51
|
Zachrison KS, Goldstein JN, Jauch E, Radecki RP, Madsen TE, Adeoye O, Oostema JA, Feeser VR, Ganti L, Lo BM, Meurer W, Corral M, Rothenberg C, Chaturvedi A, Goyal P, Venkatesh AK. Clinical Performance Measures for Emergency Department Care for Adults With Intracranial Hemorrhage. Ann Emerg Med 2023; 82:258-269. [PMID: 37074253 DOI: 10.1016/j.annemergmed.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 04/20/2023]
Abstract
Though select inpatient-based performance measures exist for the care of patients with nontraumatic intracranial hemorrhage, emergency departments lack measurement instruments designed to support and improve care processes in the hyperacute phase. To address this, we propose a set of measures applying a syndromic (rather than diagnosis-based) approach informed by performance data from a national sample of community EDs participating in the Emergency Quality Network Stroke Initiative. To develop the measure set, we convened a workgroup of experts in acute neurologic emergencies. The group considered the appropriate use case for each proposed measure: internal quality improvement, benchmarking, or accountability, and examined data from Emergency Quality Network Stroke Initiative-participating EDs to consider the validity and feasibility of proposed measures for quality measurement and improvement applications. The initially conceived set included 14 measure concepts, of which 7 were selected for inclusion in the measure set after a review of data and further deliberation. Proposed measures include 2 for quality improvement, benchmarking, and accountability (Last 2 Recorded Systolic Blood Pressure Measurements Under 150 and Platelet Avoidance), 3 for quality improvement and benchmarking (Proportion of Patients on Oral Anticoagulants Receiving Hemostatic Medications, Median ED Length of Stay for admitted patients, and Median Length of Stay for transferred patients), and 2 for quality improvement only (Severity Assessment in the ED and Computed Tomography Angiography Performance). The proposed measure set warrants further development and validation to support broader implementation and advance national health care quality goals. Ultimately, applying these measures may help identify opportunities for improvement and focus quality improvement resources on evidence-based targets.
Collapse
Affiliation(s)
- Kori S Zachrison
- Department of Emergency Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA.
| | - Joshua N Goldstein
- Department of Emergency Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | - Ryan P Radecki
- Department of Emergency Medicine, Christchurch Hospital, Christchurch, New Zealand
| | - Tracy E Madsen
- Department of Emergency Medicine, Warren Alpert Medical School of Brown University, Providence, RI
| | - Opeolu Adeoye
- Department of Emergency Medicine, Washington University School of Medicine in St Louis, St Louis, MO
| | - John A Oostema
- Department of Emergency Medicine, Michigan State University College of Human Medicine, East Lansing, MI
| | - V Ramana Feeser
- Department of Emergency Medicine, Virginia Commonwealth University, Richmond, VA
| | - Latha Ganti
- Department of Emergency Medicine, University of Central Florida College of Medicine, Orlando, FL
| | - Bruce M Lo
- Department of Emergency Medicine, Sentara Norfolk General Hospital/Eastern Virginia Medical School, Norfolk, VA
| | - William Meurer
- Departments of Emergency Medicine and Neurology, University of Michigan Medical School, Ann Arbor, MI
| | | | - Craig Rothenberg
- Department of Emergency Medicine, Yale School of Medicine, New Haven, CT
| | | | - Pawan Goyal
- American College of Emergency Physicians, Irving, TX
| | - Arjun K Venkatesh
- Department of Emergency Medicine, Yale School of Medicine, New Haven, CT
| |
Collapse
|
52
|
Parry-Jones AR, Stocking K, MacLeod MJ, Clarke B, Werring DJ, Muir KW, Vail A. Phase II randomised, placebo-controlled, clinical trial of interleukin-1 receptor antagonist in intracerebral haemorrhage: BLOcking the Cytokine IL-1 in ICH (BLOC-ICH). Eur Stroke J 2023; 8:819-827. [PMID: 37452707 PMCID: PMC10472954 DOI: 10.1177/23969873231185208] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
PURPOSE Recombinant human interleukin-1 receptor antagonist (anakinra) is an anti-inflammatory with efficacy in animal models of stroke. We tested the effect of anakinra on perihaematomal oedema in acute intracerebral haemorrhage (ICH) and explored effects on inflammatory markers. METHODS We conducted a multicentre, randomised, double-blind, placebo-controlled trial in patients with acute, spontaneous, supratentorial ICH between May 2019 and February 2021. Patients were randomised to 100 mg subcutaneous anakinra within 8 h of onset, followed by five, 12-hourly, 100 mg subcutaneous injections, or matched placebo. Primary outcome was oedema extension distance (OED) on a 72 h CT scan. Secondary outcomes included plasma C-reactive protein (CRP) and interleukin-6 (IL-6). FINDINGS 25 patients (target = 80) were recruited, 14 randomised to anakinra, 11 to placebo. Mean age was 67 and 52% were male. The anakinra group had higher median baseline ICH volume (12.6 ml, interquartile range[IQR]:4.8-17.9) versus placebo (5.5 ml, IQR:2.1-10.9). Adjusting for baseline, 72 h OED was not significantly different between groups (mean difference OED anakinra vs placebo -0.05 cm, 95% confidence interval [CI]: -0.17-0.06, p = 0.336). There was no significant difference in area-under-the-curve to Day 4 for IL-6 and CRP, but a post-hoc analysis demonstrated IL-6 was 56% (95% CI: 2%-80%) lower at Day 2 with anakinra. There were 10 and 2 serious adverse events in anakinra and placebo groups, respectively, none attributed to anakinra. CONCLUSION We describe feasibility for delivering anakinra in acute ICH and provide preliminary safety data. We lacked power to test for effects on oedema thus further trials will be required.
Collapse
Affiliation(s)
- Adrian R Parry-Jones
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Katie Stocking
- Centre for Biostatistics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mary Joan MacLeod
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Brian Clarke
- Department of Stroke Medicine, St George’s University Hospitals NHS Foundation Trust, London, UK
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
| | - Keith W Muir
- School of Psychology and Neuroscience, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, UK
| | - Andy Vail
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Centre for Biostatistics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
53
|
Haider SP, Qureshi AI, Jain A, Tharmaseelan H, Berson ER, Zeevi T, Werring DJ, Gross M, Mak A, Malhotra A, Sansing LH, Falcone GJ, Sheth KN, Payabvash S. Radiomic markers of intracerebral hemorrhage expansion on non-contrast CT: independent validation and comparison with visual markers. Front Neurosci 2023; 17:1225342. [PMID: 37655013 PMCID: PMC10467422 DOI: 10.3389/fnins.2023.1225342] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/10/2023] [Indexed: 09/02/2023] Open
Abstract
Objective To devise and validate radiomic signatures of impending hematoma expansion (HE) based on admission non-contrast head computed tomography (CT) of patients with intracerebral hemorrhage (ICH). Methods Utilizing a large multicentric clinical trial dataset of hypertensive patients with spontaneous supratentorial ICH, we developed signatures predictive of HE in a discovery cohort (n = 449) and confirmed their performance in an independent validation cohort (n = 448). In addition to n = 1,130 radiomic features, n = 6 clinical variables associated with HE, n = 8 previously defined visual markers of HE, the BAT score, and combinations thereof served as candidate variable sets for signatures. The area under the receiver operating characteristic curve (AUC) quantified signatures' performance. Results A signature combining select radiomic features and clinical variables attained the highest AUC (95% confidence interval) of 0.67 (0.61-0.72) and 0.64 (0.59-0.70) in the discovery and independent validation cohort, respectively, significantly outperforming the clinical (pdiscovery = 0.02, pvalidation = 0.01) and visual signature (pdiscovery = 0.03, pvalidation = 0.01) as well as the BAT score (pdiscovery < 0.001, pvalidation < 0.001). Adding visual markers to radiomic features failed to improve prediction performance. All signatures were significantly (p < 0.001) correlated with functional outcome at 3-months, underlining their prognostic relevance. Conclusion Radiomic features of ICH on admission non-contrast head CT can predict impending HE with stable generalizability; and combining radiomic with clinical predictors yielded the highest predictive value. By enabling selective anti-expansion treatment of patients at elevated risk of HE in future clinical trials, the proposed markers may increase therapeutic efficacy, and ultimately improve outcomes.
Collapse
Affiliation(s)
- Stefan P. Haider
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
- Department of Otorhinolaryngology, University Hospital of Ludwig-Maximilians-Universität München, Munich, Germany
| | - Adnan I. Qureshi
- Zeenat Qureshi Stroke Institute and Department of Neurology, University of Missouri, Columbia, MO, United States
| | - Abhi Jain
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Hishan Tharmaseelan
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Elisa R. Berson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Tal Zeevi
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - David J. Werring
- Stroke Research Centre, University College London, Queen Square Institute of Neurology, London, United Kingdom
| | - Moritz Gross
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Adrian Mak
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Ajay Malhotra
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Lauren H. Sansing
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Guido J. Falcone
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Kevin N. Sheth
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Seyedmehdi Payabvash
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
54
|
Haupenthal D, Schwab S, Kuramatsu JB. Hematoma expansion in intracerebral hemorrhage - the right target? Neurol Res Pract 2023; 5:36. [PMID: 37496094 PMCID: PMC10373350 DOI: 10.1186/s42466-023-00256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/30/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND The avoidance of hematoma expansion is the most important therapeutic goal during acute care of patients with intracerebral hemorrhage. Hematoma expansion occurs in up to 20-40% of patients and leads to poorer patient outcome in one of the most severe sub-types of stroke. MAIN TEXT At current, randomized controlled trials have failed to provide evidence for interventions that effectively improve functional outcome in patients with intracerebral hemorrhage. Hence, hematoma expansion may serve as important surrogate target that appears causally linked with a poorer prognosis. Therefore, reduction of hematoma expansion rates will eventually translate to improved patient outcome overall. Recent years have shed light on the importance of early and aggressive treatment in order to reduce the risk for hematoma expansion in these patients. Time measures and imaging markers have been identified that may allow patient selection at very high risk for hematoma expansion. CONCLUSIONS Refinements in patient selection may increase chance for randomized trials to show true benefit. Therefore, this current review article will critically evaluate and discuss available evidence associated with hematoma expansion in patients with intracerebral hemorrhage.
