium infections complicate the conduct of malaria clinical trials. These infections confound infection detection endpoints, and their immunological effects may detract from intended vaccine-induced immune responses. Historically, these infections were often unrecognized since infrequent and often analytically insensitive parasitological testing was performed before and during trials. Molecular diagnostics now permits their detection, but investigators must weigh the cost, complexity, and personnel demands on the study and the laboratory when scheduling such tests. This paper discusses the effect of pre-existing and intervening, low-density Plasmodium infections on malaria vaccine trial endpoints and the current methods employed for their infection detection. We review detection techniques, that until recently, provided a dearth of cost-effective strategies for detecting low density infections. A recently deployed, field-tested, simple, and cost-effective molecular diagnostic strategy for detecting pre-existing and intervening Plasmodium infections from dried blood spots (DBS) in malaria-endemic settings is discussed to inform new clinical trial designs. Strategies that combine sensitive molecular diagnostic techniques with convenient DBS collections and cost-effective pooling strategies may enable more thorough and informative infection monitoring in upcoming malaria clinical trials and epidemiological studies.
Collapse
Affiliation(s)
- Tonny J. Owalla
- Department of Immunology and Parasitology, Med Biotech Laboratories, Kampala, Uganda
| | - Dianna E. B. Hergott
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States,Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States
| | - Annette M. Seilie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, United States
| | - Weston Staubus
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, United States
| | - Chris Chavtur
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, United States
| | - Ming Chang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, United States
| | - James G. Kublin
- Department of Global Health, University of Washington, Seattle, WA, United States,Seattle Malaria Clinical Trials Center, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Thomas G. Egwang
- Department of Immunology and Parasitology, Med Biotech Laboratories, Kampala, Uganda
| | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States,Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, United States,Seattle Malaria Clinical Trials Center, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States,Department of Microbiology, University of Washington, Seattle, WA, United States,*Correspondence: Sean C. Murphy,
| |
Collapse
|
55
|
Nunes-Cabaço H, Moita D, Prudêncio M. Five decades of clinical assessment of whole-sporozoite malaria vaccines. Front Immunol 2022; 13:977472. [PMID: 36159849 PMCID: PMC9493004 DOI: 10.3389/fimmu.2022.977472] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
In 1967, pioneering work by Ruth Nussenzweig demonstrated for the first time that irradiated sporozoites of the rodent malaria parasite Plasmodium berghei protected mice against a challenge with infectious parasites of the same species. This remarkable finding opened up entirely new prospects of effective vaccination against malaria using attenuated sporozoites as immunization agents. The potential for whole-sporozoite-based immunization in humans was established in a clinical study in 1973, when a volunteer exposed to X-irradiated P. falciparum sporozoites was found to be protected against malaria following challenge with a homologous strain of this parasite. Nearly five decades later, much has been achieved in the field of whole-sporozoite malaria vaccination, and multiple reports on the clinical evaluation of such candidates have emerged. However, this process has known different paces before and after the turn of the century. While only a few clinical studies were published in the 1970’s, 1980’s and 1990’s, remarkable progress was made in the 2000’s and beyond. This article reviews the history of the clinical assessment of whole-sporozoite malaria vaccines over the last forty-nine years, highlighting the impressive achievements made over the last few years, and discussing some of the challenges ahead.
Collapse
|
56
|
Kanoi BN, Maina M, Likhovole C, Kobia FM, Gitaka J. Malaria vaccine approaches leveraging technologies optimized in the COVID-19 era. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.988665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Africa bears the greatest burden of malaria with more than 200 million clinical cases and more than 600,000 deaths in 2020 alone. While malaria-associated deaths dropped steadily until 2015, the decline started to falter after 2016, highlighting the need for novel potent tools in the fight against malaria. Currently available tools, such as antimalarial drugs and insecticides are threatened by development of resistance by the parasite and the mosquito. The WHO has recently approved RTS,S as the first malaria vaccine for public health use. However, because the RTS,S vaccine has an efficacy of only 36% in young children, there is need for more efficacious vaccines. Indeed, based on the global goal of licensing a malaria vaccine with at least 75% efficacy by 2030, RTS,S is unlikely to be sufficient alone. However, recent years have seen tremendous progress in vaccine development. Although the COVID-19 pandemic impacted malaria control, the rapid progress in research towards the development of COVID-19 vaccines indicate that harnessing funds and technological advances can remarkably expedite vaccine development. In this review, we highlight and discuss current and prospective trends in global efforts to discover and develop malaria vaccines through leveraging mRNA vaccine platforms and other systems optimized during COVID-19 vaccine studies.
Collapse
|
57
|
Chakravarty S, Shears MJ, James ER, Rai U, Kc N, Conteh S, Lambert LE, Duffy PE, Murphy SC, Hoffman SL. Efficient infection of non-human primates with purified, cryopreserved Plasmodium knowlesi sporozoites. Malar J 2022; 21:247. [PMID: 36030292 PMCID: PMC9418655 DOI: 10.1186/s12936-022-04261-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background Plasmodium falciparum (Pf) sporozoite (SPZ) vaccines are the only candidate malaria vaccines that induce > 90% vaccine efficacy (VE) against controlled human malaria infection and the only malaria vaccines to have achieved reproducible VE against malaria in adults in Africa. The goal is to increase the impact and reduce the cost of PfSPZ vaccines by optimizing vaccine potency and manufacturing, which will benefit from identification of immunological responses contributing to protection in humans. Currently, there is no authentic animal challenge model for assessing P. falciparum malaria VE. Alternatively, Plasmodium knowlesi (Pk), which infects humans and non-human primates (NHPs) in nature, can be used to experimentally infect rhesus macaques (Macaca mulatta) to assess VE. Methods Sanaria has, therefore, produced purified, vialed, cryopreserved PkSPZ and conducted challenge studies in several naïve NHP cohorts. In the first cohort, groups of three rhesus macaques each received doses of 5 × 102, 2.5 × 103, 1.25 × 104 and 2.5 × 104 PkSPZ administered by direct venous inoculation. The infectivity of 1.5 × 103 PkSPZ cryopreserved with an altered method and of 1.5 × 103 PkSPZ cryopreserved for four years was tested in a second and third cohort of rhesus NHPs. The lastly, three pig-tailed macaques (Macaca nemestrina), a natural P. knowlesi host, were challenged with 2.5 × 103 PkSPZ cryopreserved six years earlier. Results In the first cohort, all 12 animals developed P. knowlesi parasitaemia by thick blood smear, and the time to positivity (prepatent period) followed a non-linear 4-parameter logistic sigmoidal model with a median of 11, 10, 8, and 7 days, respectively (r2 = 1). PkSPZ cryopreserved using a modified rapid-scalable method infected rhesus with a pre-patent period of 10 days, as did PkSPZ cryopreserved four years prior to infection, similar to the control group. Cryopreserved PkSPZ infected pig-tailed macaques with median time to positivity by thin smear, of 11 days. Conclusion This study establishes the capacity to consistently infect NHPs with purified, vialed, cryopreserved PkSPZ, providing a foundation for future studies to probe protective immunological mechanisms elicited by PfSPZ vaccines that cannot be established in humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04261-z.
Collapse
Affiliation(s)
- Sumana Chakravarty
- Sanaria, Inc, 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Melanie J Shears
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.,Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Eric R James
- Sanaria, Inc, 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Urvashi Rai
- Sanaria, Inc, 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Natasha Kc
- Sanaria, Inc, 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Solomon Conteh
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Bethesda, USA
| | - Lynn E Lambert
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Bethesda, USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Bethesda, USA
| | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.,Washington National Primate Research Center, University of Washington, Seattle, WA, USA.,Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Stephen L Hoffman
- Sanaria, Inc, 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA.
| |
Collapse
|
58
|
Murphy SC, Vaughan AM, Kublin JG, Fishbauger M, Seilie AM, Cruz KP, Mankowski T, Firat M, Magee S, Betz W, Kain H, Camargo N, Haile MT, Armstrong J, Fritzen E, Hertoghs N, Kumar S, Sather DN, Pinder LF, Deye GA, Galbiati S, Geber C, Butts J, Jackson LA, Kappe SH. A genetically engineered Plasmodium falciparum parasite vaccine provides protection from controlled human malaria infection. Sci Transl Med 2022; 14:eabn9709. [PMID: 36001680 PMCID: PMC10423335 DOI: 10.1126/scitranslmed.abn9709] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Genetically engineered live Plasmodium falciparum sporozoites constitute a potential platform for creating consistently attenuated, genetically defined, whole-parasite vaccines against malaria through targeted gene deletions. Such genetically attenuated parasites (GAPs) do not require attenuation by irradiation or concomitant drug treatment. We previously developed a P. falciparum (Pf) GAP with deletions in P52, P36, and SAP1 genes (PfGAP3KO) and demonstrated its safety and immunogenicity in humans. Here, we further assessed safety, tolerability, and immunogenicity of the PfGAP3KO vaccine and tested its efficacy against controlled human malaria infection (CHMI) in malaria-naïve subjects. The vaccine was delivered by three (n = 6) or five (n = 8) immunizations with ~200 PfGAP3KO-infected mosquito bites per immunization. PfGAP3KO was safe and well tolerated with no breakthrough P. falciparum blood stage infections. Vaccine-related adverse events were predominately localized urticaria related to the numerous mosquito bites administered per vaccination. CHMI via bites with mosquitoes carrying fully infectious Pf NF54 parasites was carried out 1 month after the last immunization. Half of the study participants who received either three or five PfGAP3KO immunizations remained P. falciparum blood stage negative, as shown by a lack of detection of Plasmodium 18S rRNA in the blood for 28 days after CHMI. Six protected study participants received a second CHMI 6 months later, and one remained completely protected. Thus, the PfGAP3KO vaccine was safe and immunogenic and was capable of inducing protection against sporozoite infection. These results warrant further evaluation of PfGAP3KO vaccine efficacy in dose-range finding trials with an injectable formulation.
Collapse
Affiliation(s)
- Sean C. Murphy
- Department of Laboratory Medicine and Pathology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington; Seattle, WA 98109
- Department of Microbiology, University of Washington; Seattle, WA 98109
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
- Department of Pediatrics, University of Washington; Seattle, WA 98105
| | - James G. Kublin
- Department of Global Health, University of Washington; Seattle, WA 98195
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center; Seattle, WA 98109
| | - Matthew Fishbauger
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Annette M. Seilie
- Department of Laboratory Medicine and Pathology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington; Seattle, WA 98109
| | - Kurtis P. Cruz
- Department of Laboratory Medicine and Pathology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington; Seattle, WA 98109
| | - Tracie Mankowski
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Melike Firat
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Sara Magee
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Will Betz
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Heather Kain
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Meseret T. Haile
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Janna Armstrong
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Emma Fritzen
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Nina Hertoghs
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - D. Noah Sather
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
| | - Leeya F. Pinder
- Department of Obstetrics and Gynecology, University of Washington; Seattle, WA 98195
| | - Gregory A. Deye
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD, United States
| | | | - Casey Geber
- The Emmes Company; Rockville, MD, United States
| | | | - Lisa A. Jackson
- Kaiser Permanente Washington Health Research Institute; Seattle, WA
| | - Stefan H.I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; 307 Westlake Avenue North, Suite 500, Seattle, WA 98109
- Department of Global Health, University of Washington; Seattle, WA 98195
- Department of Pediatrics, University of Washington; Seattle, WA 98105
| |
Collapse
|
59
|
A PfSPZ vaccine immunization regimen equally protective against homologous and heterologous controlled human malaria infection. NPJ Vaccines 2022; 7:100. [PMID: 35999221 PMCID: PMC9396563 DOI: 10.1038/s41541-022-00510-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/24/2022] [Indexed: 11/08/2022] Open
Abstract
Immunization with radiation-attenuated Plasmodium falciparum (Pf) sporozoites (SPZ) in PfSPZ Vaccine, has provided better vaccine efficacy (VE) against controlled human malaria infection (CHMI) with the same parasites as in the vaccine (homologous) than with genetically distant parasites (heterologous). We sought to identify an immunization regimen that provided similar VE against CHMI with homologous and heterologous Pf for at least 9 weeks in malaria-naïve adults. Such a regimen was identified in part 1 (optimization), an open label study, and confirmed in part 2 (verification), a randomized, double-blind, placebo-controlled study in which VE was assessed by cross-over repeat CHMI with homologous (PfNF54) and heterologous (Pf7G8) PfSPZ at 3 and 9–10 weeks. VE was calculated using Bayesian generalized linear regression. In part 1, vaccination with 9 × 105 PfSPZ on days 1, 8, and 29 protected 5/5 (100%) subjects against homologous CHMI at 3 weeks after the last immunization. In part 2, the same 3-dose regimen protected 5/6 subjects (83%) against heterologous CHMI at both 3 and 9–10 weeks after the last immunization. Overall VE was 78% (95% predictive interval: 57–92%), and against heterologous and homologous was 79% (95% PI: 54–95%) and 77% (95% PI: 50–95%) respectively. PfSPZ Vaccine was safe and well tolerated. A 4-week, 3-dose regimen of PfSPZ Vaccine provided similar VE for 9–10 weeks against homologous and heterologous CHMI. The trial is registered with ClinicalTrials.gov, NCT02704533.