Collapse
Affiliation(s)
- David Haupenthal
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Stefan Schwab
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Joji B Kuramatsu
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany.
| |
Collapse
|
55
|
Desborough MJR, Al-Shahi Salman R, Stanworth SJ, Havard D, Woodhouse LJ, Craig J, Krishnan K, Brennan PM, Dineen RA, Coats TJ, Hepburn T, Bath PM, Sprigg N. Desmopressin for patients with spontaneous intracerebral haemorrhage taking antiplatelet drugs (DASH): a UK-based, phase 2, randomised, placebo-controlled, multicentre feasibility trial. Lancet Neurol 2023; 22:557-567. [PMID: 37353276 PMCID: PMC10284719 DOI: 10.1016/s1474-4422(23)00157-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND The risk of death from spontaneous intracerebral haemorrhage is increased for people taking antiplatelet drugs. We aimed to assess the feasibility of randomising patients on antiplatelet drug therapy with spontaneous intracerebral haemorrhage to desmopressin or placebo to reduce the antiplatelet drug effect. METHODS DASH was a phase 2, randomised, placebo-controlled, multicentre feasibility trial. Patients were recruited from ten acute stroke centres in the UK and were eligible if they had an intracerebral haemorrhage with stroke symptom onset within 24 h of randomisation, were aged 18 years or older, and were taking an antiplatelet drug. Participants were randomly assigned (1:1) to a single dose of intravenous desmopressin 20 μg or matching placebo. Treatment allocation was concealed from all staff and patients involved in the trial. The primary outcome was feasibility, which was measured as the number of eligible patients randomised and the proportion of eligible patients approached, and analysis was by intention to treat. The trial was prospectively registered with ISRCTN (reference ISRCTN67038373), and it is closed to recruitment. FINDINGS Between April 1, 2019, and March 31, 2022, 1380 potential participants were screened for eligibility. 176 (13%) participants were potentially eligible, of whom 57 (32%) were approached, and 54 (31%) consented and were subsequently recruited and randomly assigned to receive desmopressin (n=27) or placebo (n=27). The main reason for eligible patients not being recruited was the patient arriving out of hours (74 [61%] of 122 participants). The recruitment rate increased after the enrolment period was extended from 12 h to 24 h, but it was then impaired due to the COVID-19 pandemic. Of the 54 participants included in the analysis (mean age 76·4 years [SD 11·3]), most were male (36 [67%]) and White (50 [93%]). 53 (98%) of 54 participants received all of their allocated treatment (one participant assigned desmopressin only received part of the infusion). No participants were lost to follow-up or withdrew from the trial. Death or dependency on others for daily activities at day 90 (modified Rankin Scale score >4) occurred in six (22%) of 27 participants in the desmopressin group and ten (37%) of 27 participants in the placebo group. Serious adverse events occurred in 12 (44%) participants in the desmopressin group and 13 (48%) participants in the placebo group. The most common adverse events were expansion of the haemorrhagic stroke (four [15%] of 27 participants in the desmopressin group and six [22%] of 27 participants in the placebo group) and pneumonia (one [4%] of 27 participants in the desmopressin group and six [22%] of 27 participants in the placebo group). INTERPRETATION Our results show it is feasible to randomise patients with spontaneous intracerebral haemorrhage who are taking antiplatelet drugs to desmopressin or placebo. Our findings support the need for a definitive trial to determine if desmopressin improves outcomes in patients with intracerebral haemorrhage on antiplatelet drug therapy. FUNDING National Institute for Health Research.
Collapse
Affiliation(s)
- Michael J R Desborough
- Department of Clinical Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | | | - Simon J Stanworth
- Department of Clinical Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Diane Havard
- Stroke Trials Unit, University of Nottingham, Nottingham, UK
| | | | - Jennifer Craig
- Stroke Trials Unit, University of Nottingham, Nottingham, UK
| | - Kailash Krishnan
- Stroke, Medicine Division, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Paul M Brennan
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Robert A Dineen
- Radiological Sciences, University of Nottingham, Nottingham, UK; NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Tim J Coats
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Trish Hepburn
- Mental Health and Clinical Neurosciences, and Nottingham Clinical Trials Unit, University of Nottingham, Nottingham, UK
| | - Philip M Bath
- Stroke Trials Unit, University of Nottingham, Nottingham, UK; Stroke, Medicine Division, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Nikola Sprigg
- Stroke Trials Unit, University of Nottingham, Nottingham, UK; Stroke, Medicine Division, Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
56
|
Rao X, Zhang J, Yu K, Sun Y, Zhou J, Jiang L, Liu T, Xie B, Peng J, Jiang Y. Effect of Early External Ventricular Drainage on Perihemorrhagic Edema and Functional Outcome in Patients with Intraventricular Hemorrhage. World Neurosurg 2023; 175:e1059-e1068. [PMID: 37087041 DOI: 10.1016/j.wneu.2023.04.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/24/2023]
Abstract
OBJECTIVE External ventricular drainage (EVD) is the most common neurosurgical procedure that allows drainage of cerebrospinal fluid and intraventricular blood. A specific time threshold for insertion of an EVD catheter in patients with spontaneous intracerebral hemorrhage and intraventricular hemorrhage has not been established. This study aimed to evaluate the association of early EVD with functional outcome in patients with intracerebral hemorrhage and intraventricular hemorrhage. METHODS Propensity score matching was used to account for baseline imbalances. Modified Rankin Scale score at 3 and 6 months, mortality rates at 3 and 6 months, postoperative complications, time course of edema evolution, and peak perihemorrhagic edema (PHE) were compared in patients who received early EVD versus routine EVD. RESULTS The rate of favorable outcome at 3 months was higher in the early EVD group compared with the routine EVD group. There were no differences between groups in modified Rankin Scale score at 6 months or mortality rates at 3 and 6 months. Absolute peak PHE and relative PHE volumes were significantly less in the early EVD group compared with the routine EVD group. The incidence of postoperative infections was lower in the early EVD group compared with the routine EVD group. CONCLUSIONS Early EVD was associated with improved functional outcome at 3 months, reduced PHE, and lower rate of infection in intracerebral hemorrhage and intraventricular hemorrhage. However, survival at 3 and 6 months and functional outcome at 6 months were not improved.
Collapse
Affiliation(s)
- Xiao Rao
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiaqi Zhang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kuangyang Yu
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuxuan Sun
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Zhou
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Lu Jiang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tianjie Liu
- Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bingqing Xie
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou, China; Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China.
| |
Collapse
|
57
|
Ma L, Hu X, Song L, Chen X, Ouyang M, Billot L, Li Q, Malavera A, Li X, Muñoz-Venturelli P, de Silva A, Thang NH, Wahab KW, Pandian JD, Wasay M, Pontes-Neto OM, Abanto C, Arauz A, Shi H, Tang G, Zhu S, She X, Liu L, Sakamoto Y, You S, Han Q, Crutzen B, Cheung E, Li Y, Wang X, Chen C, Liu F, Zhao Y, Li H, Liu Y, Jiang Y, Chen L, Wu B, Liu M, Xu J, You C, Anderson CS. The third Intensive Care Bundle with Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT3): an international, stepped wedge cluster randomised controlled trial. Lancet 2023; 402:27-40. [PMID: 37245517 PMCID: PMC10401723 DOI: 10.1016/s0140-6736(23)00806-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Early control of elevated blood pressure is the most promising treatment for acute intracerebral haemorrhage. We aimed to establish whether implementing a goal-directed care bundle incorporating protocols for early intensive blood pressure lowering and management algorithms for hyperglycaemia, pyrexia, and abnormal anticoagulation, implemented in a hospital setting, could improve outcomes for patients with acute spontaneous intracerebral haemorrhage. METHODS We performed a pragmatic, international, multicentre, blinded endpoint, stepped wedge cluster randomised controlled trial at hospitals in nine low-income and middle-income countries (Brazil, China, India, Mexico, Nigeria, Pakistan, Peru, Sri Lanka, and Viet Nam) and one high-income country (Chile). Hospitals were eligible if they had no or inconsistent relevant, disease-specific protocols, and were willing to implement the care bundle to consecutive patients (aged ≥18 years) with imaging-confirmed spontaneous intracerebral haemorrhage presenting within 6 h of the onset of symptoms, had a local champion, and could provide the required study data. Hospitals were centrally randomly allocated using permuted blocks to three sequences of implementation, stratified by country and the projected number of patients to be recruited over the 12 months of the study period. These sequences had four periods that dictated the order in which the hospitals were to switch from the control usual care procedure to the intervention implementation of the care bundle procedure to different clusters of patients in a stepped manner. To avoid contamination, details of the intervention, sequence, and allocation periods were concealed from sites until they had completed the usual care control periods. The care bundle protocol included the early intensive lowering of systolic blood pressure (target <140 mm Hg), strict glucose control (target 6·1-7·8 mmol/L in those without diabetes and 7·8-10·0 mmol/L in those with diabetes), antipyrexia treatment (target body temperature ≤37·5°C), and rapid reversal of warfarin-related anticoagulation (target international normalised ratio <1·5) within 1 h of treatment, in patients where these variables were abnormal. Analyses were performed according to a modified intention-to-treat population with available outcome data (ie, excluding sites that withdrew during the study). The primary outcome was functional recovery, measured with the modified Rankin scale (mRS; range 0 [no symptoms] to 6 [death]) at 6 months by masked research staff, analysed using proportional ordinal logistic regression to assess the distribution in scores on the mRS, with adjustments for cluster (hospital site), group assignment of cluster per period, and time (6-month periods from Dec 12, 2017). This trial is registered at Clinicaltrials.gov (NCT03209258) and the Chinese Clinical Trial Registry (ChiCTR-IOC-17011787) and is completed. FINDINGS Between May 27, 2017, and July 8, 2021, 206 hospitals were assessed for eligibility, of which 144 hospitals in ten countries agreed to join and were randomly assigned in the trial, but 22 hospitals withdrew before starting to enrol patients and another hospital was withdrawn and their data on enrolled patients was deleted because regulatory approval was not obtained. Between Dec 12, 2017, and Dec 31, 2021, 10 857 patients were screened but 3821 were excluded. Overall, the modified intention-to-treat population included 7036 patients enrolled at 121 hospitals, with 3221 assigned to the care bundle group and 3815 to the usual care group, with primary outcome data available in 2892 patients in the care bundle group and 3363 patients in the usual care group. The likelihood of a poor functional outcome was lower in the care bundle group (common odds ratio 0·86; 95% CI 0·76-0·97; p=0·015). The favourable shift in mRS scores in the care bundle group was generally consistent across a range of sensitivity analyses that included additional adjustments for country and patient variables (0·84; 0·73-0·97; p=0·017), and with different approaches to the use of multiple imputations for missing data. Patients in the care bundle group had fewer serious adverse events than those in the usual care group (16·0% vs 20·1%; p=0·0098). INTERPRETATION Implementation of a care bundle protocol for intensive blood pressure lowering and other management algorithms for physiological control within several hours of the onset of symptoms resulted in improved functional outcome for patients with acute intracerebral haemorrhage. Hospitals should incorporate this approach into clinical practice as part of active management for this serious condition. FUNDING Joint Global Health Trials scheme from the Department of Health and Social Care, the Foreign, Commonwealth & Development Office, and the Medical Research Council and Wellcome Trust; West China Hospital; the National Health and Medical Research Council of Australia; Sichuan Credit Pharmaceutic and Takeda China.
Collapse
Affiliation(s)
- Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Hu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lili Song
- The George Institute for Global Health China, Beijing, China; The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Xiaoying Chen
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Menglu Ouyang
- The George Institute for Global Health China, Beijing, China; The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Laurent Billot
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Qiang Li
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Alejandra Malavera
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Xi Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Paula Muñoz-Venturelli
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Clinical Research Center, Faculty of Medicine Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Asita de Silva
- Clinical Trials Unit, Faculty of Medicine, University of Kelaniya, Colombo, Sri Lanka
| | | | - Kolawole W Wahab
- Department of Medicine, University of Ilorin & University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Jeyaraj D Pandian
- Neurology Department, Christian Medical College and Hospital, Ludhiana, India
| | - Mohammad Wasay
- Department of Medicine, The Aga Khan University, Karachi, Pakistan
| | - Octavio M Pontes-Neto
- Department of Neurology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Carlos Abanto
- The Cerebrovascular Disease Research Center, National Institute of Neurological Sciences, Lima, Peru
| | - Antonio Arauz
- Instituto Nacional de Neurologia y Neurocirugia Manuel Velasco Suarez, Mexico City, Mexico
| | - Haiping Shi
- Department of Neurosurgery, Suining Central Hospital, Suining, China
| | - Guanghai Tang
- Department of Neurology, Liaoning Thrombus Treatment Centre of Integrated Chinese and Western Medicine, Shenyang, China
| | - Sheng Zhu
- Department of Neurosurgery, Dazhu County People's Hospital, Dazhou, China
| | - Xiaochun She
- Department of Neurosurgery, Jiangsu Rudong County People's Hospital, Nantong, China
| | - Leibo Liu
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Yuki Sakamoto
- Department of Neurology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shoujiang You
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiao Han
- Department of Neurology, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Bernard Crutzen
- Department of Radiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Department of Radiology, Grand Hôpital de Charleroi, Charleroi, Belgium
| | - Emily Cheung
- Neurology Department, Royal Prince Alfred Hospital, Sydney, Australia
| | - Yunke Li
- The George Institute for Global Health China, Beijing, China
| | - Xia Wang
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Chen Chen
- The George Institute for Global Health China, Beijing, China; The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Department of Neurology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Feifeng Liu
- Department of Neurology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Yang Zhao
- The George Institute for Global Health China, Beijing, China
| | - Hao Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Jiang
- Department of Nursing and Evidence-based Nursing Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Wu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China.
| | - Craig S Anderson
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China; The George Institute for Global Health China, Beijing, China; The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Clinical Research Center, Faculty of Medicine Clinica Alemana Universidad del Desarrollo, Santiago, Chile; Neurology Department, Royal Prince Alfred Hospital, Sydney, Australia; Heart Health Research Center, Beijing, China.
| |
Collapse
|
58
|
Ducroux C, Nehme A, Rioux B, Panzini MA, Fahed R, Gioia LC, Létourneau-Guillon L. NCCT Markers of Intracerebral Hemorrhage Expansion Using Revised Criteria: An External Validation of Their Predictive Accuracy. AJNR Am J Neuroradiol 2023; 44:658-664. [PMID: 37169542 PMCID: PMC10249705 DOI: 10.3174/ajnr.a7871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/06/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND PURPOSE Several NCCT expansion markers have been proposed to improve the prediction of hematoma expansion. We retrospectively evaluated the predictive accuracy of 9 expansion markers. MATERIALS AND METHODS Patients admitted for intracerebral hemorrhage within 24 hours of last seen well were retrospectively included from April 2016 to April 2020. The primary outcome was revised hematoma expansion, defined as any of a ≥6-mL or ≥33% increase in intracerebral hemorrhage volume, a ≥ 1-mL increase in intraventricular hemorrhage volume, or de novo intraventricular hemorrhage. We assessed the predictive accuracy of expansion markers and determined their association with revised hematoma expansion. RESULTS We included 124 patients, of whom 51 (41%) developed revised hematoma expansion. The sensitivity of each marker for the prediction of revised hematoma expansion ranged from 4% to 78%; the specificity, 37%-97%; the positive likelihood ratio, 0.41-7.16; and the negative likelihood ratio, 0.49-1.06. By means of univariable logistic regressions, 5 markers were significantly associated with revised hematoma expansion: black hole (OR = 8.66; 95% CI, 2.15-58.14; P = .007), hypodensity (OR = 3.18; 95% CI, 1.49-6.93; P = .003), blend (OR = 2.90; 95% CI, 1.08-8.38; P = .04), satellite (OR = 2.84; 95% CI, 1.29-6.61; P = .01), and Barras shape (OR = 2.41, 95% CI; 1.17-5.10; P = .02). In multivariable models, only the black hole marker remained independently associated with revised hematoma expansion (adjusted OR = 5.62; 95% CI, 1.23-40.23; P = .03). CONCLUSIONS No single NCCT expansion marker had both high sensitivity and specificity for the prediction of revised hematoma expansion. Improved image-based analysis is needed to tackle limitations associated with current NCCT-based expansion markers.
Collapse
Affiliation(s)
- C Ducroux
- From the Département des Neurosciences (C.D., A.N., B.R., M.-A.P., L.C.G.), Faculté de Médecine
- Département de Médicine (Neurologie) (C.D., A.N., B.R., M.-A.P., L.C.G.)
- Neurovascular Health Program (C.D., L.C.G.)
- Department of Medicine (C.D., R.F.), Division of Neurology, The Ottawa Hospital Research Institute and University of Ottawa, Ottawa, Ontario, Canada
| | - A Nehme
- From the Département des Neurosciences (C.D., A.N., B.R., M.-A.P., L.C.G.), Faculté de Médecine
- Département de Médicine (Neurologie) (C.D., A.N., B.R., M.-A.P., L.C.G.)
| | - B Rioux
- From the Département des Neurosciences (C.D., A.N., B.R., M.-A.P., L.C.G.), Faculté de Médecine
- Département de Médicine (Neurologie) (C.D., A.N., B.R., M.-A.P., L.C.G.)
- Centre for Clinical Brain Sciences (B.R.), University of Edinburgh, Edinburgh, UK
| | - M-A Panzini
- From the Département des Neurosciences (C.D., A.N., B.R., M.-A.P., L.C.G.), Faculté de Médecine
- Département de Médicine (Neurologie) (C.D., A.N., B.R., M.-A.P., L.C.G.)
| | - R Fahed
- Department of Medicine (C.D., R.F.), Division of Neurology, The Ottawa Hospital Research Institute and University of Ottawa, Ottawa, Ontario, Canada
| | - L C Gioia
- From the Département des Neurosciences (C.D., A.N., B.R., M.-A.P., L.C.G.), Faculté de Médecine
- Département de Médicine (Neurologie) (C.D., A.N., B.R., M.-A.P., L.C.G.)
- Neurovascular Health Program (C.D., L.C.G.)
| | - L Létourneau-Guillon
- Département de Radiologie (L.L.-G.), Radio-oncologie et Médecine Nucléaire, Faculté de Médicine, Université de Montréal, Montréal, Quebec, Canada
- Département de Radiologie (L.L.-G.), Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
- Imaging and Engineering Axis (L.L.-G.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
59
|
Chen CH, Chen SF, Tsai HH, Chen YF, Tang SC, Jeng JS. Associations of Cerebral Small Vessel Disease on the Features of Hematoma and Hematoma Expansion in Intracerebral Hemorrhage. Cerebrovasc Dis 2023; 53:136-143. [PMID: 37263251 DOI: 10.1159/000531152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023] Open
Abstract
INTRODUCTION Several early noncontrast CT (NCCT) signs of spontaneous intracerebral hemorrhage (ICH) can predict hematoma expansion (HE). However, the associations of underlying cerebral small vessel disease (SVD) on early NCCT signs and HE have been less explored. METHODS We conducted an analysis of all patients with spontaneous supratentorial ICH and received follow-up imaging between 2016 and 2020 at a stroke center. The early NCCT signs were categorized as shape or density signs. HE was defined as an increase in hematoma volume ≥6 mL or 33% from baseline. The severity of SVD was assessed by both a 3-point CT-based and a 4-point magnetic resonance imaging (MRI)-based SVD score. Regression models were used to examine the associations between SVD score and hematoma volume, NCCT signs, and HE. RESULTS A total of 328 patients (median age: 64 years; 38% female) were included. The median baseline ICH volume was 8.6 mL, with 38% of the patients had shape signs and 52% had density signs on the initial NCCT. Higher MRI-SVD scores were associated with smaller ICH volumes (p = 0.0006), fewer shape (p = 0.001), or density signs (p = 0.0003). Overall, 16% of patients experienced HE. A higher MRI-SVD score was inversely associated with HE (adjusted odds ratio 0.71, 95% CI: 0.53-0.96). Subgroup analysis revealed that this association was primarily observed in patients who were younger (<65 years), male, had deep hemorrhage, or did not meet the criteria for cerebral amyloid angiopathy diagnosis. CONCLUSIONS In patients with spontaneous ICH, a more severe SVD was associated with smaller hematoma volume, fewer NCCT signs, and a lower risk of HE. Further research is required to investigate why a higher burden of severely diseased cerebral small blood vessels is associated with less bleeding.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan,
| | - Shuo-Fu Chen
- Department of Medical Education, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-Hsi Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Neurology, National Taiwan University Hospital Beihu Branch, Taipei, Taiwan
| | - Ya-Fang Chen
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Chun Tang
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiann-Shing Jeng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
60
|
Almubayyidh M, Alghamdi I, Parry-Jones AR, Jenkins D. Clinical features and novel technologies for prehospital detection of intracerebral haemorrhage: a scoping review protocol. BMJ Open 2023; 13:e070228. [PMID: 37137559 PMCID: PMC10163533 DOI: 10.1136/bmjopen-2022-070228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
INTRODUCTION The detection of intracerebral haemorrhage (ICH) in the prehospital setting without conventional imaging technology might allow early treatment to reduce haematoma expansion and improve patient outcomes. Although ICH and ischaemic stroke share many clinical features, some may help in distinguishing ICH from other suspected stroke patients. In combination with clinical features, novel technologies may improve diagnosis further. This scoping review aims to first identify the early, distinguishing clinical features of ICH and then identify novel portable technologies that may enhance differentiation of ICH from other suspected strokes. Where appropriate and feasible, meta-analyses will be performed. METHODS The scoping review will follow the recommendations of the Joanna Briggs Institute Methodology for Scoping Reviews as well as the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews checklist. A systematic search will be conducted using MEDLINE (Ovid), EMBASE (Ovid) and CENTRAL (Ovid). EndNote reference management software will be used to remove duplicate entries. Two independent reviewers will screen titles, abstracts and full-text reports according to prespecified eligibility criteria using the Rayyan Qatar Computing Research Institute software. One reviewer will screen all titles, abstracts and full-text reports of potentially eligible studies, while the other reviewer will independently screen at least 20% of all titles, abstracts and full-text reports. Conflicts will be resolved through discussion or by consulting a third reviewer. Results will be tabulated in accordance with the scoping review's objectives along with a narrative discussion. ETHICS AND DISSEMINATION Ethical approval is not required for this review, as it will only include published literature. The results will be published in an open-access, peer-reviewed journal, presented at scientific conferences and form part of a PhD thesis. We expect the findings to contribute to future research into the early detection of ICH in suspected stroke patients.