Collapse
|
60
|
Tursi NJ, Reeder SM, Flores-Garcia Y, Bah MA, Mathis-Torres S, Salgado-Jimenez B, Esquivel R, Xu Z, Chu JD, Humeau L, Patel A, Zavala F, Weiner DB. Engineered DNA-encoded monoclonal antibodies targeting Plasmodium falciparum circumsporozoite protein confer single dose protection in a murine malaria challenge model. Sci Rep 2022; 12:14313. [PMID: 35995959 PMCID: PMC9395511 DOI: 10.1038/s41598-022-18375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/06/2022] [Indexed: 12/15/2022] Open
Abstract
Novel approaches for malaria prophylaxis remain important. Synthetic DNA-encoded monoclonal antibodies (DMAbs) are a promising approach to generate rapid, direct in vivo host-generated mAbs with potential benefits in production simplicity and distribution coupled with genetic engineering. Here, we explore this approach in a malaria challenge model. We engineered germline-reverted DMAbs based on human mAb clones CIS43, 317, and L9 which target a junctional epitope, major repeat, and minor repeat of the Plasmodium falciparum circumsporozoite protein (CSP) respectively. DMAb variants were encoded into a plasmid vector backbone and their expression and binding profiles were characterized. We demonstrate long-term serological expression of DMAb constructs resulting in in vivo efficacy of CIS43 GL and 317 GL in a rigorous mosquito bite mouse challenge model. Additionally, we engineered an Fc modified variant of CIS43 and L9-based DMAbs to ablate binding to C1q to test the impact of complement-dependent Fc function on challenge outcomes. Complement knockout variant DMAbs demonstrated similar protection to that of WT Fc DMAbs supporting the notion that direct binding to the parasite is sufficient for the protection observed. Further investigation of DMAbs for malaria prophylaxis appears of importance.
Collapse
Affiliation(s)
- Nicholas J Tursi
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sophia M Reeder
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mamadou A Bah
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Shamika Mathis-Torres
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Berenice Salgado-Jimenez
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Rianne Esquivel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Ziyang Xu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jacqueline D Chu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Laurent Humeau
- Inovio Pharmaceuticals, Plymouth Meeting, PA, 19462, USA
| | - Ami Patel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
61
|
Woodford J, Sagara I, Diawara H, Assadou MH, Katile A, Attaher O, Issiaka D, Santara G, Soumbounou IH, Traore S, Traore M, Dicko OM, Niambele SM, Mahamar A, Kamate B, Haidara B, Sissoko K, Sankare S, Diarra SDK, Zeguime A, Doritchamou JYA, Zaidi I, Dicko A, Duffy PE. Recent malaria does not substantially impact COVID-19 antibody response or rates of symptomatic illness in communities with high malaria and COVID-19 transmission in Mali, West Africa. Front Immunol 2022; 13:959697. [PMID: 35990648 PMCID: PMC9382593 DOI: 10.3389/fimmu.2022.959697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria has been hypothesized as a factor that may have reduced the severity of the COVID-19 pandemic in sub-Saharan Africa. To evaluate the effect of recent malaria on COVID-19 we assessed a subgroup of individuals participating in a longitudinal cohort COVID-19 serosurvey that were also undergoing intensive malaria monitoring as part of antimalarial vaccine trials during the 2020 transmission season in Mali. These communities experienced a high incidence of primarily asymptomatic or mild COVID-19 during 2020 and 2021. In 1314 individuals, 711 were parasitemic during the 2020 malaria transmission season; 442 were symptomatic with clinical malaria and 269 had asymptomatic infection. Presence of parasitemia was not associated with new COVID-19 seroconversion (29.7% (211/711) vs. 30.0% (181/603), p=0.9038) or with rates of reported symptomatic seroconversion during the malaria transmission season. In the subsequent dry season, prior parasitemia was not associated with new COVID-19 seroconversion (30.2% (133/441) vs. 31.2% (108/346), p=0.7499), with symptomatic seroconversion, or with reversion from seropositive to seronegative (prior parasitemia: 36.2% (64/177) vs. no parasitemia: 30.1% (37/119), p=0.3842). After excluding participants with asymptomatic infection, clinical malaria was also not associated with COVID-19 serostatus or symptomatic seroconversion when compared to participants with no parasitemia during the monitoring period. In communities with intense seasonal malaria and a high incidence of asymptomatic or mild COVID-19, we did not demonstrate a relationship between recent malaria and subsequent response to COVID-19. Lifetime exposure, rather than recent infection, may be responsible for any effect of malaria on COVID-19 severity.
Collapse
Affiliation(s)
- John Woodford
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Issaka Sagara
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Halimatou Diawara
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Mahamadoun Hamady Assadou
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Abdoulaye Katile
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Oumar Attaher
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Djibrilla Issiaka
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Gaoussou Santara
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Ibrahim H Soumbounou
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Seydou Traore
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Moussa Traore
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Oumar M Dicko
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Sidi Mohamed Niambele
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Almahamoudou Mahamar
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Bourama Kamate
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Bayaya Haidara
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Kourane Sissoko
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Seydou Sankare
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Sadio Dite Koni Diarra
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Amatigue Zeguime
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Justin Y A Doritchamou
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Irfan Zaidi
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Alassane Dicko
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| |
Collapse
|
62
|
Manurung MD, de Jong SE, Kruize Y, Mouwenda YD, Ongwe MEB, Honkpehedji YJ, Zinsou JF, Dejon-Agobe JC, Hoffman SL, Kremsner PG, Adegnika AA, Fendel R, Mordmüller B, Roestenberg M, Lell B, Yazdanbakhsh M. Immunological profiles associated with distinct parasitemic states in volunteers undergoing malaria challenge in Gabon. Sci Rep 2022; 12:13303. [PMID: 35922467 PMCID: PMC9349185 DOI: 10.1038/s41598-022-17725-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 07/29/2022] [Indexed: 12/05/2022] Open
Abstract
Controlled human malaria infection (CHMI) using cryopreserved non-attenuated Plasmodium falciparum sporozoites (PfSPZ) offers a unique opportunity to investigate naturally acquired immunity (NAI). By analyzing blood samples from 5 malaria-naïve European and 20 African adults with lifelong exposure to malaria, before, 5, and 11 days after direct venous inoculation (DVI) with SanariaR PfSPZ Challenge, we assessed the immunological patterns associated with control of microscopic and submicroscopic parasitemia. All (5/5) European individuals developed parasitemia as defined by thick blood smear (TBS), but 40% (8/20) of the African individuals controlled their parasitemia, and therefore remained thick blood smear-negative (TBS− Africans). In the TBS− Africans, we observed higher baseline frequencies of CD4+ T cells producing interferon-gamma (IFNγ) that significantly decreased 5 days after PfSPZ DVI. The TBS− Africans, which represent individuals with either very strong and rapid blood-stage immunity or with immunity to liver stages, were stratified into subjects with sub-microscopic parasitemia (TBS-PCR+) or those with possibly sterilizing immunity (TBS−PCR−). Higher frequencies of IFNγ+TNF+CD8+ γδ T cells at baseline, which later decreased within five days after PfSPZ DVI, were associated with those who remained TBS−PCR−. These findings suggest that naturally acquired immunity is characterized by different cell types that show varying strengths of malaria parasite control. While the high frequencies of antigen responsive IFNγ+CD4+ T cells in peripheral blood keep the blood-stage parasites to a sub-microscopic level, it is the IFNγ+TNF+CD8+ γδ T cells that are associated with either immunity to the liver-stage, or rapid elimination of blood-stage parasites.
Collapse
Affiliation(s)
- Mikhael D Manurung
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Sanne E de Jong
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Yvonne Kruize
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Yoanne D Mouwenda
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Madeleine Eunice Betouke Ongwe
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institut de Recherches en Ecologie Tropicale, CENAREST, Libreville, Gabon
| | - Yabo Josiane Honkpehedji
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Jeannot Frézus Zinsou
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Fondation Pour La Recherche Scientifique, 72 BP45, Cotonou, Bénin
| | - Jean Claude Dejon-Agobe
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Peter G Kremsner
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institute of Tropical Medicine, University of Tübingen, Tubingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Ayola Akim Adegnika
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Fondation Pour La Recherche Scientifique, 72 BP45, Cotonou, Bénin.,Institute of Tropical Medicine, University of Tübingen, Tubingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Rolf Fendel
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institute of Tropical Medicine, University of Tübingen, Tubingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Benjamin Mordmüller
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institute of Tropical Medicine, University of Tübingen, Tubingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Radboud University Medical Center, Nijmegen, The Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Bertrand Lell
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
63
|
Prahl M, Golan Y, Cassidy AG, Matsui Y, Li L, Alvarenga B, Chen H, Jigmeddagva U, Lin CY, Gonzalez VJ, Chidboy MA, Warrier L, Buarpung S, Murtha AP, Flaherman VJ, Greene WC, Wu AHB, Lynch KL, Rajan J, Gaw SL. Evaluation of transplacental transfer of mRNA vaccine products and functional antibodies during pregnancy and infancy. Nat Commun 2022; 13:4422. [PMID: 35908075 PMCID: PMC9338928 DOI: 10.1038/s41467-022-32188-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/20/2022] [Indexed: 11/08/2022] Open
Abstract
Studies are needed to evaluate the safety and effectiveness of mRNA SARS-CoV-2 vaccination during pregnancy, and the levels of protection provided to their newborns through placental transfer of antibodies. Here, we evaluate the transplacental transfer of mRNA vaccine products and functional anti-SARS-CoV-2 antibodies during pregnancy and early infancy in a cohort of 20 individuals vaccinated during late pregnancy. We find no evidence of mRNA vaccine products in maternal blood, placenta tissue, or cord blood at delivery. However, we find time-dependent efficient transfer of IgG and neutralizing antibodies to the neonate that persists during early infancy. Additionally, using phage immunoprecipitation sequencing, we find a vaccine-specific signature of SARS-CoV-2 Spike protein epitope binding that is transplacentally transferred during pregnancy. Timing of vaccination during pregnancy is critical to ensure transplacental transfer of protective antibodies during early infancy.
Collapse
Affiliation(s)
- Mary Prahl
- Department of Pediatrics, University of California, San Francisco, CA, USA.
- Division of Pediatric Infectious Diseases and Global Health, University of California, San Francisco, CA, USA.
| | - Yarden Golan
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Arianna G Cassidy
- Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Yusuke Matsui
- Gladstone Center for HIV Cure Research, Gladstone Institute, San Francisco, CA, USA
| | - Lin Li
- Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Bonny Alvarenga
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Hao Chen
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Unurzul Jigmeddagva
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Christine Y Lin
- Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Veronica J Gonzalez
- Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Megan A Chidboy
- Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Lakshmi Warrier
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Sirirak Buarpung
- Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Amy P Murtha
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | | | - Warner C Greene
- Gladstone Center for HIV Cure Research, Gladstone Institute, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Departments of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Alan H B Wu
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Kara L Lynch
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Jayant Rajan
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Stephanie L Gaw
- Division of Maternal Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
64
|
Schneider CG, Fey J, Zou X, Gerbasi V, Savransky T, Batt C, Bergmann-Leitner E, Angov E. Norovirus-VLPs expressing pre-erythrocytic malaria antigens induce functional immunity against sporozoite infection. Vaccine 2022; 40:4270-4280. [PMID: 35697572 DOI: 10.1016/j.vaccine.2022.05.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
Despite the development of prophylactic anti-malarial drugs and practices to prevent infection, malaria remains a health concern. Preclinical testing of novel malaria vaccine strategies achieved through rational antigen selection and novel particle-based delivery platforms is yielding encouraging results. One such platform, self-assembling virus-like particles (VLP) is safer than attenuated live viruses, and has been approved as a vaccination tool by the FDA. We explore the use of Norovirus sub-viral particles lacking the natural shell (S) domain forming the interior shell but that retain the protruding (P) structures of the native virus as a vaccine vector. Epitope selection and their surface display has the potential to focus antigen specific immune responses to crucial epitopes. Recombinant P-particles displaying epitopes from two malaria antigens, Plasmodium falciparum (Pf) CelTOS and Plasmodium falciparum (Pf) CSP, were evaluated for immunogenicity and their ability to confer protection in a murine challenge model. Immune responses induced in mice resulted either in sterile protection (displaying PfCelTOS epitopes) or in antibodies with functional activity against sporozoites (displaying PfCSP epitopes) in an in vitro liver-stage development assay (ILSDA). These results are encouraging and support further evaluation of this platform as a vaccine delivery system.