Collapse
Affiliation(s)
- Mohammed Almubayyidh
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, UK
- Department of Aviation and Marine, Prince Sultan Bin Abdulaziz College for Emergency Medical Services, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim Alghamdi
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, UK
- Department of Emergency Medical Services, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | - Adrian Robert Parry-Jones
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | - David Jenkins
- Division of Informatics, Imaging and Data Science, The University of Manchester, Manchester, UK
| |
Collapse
|
61
|
Sondag L, Schreuder FHBM, Pegge SAH, Coutinho JM, Dippel DWJ, Janssen PM, Vandertop WP, Boogaarts HD, Dammers R, Klijn CJM. Safety and technical efficacy of early minimally invasive endoscopy-guided surgery for intracerebral haemorrhage: the Dutch Intracerebral haemorrhage Surgery Trial pilot study. Acta Neurochir (Wien) 2023; 165:1585-1596. [PMID: 37103585 PMCID: PMC10134719 DOI: 10.1007/s00701-023-05599-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Previous randomised controlled trials could not demonstrate that surgical evacuation of intracerebral haemorrhage (ICH) improves functional outcome. Increasing evidence suggests that minimally invasive surgery may be beneficial, in particular when performed early after symptom onset. The aim of this study was to investigate safety and technical efficacy of early minimally invasive endoscopy-guided surgery in patients with spontaneous supratentorial ICH. METHODS The Dutch Intracerebral Haemorrhage Surgery Trial pilot study was a prospective intervention study with blinded outcome assessment in three neurosurgical centres in the Netherlands. We included adult patients with spontaneous supratentorial ICH ≥10mL and National Institute of Health Stroke Scale (NIHSS) score ≥2 for minimally invasive endoscopy-guided surgery within 8 h after symptom onset in addition to medical management. Primary safety outcome was death or increase in NIHSS ≥4 points at 24 h. Secondary safety outcomes were procedure-related serious adverse events (SAEs) within 7 days and death within 30 days. Primary technical efficacy outcome was ICH volume reduction (%) at 24 h. RESULTS We included 40 patients (median age 61 years; IQR 51-67; 28 men). Median baseline NIHSS was 19.5 (IQR 13.3-22.0) and median ICH volume 47.7mL (IQR 29.4-72.0). Six patients had a primary safety outcome, of whom two already deteriorated before surgery and one died within 24 h. Sixteen other SAEs were reported within 7 days in 11 patients (of whom two patients that already had a primary safety outcome), none device related. In total, four (10%) patients died within 30 days. Median ICH volume reduction at 24 h was 78% (IQR 50-89) and median postoperative ICH volume 10.5mL (IQR 5.1-23.8). CONCLUSIONS Minimally invasive endoscopy-guided surgery within 8 h after symptom onset for supratentorial ICH appears to be safe and can effectively reduce ICH volume. Randomised controlled trials are needed to determine whether this intervention also improves functional outcome. TRIAL REGISTRATION Clinicaltrials.gov : NCT03608423, August 1st, 2018.
Collapse
Affiliation(s)
- Lotte Sondag
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO-box 9101, 6500HB, Nijmegen, The Netherlands
| | - Floris H B M Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO-box 9101, 6500HB, Nijmegen, The Netherlands
| | - Sjoert A H Pegge
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jonathan M Coutinho
- Department of Neurology, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands
| | - Diederik W J Dippel
- Department of Neurology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Paula M Janssen
- Department of Neurology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - W Peter Vandertop
- Amsterdam UMC, University of Amsterdam, Department of Neurosurgery, Amsterdam Neurosciences, Neurovascular Disorders, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neurosciences, Neurovascular Disorders, De Boelelaan, 1117, Amsterdam, Netherlands
| | - Hieronymus D Boogaarts
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ruben Dammers
- Department of Neurosurgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Catharina J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO-box 9101, 6500HB, Nijmegen, The Netherlands.
| |
Collapse
|
62
|
Mazzoleni V, Padovani A, Morotti A. Emergency management of intracerebral hemorrhage. J Crit Care 2023; 74:154232. [PMID: 36565647 DOI: 10.1016/j.jcrc.2022.154232] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Acute intracerebral hemorrhage is a medical emergency with high mortality and morbidity. Neuroimaging has a fundamental role in the etiological diagnosis, patients monitoring and in the risk stratification of hematoma expansion and poor outcome. The cornerstones of medical treatment in the acute phase are blood pressure lowering and coagulopathy reversal. Prevention of hematoma expansion is the main goal of these therapies and their efficacy is strongly time-dependent with a narrow time window. This review provides an update on the etiological diagnostic workup, acute treatment and prognosis of intracerebral hemorrhage.
Collapse
Affiliation(s)
- Valentina Mazzoleni
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy.
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy; Department of Neurological Sciences and Vision, Neurology Unit, ASST-Spedali Civili, Brescia, Italy
| | - Andrea Morotti
- Department of Neurological Sciences and Vision, Neurology Unit, ASST-Spedali Civili, Brescia, Italy
| |
Collapse
|
63
|
Li Y, Liu X, Chen S, Wang J, Pan C, Li G, Tang Z. Effect of antiplatelet therapy on the incidence, prognosis, and rebleeding of intracerebral hemorrhage. CNS Neurosci Ther 2023; 29:1484-1496. [PMID: 36942509 PMCID: PMC10173719 DOI: 10.1111/cns.14175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
OBJECTIVE Antiplatelet medications are increasingly being used for primary and secondary prevention of ischemic attacks owing to the increasing prevalence of ischemic stroke occurrences. Currently, many patients receive antiplatelet therapy (APT) to prevent thromboembolic events. However, long-term use of APT might also lead to an increased occurrence of intracerebral hemorrhage (ICH) and affect the prognosis of patients with ICH. Furthermore, some research suggest that restarting APT for patients who have previously experienced ICH may result in rebleeding events. The precise relationship between APT and ICH remains unknown. METHODS We searched PubMed for the most recent related literature and summarized the findings from various studies. The search terms included "antiplatelet," "intracerebral hemorrhage," "cerebral microbleeds," "hematoma expansion," "recurrent," and "reinitiate." Clinical studies involving human subjects were ultimately included and interpreted in this review, and animal studies were not discussed. RESULTS When individuals are administered APT, the risk of thrombotic events should be weighted against the risk of bleeding. In general, for some patients' concomitant with risk factors of thrombotic events, the advantages of antiplatelet medication may outweigh the inherent risk of rebleeding. However, the use of antiplatelet medications for other patients with a higher risk of bleeding should be carefully evaluated and closely monitored. In the future, a quantifiable system for assessing thrombotic risk and bleeding risk will be necessary. After evaluation, the appropriate time to restart APT for ICH patients should be determined to prevent underlying ischemic stroke events. According to the present study results and expert experience, most patients now restart APT at around 1 week following the onset of ICH. Nevertheless, the precise time to restart APT should be chosen on a case-by-case basis as per the patient's risk of embolic events and recurrent bleeding. More compelling evidence-based medicine evidence is needed in the future. CONCLUSION This review thoroughly discusses the relationship between APT and the development of ICH, the impact of APT on the course and prognosis of ICH patients, and the factors influencing the decision to restart APT after ICH. However, different studies' conclusions are inconsistent due to the differences in quality control. To support future clinical decisions, more large-scale randomized controlled trials are required.
Collapse
Affiliation(s)
- Yunjie Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyi Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
64
|
Puy L, Parry-Jones AR, Sandset EC, Dowlatshahi D, Ziai W, Cordonnier C. Intracerebral haemorrhage. Nat Rev Dis Primers 2023; 9:14. [PMID: 36928219 DOI: 10.1038/s41572-023-00424-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2023] [Indexed: 03/18/2023]
Abstract
Intracerebral haemorrhage (ICH) is a dramatic condition caused by the rupture of a cerebral vessel and the entry of blood into the brain parenchyma. ICH is a major contributor to stroke-related mortality and dependency: only half of patients survive for 1 year after ICH, and patients who survive have sequelae that affect their quality of life. The incidence of ICH has increased in the past few decades with shifts in the underlying vessel disease over time as vascular prevention has improved and use of antithrombotic agents has increased. The pathophysiology of ICH is complex and encompasses mechanical mass effect, haematoma expansion and secondary injury. Identifying the causes of ICH and predicting the vital and functional outcome of patients and their long-term vascular risk have improved in the past decade; however, no specific treatment is available for ICH. ICH remains a medical emergency, with prevention of haematoma expansion as the key therapeutic target. After discharge, secondary prevention and management of vascular risk factors in patients remains challenging and is based on an individual benefit-risk balance evaluation.
Collapse
Affiliation(s)
- Laurent Puy
- Lille Neuroscience & Cognition (LilNCog) - U1172, University of Lille, Inserm, CHU Lille, Lille, France
| | - Adrian R Parry-Jones
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust & University of Manchester, Manchester, UK
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | - Else Charlotte Sandset
- Department of Neurology, Stroke Unit, Oslo University Hospital, Oslo, Norway
- The Norwegian Air Ambulance Foundation, Oslo, Norway
| | - Dar Dowlatshahi
- Department of Medicine (Neurology), University of Ottawa and Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Wendy Ziai
- Division of Neurocritical Care, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charlotte Cordonnier
- Lille Neuroscience & Cognition (LilNCog) - U1172, University of Lille, Inserm, CHU Lille, Lille, France.
| |
Collapse
|
65
|
Larsen KT, Sandset EC, Selseth MN, Jahr SH, Koubaa N, Hillestad V, Kristoffersen ES, Rønning OM. Antithrombotic Treatment, Prehospital Blood Pressure, and Outcomes in Spontaneous Intracerebral Hemorrhage. J Am Heart Assoc 2023; 12:e028336. [PMID: 36870965 PMCID: PMC10111438 DOI: 10.1161/jaha.122.028336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Background In acute intracerebral hemorrhage, both elevated blood pressure (BP) and antithrombotic treatment are associated with poor outcome. Our aim was to explore interactions between antithrombotic treatment and prehospital BP. Methods and Results This observational, retrospective study included adult patients with spontaneous intracerebral hemorrhage diagnosed by computed tomography within 24 hours, admitted to a primary stroke center during 2012 to 2019. The first recorded prehospital/ambulance systolic and diastolic BP were analyzed per 5 mm Hg increment. Clinical outcomes were in-hospital mortality, shift on the modified Rankin Scale at discharge, and mortality at 90 days. Radiological outcomes were initial hematoma volume and hematoma expansion. Antithrombotic (antiplatelet and/or anticoagulant) treatment was analyzed both together and separately. Modification of associations between prehospital BP and outcomes by antithrombotic treatment was explored by multivariable regression with interaction terms. The study included 200 women and 220 men, median age 76 (interquartile range, 68-85) years. Antithrombotic drugs were used by 252 of 420 (60%) patients. Compared with patients without, patients with antithrombotic treatment had significantly stronger associations between high prehospital systolic BP and in-hospital mortality (odds ratio [OR], 1.14 versus 0.99, P for interaction 0.021), shift on the modified Rankin Scale (common OR, 1.08 versus 0.96, P for interaction 0.001), and hematoma volume (coef. 0.03 versus -0.03, P for interaction 0.011). Conclusions In patients with acute, spontaneous intracerebral hemorrhage, antithrombotic treatment modifies effects of prehospital BP. Compared with patients without, patients with antithrombotic treatment have poorer outcomes with higher prehospital BP. These findings may have implications for future studies on early BP lowering in intracerebral hemorrhage.
Collapse
Affiliation(s)
- Kristin Tveitan Larsen
- Department of Neurology Akershus University Hospital Lørenskog Norway.,Department of Geriatric Medicine Oslo University Hospital Oslo Norway.,University of Oslo, Institute of Clinical Medicine Oslo Norway
| | - Else Charlotte Sandset
- Department of Neurology Oslo University Hospital Oslo Norway.,The Norwegian Air Ambulance Foundation Oslo Norway
| | | | - Silje Holt Jahr
- Department of Neurology Akershus University Hospital Lørenskog Norway.,University of Oslo, Institute of Clinical Medicine Oslo Norway
| | - Nojoud Koubaa
- Department of Neurology Akershus University Hospital Lørenskog Norway
| | - Vigdis Hillestad
- Department of Diagnostic Imaging Akershus University Hospital Lørenskog Norway
| | - Espen Saxhaug Kristoffersen
- Department of Neurology Akershus University Hospital Lørenskog Norway.,Department of General Practice University of Oslo, Institute of Health and Society Oslo Norway
| | - Ole Morten Rønning
- Department of Neurology Akershus University Hospital Lørenskog Norway.,University of Oslo, Institute of Clinical Medicine Oslo Norway
| |
Collapse
|
66
|
MRI spot sign in acute intracerebral hemorrhage: an independent biomarker of hematoma expansion and poor functional outcome. J Neurol 2023; 270:1531-1542. [PMID: 36434128 DOI: 10.1007/s00415-022-11498-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND In acute intracerebral hemorrhage (ICH), the prognostic value of the MRI spot sign on hematoma expansion (HE) and poor functional outcome is poorly known. METHODS We retrospectively included patients admitted over a 4-year period for an acute ICH in a single institution using MRI as the first-line imaging tool. The presence and number of MRI spot signs on contrast-enhanced T1-weighted imaging was evaluated by one neuroradiologist, blinded from outcomes. The primary outcome was HE, defined as > 6 mL or > 33% ICH volume growth from initial MRI to 24-48 h follow-up imaging; the secondary outcome was poor 3-month modified Rankin score (4-6). RESULTS Overall, 147 patients were included, and 62% had a spot sign. Among the 130 patients with follow-up imaging, 24% experienced HE. HE occurred in 6%, 21% and 43% patients with 0, 1 and ≥ 2 spots, respectively (P < 0.001). The MRI spot sign was independently associated with HE (adjusted OR 6.15 [95% CI 1.60-23.65]; P = 0.008), with a dose-dependent effect. The negative and positive predictive values of the spot sign for HE were 0.94 and 0.35, respectively. Poor functional outcome occurred in 27%, 32% and 71% patients with 0, 1 and ≥ 2 spots, respectively (P < 0.001). In multivariable analysis, the presence of ≥ 2 spots was independently associated with poor functional outcome (adjusted OR 3.67 [95% CI 1.21-11.10]; P = 0.024). CONCLUSION The MRI spot sign is an independent biomarker of HE, and the presence of ≥ 2 spots is independently associated with poor 3-month outcome. The lack of spot sign is highly predictive of a favorable evolution.
Collapse
|
67
|
Weimar C, Thomalla G, Sandalcioglu IE. [Intracerebral Hemorrhage]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2023; 91:104-119. [PMID: 36917974 DOI: 10.1055/a-2000-3783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Intracerebral hemorrhage (ICB) causes approximately 12% of all strokes in Germany and 9-27% of all strokes worldwide 1 2. Epidemiological studies show a decrease in younger individuals mainly due to better antihypertensive management, but there is also an increase in incidence in older individuals due to cerebral amyloid angiopathy and increasing use of anticoagulants 3.
Collapse
|
68
|
Rossi J, Hermier M, Eker OF, Berthezene Y, Bani-Sadr A. Etiologies of spontaneous acute intracerebral hemorrhage: A pictorial review. Clin Imaging 2023; 95:10-23. [PMID: 36577316 DOI: 10.1016/j.clinimag.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/26/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Spontaneous acute intracerebral hemorrhage (SAIH) is a common and life-threatening condition that affects more than three million patients each year. Of these, one in three patients die within one month of onset and the remaining two in three patients have varying degrees of disability and neurological impairment. The role of radiology is paramount in optimizing patient outcomes by diagnosing SAIH, its potential complications, and the most likely etiology. While the positive diagnosis of SAIH is straightforward, the etiologic diagnosis is broad, covering primary SAIH (hypertension, cerebral amyloid angiopathy) and secondary SAIH (vascular malformations, nonatheromatous vasculopathies, neoplasia, coagulation disorders, toxicants). This pictorial review illustrates the imaging of spontaneous SAIH with an emphasis on etiologic workup.
Collapse
Affiliation(s)
- Julien Rossi
- Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon, 59 Bd Pinel, 69500 Bron, France
| | - Marc Hermier
- Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon, 59 Bd Pinel, 69500 Bron, France
| | - Omer Faruk Eker
- Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon, 59 Bd Pinel, 69500 Bron, France
| | - Yves Berthezene
- Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon, 59 Bd Pinel, 69500 Bron, France; CREATIS Laboratory, CNRS UMR 5220, INSERM U 5220, Claude Bernard Lyon I University, 7 avenue Jean Capelle O, 69100 Villeurbanne, France
| | - Alexandre Bani-Sadr
- Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon, 59 Bd Pinel, 69500 Bron, France; CREATIS Laboratory, CNRS UMR 5220, INSERM U 5220, Claude Bernard Lyon I University, 7 avenue Jean Capelle O, 69100 Villeurbanne, France.
| |
Collapse
|
69
|
Al-Ajlan FS, Gladstone DJ, Song D, Thorpe KE, Swartz RH, Butcher KS, Del Campo M, Dowlatshahi D, Gensicke H, Lee GJ, Flaherty ML, Hill MD, Aviv RI, Demchuk AM. Time Course of Early Hematoma Expansion in Acute Spot-Sign Positive Intracerebral Hemorrhage: Prespecified Analysis of the SPOTLIGHT Randomized Clinical Trial. Stroke 2023; 54:715-721. [PMID: 36756899 DOI: 10.1161/strokeaha.121.038475] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
BACKGROUND In the SPOTLIGHT trial (Spot Sign Selection of Intracerebral Hemorrhage to Guide Hemostatic Therapy), patients with a computed tomography (CT) angiography spot-sign positive acute intracerebral hemorrhage were randomized to rFVIIa (recombinant activated factor VIIa; 80 μg/kg) or placebo within 6 hours of onset, aiming to limit hematoma expansion. Administration of rFVIIa did not significantly reduce hematoma expansion. In this prespecified analysis, we aimed to investigate the impact of delays from baseline imaging to study drug administration on hematoma expansion. METHODS Hematoma volumes were measured on the baseline CT, early post-dose CT, and 24 hours CT scans. Total hematoma volume (intracerebral hemorrhage+intraventricular hemorrhage) change between the 3 scans was calculated as an estimate of how much hematoma expansion occurred before and after studying drug administration. RESULTS Of the 50 patients included in the trial, 44 had an early post-dose CT scan. Median time (interquartile range) from onset to baseline CT was 1.4 hours (1.2-2.6). Median time from baseline CT to study drug was 62.5 (55-80) minutes, and from study drug to early post-dose CT was 19 (14.5-30) minutes. Median (interquartile range) total hematoma volume increased from baseline CT to early post-dose CT by 10.0 mL (-0.7 to 18.5) in the rFVIIa arm and 5.4 mL (1.8-8.3) in the placebo arm (P=0.96). Median volume change between the early post-dose CT and follow-up scan was 0.6 mL (-2.6 to 8.3) in the rFVIIa arm and 0.7 mL (-1.6 to 2.1) in the placebo arm (P=0.98). Total hematoma volume decreased between the early post-dose CT and 24-hour scan in 44.2% of cases (rFVIIa 38.9% and placebo 48%). The adjusted hematoma growth in volume immediately post dose for FVIIa was 0.998 times that of placebo ([95% CI, 0.71-1.43]; P=0.99). The hourly growth in FFVIIa was 0.998 times that for placebo ([95% CI, 0.994-1.003]; P=0.50; Table 3). CONCLUSIONS In the SPOTLIGHT trial, the adjusted hematoma volume growth was not associated with Factor VIIa treatment. Most hematoma expansion occurred between the baseline CT and the early post-dose CT, limiting any potential treatment effect of hemostatic therapy. Future hemostatic trials must treat intracerebral hemorrhage patients earlier from onset, with minimal delay between baseline CT and drug administration. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT01359202.
Collapse
Affiliation(s)
- Fahad S Al-Ajlan
- Department of Neurosciences (Neurology), King Faisal Specialist Hospital and Research Center, Alfaisal University, Riyadh, Saudi Arabia (F.S.A.-A.)
| | - David J Gladstone
- Sunnybrook Research Institute, Hurvitz Brain Sciences Program and Department of Medicine, Sunnybrook Health Sciences Centre (D.J.G., R.H.S.).,Department of Medicine (Neurology), University of Toronto, Canada (D.J.G., R.H.S., M.D.C.)
| | - Dongbeom Song
- Calgary Stroke Program, Department of Clinical Neurosciences, Department of Radiology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada (D.S., G.J.L., M.D.H., A.M.D.)
| | - Kevin E Thorpe
- Applied Health Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Dalla Lana School of Public Health, University of Toronto, Canada (K.E.T.)
| | - Rick H Swartz
- Sunnybrook Research Institute, Hurvitz Brain Sciences Program and Department of Medicine, Sunnybrook Health Sciences Centre (D.J.G., R.H.S.).,Department of Medicine (Neurology), University of Toronto, Canada (D.J.G., R.H.S., M.D.C.)
| | - Kenneth S Butcher
- Prince of Wales Clinical School, University of New South Wales, Sydney, AustraliaDepartment of Medicine (Neurology), University of Alberta, Edmonton, Canada (K.S.B.)
| | - Martin Del Campo
- Department of Medicine (Neurology), University of Toronto, Canada (D.J.G., R.H.S., M.D.C.)
| | - Dar Dowlatshahi
- Department of Medicine (Neurology), University of Ottawa and Ottawa Hospital Research Institute, Canada (D.D.)
| | - Henrik Gensicke
- Stroke Center and Neurology, University Hospital Basel, Switzerland (H.G.)
| | - Gloria Jooyoung Lee
- Calgary Stroke Program, Department of Clinical Neurosciences, Department of Radiology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada (D.S., G.J.L., M.D.H., A.M.D.)
| | - Matthew L Flaherty
- Department of Neurology, University of Cincinnati, OH (M.L.F., R.I.A.). Division of Neuroradiology and Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Canada
| | - Michael D Hill
- Calgary Stroke Program, Department of Clinical Neurosciences, Department of Radiology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada (D.S., G.J.L., M.D.H., A.M.D.)
| | - Richard I Aviv
- Department of Neurology, University of Cincinnati, OH (M.L.F., R.I.A.). Division of Neuroradiology and Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Canada
| | - Andrew M Demchuk
- Calgary Stroke Program, Department of Clinical Neurosciences, Department of Radiology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada (D.S., G.J.L., M.D.H., A.M.D.)