Collapse
Affiliation(s)
- Cosette G Schneider
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA.
| | - Julien Fey
- Agave BioSystems, Ithaca, NY 14850, USA.
| | - Xiaoyan Zou
- Naval Medical Research Center, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Vince Gerbasi
- Naval Medical Research Center, Silver Spring, MD 20910, USA.
| | - Tatyana Savransky
- Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; General Dynamics Information Technology, Falls Church, VA 22042, USA.
| | - Carl Batt
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Elke Bergmann-Leitner
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | - Evelina Angov
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| |
Collapse
|
65
|
Visweswaran GRR, Vijayan K, Chandrasekaran R, Trakhimets O, Brown SL, Vigdorovich V, Yang A, Raappana A, Watson A, Selman W, Zuck M, Dambrauskas N, Kaushansky A, Sather DN. Germinal center activity and B cell maturation are associated with protective antibody responses against Plasmodium pre-erythrocytic infection. PLoS Pathog 2022; 18:e1010671. [PMID: 35793394 PMCID: PMC9292112 DOI: 10.1371/journal.ppat.1010671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/18/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022] Open
Abstract
Blocking Plasmodium, the causative agent of malaria, at the asymptomatic pre-erythrocytic stage would abrogate disease pathology and prevent transmission. However, the lack of well-defined features within vaccine-elicited antibody responses that correlate with protection represents a major roadblock to improving on current generation vaccines. We vaccinated mice (BALB/cJ and C57BL/6J) with Py circumsporozoite protein (CSP), the major surface antigen on the sporozoite, and evaluated vaccine-elicited humoral immunity and identified immunological factors associated with protection after mosquito bite challenge. Vaccination achieved 60% sterile protection and otherwise delayed blood stage patency in BALB/cJ mice. In contrast, all C57BL/6J mice were infected similar to controls. Protection was mediated by antibodies and could be passively transferred from immunized BALB/cJ mice into naïve C57BL/6J. Dissection of the underlying immunological features of protection revealed early deficits in antibody titers and polyclonal avidity in C57BL/6J mice. Additionally, PyCSP-vaccination in BALB/cJ induced a significantly higher proportion of antigen-specific B-cells and class-switched memory B-cell (MBCs) populations than in C57BL/6J mice. Strikingly, C57BL/6J mice also had markedly fewer CSP-specific germinal center experienced B cells and class-switched MBCs compared to BALB/cJ mice. Analysis of the IgG γ chain repertoires by next generation sequencing in PyCSP-specific memory B-cell repertoires also revealed higher somatic hypermutation rates in BALB/cJ mice than in C57BL/6J mice. These findings indicate that the development of protective antibody responses in BALB/cJ mice in response to vaccination with PyCSP was associated with increased germinal center activity and somatic mutation compared to C57BL/6J mice, highlighting the key role B cell maturation may have in the development of vaccine-elicited protective antibodies against CSP. Identifying specific features of vaccine-elicited antibody responses that are associated with protection from malaria infection is a key step toward the development of a safe and effective vaccine. Here we compared antibody and B cell responses in two mouse strains that exhibited a differential ability to generate antibodies that protect from infection challenge. We found that protection was due to the presence of vaccine-elicited antibodies and could be transferred between strains, and that the ability of antibodies to neutralize the parasite was directly linked to the strength (affinity) with which it binds CSP. Thus, we sought to understand if there were differences in the two strains in the process of B cell maturation that leads to generation of high affinity, protective antibody responses after vaccination. Overall, our comparative analysis indicates that germinal center (GC) activity, a key process in B cell maturation, was significantly diminished in the non-protected strain. Further, we observed evidence of higher levels of somatic mutation, which is a result of germinal center activity, in protected mice. Thus, our results indicate that the ability to generate protective antibody responses was linked to enhanced B cell maturation in the protected strain, providing a key clue to the type of responses that should be generated by future vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ashton Yang
- Seattle Children’s Research Institute, Seattle, Washington
| | | | - Alex Watson
- Seattle Children’s Research Institute, Seattle, Washington
| | - William Selman
- Seattle Children’s Research Institute, Seattle, Washington
| | - Meghan Zuck
- Seattle Children’s Research Institute, Seattle, Washington
| | | | - Alexis Kaushansky
- Seattle Children’s Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
- Brotman Baty Research Institute, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, Seattle, Washington
- * E-mail: (AK); (DNS)
| | - D. Noah Sather
- Seattle Children’s Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
- * E-mail: (AK); (DNS)
| |
Collapse
|
66
|
Kumar M, James MM, Kumawat M, Nabi B, Sharma P, Pal N, Shubham S, Tiwari RR, Sarma DK, Nagpal R. Aging and Microbiome in the Modulation of Vaccine Efficacy. Biomedicines 2022; 10:biomedicines10071545. [PMID: 35884849 PMCID: PMC9313064 DOI: 10.3390/biomedicines10071545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/29/2022] Open
Abstract
From infancy through to old age, the microbiome plays an important role in modulating the host-immune system. As we age, our immune system and our gut microbiota change significantly in composition and function, which is linked to an increased vulnerability to infectious diseases and a decrease in vaccine responses. Our microbiome remains largely stable throughout adulthood; however, aging causes a major shift in the composition and function of the gut microbiome, as well as a decrease in diversity. Considering the critical role of the gut microbiome in the host-immune system, it is important to address, prevent, and ameliorate age-related dysbiosis, which could be an effective strategy for preventing/restoring functional deficits in immune responses as we grow older. Several factors, such as the host’s genetics and nutritional state, along with the gut microbiome, can influence vaccine efficacy or reaction. Emerging evidence suggests that the microbiome could be a significant determinant of vaccine immunity. Physiological mechanisms such as senescence, or the steady loss of cellular functions, which affect the aging process and vaccination responses, have yet to be comprehended. Recent studies on several COVID-19 vaccines worldwide have provided a considerable amount of data to support the hypothesis that aging plays a crucial role in modulating COVID-19 vaccination efficacy across different populations.
Collapse
Affiliation(s)
- Manoj Kumar
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Meenu Mariya James
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Manoj Kumawat
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Bilkees Nabi
- Department of Biochemistry and Biochemical Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad 211007, India;
| | - Poonam Sharma
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Namrata Pal
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Swasti Shubham
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Rajnarayan R. Tiwari
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Devojit Kumar Sarma
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
- Correspondence: (D.K.S.); (R.N.)
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32302, USA
- Correspondence: (D.K.S.); (R.N.)
| |
Collapse
|
67
|
Silva JC, Dwivedi A, Moser KA, Sissoko MS, Epstein JE, Healy SA, Lyke KE, Mordmüller B, Kremsner PG, Duffy PE, Murshedkar T, Sim BKL, Richie TL, Hoffman SL. Plasmodium falciparum 7G8 challenge provides conservative prediction of efficacy of PfNF54-based PfSPZ Vaccine in Africa. Nat Commun 2022; 13:3390. [PMID: 35697668 PMCID: PMC9189790 DOI: 10.1038/s41467-022-30882-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
Controlled human malaria infection (CHMI) has supported Plasmodium falciparum (Pf) malaria vaccine development by providing preliminary estimates of vaccine efficacy (VE). Because CHMIs generally use Pf strains similar to vaccine strains, VE against antigenically heterogeneous Pf in the field has been required to establish VE. We increased the stringency of CHMI by selecting a Brazilian isolate, Pf7G8, which is genetically distant from the West African parasite (PfNF54) in our PfSPZ vaccines. Using two regimens to identically immunize US and Malian adults, VE over 24 weeks in the field was as good as or better than VE against CHMI at 24 weeks in the US. To explain this finding, here we quantify differences in the genome, proteome, and predicted CD8 T cell epitopes of PfNF54 relative to 704 Pf isolates from Africa and Pf7G8. We show that Pf7G8 is more distant from PfNF54 than any African isolates tested. We propose VE against Pf7G8 CHMI for providing pivotal data for malaria vaccine licensure for travelers to Africa, and potentially for endemic populations, because the genetic distance of Pf7G8 from the Pf vaccine strain makes it a stringent surrogate for Pf parasites in Africa. Here the authors show that controlled human malaria infection with a Brazilian parasite highly divergent from vaccine and West African field strains can provide estimates of vaccine efficacy in Mali, and could replace field testing, streamlining vaccine development.
Collapse
Affiliation(s)
- Joana C Silva
- Institute for Genomic Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ankit Dwivedi
- Institute for Genomic Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kara A Moser
- Institute for Genomic Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mahamadou S Sissoko
- Malaria Research and Training Center, Mali National Institute of Allergy and Infectious Diseases International Centers for Excellence in Research, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Judith E Epstein
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, Bethesda, MD, USA
| | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University of Tübingen and German Center for Infection Research, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.,Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen and German Center for Infection Research, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
68
|
Misconceptions Related to COVID 19 Vaccines Among the Jordanian Population: Myth and Public Health. Disaster Med Public Health Prep 2022; 17:e207. [PMID: 35673791 PMCID: PMC9300972 DOI: 10.1017/dmp.2022.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE This study assesses misconceptions about coronavirus disease 2019 (COVID-19) vaccine and the factors associated with misconception among Jordanians. METHODS A cross-sectional online survey was conducted. The survey was formulated on Google Forms, and was hosted on an online platform. These questions were created based on extensive review of online information about the vaccines. Frequencies and percentages (%) were used for categorical variables, while means and standard deviations (SDs) were used for continuous variables. Stepwise binary logistic regression was conducted to evaluate variables associated with participant's misconception questions. RESULTS Of 1195 survey respondents who participated in the study, 41.3% had received the COVID-19 vaccine. The mean misconception score was (60.0 ± 19.1). The statement with the highest mean was "The vaccine hasn't been tested on enough people" (3.6 ± 1.0). The statement with the lowest mean was "The COVID-19 vaccine includes a microchip to control us" (2.2 ± 1.1) in the conspiracy theory portion. Females, 18- to 29-age group, higher educational level, living in a city, the participants who took lectures about the COVID-19 vaccine and vaccinated participants had higher odds of being in the low misconception level group. CONCLUSION Targeted campaigns and vaccine safety information should be part of a broader health education campaign to alleviate vaccination safety concerns.
Collapse
|
69
|
Nadeem AY, Shehzad A, Islam SU, Al-Suhaimi EA, Lee YS. Mosquirix™ RTS, S/AS01 Vaccine Development, Immunogenicity, and Efficacy. Vaccines (Basel) 2022; 10:vaccines10050713. [PMID: 35632469 PMCID: PMC9143879 DOI: 10.3390/vaccines10050713] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 12/10/2022] Open
Abstract
Malaria is a parasitic infection caused by bites from Plasmodium falciparum (P. falciparum)-infected mosquitoes with a present scale of symptoms ranging from moderate fever to neurological disorders. P. falciparum is the most lethal of the five strains of malaria, and is a major case of morbidity and mortality in endemic regions. Recent advancements in malaria diagnostic tools and prevention strategies have improved conjugation antimalarial therapies using fumigation and long-lasting insecticidal sprays, thus lowering malarial infections. Declines in the total number of infected individuals have been correlated with antimalarial drugs. Despite this, malaria remains a major health threat, affecting more than 30 million men, women, and children around the globe, and 20 percent of all children around the globe have malaria parasites in their blood. To overcome this life-threatening condition, novel therapeutic strategies, including immunization, are urgently needed to tackle this infection around the world. In line with this, the development of the RTS, S vaccine was a significant step forward in the fight against malaria. RTS, S is a vaccine for P. falciparum in which R specifies central repeat units, T the T-cell epitopes, and S indicates surface antigen. The RTS, S/AS01 malarial vaccine was synthesized and screened in several clinical trials between 2009 and 2014, involving thousands of young children in seven African countries, showing that children who received the vaccine did not suffer from severe malaria. Mosquirix™ was approved by the World Health Organization in 2021, indicating it to be safe and advocating its integration into routine immunization programs and existing malaria control measures. This paper examines the various stages of the vaccine’s development, including the evaluation of its immunogenicity and efficacy on the basis of a total of 2.3 million administered doses through a routine immunization program. The protection and effectiveness provided by the vaccine are strong, and evidence shows that it can be effectively delivered through the routine child immunization platform. The economic cost of the vaccine remains to be considered.
Collapse
Affiliation(s)
- Aroosa Younis Nadeem
- Department of Biomedical Sciences, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; (A.Y.N.); (A.S.)
| | - Adeeb Shehzad
- Department of Biomedical Sciences, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; (A.Y.N.); (A.S.)
| | - Salman Ul Islam
- Department of Pharmacy, CECOS University, Peshawar 25000, Pakistan;
| | - Ebtesam A. Al-Suhaimi
- Biology Department, College of Science and Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Young Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-6353; Fax: +82-53-943-2762
| |
Collapse
|
70
|
Studniberg SI, Ioannidis LJ, Utami RAS, Trianty L, Liao Y, Abeysekera W, Li‐Wai‐Suen CSN, Pietrzak HM, Healer J, Puspitasari AM, Apriyanti D, Coutrier F, Poespoprodjo JR, Kenangalem E, Andries B, Prayoga P, Sariyanti N, Smyth GK, Cowman AF, Price RN, Noviyanti R, Shi W, Garnham AL, Hansen DS. Molecular profiling reveals features of clinical immunity and immunosuppression in asymptomatic P. falciparum malaria. Mol Syst Biol 2022; 18:e10824. [PMID: 35475529 PMCID: PMC9045086 DOI: 10.15252/msb.202110824] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/12/2023] Open
Abstract
Clinical immunity to P. falciparum malaria is non-sterilizing, with adults often experiencing asymptomatic infection. Historically, asymptomatic malaria has been viewed as beneficial and required to help maintain clinical immunity. Emerging views suggest that these infections are detrimental and constitute a parasite reservoir that perpetuates transmission. To define the impact of asymptomatic malaria, we pursued a systems approach integrating antibody responses, mass cytometry, and transcriptional profiling of individuals experiencing symptomatic and asymptomatic P. falciparum infection. Defined populations of classical and atypical memory B cells and a TH2 cell bias were associated with reduced risk of clinical malaria. Despite these protective responses, asymptomatic malaria featured an immunosuppressive transcriptional signature with upregulation of pathways involved in the inhibition of T-cell function, and CTLA-4 as a predicted regulator in these processes. As proof of concept, we demonstrated a role for CTLA-4 in the development of asymptomatic parasitemia in infection models. The results suggest that asymptomatic malaria is not innocuous and might not support the induction of immune processes to fully control parasitemia or efficiently respond to malaria vaccines.