| | | |
Collapse
|
70
|
Morotti A, Boulouis G, Nawabi J, Li Q, Charidimou A, Pasi M, Schlunk F, Shoamanesh A, Katsanos AH, Mazzacane F, Busto G, Arba F, Brancaleoni L, Giacomozzi S, Simonetti L, Warren AD, Laudisi M, Cavallini A, Gurol EM, Viswanathan A, Zini A, Casetta I, Fainardi E, Greenberg SM, Padovani A, Rosand J, Goldstein JN. Using Noncontrast Computed Tomography to Improve Prediction of Intracerebral Hemorrhage Expansion. Stroke 2023; 54:567-574. [PMID: 36621819 PMCID: PMC10037534 DOI: 10.1161/strokeaha.122.041302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/12/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Noncontrast computed tomography hypodensities are a validated predictor of hematoma expansion (HE) in intracerebral hemorrhage and a possible alternative to the computed tomography angiography (CTA) spot sign but their added value to available prediction models remains unclear. We investigated whether the inclusion of hypodensities improves prediction of HE and compared their added value over the spot sign. METHODS Retrospective analysis of patients admitted for primary spontaneous intracerebral hemorrhage at the following 8 university hospitals in Boston, US (1994-2015, prospective), Hamilton, Canada (2010-2016, retrospective), Berlin, Germany (2014-2019, retrospective), Chongqing, China (2011-2015, retrospective), Pavia, Italy (2017-2019, prospective), Ferrara, Italy (2010-2019, retrospective), Brescia, Italy (2020-2021, retrospective), and Bologna, Italy (2015-2019, retrospective). Predictors of HE (hematoma growth >6 mL and/or >33% from baseline to follow-up imaging) were explored with logistic regression. We compared the discrimination of a simple prediction model for HE based on 4 predictors (antitplatelet and anticoagulant treatment, baseline intracerebral hemorrhage volume, and onset-to-imaging time) before and after the inclusion of noncontrast computed tomography hypodensities, using receiver operating characteristic curve and De Long test for area under the curve comparison. RESULTS A total of 2465 subjects were included, of whom 664 (26.9%) had HE and 1085 (44.0%) had hypodensities. Hypodensities were independently associated with HE after adjustment for confounders in logistic regression (odds ratio, 3.11 [95% CI, 2.55-3.80]; P<0.001). The inclusion of noncontrast computed tomography hypodensities improved the discrimination of the 4 predictors model (area under the curve, 0.67 [95% CI, 0.64-0.69] versus 0.71 [95% CI, 0.69-0.74]; P=0.025). In the subgroup of patients with a CTA available (n=895, 36.3%), the added value of hypodensities remained statistically significant (area under the curve, 0.68 [95% CI, 0.64-0.73] versus 0.74 [95% CI, 0.70-0.78]; P=0.041) whereas the addition of the CTA spot sign did not provide significant discrimination improvement (area under the curve, 0.74 [95% CI, 0.70-0.78]). CONCLUSIONS Noncontrast computed tomography hypodensities provided a significant added value in the prediction of HE and appear a valuable alternative to the CTA spot sign. Our findings might inform future studies and suggest the possibility to stratify the risk of HE with good discrimination without CTA.
Collapse
Affiliation(s)
- Andrea Morotti
- Neurology Unit, Department of Neurological Sciences and Vision, ASST-Spedali Civili, Brescia, Italy
| | - Gregoire Boulouis
- Neuroradiology Department, University Hospital of Tours, CEDEX 09, 37044 Tours, France
| | - Jawed Nawabi
- Department of Radiology (CCM), Charité - Universitätsmedizin Berlin, Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), BIH Biomedical Innovation Academy, Berlin, Germany
| | - Qi Li
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Anhui, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Andreas Charidimou
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
- J.P. Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco Pasi
- Neurology department, University Hospital of Tours, CEDEX 09, 37044 Tours, France
| | - Frieder Schlunk
- Berlin Institute of Health (BIH), BIH Biomedical Innovation Academy, Berlin, Germany
- Department of Neuroradiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ashkan Shoamanesh
- Division of Neurology, McMaster University and Population Health Research Institute, Hamilton, ON, Canada
| | - Aristeidis H. Katsanos
- Division of Neurology, McMaster University and Population Health Research Institute, Hamilton, ON, Canada
| | - Federico Mazzacane
- U.C. Malattie Cerebrovascolari e Stroke Unit, IRCCS Fondazione Mondino, Pavia, Italia
| | - Giorgio Busto
- Department of Biomedical Experimental and Clinical, Neuroradiology, University of Firenze, AOU Careggi, Firenze, Italy
| | | | - Laura Brancaleoni
- IRCCS Istituto delle Scienze Neurologiche di Bologna,UOC Neurologia e Rete Stroke Metropolitana,Ospedale Maggiore, Bologna, Italia
| | - Sebastiano Giacomozzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna,UOC Neurologia e Rete Stroke Metropolitana,Ospedale Maggiore, Bologna, Italia
| | - Luigi Simonetti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Unità di Neuroradiologia, Ospedale Maggiore, Bologna, Italia
| | - Andrew D. Warren
- J.P. Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michele Laudisi
- Clinica Neurologica, Dipartimento di Scienze Biomediche e Chirurgico Specialistiche, Università degli studi di Ferrara, Ospedale Universitario S. Anna,Ferrara, Italia
| | - Anna Cavallini
- U.C. Malattie Cerebrovascolari e Stroke Unit, IRCCS Fondazione Mondino, Pavia, Italia
| | - Edip M Gurol
- J.P. Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anand Viswanathan
- J.P. Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea Zini
- IRCCS Istituto delle Scienze Neurologiche di Bologna,UOC Neurologia e Rete Stroke Metropolitana,Ospedale Maggiore, Bologna, Italia
| | - Ilaria Casetta
- Clinica Neurologica, Dipartimento di Scienze Biomediche e Chirurgico Specialistiche, Università degli studi di Ferrara, Ospedale Universitario S. Anna,Ferrara, Italia
| | - Enrico Fainardi
- Department of Biomedical Experimental and Clinical, Neuroradiology, University of Firenze, AOU Careggi, Firenze, Italy
| | - Steven M. Greenberg
- J.P. Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Italy
| | - Jonathan Rosand
- J.P. Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Joshua N. Goldstein
- J.P. Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
71
|
Morotti A, Boulouis G, Dowlatshahi D, Li Q, Shamy M, Al-Shahi Salman R, Rosand J, Cordonnier C, Goldstein JN, Charidimou A. Intracerebral haemorrhage expansion: definitions, predictors, and prevention. Lancet Neurol 2023; 22:159-171. [PMID: 36309041 DOI: 10.1016/s1474-4422(22)00338-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 12/05/2022]
Abstract
Haematoma expansion affects a fifth of patients within 24 h of the onset of acute intracerebral haemorrhage and is associated with death and disability, which makes it an appealing therapeutic target. The time in which active intervention can be done is short as expansion occurs mostly within the first 3 h after onset. Baseline haemorrhage volume, antithrombotic treatment, and CT angiography spot signs are each associated with increased risk of haematoma expansion. Non-contrast CT features are promising predictors of haematoma expansion, but their potential contribution to current models is under investigation. Blood pressure lowering and haemostatic treatment minimise haematoma expansion but have not led to improved functional outcomes in randomised clinical trials. Ultra-early enrolment and selection of participants on the basis of non-contrast CT imaging markers could focus future clinical trials to show clinical benefit in people at high risk of expansion or investigate heterogeneity of treatment effects in clinical trials with broad inclusion criteria.
Collapse
Affiliation(s)
- Andrea Morotti
- Neurology Unit, Department of Neurological Sciences and Vision, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy.
| | - Gregoire Boulouis
- Diagnostic and Interventional Neuroradiology Department, University Hospital of Tours, Tours, France
| | - Dar Dowlatshahi
- Department of Medicine, Division of Neurology, University of Ottawa and Ottawa Hospital Research Institute, Ottawa ON, Canada
| | - Qi Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Michel Shamy
- Department of Medicine, Division of Neurology, University of Ottawa and Ottawa Hospital Research Institute, Ottawa ON, Canada
| | | | - Jonathan Rosand
- Division of Neurocritical Care, Massachusetts General Hospital, Boston, MA, USA; Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Charlotte Cordonnier
- Universite Lille, Inserm, CHU Lille, U1172, LilNCog, Lille Neuroscience and Cognition, F-59000 Lille, France
| | - Joshua N Goldstein
- Division of Neurocritical Care, Massachusetts General Hospital, Boston, MA, USA; Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Andreas Charidimou
- Department of Neurology, Boston University Medical Center, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
72
|
Balali P, Katsanos AH, Shoamanesh A. Timing of Antiplatelet Resumption After Intracerebral Hemorrhage: A Sophie's Choice. Stroke 2023; 54:546-548. [PMID: 36621821 DOI: 10.1161/strokeaha.122.041466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Pargol Balali
- Division of Neurology, Department of Medicine, McMaster University/Population Health Research Institute, Hamilton, Canada
| | - Aristeidis H Katsanos
- Division of Neurology, Department of Medicine, McMaster University/Population Health Research Institute, Hamilton, Canada
| | - Ashkan Shoamanesh
- Division of Neurology, Department of Medicine, McMaster University/Population Health Research Institute, Hamilton, Canada
| |
Collapse
|
73
|
Song L, Zhou H, Guo T, Qiu X, Tang D, Zou L, Ye Y, Fu Y, Wang R, Wang L, Mao H, Yu Y. Predicting Hemorrhage Progression in Deep Intracerebral Hemorrhage: A Multicenter Retrospective Cohort Study. World Neurosurg 2023; 170:e387-e401. [PMID: 36371042 DOI: 10.1016/j.wneu.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Hemorrhage progression in deep intracerebral hemorrhage (ICH) involves not only the growth of parenchymal hematoma but also an increase in intraventricular hemorrhage (IVH). The search for methods that predict both the increased risk of parenchymal hematoma and IVH growth is warranted. METHODS We conducted a retrospective cohort study at multiple centers. Participants with deep ICH were enrolled from January 2018 to December 2021. Prediction models based on logistic regression analysis included clinical as well as routine radiographic and radiomics variables, separately or in combination. The performance of each model was evaluated using discrimination measures (e.g., area under the curve [AUC]). Evaluation of clinical utility was performed using decision curve analysis (DCA). RESULTS Overall, 647 individuals across 4 stroke centers were included. A total of 429 (66%) patients from 3 centers were assigned to the primary cohort and 218 (34%) from another center were placed in the validation cohort. Multivariate analysis showed that the Glasgow Coma Scale score, baseline ICH volume, IVH, blend sign, and radiomics score were associated with hemorrhage progression in the primary cohort. The clinical-radiomics model (AUC = 0.852 and 0.835) improved the prediction performance of hemorrhage progression compared to the Noncontrast computed tomography signs model (AUC = 0.666 and 0.618) in both the primary and validation cohorts, with similar results in the decision curve analysis curves. CONCLUSIONS The clinical-radiomics model outperformed the routine Noncontrast computed tomography signs model in predicting the progression of deep ICH. The clinical benefit of screening patients using this model may assist in risk stratification.