Collapse
Affiliation(s)
- Stephanie I Studniberg
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| | - Lisa J Ioannidis
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| | - Retno A S Utami
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia,Eijkman Institute for Molecular BiologyJakartaIndonesia
| | - Leily Trianty
- Eijkman Institute for Molecular BiologyJakartaIndonesia
| | - Yang Liao
- Olivia Newton‐John Cancer Research InstituteHeidelbergVic.Australia
| | - Waruni Abeysekera
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,School of Mathematics and StatisticsThe University of MelbourneParkvilleVic.Australia
| | - Connie S N Li‐Wai‐Suen
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,School of Mathematics and StatisticsThe University of MelbourneParkvilleVic.Australia
| | - Halina M Pietrzak
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| | - Julie Healer
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| | | | - Dwi Apriyanti
- Eijkman Institute for Molecular BiologyJakartaIndonesia
| | | | | | | | | | - Pak Prayoga
- Papuan Health and Community FoundationPapuaIndonesia
| | | | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,School of Mathematics and StatisticsThe University of MelbourneParkvilleVic.Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| | - Ric N Price
- Global and Tropical Health DivisionMenzies School of Health Research and Charles Darwin UniversityDarwinNTAustralia,Centre for Tropical Medicine and Global HealthNuffield Department of MedicineUniversity of OxfordOxfordUK,Mahidol‐Oxford Tropical Medicine Research UnitMahidol UniversityBangkokThailand
| | | | - Wei Shi
- Olivia Newton‐John Cancer Research InstituteHeidelbergVic.Australia
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,School of Mathematics and StatisticsThe University of MelbourneParkvilleVic.Australia
| | - Diana S Hansen
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia,Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| |
Collapse
|
71
|
Nunes-Cabaço H, Moita D, Rôla C, Mendes AM, Prudêncio M. Impact of Dietary Protein Restriction on the Immunogenicity and Efficacy of Whole-Sporozoite Malaria Vaccination. Front Immunol 2022; 13:869757. [PMID: 35529859 PMCID: PMC9070679 DOI: 10.3389/fimmu.2022.869757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria remains one of the world’s most prevalent infectious diseases. Several vaccination strategies currently under investigation aim at hampering the development of the Plasmodium parasite during the clinically silent liver stage of its life cycle in the mammalian host, preventing the subsequent disease-associated blood stage of infection. Immunization with radiation-attenuated sporozoites (RAS), the liver-infecting parasite forms, can induce sterile protection against malaria. However, the efficacy of vaccine candidates in malaria-naïve individuals in high-income countries is frequently higher than that found in populations where malaria is endemic. Malnutrition has been associated with immune dysfunction and with a delay or impairment of the immune response to some vaccines. Since vaccine efficacy depends on the generation of competent immune responses, and malaria-endemic regions are often associated with malnutrition, we hypothesized that an inadequate host nutritional status, specifically resulting from a reduction in dietary protein, could impact on the establishment of an efficient anti-malarial immune response. We developed a model of RAS immunization under low protein diet to investigate the impact of a reduced host protein intake on the immunogenicity and protective efficacy of this vaccine. Our analysis of the circulating and tissue-associated immune compartments revealed that a reduction in dietary protein intake during immunization resulted in a decrease in the frequency of circulating CD4+ T cells and of hepatic NK cells. Nevertheless, the profile of CD8+ T cells in the blood, liver and spleen was robust and minimally affected by the dietary protein content during RAS immunization, as assessed by supervised and in-depth unsupervised X-shift clustering analysis. Although mice immunized under low protein diet presented higher parasite liver load upon challenge than those immunized under adequate protein intake, the two groups displayed similar levels of protection from disease. Overall, our data indicate that dietary protein reduction may have minimal impact on the immunogenicity and efficacy of RAS-based malaria vaccination. Importantly, this experimental model can be extended to assess the impact of other nutrient imbalances and immunization strategies, towards the refinement of future translational interventions that improve vaccine efficacy in malnourished individuals.
Collapse
|
72
|
Sissoko MS, Healy SA, Katile A, Zaidi I, Hu Z, Kamate B, Samake Y, Sissoko K, Mwakingwe-Omari A, Lane J, Imeru A, Mohan R, Thera I, Guindo CO, Dolo A, Niare K, Koïta F, Niangaly A, Rausch KM, Zeguime A, Guindo MA, Bah A, Abebe Y, James ER, Manoj A, Murshedkar T, Kc N, Sim BKL, Billingsley PF, Richie TL, Hoffman SL, Doumbo O, Duffy PE. Safety and efficacy of a three-dose regimen of Plasmodium falciparum sporozoite vaccine in adults during an intense malaria transmission season in Mali: a randomised, controlled phase 1 trial. THE LANCET. INFECTIOUS DISEASES 2022; 22:377-389. [PMID: 34801112 PMCID: PMC8981424 DOI: 10.1016/s1473-3099(21)00332-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/28/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND WHO recently approved a partially effective vaccine that reduces clinical malaria in children, but increased vaccine activity is required to pursue malaria elimination. A phase 1 clinical trial was done in Mali, west Africa, to assess the safety, immunogenicity, and protective efficacy of a three-dose regimen of Plasmodium falciparum sporozoite (PfSPZ) Vaccine (a metabolically active, non-replicating, whole malaria sporozoite vaccine) against homologous controlled human malaria infection (CHMI) and natural P falciparum infection. METHODS We recruited healthy non-pregnant adults aged 18-50 years in Donéguébougou, Mali, and surrounding villages (Banambani, Toubana, Torodo, Sirababougou, Zorokoro) for an open-label, dose-escalation pilot study and, thereafter, a randomised, double-blind, placebo-controlled main trial. Pilot study participants were enrolled on an as-available basis to one group of CHMI infectivity controls and three staggered vaccine groups receiving: one dose of 4·5 × 105, one dose of 9 × 105, or three doses of 1·8 × 106 PfSPZ via direct venous inoculation at approximately 8 week intervals, followed by homologous CHMI 5 weeks later with infectious PfSPZ by direct venous inoculation (PfSPZ Challenge). Main cohort participants were stratified by village and randomly assigned (1:1) to receive three doses of 1·8 × 106 PfSPZ or normal saline at 1, 13, and 19 week intervals using permuted block design by the study statistician. The primary outcome was safety and tolerability of at least one vaccine dose; the secondary outcome was vaccine efficacy against homologous PfSPZ CHMI (pilot study) or against naturally transmitted P falciparum infection (main study) measured by thick blood smear. Combined artesunate and amodiaquine was administered to eliminate pre-existing parasitaemia. Outcomes were analysed by modified intention to treat (mITT; including all participants who received at least one dose of investigational product; safety and vaccine efficacy) and per protocol (vaccine efficacy). This trial is registered with ClinicalTrials.gov, number NCT02627456. FINDINGS Between Dec 20, 2015, and April 30, 2016, we enrolled 56 participants into the pilot study (five received the 4·5 × 105 dose, five received 9 × 105, 30 received 1·8 × 106, 15 were CHMI controls, and one withdrew before vaccination) and 120 participants into the main study cohort with 60 participants assigned PfSPZ Vaccine and 60 placebo in the main study. Adverse events and laboratory abnormalities post-vaccination in all dosing groups were few, mainly mild, and did not differ significantly between vaccine groups (all p>0·05). Unexpected severe transaminitis occured in four participants: one participant in pilot phase that received 1·8 × 106 PfSPZ Vaccine, one participant in main phase that received 1·8 × 106 PfSPZ Vaccine, and two participants in the main phase placebo group. During PfSPZ CHMI, approximately 5 weeks after the third dose of 1·8 × 106 PfSPZ, none of 29 vaccinees and one of 15 controls became positive on thick blood smear; subsequent post-hoc PCR analysis for submicroscopic blood stage infections detected P falciparum parasites in none of the 29 vaccine recipients and eight of 15 controls during CHMI. In the main trial, 32 (58%) of 55 vaccine recipients and 42 (78%) of 54 controls became positive on thick blood smear during 24-week surveillance after vaccination. Vaccine efficacy (1-hazard ratio) was 0·51 per protocol (95% CI 0·20-0·70; log-rank p=0·0042) and 0·39 by mITT (0·04-0·62; p=0·033); vaccine efficacy (1-risk ratio) was 0·24 per-protocol (0·02-0·41; p=0·031) and 0·22 mITT (0·01-0·39; p=0·041). INTERPRETATION A three-dose regimen of PfSPZ Vaccine was safe, well tolerated, and conferred 51% vaccine efficacy against intense natural P falciparum transmission, similar to 52% vaccine efficacy reported for a five-dose regimen in a previous trial. FUNDING US National Institute of Allergy and Infectious Diseases, National Institutes of Health, Sanaria. TRANSLATION For the French translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Mahamadou S Sissoko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Abdoulaye Katile
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Irfan Zaidi
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zonghui Hu
- Biostatistical Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bourama Kamate
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Yacouba Samake
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Kourane Sissoko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Agnes Mwakingwe-Omari
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Center for Vaccine Research, GlaxoSmithKline, Rockville, MD, USA
| | - Jacquelyn Lane
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alemush Imeru
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rathy Mohan
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ismaila Thera
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Cheick Oumar Guindo
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Amagana Dolo
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Karamoko Niare
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Fanta Koïta
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Kelly M Rausch
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Amatigue Zeguime
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Merepen A Guindo
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Aissatou Bah
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | - Natasha Kc
- Sanaria, Rockville, MD, USA; Protein Potential, Rockville, MD, USA
| | - B Kim Lee Sim
- Sanaria, Rockville, MD, USA; Protein Potential, Rockville, MD, USA
| | | | | | | | - Ogobara Doumbo
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
73
|
Daubenberger C. Assessment of experimental malaria vaccine induced protection in pre-exposed populations. THE LANCET. INFECTIOUS DISEASES 2022; 22:305-307. [PMID: 34801111 DOI: 10.1016/s1473-3099(21)00359-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Claudia Daubenberger
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
74
|
Beutler N, Pholcharee T, Oyen D, Flores-Garcia Y, MacGill RS, Garcia E, Calla J, Parren M, Yang L, Volkmuth W, Locke E, Regules JA, Dutta S, Emerling D, Early AM, Neafsey DE, Winzeler EA, King CR, Zavala F, Burton DR, Wilson IA, Rogers TF. A novel CSP C-terminal epitope targeted by an antibody with protective activity against Plasmodium falciparum. PLoS Pathog 2022; 18:e1010409. [PMID: 35344575 PMCID: PMC8989322 DOI: 10.1371/journal.ppat.1010409] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/07/2022] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
Potent and durable vaccine responses will be required for control of malaria caused by Plasmodium falciparum (Pf). RTS,S/AS01 is the first, and to date, the only vaccine that has demonstrated significant reduction of clinical and severe malaria in endemic cohorts in Phase 3 trials. Although the vaccine is protective, efficacy declines over time with kinetics paralleling the decline in antibody responses to the Pf circumsporozoite protein (PfCSP). Although most attention has focused on antibodies to repeat motifs on PfCSP, antibodies to other regions may play a role in protection. Here, we expressed and characterized seven monoclonal antibodies to the C-terminal domain of CSP (ctCSP) from volunteers immunized with RTS,S/AS01. Competition and crystal structure studies indicated that the antibodies target two different sites on opposite faces of ctCSP. One site contains a polymorphic region (denoted α-ctCSP) and has been previously characterized, whereas the second is a previously undescribed site on the conserved β-sheet face of the ctCSP (denoted β-ctCSP). Antibodies to the β-ctCSP site exhibited broad reactivity with a diverse panel of ctCSP peptides whose sequences were derived from field isolates of P. falciparum whereas antibodies to the α-ctCSP site showed very limited cross reactivity. Importantly, an antibody to the β-site demonstrated inhibition activity against malaria infection in a murine model. This study identifies a previously unidentified conserved epitope on CSP that could be targeted by prophylactic antibodies and exploited in structure-based vaccine design.
Collapse
Affiliation(s)
- Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - David Oyen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Yevel Flores-Garcia
- Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Randall S. MacGill
- PATH’s Malaria Vaccine Initiative, Washington, District of Columbia, United States of America
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jaeson Calla
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Linlin Yang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Wayne Volkmuth
- Atreca Inc., South San Francisco, California, United States of America
| | - Emily Locke
- PATH’s Malaria Vaccine Initiative, Washington, District of Columbia, United States of America
| | - Jason A. Regules
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Sheetij Dutta
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Daniel Emerling
- Atreca Inc., South San Francisco, California, United States of America
| | - Angela M. Early
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Daniel E. Neafsey
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Elizabeth A. Winzeler
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - C. Richter King
- PATH’s Malaria Vaccine Initiative, Washington, District of Columbia, United States of America
| | - Fidel Zavala
- Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Thomas F. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
75
|
Immunoprofiling Identifies Functional B and T Cell Subsets Induced by an Attenuated Whole Parasite Malaria Vaccine as Correlates of Sterile Immunity. Vaccines (Basel) 2022; 10:vaccines10010124. [PMID: 35062785 PMCID: PMC8780163 DOI: 10.3390/vaccines10010124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Immune correlates of protection remain elusive for most vaccines. An identified immune correlate would accelerate the down-selection of vaccine formulations by reducing the need for human pathogen challenge studies that are currently required to determine vaccine efficacy. Immunization via mosquito-delivered, radiation-attenuated P. falciparum sporozoites (IMRAS) is a well-established model for efficacious malaria vaccines, inducing greater than 90% sterile immunity. The current immunoprofiling study utilized samples from a clinical trial in which vaccine dosing was adjusted to achieve only 50% protection, thus enabling a comparison between protective and non-protective immune signatures. In-depth immunoprofiling was conducted by assessing a wide range of antigen-specific serological and cellular parameters and applying our newly developed computational tools, including machine learning. The computational component of the study pinpointed previously un-identified cellular T cell subsets (namely, TNFα-secreting CD8+CXCR3−CCR6− T cells, IFNγ-secreting CD8+CCR6+ T cells and TNFα/FNγ-secreting CD4+CXCR3−CCR6− T cells) and B cell subsets (i.e., CD19+CD24hiCD38hiCD69+ transitional B cells) as important factors predictive of protection (92% accuracy). Our study emphasizes the need for in-depth immunoprofiling and subsequent data integration with computational tools to identify immune correlates of protection. The described process of computational data analysis is applicable to other disease and vaccine models.
Collapse
|
76
|
Preimmunization correlates of protection shared across malaria vaccine trials in adults. NPJ Vaccines 2022; 7:5. [PMID: 35031601 PMCID: PMC8760258 DOI: 10.1038/s41541-021-00425-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/02/2021] [Indexed: 12/15/2022] Open
Abstract
Identifying preimmunization biological characteristics that promote an effective vaccine response offers opportunities for illuminating the critical immunological mechanisms that confer vaccine-induced protection, for developing adjuvant strategies, and for tailoring vaccination regimens to individuals or groups. In the context of malaria vaccine research, studying preimmunization correlates of protection can help address the need for a widely effective malaria vaccine, which remains elusive. In this study, common preimmunization correlates of protection were identified using transcriptomic data from four independent, heterogeneous malaria vaccine trials in adults. Systems-based analyses showed that a moderately elevated inflammatory state prior to immunization was associated with protection against malaria challenge. Functional profiling of protection-associated genes revealed the importance of several inflammatory pathways, including TLR signaling. These findings, which echo previous studies that associated enhanced preimmunization inflammation with protection, illuminate common baseline characteristics that set the stage for an effective vaccine response across diverse malaria vaccine strategies in adults.
Collapse
|
77
|
|
78
|
Manock SR, Nsue VU, Olotu A, Mpina M, Nyakarungu E, Raso J, Mtoro A, Ondo Mangue ME, Ntutumu Pasialo BE, Nguema R, Riyahi P, Schindler T, Daubenberger C, Church LWP, Billingsley PF, Richie TL, Abdulla S, Hoffman SL. OUP accepted manuscript. Trans R Soc Trop Med Hyg 2022; 116:745-749. [PMID: 35394038 PMCID: PMC9355999 DOI: 10.1093/trstmh/trac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/16/2021] [Accepted: 03/12/2022] [Indexed: 11/16/2022] Open
Abstract
Loa loa microfilariae were found on thick blood smears (TBSs) from 8 of 300 (2.7%) residents of Bioko Island, Equatorial Guinea, during a Plasmodium falciparum sporozoite malaria vaccine clinical trial. Only one subject was found to have microfilaraemia on his first exam; parasites were not discovered in the other seven until subsequent TBSs were performed, at times many weeks into the study. All infected individuals were asymptomatic, and were offered treatment with diethylcarbamazine, per national guidelines. L. loa microfilaraemia complicated the enrolment or continued participation of these eight trial subjects, and only one was able to complete all study procedures. If ruling out loiasis is deemed to be important during clinical trials, tests that are more sensitive than TBSs should be performed.
Collapse
Affiliation(s)
| | - Vicente Urbano Nsue
- National Malaria Control Program, Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | - Ally Olotu
- Department of Interventions & Clinical Trials, Ifakara Health Institute, Box 74, Bagamoyo, Tanzania
- KEMRI Wellcome Trust Research Programme, P.O. Box 230-80108 Kilifi, Kenya
| | - Maximillian Mpina
- Department of Interventions & Clinical Trials, Ifakara Health Institute, Box 74, Bagamoyo, Tanzania
- Department of Medical Parasitology and Infection Biology, Clinical Immunology, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Elizabeth Nyakarungu
- Department of Interventions & Clinical Trials, Ifakara Health Institute, Box 74, Bagamoyo, Tanzania
| | - José Raso
- National Malaria Control Program, Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | - Ali Mtoro
- Department of Interventions & Clinical Trials, Ifakara Health Institute, Box 74, Bagamoyo, Tanzania
| | - Martín Eka Ondo Mangue
- National Malaria Control Program, Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | | | - Rufino Nguema
- National Program for Onchocerciasis and Other Filariasis Control, Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | | | - Tobias Schindler
- Department of Medical Parasitology and Infection Biology, Clinical Immunology, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Claudia Daubenberger
- Department of Medical Parasitology and Infection Biology, Clinical Immunology, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | | | | | | | - Salim Abdulla
- Department of Interventions & Clinical Trials, Ifakara Health Institute, Box 74, Bagamoyo, Tanzania
| | | |
Collapse
|
79
|
Shibeshi W, Bagchus W, Yalkinoglu Ö, Tappert A, Engidawork E, Oeuvray C. Reproducibility of malaria sporozoite challenge model in humans for evaluating efficacy of vaccines and drugs: a systematic review. BMC Infect Dis 2021; 21:1274. [PMID: 34930178 PMCID: PMC8686662 DOI: 10.1186/s12879-021-06953-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The development of novel malaria vaccines and antimalarial drugs is limited partly by emerging challenges to conduct field trials in malaria endemic areas, including unknown effects of existing immunity and a reported fall in malaria incidence. As a result, Controlled Human Malaria Infection (CHMI) has become an important approach for accelerated development of malarial vaccines and drugs. We conducted a systematic review of the literature to establish aggregate evidence on the reproducibility of a malaria sporozoite challenge model. METHODS A systematic review of research articles published between 1990 and 2018 on efficacy testing of malaria vaccines and drugs using sporozoite challenge and sporozoite infectivity studies was conducted using Pubmed, Scopus, Embase and Cochrane Library, ClinicalTrials.gov and Trialtrove. The inclusion criteria were randomized and non-randomized, controlled or open-label trials using P. falciparum or P. vivax sporozoite challenges. The data were extracted from articles using standardized data extraction forms and descriptive analysis was performed for evidence synthesis. The endpoints considered were infectivity, prepatent period, parasitemia and safety of sporozoite challenge. RESULTS Seventy CHMI trials conducted with a total of 2329 adult healthy volunteers were used for analysis. CHMI was induced by bites of mosquitoes infected with P. falciparum or P. vivax in 52 trials and by direct venous inoculation of P. falciparum sporozoites (PfSPZ challenge) in 18 trials. Inoculation with P. falciparum-infected mosquitoes produced 100% infectivity in 40 studies and the mean/median prepatent period assessed by thick blood smear (TBS) microscopy was ≤ 12 days in 24 studies. On the other hand, out of 12 infectivity studies conducted using PfSPZ challenge, 100% infection rate was reproduced in 9 studies with a mean or median prepatent period of 11 to 15.3 days as assessed by TBS and 6.8 to 12.6 days by PCR. The safety profile of P. falciparum and P.vivax CHMI was characterized by consistent features of malaria infection. CONCLUSION There is ample evidence on consistency of P. falciparum CHMI models in terms of infectivity and safety endpoints, which supports applicability of CHMI in vaccine and drug development. PfSPZ challenge appears more feasible for African trials based on current evidence of safety and efficacy.
Collapse
Affiliation(s)
- Workineh Shibeshi
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
- Global Health Institute of Merck, Ares Trading S.A., A subsidiary of Merck KGaA, Darmstadt, Germany.
| | - Wilhelmina Bagchus
- Translational Medicine, Merck Serono S.A., An Affiliate of Merck KGaA, Darmstadt, Germany
| | - Özkan Yalkinoglu
- Translational Medicine, Merck Healthcare KGaA, Darmstadt, Germany
| | - Aliona Tappert
- Global Patient Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Claude Oeuvray
- Global Health Institute of Merck, Ares Trading S.A., A subsidiary of Merck KGaA, Darmstadt, Germany
| |
Collapse
|
80
|
Prahl M, Golan Y, Cassidy AG, Matsui Y, Li L, Alvarenga B, Chen H, Jigmeddagva U, Lin CY, Gonzalez VJ, Chidboy MA, Warrier L, Buarpung S, Murtha AP, Flaherman VJ, Greene WC, Wu AHB, Lynch KL, Rajan J, Gaw SL. Evaluation of transplacental transfer of mRNA vaccine products and functional antibodies during pregnancy and early infancy. RESEARCH SQUARE 2021:rs.3.rs-1150427. [PMID: 34931183 PMCID: PMC8687466 DOI: 10.21203/rs.3.rs-1150427/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Studies are needed to evaluate the safety and effectiveness of mRNA SARS-CoV-2 vaccination during pregnancy, and the levels of protection provided to their newborns through placental transfer of antibodies. We evaluated the transplacental transfer of mRNA vaccine products and functional anti-SARS-CoV-2 antibodies during pregnancy and early infancy in a cohort of 20 individuals vaccinated during pregnancy. We found no evidence of mRNA vaccine products in maternal blood, placenta tissue, or cord blood at delivery. However, we found time-dependent efficient transfer of IgG and neutralizing antibodies to the neonate that persisted during early infancy. Additionally, using phage immunoprecipitation sequencing, we found a vaccine-specific signature of SARS-CoV-2 Spike protein epitope binding that is transplacentally transferred during pregnancy. In conclusion, products of mRNA vaccines are not transferred to the fetus during pregnancy, however timing of vaccination during pregnancy is critical to ensure transplacental transfer of protective antibodies during early infancy.
Collapse
Affiliation(s)
- Mary Prahl
- Department of Pediatrics, University of California, San Francisco
| | - Yarden Golan
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - Arianna G Cassidy
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco
| | - Yusuke Matsui
- Gladstone Center for HIV Cure Research, Gladstone Institute, San Francisco, CA
| | - Lin Li
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco
| | - Bonny Alvarenga
- Department of Medicine, University of California, San Francisco
| | - Hao Chen
- Weill Institute for Neurosciences, Division of Neurology, University of California, San Francisco, CA
| | - Unurzul Jigmeddagva
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco
| | - Christine Y Lin
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco
| | - Veronica J Gonzalez
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco
| | - Megan A Chidboy
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco
| | - Lakshmi Warrier
- Department of Medicine, University of California, San Francisco
| | - Sirirak Buarpung
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco
| | - Amy P Murtha
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco
| | | | - Warner C Greene
- Gladstone Center for HIV Cure Research, Gladstone Institute, San Francisco, CA
| | - Alan H B Wu
- Department of Laboratory Medicine, University of California, San Francisco
| | - Kara L Lynch
- Department of Laboratory Medicine, University of California, San Francisco
| | - Jayant Rajan
- Department of Medicine, University of California, San Francisco
| | - Stephanie L Gaw
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco
| |
Collapse
|
81
|
Prahl M, Golan Y, Cassidy AG, Matsui Y, Li L, Alvarenga B, Chen H, Jigmeddagva U, Lin CY, Gonzalez VJ, Chidboy MA, Warrier L, Buarpung S, Murtha AP, Flaherman VJ, Greene WC, Wu AHB, Lynch KL, Rajan J, Gaw SL. Evaluation of transplacental transfer of mRNA vaccine products and functional antibodies during pregnancy and early infancy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 34931197 DOI: 10.1101/2021.12.09.21267423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Studies are needed to evaluate the safety and effectiveness of mRNA SARS-CoV-2 vaccination during pregnancy, and the levels of protection provided to their newborns through placental transfer of antibodies. We evaluated the transplacental transfer of mRNA vaccine products and functional anti-SARS-CoV-2 antibodies during pregnancy and early infancy in a cohort of 20 individuals vaccinated during pregnancy. We found no evidence of mRNA vaccine products in maternal blood, placenta tissue, or cord blood at delivery. However, we found time-dependent efficient transfer of IgG and neutralizing antibodies to the neonate that persisted during early infancy. Additionally, using phage immunoprecipitation sequencing, we found a vaccine-specific signature of SARS-CoV-2 Spike protein epitope binding that is transplacentally transferred during pregnancy. In conclusion, products of mRNA vaccines are not transferred to the fetus during pregnancy, however timing of vaccination during pregnancy is critical to ensure transplacental transfer of protective antibodies during early infancy.
Collapse
|
82
|
Zaidi I, Duffy PE. PfSPZ Vaccine learns a lesson. MED 2021; 2:1289-1291. [PMID: 35590146 PMCID: PMC11127246 DOI: 10.1016/j.medj.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Kenya, the first trial of the attenuated whole organism PfSPZ Vaccine in infants has shown little efficacy against malaria infection, whereas trials in African adults have repeatedly observed protection. Differences in immune responses offer clues to the possible reasons.
Collapse
Affiliation(s)
- Irfan Zaidi
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA.
| |
Collapse
|
83
|
Live attenuated vaccines, a favorable strategy to provide long-term immunity against protozoan diseases. Trends Parasitol 2021; 38:316-334. [PMID: 34896016 DOI: 10.1016/j.pt.2021.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022]
Abstract
The control of diseases caused by protozoan parasites is one of the United Nations' Sustainable Development Goals. In recent years much research effort has gone into developing a new generation of live attenuated vaccines (LAVs) against malaria, Chagas disease and leishmaniasis. However, there is a bottleneck related to their biosafety, production, and distribution that slows downs further development. The success of irradiated or genetically attenuated sporozoites against malaria, added to the first LAV against leishmaniasis to be evaluated in clinical trials, is indicative that the drawbacks of LAVs are gradually being overcome. However, whether persistence of LAVs is a prerequisite for sustained long-term immunity remains to be clarified, and the procedures necessary for clinical evaluation of vaccine candidates need to be standardized.
Collapse
|
84
|
Knockout of Anopheles stephensi immune gene LRIM1 by CRISPR-Cas9 reveals its unexpected role in reproduction and vector competence. PLoS Pathog 2021; 17:e1009770. [PMID: 34784388 PMCID: PMC8631644 DOI: 10.1371/journal.ppat.1009770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/30/2021] [Accepted: 11/01/2021] [Indexed: 12/27/2022] Open
Abstract
PfSPZ Vaccine against malaria is composed of Plasmodium falciparum (Pf) sporozoites (SPZ) manufactured using aseptically reared Anopheles stephensi mosquitoes. Immune response genes of Anopheles mosquitoes such as Leucin-Rich protein (LRIM1), inhibit Plasmodium SPZ development (sporogony) in mosquitoes by supporting melanization and phagocytosis of ookinetes. With the aim of increasing PfSPZ infection intensities, we generated an A. stephensi LRIM1 knockout line, Δaslrim1, by embryonic genome editing using CRISPR-Cas9. Δaslrim1 mosquitoes had a significantly increased midgut bacterial load and an altered microbiome composition, including elimination of commensal acetic acid bacteria. The alterations in the microbiome caused increased mosquito mortality and unexpectedly, significantly reduced sporogony. The survival rate of Δaslrim1 mosquitoes and their ability to support PfSPZ development, were partially restored by antibiotic treatment of the mosquitoes, and fully restored to baseline when Δaslrim1 mosquitoes were produced aseptically. Deletion of LRIM1 also affected reproductive capacity: oviposition, fecundity and male fertility were significantly compromised. Attenuation in fecundity was not associated with the altered microbiome. This work demonstrates that LRIM1's regulation of the microbiome has a major impact on vector competence and longevity of A. stephensi. Additionally, LRIM1 deletion identified an unexpected role for this gene in fecundity and reduction of sperm transfer by males.