Collapse
Affiliation(s)
- Lei Song
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hang Zhou
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Tingting Guo
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xiaoming Qiu
- Department of Radiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Dongfang Tang
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Liwei Zou
- Department of Radiology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yu Ye
- Department of Radiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Yufei Fu
- Department of Radiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Rujia Wang
- Department of Radiology, Tangshan Gongren Hospital, Tangshan, China
| | - Longsheng Wang
- Department of Radiology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Huaqing Mao
- School of Computer Engineering, Hubei University of Arts and Science, Xiangyang, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
74
|
Wan Y, Holste KG, Hua Y, Keep RF, Xi G. Brain edema formation and therapy after intracerebral hemorrhage. Neurobiol Dis 2023; 176:105948. [PMID: 36481437 PMCID: PMC10013956 DOI: 10.1016/j.nbd.2022.105948] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) accounts for about 10% of all strokes in the United States of America causing a high degree of disability and mortality. There is initial (primary) brain injury due to the mechanical disruption caused by the hematoma. There is then secondary injury, triggered by the initial injury but also the release of various clot-derived factors (e.g., thrombin and hemoglobin). ICH alters brain fluid homeostasis. Apart from the initial hematoma mass, ICH causes blood-brain barrier disruption and parenchymal cell swelling, which result in brain edema and intracranial hypertension affecting patient prognosis. Reducing brain edema is a critical part of post-ICH care. However, there are limited effective treatment methods for reducing perihematomal cerebral edema and intracranial pressure in ICH. This review discusses the mechanisms underlying perihematomal brain edema formation, the effects of sex and age, as well as how edema is resolved. It examines progress in pharmacotherapy, particularly focusing on drugs which have been or are currently being investigated in clinical trials.
Collapse
Affiliation(s)
- Yingfeng Wan
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
75
|
Intravenous nicardipine for Japanese patients with acute intracerebral hemorrhage: an individual participant data analysis. Hypertens Res 2023; 46:75-83. [PMID: 36224285 PMCID: PMC9747609 DOI: 10.1038/s41440-022-01046-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/28/2022] [Accepted: 09/09/2022] [Indexed: 02/03/2023]
Abstract
The effects of acute systolic blood pressure levels achieved with continuous intravenous administration of nicardipine for Japanese patients with acute intracerebral hemorrhage on clinical outcomes were determined. A systematic review and individual participant data analysis of articles were performed based on prospective studies involving adults developing hyperacute intracerebral hemorrhage who were treated with intravenous nicardipine. Outcomes included death or disability at 90 days, defined as the modified Rankin Scale score of 4-6, and hematoma expansion, defined as an increase 6 mL or more from baseline to 24 h computed tomography. Of the total 499 Japanese patients (age 64.9 ± 11.8 years, 183 women, initial BP 203.5 ± 18.3/109.1 ± 17.2 mmHg) studied, death or disability occurred in 35.6%, and hematoma expansion occurred in 15.6%. Mean hourly systolic blood pressure during the initial 24 h was positively associated with death or disability (adjusted odds ratio 1.25, 95% confidence interval 1.03-1.52 per 10 mmHg) and hematoma expansion (1.49, 1.18-1.87). These odds ratios were relatively high as compared to the reported ones for overall global patients of this individual participant data analysis [1.12 (95% confidence interval 1.00-1.26) and 1.16 (1.02-1.32), respectively]. In conclusion, lower levels of systolic blood pressure by continuous intravenous nicardipine were associated with lower risks of hematoma expansion and 90-day death or disability in Japanese patients with hyperacute intracerebral hemorrhage. The impact of systolic blood pressure lowering on better outcome seemed to be stronger in Japanese patients than the global ones.
Collapse
|
76
|
Morotti A, Busto G, Boulouis G, Scola E, Padovani A, Casetta I, Fainardi E. Added value of non-contrast CT and CT perfusion markers for prediction of intracerebral hemorrhage expansion and outcome. Eur Radiol 2023; 33:690-698. [PMID: 35895123 DOI: 10.1007/s00330-022-08987-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/20/2022] [Accepted: 06/26/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To test the hypothesis that the combined analysis of non-contrast CT (NCCT) and CT perfusion (CTP) imaging markers improves prediction of hematoma expansion (HE) and outcome in intracerebral hemorrhage (ICH). METHODS Retrospective, single-center analysis of patients with primary ICH undergoing NCCT and CTP within 6 h from onset. NCCT images were assessed for the presence of intrahematomal hypodensity and shape irregularity. Perihematomal cerebral blood volume and spot sign were assessed on CTP. The main outcomes of the analysis were HE (growth > 6 mL and/or > 33%) and poor functional prognosis (90 days modified Rankin Scale 3-6). Predictors of HE and outcome were explored with logistic regression. RESULTS A total of 150 subjects were included (median age 68, 47.1% males) of whom 54 (36%) had HE and 52 (34.7%) had poor outcome. The number of imaging markers on baseline imaging was independently associated with HE (odds ratio 2.66, 95% confidence interval 1.70-4.17, p < 0.001) and outcome (odds ratio 1.64, 95% CI 1.06-2.56, p = 0.027). Patients with the simultaneous presence of all the four markers had the highest risk of HE and unfavorable prognosis (mean predicted probability of 91% and 79% respectively). The combined-markers analysis outperformed the sensitivity of the single markers analyzed separately. In particular, the presence of at least one marker identified patients with HE and poor outcome with 91% and 87% sensitivity respectively. CONCLUSION NCCT and CTP markers provide additional yield in the prediction of HE and ICH outcome. KEY POINTS • Perihematomal hypoperfusion is associated with hematoma expansion and poor outcome in acute intracerebral hemorrhage. • Non-contrast CT and CT perfusion markers improve prediction of hematoma expansion and unfavorable prognosis. • A multimodal CT protocol including CT perfusion will help the identification of patients at high risk of clinical deterioration and poor outcome.
Collapse
Affiliation(s)
- Andrea Morotti
- Neurology Unit, Department of Neurological Sciences and Vision, ASST Spedali Civili, Brescia, P.le Spedali Civili 1, 25100, Brescia, Italy.
| | - Giorgio Busto
- Diagnostic Imaging Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Gregoire Boulouis
- Department of Neuroradiology, University Hospital of Tours, Tours, Centre Val de Loire Region, France
| | - Elisa Scola
- Diagnostic Imaging Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Ilaria Casetta
- Section of Neurology, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Enrico Fainardi
- Diagnostic Imaging Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.,Neuroradiology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
77
|
Yong JN, Lim WH, Ng CH, Tan DJH, Xiao J, Tay PWL, Lin SY, Syn N, Chew N, Nah B, Dan YY, Huang DQ, Tan EXX, Sanyal AJ, Noureddin M, Siddiqui MS, Muthiah MD. Outcomes of Nonalcoholic Steatohepatitis After Liver Transplantation: An Updated Meta-Analysis and Systematic Review. Clin Gastroenterol Hepatol 2023; 21:45-54.e6. [PMID: 34801743 DOI: 10.1016/j.cgh.2021.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic steatohepatitis (NASH) is the fastest growing indication of liver transplantation (LT) and is projected to be the leading cause of LT in the near future. The systemic pathogenesis of NASH increases risks of adverse clinical outcomes in patients with NASH receiving LT. Thus, this study aimed to conduct a time-dependent survival analysis between LT recipients with and without NASH using hazard ratios. METHODS A search was conducted on Medline and Embase databases for articles relating to LT outcomes for NASH recipients. A survival analysis was conducted of hazard ratios using the DerSimonian and Laird random-effects model with meta-regression. To account for censoring, survival data were reconstructed from published Kaplan-Meier curves and pooled to derive more accurate hazard estimates and all-cause mortality in NASH patients after LT. Pairwise meta-analysis was conducted to analyze secondary outcomes. RESULTS Fifteen studies involving 119,327 LT recipients were included in our analysis with a prevalence of NASH of 20.2% (95% CI, 12.9-30.2). The pooled 1-year, 5-year, and 10-year all-cause mortality in NASH patients after LT were 12.5%, 24.4%, and 37.9%, respectively. Overall survival was comparable between LT recipients for NASH vs non-NASH (hazard ratio, 0.910; 95% CI, 0.760 to 1.10; P = .34). Meta-regression showed that a higher model for end-stage liver disease score was associated with significantly worse overall survival in NASH compared with non-NASH after LT (95% CI, -0.0856 to -0.0181; P = .0026). CONCLUSIONS This study shows that patients undergoing LT for NASH cirrhosis have comparable complication rates, overall survival, and graft survival compared with non-NASH patients, although close monitoring may be indicated for those with higher model for end-stage liver disease scores.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nicholas Chew
- Department of Cardiology, National University Heart Centre
| | - Benjamin Nah
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore; National University Centre for Organ Transplantation, National University Health System, Singapore
| | - Yock Young Dan
- Yong Loo Lin School of Medicine; Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore; National University Centre for Organ Transplantation, National University Health System, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Daniel Q Huang
- Yong Loo Lin School of Medicine; Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore; National University Centre for Organ Transplantation, National University Health System, Singapore
| | - Eunice Xiang Xuan Tan
- Yong Loo Lin School of Medicine; Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore; National University Centre for Organ Transplantation, National University Health System, Singapore
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Mazen Noureddin
- Cedars-Sinai Fatty Liver Program, Division of Digestive and Liver Diseases, Department of Medicine, Comprehensive Transplant Center, Cedars-Sinai Medical Centre, Los Angeles, California
| | - Mohammad Shadab Siddiqui
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Mark D Muthiah
- Yong Loo Lin School of Medicine; Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore; National University Centre for Organ Transplantation, National University Health System, Singapore.
| |
Collapse
|
78
|
Wilting FNH, Sondag L, Schreuder FHBM, Vinke RS, Dammers R, Klijn CJM, Boogaarts HD. Surgery for spontaneous supratentorial intracerebral haemorrhage. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2022; 2022:CD015387. [PMCID: PMC9743082 DOI: 10.1002/14651858.cd015387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To assess the efficacy and safety of surgery plus standard medical management, compared to standard medical management alone, in people with spontaneous supratentorial ICH, and to assess whether the effect of surgery differs according to the surgical technique.