Collapse
|
85
|
Laurens MB. Novel malaria vaccines. Hum Vaccin Immunother 2021; 17:4549-4552. [PMID: 34347570 PMCID: PMC8827625 DOI: 10.1080/21645515.2021.1947762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/18/2021] [Indexed: 10/20/2022] Open
Abstract
Malaria vaccines hold significant promise for life-saving benefit, especially to children who bear the major burden of malaria mortality. The RTS,S/AS01 malaria vaccine provides moderate efficacy and is being tested in implementation studies. In parallel, multiple strategies are being advanced to test next-generation malaria vaccines, including novel approaches that build on principles learned from RTS,S development, vaccination with radiation-attenuated sporozoites, and development of monoclonal antibodies targeting immunogenic peptides. Novel vaccine delivery approaches are also being advanced, including self-amplifying RNA vaccine delivery, self-assembling protein nanoparticle methods, circumsporozoite protein-based approaches, and whole organism vaccination. Techniques employed for COVID-19 vaccine development should also be considered for malaria vaccination, including sustained release polymer nanoparticle hydrogel vaccination and charge-altering releasable transporters. As vaccine science advances and new approaches optimize knowledge gained, highly effective malaria vaccines that provide sustained protection are within reach.
Collapse
Affiliation(s)
- Matthew B. Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
86
|
Abstract
A promising vaccine fails to provide durable protection against infection and clinical malaria in infants, a key malaria vaccine target population, in a phase 2b clinical trial. The need for a highly effective vaccine against malaria remains as urgent as ever.
Collapse
Affiliation(s)
- Irene N Nkumama
- Centre of Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Faith H A Osier
- IAVI Human Immunology Laboratory, Imperial College London, London, UK.
| |
Collapse
|
87
|
Vythilingam I, Chua TH, Liew JWK, Manin BO, Ferguson HM. The vectors of Plasmodium knowlesi and other simian malarias Southeast Asia: challenges in malaria elimination. ADVANCES IN PARASITOLOGY 2021; 113:131-189. [PMID: 34620382 DOI: 10.1016/bs.apar.2021.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plasmodium knowlesi, a simian malaria parasite of great public health concern has been reported from most countries in Southeast Asia and exported to various countries around the world. Currently P. knowlesi is the predominant species infecting humans in Malaysia. Besides this species, other simian malaria parasites such as P. cynomolgi and P. inui are also infecting humans in the region. The vectors of P. knowlesi and other Asian simian malarias belong to the Leucosphyrus Group of Anopheles mosquitoes which are generally forest dwelling species. Continual deforestation has resulted in these species moving into forest fringes, farms, plantations and human settlements along with their macaque hosts. Limited studies have shown that mosquito vectors are attracted to both humans and macaque hosts, preferring to bite outdoors and in the early part of the night. We here review the current status of simian malaria vectors and their parasites, knowledge of vector competence from experimental infections and discuss possible vector control measures. The challenges encountered in simian malaria elimination are also discussed. We highlight key knowledge gaps on vector distribution and ecology that may impede effective control strategies.
Collapse
Affiliation(s)
- Indra Vythilingam
- Department of Parasitology, University of Malaya, Kuala Lumpur, Malaysia.
| | - Tock Hing Chua
- Department of Pathobiology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Sabah Malaysia, Kota Kinabalu, Sabah, Malaysia.
| | - Jonathan Wee Kent Liew
- Department of Parasitology, University of Malaya, Kuala Lumpur, Malaysia; Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Benny O Manin
- Department of Pathobiology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Sabah Malaysia, Kota Kinabalu, Sabah, Malaysia
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
88
|
Arora M, Lakshmi R. Vaccines - safety in pregnancy. Best Pract Res Clin Obstet Gynaecol 2021; 76:23-40. [PMID: 33773923 PMCID: PMC7992376 DOI: 10.1016/j.bpobgyn.2021.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/18/2020] [Accepted: 02/06/2021] [Indexed: 12/13/2022]
Abstract
Vaccination during pregnancy is important for active immunity of the mother against serious infectious diseases, and also for passive immunity of the neonate to infectious diseases with high morbidity and mortality. As a rule, live vaccines are contraindicated during pregnancy as they may cause fetal viremia/bacteremia. Inactivated vaccines are generally safe. Vaccines safe to be administered to all pregnant ladies are tetanus toxoid (TT; tetanus, diphtheria, acellular pertussis (Tdap) and Flu vaccines. During pre-pregnancy counselling, vaccination for MMR (measles, mumps, and rubella) should be offered, with an advice to avoid pregnancy for a month. All pregnant mothers should receive TT and Tdap vaccination during the third trimester. Flu vaccine can be given to all mothers at any gestation, and if not offered during pregnancy, it can be given postpartum. Vaccinations that should be offered to women if at high risk of exposure are for hepatitis A and B, pneumococcal, meningococcal, yellow fever, Japanese encephalitis (JE), polio, typhoid, and cholera infections. Vaccines to be given only for post-exposure prophylaxis (PEP) are smallpox, rabies, and anthrax. Postpartum women should be offered human papillomavirus (HPV) vaccination. If not immunized earlier, they should be offered MMR, Tdap, and Flu vaccines. Future vaccines being developed are for malaria, Zika virus, respiratory syncytial virus (RSV), group B streptococcus, CMV, and COVID-19 (SARS-Cov-2).
Collapse
Affiliation(s)
- Mala Arora
- Director Noble IVF Centre, sector 14, Faridabad Consultant Fortis La Femme, GK2, New Delhi, India.
| | - Rama Lakshmi
- Fellowship (IVF &Reproductive Medicine) Milann Fertility Centre, Bengaluru, India
| |
Collapse
|
89
|
Safety, immunogenicity and efficacy of PfSPZ Vaccine against malaria in infants in western Kenya: a double-blind, randomized, placebo-controlled phase 2 trial. Nat Med 2021; 27:1636-1645. [PMID: 34518679 DOI: 10.1038/s41591-021-01470-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/16/2021] [Indexed: 01/13/2023]
Abstract
The radiation-attenuated Plasmodium falciparum sporozoite (PfSPZ) vaccine provides protection against P. falciparum infection in malaria-naïve adults. Preclinical studies show that T cell-mediated immunity is required for protection and is readily induced in humans after vaccination. However, previous malaria exposure can limit immune responses and vaccine efficacy (VE) in adults. We hypothesized that infants with less previous exposure to malaria would have improved immunity and protection. We conducted a multi-arm, randomized, double-blind, placebo-controlled trial in 336 infants aged 5-12 months to determine the safety, tolerability, immunogenicity and efficacy of the PfSPZ Vaccine in infants in a high-transmission malaria setting in western Kenya ( NCT02687373 ). Groups of 84 infants each received 4.5 × 105, 9.0 × 105 or 1.8 × 106 PfSPZ Vaccine or saline three times at 8-week intervals. The vaccine was well tolerated; 52 (20.6%) children in the vaccine groups and 20 (23.8%) in the placebo group experienced related solicited adverse events (AEs) within 28 d postvaccination and most were mild. There was 1 grade 3-related solicited AE in the vaccine group (0.4%) and 2 in the placebo group (2.4%). Seizures were more common in the highest-dose group (14.3%) compared to 6.0% of controls, with most being attributed to malaria. There was no significant protection against P. falciparum infection in any dose group at 6 months (VE in the 9.0 × 105 dose group = -6.5%, P = 0.598, the primary statistical end point of the study). VE against clinical malaria 3 months after the last dose in the highest-dose group was 45.8% (P = 0.027), an exploratory end point. There was a dose-dependent increase in antibody responses that correlated with VE at 6 months in the lowest- and highest-dose groups. T cell responses were undetectable across all dose groups. Detection of Vδ2+Vγ9+ T cells, which have been correlated with induction of PfSPZ Vaccine T cell immunity and protection in adults, were infrequent. These data suggest that PfSPZ Vaccine-induced T cell immunity is age-dependent and may be influenced by Vδ2+Vγ9+ T cell frequency. Since there was no significant VE at 6 months in these infants, these vaccine regimens will likely not be pursued further in this age group.
Collapse
|
90
|
Vijayan K, Visweswaran GRR, Chandrasekaran R, Trakhimets O, Brown SL, Watson A, Zuck M, Dambrauskas N, Raappana A, Carbonetti S, Kelnhofer-Millevolte L, Glennon EKK, Postiglione R, Sather DN, Kaushansky A. Antibody interference by a non-neutralizing antibody abrogates humoral protection against Plasmodium yoelii liver stage. Cell Rep 2021; 36:109489. [PMID: 34348141 DOI: 10.1016/j.celrep.2021.109489] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/14/2021] [Accepted: 07/14/2021] [Indexed: 01/23/2023] Open
Abstract
Both subunit and attenuated whole-sporozoite vaccination strategies against Plasmodium infection have shown promising initial results in malaria-naive westerners but less efficacy in malaria-exposed individuals in endemic areas. Here, we demonstrate proof of concept by using a rodent malaria model in which non-neutralizing antibodies (nNAbs) can directly interfere with protective anti-circumsporozoite protein (CSP) humoral responses. We characterize a monoclonal antibody, RAM1, against Plasmodium yoelii sporozoite major surface antigen CSP. Unlike the canonical PyCSP repeat domain binding and neutralizing antibody (NAb) 2F6, RAM1 does not inhibit sporozoite traversal or entry of hepatocytes in vitro or infection in vivo. Although 2F6 and RAM1 bind non-overlapping regions of the CSP-repeat domain, pre-treatment with RAM1 abrogates the capacity of NAb to block sporozoite traversal and invasion in vitro. Importantly, RAM1 reduces the efficacy of the polyclonal humoral response against PyCSP in vivo. Collectively, our data provide a proof of concept that nNAbs can alter the efficacy of malaria vaccination.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Meghan Zuck
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | | | | | | | | | - D Noah Sather
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Alexis Kaushansky
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Brotman Baty Research Institute, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA.
| |
Collapse
|
91
|
|
92
|
Nchama VUNN, Said AH, Mtoro A, Bidjimi GO, Owono MA, Maye ERM, Mangue MEO, Okomo GNN, Pasialo BEN, Ondo DM, Lopez MSA, Mochomuemue FL, Obono MO, Besaha JCM, Chuquiyauri R, Jongo SA, Kamaka K, Kibondo UA, Athuman T, Falla CC, Eyono JNM, Smith JM, García GA, Raso J, Nyakarungu E, Mpina M, Schindler T, Daubenberger C, Lemiale L, Billingsley PF, Sim BKL, Richie TL, Church LWP, Olotu A, Tanner M, Hoffman SL, Abdulla S. Incidence of Plasmodium falciparum malaria infection in 6-month to 45-year-olds on selected areas of Bioko Island, Equatorial Guinea. Malar J 2021; 20:322. [PMID: 34284778 PMCID: PMC8290541 DOI: 10.1186/s12936-021-03850-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background Extensive malaria control measures have been implemented on Bioko Island, Equatorial Guinea over the past 16 years, reducing parasite prevalence and malaria-related morbidity and mortality, but without achieving elimination. Malaria vaccines offer hope for reducing the burden to zero. Three phase 1/2 studies have been conducted successfully on Bioko Island to evaluate the safety and efficacy of whole Plasmodium falciparum (Pf) sporozoite (SPZ) malaria vaccines. A large, pivotal trial of the safety and efficacy of the radiation-attenuated Sanaria® PfSPZ Vaccine against P. falciparum is planned for 2022. This study assessed the incidence of malaria at the phase 3 study site and characterized the influence of socio-demographic factors on the burden of malaria to guide trial design. Methods A cohort of 240 randomly selected individuals aged 6 months to 45 years from selected areas of North Bioko Province, Bioko Island, was followed for 24 weeks after clearance of parasitaemia. Assessment of clinical presentation consistent with malaria and thick blood smears were performed every 2 weeks. Incidence of first and multiple malaria infections per person-time of follow-up was estimated, compared between age groups, and examined for associated socio-demographic risk factors. Results There were 58 malaria infection episodes observed during the follow up period, including 47 first and 11 repeat infections. The incidence of malaria was 0.25 [95% CI (0.19, 0.32)] and of first malaria was 0.23 [95% CI (0.17, 0.30)] per person per 24 weeks (0.22 in 6–59-month-olds, 0.26 in 5–17-year-olds, 0.20 in 18–45-year-olds). Incidence of first malaria with symptoms was 0.13 [95% CI (0.09, 0.19)] per person per 24 weeks (0.16 in 6–59-month-olds, 0.10 in 5–17-year-olds, 0.11 in 18–45-year-olds). Multivariate assessment showed that study area, gender, malaria positivity at screening, and household socioeconomic status independently predicted the observed incidence of malaria. Conclusion Despite intensive malaria control efforts on Bioko Island, local transmission remains and is spread evenly throughout age groups. These incidence rates indicate moderate malaria transmission which may be sufficient to support future larger trials of PfSPZ Vaccine. The long-term goal is to conduct mass vaccination programmes to halt transmission and eliminate P. falciparum malaria.
Collapse
Affiliation(s)
- Vicente Urbano Nsue Ndong Nchama
- Ministry of Health and Social Welfare, Equatorial Guinea (EGMOHSW), Malabo, Equatorial Guinea.,Medical Care Development International (MCDI), Silver Spring, USA
| | - Ali Hamad Said
- Medical Care Development International (MCDI), Silver Spring, USA. .,Ifakara Health Institute, Dar es Salaam, Tanzania.
| | - Ali Mtoro
- Medical Care Development International (MCDI), Silver Spring, USA.,Ifakara Health Institute, Dar es Salaam, Tanzania
| | - Gertrudis Owono Bidjimi
- Ministry of Health and Social Welfare, Equatorial Guinea (EGMOHSW), Malabo, Equatorial Guinea.,Medical Care Development International (MCDI), Silver Spring, USA
| | - Marta Alene Owono
- Ministry of Health and Social Welfare, Equatorial Guinea (EGMOHSW), Malabo, Equatorial Guinea.,Medical Care Development International (MCDI), Silver Spring, USA
| | - Escolastica Raquel Mansogo Maye
- Ministry of Health and Social Welfare, Equatorial Guinea (EGMOHSW), Malabo, Equatorial Guinea.,Medical Care Development International (MCDI), Silver Spring, USA
| | - Martin Eka Ondo Mangue
- Ministry of Health and Social Welfare, Equatorial Guinea (EGMOHSW), Malabo, Equatorial Guinea.,Medical Care Development International (MCDI), Silver Spring, USA
| | - Genaro Nsue Nguema Okomo
- Ministry of Health and Social Welfare, Equatorial Guinea (EGMOHSW), Malabo, Equatorial Guinea.,Medical Care Development International (MCDI), Silver Spring, USA
| | - Beltran Ekua Ntutumu Pasialo
- Ministry of Health and Social Welfare, Equatorial Guinea (EGMOHSW), Malabo, Equatorial Guinea.,Medical Care Development International (MCDI), Silver Spring, USA
| | - Dolores Mbang Ondo
- Ministry of Health and Social Welfare, Equatorial Guinea (EGMOHSW), Malabo, Equatorial Guinea.,Medical Care Development International (MCDI), Silver Spring, USA
| | - Maria-Silvia Angue Lopez
- Ministry of Health and Social Welfare, Equatorial Guinea (EGMOHSW), Malabo, Equatorial Guinea.,Medical Care Development International (MCDI), Silver Spring, USA
| | - Fortunata Lobede Mochomuemue
- Ministry of Health and Social Welfare, Equatorial Guinea (EGMOHSW), Malabo, Equatorial Guinea.,Medical Care Development International (MCDI), Silver Spring, USA
| | - Mariano Obiang Obono
- Ministry of Health and Social Welfare, Equatorial Guinea (EGMOHSW), Malabo, Equatorial Guinea.,Medical Care Development International (MCDI), Silver Spring, USA
| | - Juan Carlos Momo Besaha
- Ministry of Health and Social Welfare, Equatorial Guinea (EGMOHSW), Malabo, Equatorial Guinea.,Medical Care Development International (MCDI), Silver Spring, USA
| | - Raul Chuquiyauri
- Medical Care Development International (MCDI), Silver Spring, USA.,Sanaria Inc., Rockville, USA
| | | | - Kassim Kamaka
- Medical Care Development International (MCDI), Silver Spring, USA.,Ifakara Health Institute, Dar es Salaam, Tanzania
| | | | | | | | | | | | | | - José Raso
- Ministry of Health and Social Welfare, Equatorial Guinea (EGMOHSW), Malabo, Equatorial Guinea.,Medical Care Development International (MCDI), Silver Spring, USA
| | - Elizabeth Nyakarungu
- Medical Care Development International (MCDI), Silver Spring, USA.,Ifakara Health Institute, Dar es Salaam, Tanzania
| | - Maxmillian Mpina
- Ifakara Health Institute, Dar es Salaam, Tanzania.,Swiss Tropical and Public Health Institute (Swiss TPH), Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Tobias Schindler
- Swiss Tropical and Public Health Institute (Swiss TPH), Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Claudia Daubenberger
- Swiss Tropical and Public Health Institute (Swiss TPH), Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | | | | | | | | | - Ally Olotu
- Medical Care Development International (MCDI), Silver Spring, USA.,Ifakara Health Institute, Dar es Salaam, Tanzania
| | - Marcel Tanner
- Swiss Tropical and Public Health Institute (Swiss TPH), Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
93
|
Duffy FJ, Du Y, Carnes J, Epstein JE, Hoffman SL, Abdulla S, Jongo S, Mpina M, Daubenberger C, Aitchison JD, Stuart K. Early whole blood transcriptional responses to radiation-attenuated Plasmodium falciparum sporozoite vaccination in malaria naïve and malaria pre-exposed adult volunteers. Malar J 2021; 20:308. [PMID: 34243763 PMCID: PMC8267772 DOI: 10.1186/s12936-021-03839-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/29/2021] [Indexed: 12/03/2022] Open
Abstract
Background Vaccination with radiation-attenuated Plasmodium falciparum sporozoites is known to induce protective immunity. However, the mechanisms underlying this protection remain unclear. In this work, two recent radiation-attenuated sporozoite vaccination studies were used to identify potential transcriptional correlates of vaccination-induced protection. Methods Longitudinal whole blood RNAseq transcriptome responses to immunization with radiation-attenuated P. falciparum sporozoites were analysed and compared across malaria-naïve adult participants (IMRAS) and malaria-experienced adult participants (BSPZV1). Parasite dose and method of delivery differed between trials, and immunization regimens were designed to achieve incomplete protective efficacy. Observed protective efficacy was 55% in IMRAS and 20% in BSPZV1. Study vaccine dosings were chosen to elicit both protected and non-protected subjects, so that protection-associated responses could be identified. Results Analysis of comparable time points up to 1 week after the first vaccination revealed a shared cross-study transcriptional response programme, despite large differences in number and magnitude of differentially expressed genes between trials. A time-dependent regulatory programme of coherent blood transcriptional modular responses was observed, involving induction of inflammatory responses 1–3 days post-vaccination, with cell cycle responses apparent by day 7 in protected individuals from both trials. Additionally, strongly increased induction of inflammation and interferon-associated responses was seen in non-protected IMRAS participants. All individuals, except for non-protected BSPZV1 participants, showed robust upregulation of cell-cycle associated transcriptional responses post vaccination. Conclusions In summary, despite stark differences between the two studies, including route of vaccination and status of malaria exposure, responses were identified that were associated with protection after PfRAS vaccination. These comprised a moderate early interferon response peaking 2 days post vaccination, followed by a later proliferative cell cycle response steadily increasing over the first 7 days post vaccination. Non-protection is associated with deviations from this model, observed in this study with over-induction of early interferon responses in IMRAS and failure to mount a cell cycle response in BSPZV1. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03839-3.
Collapse
Affiliation(s)
- Fergal J Duffy
- Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, WA, USA.
| | - Ying Du
- Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, WA, USA
| | - Jason Carnes
- Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, WA, USA
| | - Judith E Epstein
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, USA
| | | | | | - Said Jongo
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Maxmillian Mpina
- Department of Medical Parasitology and Infection Biology, Clinical Immunology Unit, Swiss Tropical and Public Health Institute, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, 4001, Basel, Switzerland.,Ifakara Health Institute, Bagamoyo, Tanzania
| | - Claudia Daubenberger
- Department of Medical Parasitology and Infection Biology, Clinical Immunology Unit, Swiss Tropical and Public Health Institute, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, WA, USA
| | - Ken Stuart
- Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, WA, USA.
| |
Collapse
|
94
|
Blight J, Sala KA, Atcheson E, Kramer H, El-Turabi A, Real E, Dahalan FA, Bettencourt P, Dickinson-Craig E, Alves E, Salman AM, Janse CJ, Ashcroft FM, Hill AV, Reyes-Sandoval A, Blagborough AM, Baum J. Dissection-independent production of Plasmodium sporozoites from whole mosquitoes. Life Sci Alliance 2021; 4:e202101094. [PMID: 34135099 PMCID: PMC8321652 DOI: 10.26508/lsa.202101094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/05/2023] Open
Abstract
Progress towards a protective vaccine against malaria remains slow. To date, only limited protection has been routinely achieved following immunisation with either whole-parasite (sporozoite) or subunit-based vaccines. One major roadblock to vaccine progress, and to pre-erythrocytic parasite biology in general, is the continued reliance on manual salivary gland dissection for sporozoite isolation from infected mosquitoes. Here, we report development of a multi-step method, based on batch processing of homogenised whole mosquitoes, slurry, and density-gradient filtration, which combined with free-flow electrophoresis rapidly produces a pure, infective sporozoite inoculum. Human-infective Plasmodium falciparum and rodent-infective Plasmodium berghei sporozoites produced in this way are two- to threefold more infective than salivary gland dissection sporozoites in in vitro hepatocyte infection assays. In an in vivo rodent malaria model, the same P. berghei sporozoites confer sterile protection from mosquito-bite challenge when immunisation is delivered intravenously or 60-70% protection when delivered intramuscularly. By improving purity, infectivity, and immunogenicity, this method represents a key advancement in capacity to produce research-grade sporozoites, which should impact delivery of a whole-parasite based malaria vaccine at scale in the future.
Collapse
Affiliation(s)
- Joshua Blight
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Katarzyna A Sala
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, UK
| | - Erwan Atcheson
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Holger Kramer
- Department of Physiology, Anatomy and Genetics, Henry Wellcome Building for Gene Function, University of Oxford, Oxford, UK
- Medical Research Council London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Aadil El-Turabi
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Eliana Real
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, UK
| | - Farah A Dahalan
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, UK
| | - Paulo Bettencourt
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Emma Dickinson-Craig
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Eduardo Alves
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Ahmed M Salman
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Chris J Janse
- Department of Parasitology, Leiden Malaria Research Group, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Leiden, The Netherlands
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, Henry Wellcome Building for Gene Function, University of Oxford, Oxford, UK
| | - Adrian Vs Hill
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Arturo Reyes-Sandoval
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
- Instituto Politécnico Nacional, Mexico City, Mexico
| | - Andrew M Blagborough
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Jake Baum
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, UK
| |
Collapse
|
95
|
Mwakingwe-Omari A, Healy SA, Lane J, Cook DM, Kalhori S, Wyatt C, Kolluri A, Marte-Salcedo O, Imeru A, Nason M, Ding LK, Decederfelt H, Duan J, Neal J, Raiten J, Lee G, Hume JCC, Jeon JE, Ikpeama I, Kc N, Chakravarty S, Murshedkar T, Church LWP, Manoj A, Gunasekera A, Anderson C, Murphy SC, March S, Bhatia SN, James ER, Billingsley PF, Sim BKL, Richie TL, Zaidi I, Hoffman SL, Duffy PE. Two chemoattenuated PfSPZ malaria vaccines induce sterile hepatic immunity. Nature 2021; 595:289-294. [PMID: 34194041 PMCID: PMC11127244 DOI: 10.1038/s41586-021-03684-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
The global decline in malaria has stalled1, emphasizing the need for vaccines that induce durable sterilizing immunity. Here we optimized regimens for chemoprophylaxis vaccination (CVac), for which aseptic, purified, cryopreserved, infectious Plasmodium falciparum sporozoites (PfSPZ) were inoculated under prophylactic cover with pyrimethamine (PYR) (Sanaria PfSPZ-CVac(PYR)) or chloroquine (CQ) (PfSPZ-CVac(CQ))-which kill liver-stage and blood-stage parasites, respectively-and we assessed vaccine efficacy against homologous (that is, the same strain as the vaccine) and heterologous (a different strain) controlled human malaria infection (CHMI) three months after immunization ( https://clinicaltrials.gov/ , NCT02511054 and NCT03083847). We report that a fourfold increase in the dose of PfSPZ-CVac(PYR) from 5.12 × 104 to 2 × 105 PfSPZs transformed a minimal vaccine efficacy (low dose, two out of nine (22.2%) participants protected against homologous CHMI), to a high-level vaccine efficacy with seven out of eight (87.5%) individuals protected against homologous and seven out of nine (77.8%) protected against heterologous CHMI. Increased protection was associated with Vδ2 γδ T cell and antibody responses. At the higher dose, PfSPZ-CVac(CQ) protected six out of six (100%) participants against heterologous CHMI three months after immunization. All homologous (four out of four) and heterologous (eight out of eight) infectivity control participants showed parasitaemia. PfSPZ-CVac(CQ) and PfSPZ-CVac(PYR) induced a durable, sterile vaccine efficacy against a heterologous South American strain of P. falciparum, which has a genome and predicted CD8 T cell immunome that differs more strongly from the African vaccine strain than other analysed African P. falciparum strains.
Collapse
Affiliation(s)
- Agnes Mwakingwe-Omari
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Center for Vaccine Research, GlaxoSmithKline, Rockville, MD, USA
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jacquelyn Lane
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David M Cook
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sahand Kalhori
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Charles Wyatt
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aarti Kolluri
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Omely Marte-Salcedo
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alemush Imeru
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Martha Nason
- Biostatistical Research Branch, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Lei K Ding
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hope Decederfelt
- Clinical Center Pharmacy Department, National Institutes of Health, Bethesda, MD, USA
| | - Junhui Duan
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jillian Neal
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jacob Raiten
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Grace Lee
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jen C C Hume
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jihyun E Jeon
- Clinical Center Pharmacy Department, National Institutes of Health, Bethesda, MD, USA
| | - Ijeoma Ikpeama
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Natasha Kc
- Sanaria, Rockville, MD, USA
- Protein Potential, Rockville, MD, USA
| | | | | | | | | | | | - Charles Anderson
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Seattle Malaria Clinical Trials Center, Fred Hutch Cancer Research Center, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Sandra March
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sangeeta N Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Broad Institute, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | - B Kim Lee Sim
- Sanaria, Rockville, MD, USA
- Protein Potential, Rockville, MD, USA
| | | | - Irfan Zaidi
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
96
|
Vijayan K, Wei L, Glennon EKK, Mattocks C, Bourgeois N, Staker B, Kaushansky A. Host-targeted Interventions as an Exciting Opportunity to Combat Malaria. Chem Rev 2021; 121:10452-10468. [PMID: 34197083 DOI: 10.1021/acs.chemrev.1c00062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Terminal and benign diseases alike in adults, children, pregnant women, and others are successfully treated by pharmacological inhibitors that target human enzymes. Despite extensive global efforts to fight malaria, the disease continues to be a massive worldwide health burden, and new interventional strategies are needed. Current drugs and vector control strategies have contributed to the reduction in malaria deaths over the past 10 years, but progress toward eradication has waned in recent years. Resistance to antimalarial drugs is a substantial and growing problem. Moreover, targeting dormant forms of the malaria parasite Plasmodium vivax is only possible with two approved drugs, which are both contraindicated for individuals with glucose-6-phosphate dehydrogenase deficiency and in pregnant women. Plasmodium parasites are obligate intracellular parasites and thus have specific and absolute requirements of their hosts. Growing evidence has described these host necessities, paving the way for opportunities to pharmacologically target host factors to eliminate Plasmodium infection. Here, we describe progress in malaria research and adjacent fields and discuss key challenges that remain in implementing host-directed therapy against malaria.
Collapse
Affiliation(s)
| | - Ling Wei
- Seattle Children's Research Institute, Seattle, Washington 98109, United States
| | | | - Christa Mattocks
- Department of Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Natasha Bourgeois
- Seattle Children's Research Institute, Seattle, Washington 98109, United States.,Department of Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Bart Staker
- Seattle Children's Research Institute, Seattle, Washington 98109, United States
| | - Alexis Kaushansky
- Seattle Children's Research Institute, Seattle, Washington 98109, United States.,Department of Global Health, University of Washington, Seattle, Washington 98195, United States.,Department of Pediatrics, University of Washington, Seattle, Washington 98105, United States.,Brotman Baty Institute for Precision Medicine, Seattle, Washington 98195, United States
| |
Collapse
|
97
|
Billingsley PF, George KI, Eappen AG, Harrell RA, Alford R, Li T, Chakravarty S, Sim BKL, Hoffman SL, O'Brochta DA. Transient knockdown of Anopheles stephensi LRIM1 using RNAi increases Plasmodium falciparum sporozoite salivary gland infections. Malar J 2021; 20:284. [PMID: 34174879 PMCID: PMC8235909 DOI: 10.1186/s12936-021-03818-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium falciparum (Pf) sporozoites (PfSPZ) can be administered as a highly protective vaccine conferring the highest protection seen to date. Sanaria® PfSPZ vaccines are produced using aseptically reared Anopheles stephensi mosquitoes. The bionomics of sporogonic development of P. falciparum in A. stephensi to fully mature salivary gland PfSPZ is thought to be modulated by several components of the mosquito innate immune system. In order to increase salivary gland PfSPZ infections in A. stephensi and thereby increase vaccine production efficiency, a gene knock down approach was used to investigate the activity of the immune deficiency (IMD) signaling pathway downstream effector leucine-rich repeat immune molecule 1 (LRIM1), an antagonist to Plasmodium development. METHODS Expression of LRIM1 in A. stephensi was reduced following injection of double stranded (ds) RNA into mosquitoes. By combining the Gal4/UAS bipartite system with in vivo expression of short hairpin (sh) RNA coding for LRIM1 reduced expression of LRIM1 was targeted in the midgut, fat body, and salivary glands. RT-qPCR was used to demonstrate fold-changes in gene expression in three transgenic crosses and the effects on P. falciparum infections determined in mosquitoes showing the greatest reduction in LRIM1 expression. RESULTS LRIM1 expression could be reduced, but not completely silenced, by expression of LRIM1 dsRNA. Infections of P. falciparum oocysts and PfSPZ were consistently and significantly higher in transgenic mosquitoes than wild type controls, with increases in PfSPZ ranging from 2.5- to tenfold. CONCLUSIONS Plasmodium falciparum infections in A. stephensi can be increased following reduced expression of LRIM1. These data provide the springboard for more precise knockout of LRIM1 for the eventual incorporation of immune-compromised A. stephensi into manufacturing of Sanaria's PfSPZ products.
Collapse
Affiliation(s)
- Peter F Billingsley
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| | - Kasim I George
- Institute for Bioscience and Biotechnology Research and Department of Entomology, University of Maryland, Gudelsky Drive, Rockville, MD, 20850, USA
- Qiagen Inc, 19300 Germantown Road, Germantown, MD, 20874, USA
| | - Abraham G Eappen
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Robert A Harrell
- Institute for Bioscience and Biotechnology Research and Department of Entomology, University of Maryland, Gudelsky Drive, Rockville, MD, 20850, USA
- Insect Transformation Facility, Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Robert Alford
- Institute for Bioscience and Biotechnology Research and Department of Entomology, University of Maryland, Gudelsky Drive, Rockville, MD, 20850, USA
- Insect Transformation Facility, Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Tao Li
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Sumana Chakravarty
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - B Kim Lee Sim
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
- Protein Potential, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Stephen L Hoffman
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - David A O'Brochta
- Institute for Bioscience and Biotechnology Research and Department of Entomology, University of Maryland, Gudelsky Drive, Rockville, MD, 20850, USA
- Foundation for the National Institutes of Health, 11400 Rockville Pike, Suite 600, North Bethesda, MD, 20852, USA
| |
Collapse
|
98
|
Reuling IJ, Mendes AM, de Jong GM, Fabra-García A, Nunes-Cabaço H, van Gemert GJ, Graumans W, Coffeng LE, de Vlas SJ, Yang ASP, Lee C, Wu Y, Birkett AJ, Ockenhouse CF, Koelewijn R, van Hellemond JJ, van Genderen PJJ, Sauerwein RW, Prudêncio M. An open-label phase 1/2a trial of a genetically modified rodent malaria parasite for immunization against Plasmodium falciparum malaria. Sci Transl Med 2021; 12:12/544/eaay2578. [PMID: 32434846 DOI: 10.1126/scitranslmed.aay2578] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
For some diseases, successful vaccines have been developed using a nonpathogenic counterpart of the causative microorganism of choice. The nonpathogenicity of the rodent Plasmodium berghei (Pb) parasite in humans prompted us to evaluate its potential as a platform for vaccination against human infection by Plasmodium falciparum (Pf), a causative agent of malaria. We hypothesized that the genetic insertion of a leading protein target for clinical development of a malaria vaccine, Pf circumsporozoite protein (CSP), in its natural pre-erythrocytic environment, would enhance Pb's capacity to induce protective immunity against Pf infection. Hence, we recently generated a transgenic Pb sporozoite immunization platform expressing PfCSP (PbVac), and we now report the clinical evaluation of its biological activity against controlled human malaria infection (CHMI). This first-in-human trial shows that PbVac is safe and well tolerated, when administered by a total of ~300 PbVac-infected mosquitoes per volunteer. Although protective efficacy evaluated by CHMI showed no sterile protection at the tested dose, significant delays in patency (2.2 days, P = 0.03) and decreased parasite density were observed after immunization, corresponding to an estimated 95% reduction in Pf liver parasite burden (confidence interval, 56 to 99%; P = 0.010). PbVac elicits dose-dependent cross-species cellular immune responses and functional PfCSP-dependent antibody responses that efficiently block Pf sporozoite invasion of liver cells in vitro. This study demonstrates that PbVac immunization elicits a marked biological effect, inhibiting a subsequent infection by the human Pf parasite, and establishes the clinical validation of a new paradigm in malaria vaccination.
Collapse
Affiliation(s)
- Isaie J Reuling
- Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - António M Mendes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Gerdie M de Jong
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 3015 GD Rotterdam, Netherlands
| | - Amanda Fabra-García
- Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Helena Nunes-Cabaço
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Geert-Jan van Gemert
- Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Wouter Graumans
- Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Luc E Coffeng
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, Netherlands
| | - Sake J de Vlas
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, Netherlands
| | - Annie S P Yang
- Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Cynthia Lee
- PATH's Malaria Vaccine Initiative, Washington, DC 20001, USA
| | - Yimin Wu
- PATH's Malaria Vaccine Initiative, Washington, DC 20001, USA
| | | | | | - Rob Koelewijn
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 3015 GD Rotterdam, Netherlands
| | - Jaap J van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 3015 GD Rotterdam, Netherlands
| | - Perry J J van Genderen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 3015 GD Rotterdam, Netherlands. .,Corporate Travel Clinic Erasmus MC, 3015 CP Rotterdam, Netherlands
| | - Robert W Sauerwein
- Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands.
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
99
|
Roestenberg M, Walk J, van der Boor SC, Langenberg MCC, Hoogerwerf MA, Janse JJ, Manurung M, Yap XZ, García AF, Koopman JPR, Meij P, Wessels E, Teelen K, van Waardenburg YM, van de Vegte-Bolmer M, van Gemert GJ, Visser LG, van der Ven AJAM, de Mast Q, Natasha KC, Abebe Y, Murshedkar T, Billingsley PF, Richie TL, Sim BKL, Janse CJ, Hoffman SL, Khan SM, Sauerwein RW. A double-blind, placebo-controlled phase 1/2a trial of the genetically attenuated malaria vaccine PfSPZ-GA1. Sci Transl Med 2021; 12:12/544/eaaz5629. [PMID: 32434847 DOI: 10.1126/scitranslmed.aaz5629] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/22/2020] [Indexed: 11/02/2022]
Abstract
Immunization with attenuated Plasmodium sporozoites can induce protection against malaria infection, as shown by Plasmodium falciparum (Pf) sporozoites attenuated by radiation in multiple clinical trials. As alternative attenuation strategy with a more homogeneous population of Pf sporozoites (PfSPZ), genetically engineered Plasmodium berghei sporozoites (SPZ) lacking the genes b9 and slarp induced sterile protection against malaria in mice. Consequently, PfSPZ-GA1 Vaccine, a Pf identical double knockout (Pf∆b9∆slarp), was generated as a genetically attenuated malaria parasite vaccine and tested for safety, immunogenicity, and preliminary efficacy in malaria-naïve Dutch volunteers. Dose-escalation immunizations up to 9.0 × 105 PfSPZ of PfSPZ-GA1 Vaccine were well tolerated without breakthrough blood-stage infection. Subsequently, groups of volunteers were immunized three times by direct venous inoculation with cryopreserved PfSPZ-GA1 Vaccine (9.0 × 105 or 4.5 × 105 PfSPZ, N = 13 each), PfSPZ Vaccine (radiation-attenuated PfSPZ, 4.5 × 105 PfSPZ, N = 13), or normal saline placebo at 8-week intervals, followed by exposure to mosquito bite controlled human malaria infection (CHMI). After CHMI, 3 of 25 volunteers from both PfSPZ-GA1 groups were sterilely protected, and the remaining 17 of 22 showed a patency ≥9 days (median patency in controls, 7 days; range, 7 to 9). All volunteers in the PfSPZ Vaccine control group developed parasitemia (median patency, 9 days; range, 7 to 12). Immunized groups exhibited a significant, dose-related increase in anti-Pf circumsporozoite protein (CSP) antibodies and Pf-specific interferon-γ (IFN-γ)-producing T cells. Although no definite conclusion can be drawn on the potential strength of protective efficacy of PfSPZ-GA1 Vaccine, the favorable safety profile and induced immune responses by PfSPZ-GA1 Vaccine warrant further clinical evaluation.
Collapse
Affiliation(s)
- Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Jona Walk
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands.,Radboudumc Center for Infectious Diseases, Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Saskia C van der Boor
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Marijke C C Langenberg
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | | | - Jacqueline J Janse
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Mikhael Manurung
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - X Zen Yap
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Amanda Fabra García
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Jan Pieter R Koopman
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Pauline Meij
- Interdivisional GMP Facility, Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Els Wessels
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Karina Teelen
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Youri M van Waardenburg
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Marga van de Vegte-Bolmer
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Geert Jan van Gemert
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Leo G Visser
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - André J A M van der Ven
- Radboudumc Center for Infectious Diseases, Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Quirijn de Mast
- Radboudumc Center for Infectious Diseases, Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | | | | | | | | | | | | | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | | | - Shahid M Khan
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Robert W Sauerwein
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands.
| |
Collapse
|
100
|
Moita D, Nunes-Cabaço H, Mendes AM, Prudêncio M. A guide to investigating immune responses elicited by whole-sporozoite pre-erythrocytic vaccines against malaria. FEBS J 2021; 289:3335-3359. [PMID: 33993649 DOI: 10.1111/febs.16016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/19/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
In the last few decades, considerable efforts have been made toward the development of efficient vaccines against malaria. Whole-sporozoite (Wsp) vaccines, which induce efficient immune responses against the pre-erythrocytic (PE) stages (sporozoites and liver forms) of Plasmodium parasites, the causative agents of malaria, are among the most promising immunization strategies tested until present. Several Wsp PE vaccination approaches are currently under evaluation in the clinic, including radiation- or genetically-attenuated Plasmodium sporozoites, live parasites combined with chemoprophylaxis, or genetically modified rodent Plasmodium parasites. In addition to the assessment of their protective efficacy, clinical trials of Wsp PE vaccine candidates inevitably involve the thorough investigation of the immune responses elicited by vaccination, as well as the identification of correlates of protection. Here, we review the main methodologies employed to dissect the humoral and cellular immune responses observed in the context of Wsp PE vaccine clinical trials and discuss future strategies to further deepen the knowledge generated by these studies, providing a toolbox for the in-depth analysis of vaccine-induced immunogenicity.
Collapse
Affiliation(s)
- Diana Moita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Helena Nunes-Cabaço
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - António M Mendes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| |
Collapse
|