Collapse
Affiliation(s)
| | - Floor NH Wilting
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenNetherlands
| | - Lotte Sondag
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenNetherlands
| | - Floris HBM Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenNetherlands
| | - R Saman Vinke
- Department of NeurosurgeryRadboud University Medical CentreNijmegenNetherlands
| | - Ruben Dammers
- Department of Neurosurgery, Erasmus Medical CentreErasmus MC Stroke CentreRotterdamNetherlands
| | - Catharina JM Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenNetherlands
| | | |
Collapse
|
79
|
Chung GH, Goo JH, Kwak HS, Hwang SB. The comprehensive comparison of imaging sign from CT angiography and noncontrast CT for predicting intracranial hemorrhage expansion: A comparative study. Medicine (Baltimore) 2022; 101:e31914. [PMID: 36626412 PMCID: PMC9750542 DOI: 10.1097/md.0000000000031914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Expansion of intracranial hemorrhage (ICH) is an important predictor of poor clinical outcomes. Various imaging markers on non-contrast computed tomography (NCCT) or computed tomographic angiography (CTA) have been reported as predictors of ICH expansion. We aimed to compare the associations between various CT imaging markers and ICH expansion. Patients with spontaneous ICH who underwent initial NCCT, CTA, and subsequent NCCT between January 2016 and December 2019 were retrospectively identified. ICH expansion was defined as a volume increase of > 33% or > 6 mL. We analyzed the presence of imaging markers such as the black hole sign, blend sign, island sign, or swirl sign on initial NCCT or spot sign on CTA. An alternative free-response receiver operating characteristic curve analysis was performed using a 4-point scoring system based on the consensus of the reviewers. The predictive value of each marker was assessed using univariate and multivariate logistic regression analyses. A total of 250 patients, including 60 (24.0%) with ICH expansion, qualified for the analysis. Among the patients with spontaneous ICH, 118 (47.2%) presented with a black hole sign, 52 (20.8%) with a blend sign, 93 (37.2%) with an island sign, 79 (31.6%) with a swirl sign, and 56 (22.4%) with a spot sign. In univariate logistic regression, the initial ICH volume (P = .038), initial intraventricular hemorrhage (IVH) presence (P < .001), swirl sign (P < .001), and spot sign (P < .001) were associated with ICH expansion. Multivariate analysis confirmed that the presence of initial IVH (odds ratio, 4.111; P = .002) and spot sign (odds ratio, 109.5; P < .001) were independent predictors of ICH expansion. Initial ICH volume, IVH, swirl sign, and spot sign are associated with ICH expansion. The presence of spot signs and IVH were independent predictors of ICH expansion.
Collapse
Affiliation(s)
- Gyung Ho Chung
- Department of Radiology and Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeollabuk-do, Korea
| | - Ja Hong Goo
- Department of Internal Medicine, Kangbuk Samsung Hospital, Jeollabuk-do, Korea
| | - Hyo Sung Kwak
- Department of Radiology and Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeollabuk-do, Korea
- *Correspondence: Hyo Sung Kwak, Radiology and Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, 567 Baekje-daero, deokjin-gu, Jeonju-si, Jeollabuk-do, 561-756, Republic of Korea (e-mail: )
| | - Seung Bae Hwang
- Department of Radiology and Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeollabuk-do, Korea
| |
Collapse
|
80
|
Caspers M, Holle JF, Limper U, Fröhlich M, Bouillon B. Global Coagulation Testing in Acute Care Medicine: Back to Bedside? Hamostaseologie 2022; 42:400-408. [PMID: 36549292 DOI: 10.1055/a-1938-1984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Detailed and decisive information about the patients' coagulation status is important in various emergency situations. Conventional global coagulation testing strategies are often used to provide a quick overview, but several limitations particularly in the trauma setting are well described. With the introduction of direct oral anticoagulations (DOACs), a milestone for several disease entities resulting in overall improved outcomes could be reached, but at the same time providing new diagnostic challenges for the emergency situation. DESIGN As an alternative to conventional coagulation tests, there is increasing clinical and scientific interest in the use of early whole blood strategies to provide goal-directed coagulation therapies (GDCT) and hemostatic control in critically ill patients. Viscoelastic hemostatic assays (VHAs) were therefore introduced to several clinical applications and may provide as a bedside point-of-care method for faster information on the underlying hemostatic deficiency. CONCLUSION The use of VHA-based algorithms to guide hemostatic control in emergency situations now found its way to several international guidelines for patients at risk of bleeding. With this qualitative review, we would like to focus on VHA-based GDCT and review the current evidence for its use, advantages, and challenges in the two different clinical scenarios of trauma and intracerebral bleeding/stroke management.
Collapse
Affiliation(s)
- Michael Caspers
- Department of Medicine, The Institute for Research in Operative Medicine, Faculty of Health, Witten/Herdecke University, Cologne, Germany.,Department of Traumatology, Orthopaedic Surgery and Sports Traumatology, Cologne-Merheim Medical Centre (CMMC), Witten/Herdecke University, Cologne, Germany
| | - Johannes Fabian Holle
- Department of Neurology, Cologne-Merheim Medical Centre (CMMC), Witten/Herdecke University, Cologne, Germany
| | - Ulrich Limper
- Department of Anaesthesiology and Intensive Care Medicine, Cologne-Merheim Medical Centre (CMMC), Witten/Herdecke University, Cologne, Germany
| | - Matthias Fröhlich
- Department of Traumatology, Orthopaedic Surgery and Sports Traumatology, Cologne-Merheim Medical Centre (CMMC), Witten/Herdecke University, Cologne, Germany
| | - Bertil Bouillon
- Department of Traumatology, Orthopaedic Surgery and Sports Traumatology, Cologne-Merheim Medical Centre (CMMC), Witten/Herdecke University, Cologne, Germany
| |
Collapse
|
81
|
Apostolaki‐Hansson T, Ullberg T, Norrving B, Petersson J. Patient factors associated with receiving reversal therapy in oral anticoagulant-related intracerebral hemorrhage. Acta Neurol Scand 2022; 146:590-597. [PMID: 35974708 PMCID: PMC9805025 DOI: 10.1111/ane.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND We aimed to describe baseline characteristics of patients with oral anticoagulant-related intracerebral hemorrhage (OAC-ICH) in Sweden and to identify predictive variables associated with receiving hemostatic treatment in the event of OAC-ICH. METHODS We performed an observational study based on data from Riksstroke and the Swedish Causes of Death Register to define baseline characteristics of patients with OAC-ICH who received reversal treatment compared with patients who did not receive reversal treatment during 2017-2019. Predictive analysis was performed using multivariable logistic regression to identify odds ratios for factors associated with receiving OAC reversal treatment. RESULTS We included 1902 patients ((n = 1146; OAC reversal treatment) (n = 756; no OAC reversal treatment)). The proportion of non-Vitamin K oral anticoagulant associated ICH (NOAC-ICH) patients who received reversal treatment was 48.4% and the proportion of Vitamin K antagonist-associated ICH (VKA-ICH) patients was 72.9%. Factors associated with a lower odds of receiving reversal treatment were increased age (OR = 0.98; 95% CI: 0.96-0.99), previous stroke (OR = 0.78; 95% CI: 0.62-0.98), comatose LOC (OR = 0.36;95%CI: 0.27-0.48; ref. = alert), pre-stroke dependency (OR = 0.72; 95% CI: 0.58-0.91), and NOAC treatment (OR = 0.34; 95% CI: 0.28-0.42). Care at a university hospital was not associated with higher odds of receiving reversal treatment compared to treatment at a county hospital. CONCLUSION Treatment with a reversal agent following OAC-ICH was related to several patient factors including type of OAC drug. We identified that only 48% of patients with NOAC-ICH received hemostatic treatment despite an increase in these cases. Further studies are required to guide the use of reversal therapies more precisely, particularly in NOAC-ICH.
Collapse
Affiliation(s)
| | - Teresa Ullberg
- Department of NeurologyLund University, Skåne University HospitalLundSweden
| | - Bo Norrving
- Department of NeurologyLund University, Skåne University HospitalLundSweden
| | - Jesper Petersson
- Department of NeurologyLund University, Skåne University HospitalLundSweden
| |
Collapse
|
82
|
Truong MQ, Metcalfe AV, Ovenden CD, Kleinig TJ, Barras CD. Intracerebral hemorrhage markers on non-contrast computed tomography as predictors of the dynamic spot sign on CT perfusion and associations with hematoma expansion and outcome. Neuroradiology 2022; 64:2135-2144. [PMID: 36076088 DOI: 10.1007/s00234-022-03032-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/30/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE To assess the association between non-contrast computed tomography (NCCT) hematoma markers and the dynamic spot sign on computed tomography perfusion (CTP), and their associations with hematoma expansion, clinical outcome, and in-hospital mortality. METHODS Patients who presented with intracerebral hemorrhage (ICH) to a stroke center over an 18-month period and underwent baseline NCCT and CTP, and a follow-up NCCT within 24 h after the baseline scan were included. The initial and follow-up hematoma volumes were calculated. Two raters independently assessed the baseline NCCT for hematoma markers and concurrently assessed the CTP for the dynamic spot sign. Univariate and multivariate logistic regression analyses were performed to assess the association between the hematoma markers and the dynamic spot sign, adjusting for known ICH expansion predictors. RESULTS Eighty-five patients were included in our study and 55 patients were suitable for expansion analysis. Heterogeneous density was the only NCCT hematoma marker to be associated with the dynamic spot sign after multivariate analysis (odds ratio, 58.61; 95% confidence interval, 9.13-376.05; P < 0.001). The dynamic spot sign was present in 22 patients (26%) and significantly predicted hematoma expansion (odds ratio, 36.6; 95% confidence interval, 2.51-534.2; P = 0.008). All patients with a spot sign had a swirl sign. A co-located hypodensity and spot sign was significantly associated with in-hospital mortality (odds ratio, 6.17; 95% confidence interval, 1.09-34.78; P = 0.039). CONCLUSION Heterogeneous density and swirl sign are associated with the dynamic spot sign. The dynamic spot sign is a stronger predictor than NCCT hematoma markers of significant hematoma expansion. A co-located spot sign and hypodensity predicts in-hospital mortality.
Collapse
Affiliation(s)
| | - Andrew Viggo Metcalfe
- School of Mathematical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Christopher Dillon Ovenden
- Faculty of Health and Medical Sciences, Surgical Specialties, The University of Adelaide, Adelaide, South Australia, Australia
| | - Timothy John Kleinig
- Department of Neurology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Christen David Barras
- Department of Radiology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
83
|
Muacevic A, Adler JR, Stead TS, Mangal R, Ganti L. Frontal Lobe Hemorrhage With Surrounding Edema and Subarachnoid Hemorrhage. Cureus 2022; 14:e31345. [PMID: 36514615 PMCID: PMC9741553 DOI: 10.7759/cureus.31345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
We report the case of an 81-year-old woman who presented with a left hemineglect, a rightward gaze preference, and baseline disorientation. Her National Institutes of Health Stroke Score was 4. Her medical history was significant for dementia, osteoporosis, dyslipidemia, and a previous stroke. CT revealed a right-sided frontal lobe hemorrhage with surrounding edema and subarachnoid hemorrhage. Laboratory evaluation was significant for leukocytosis. The etiologies, clinical presentation, and diagnosis of this often devastating type of stroke are presented. While she did have a significant neurologic deficit (neglect), she was able to remain alert and protect her airway. Her hospital course consisted of observation in the ICU and blood pressure management. The case illustrates that intracerebral hemorrhage (ICH) can sometimes present indolently and does not always require surgical intervention.
Collapse
|
84
|
Xu W, Guo H, Li H, Dai Q, Song K, Li F, Zhou J, Yao J, Wang Z, Liu X. A non-contrast computed tomography-based radiomics nomogram for the prediction of hematoma expansion in patients with deep ganglionic intracerebral hemorrhage. Front Neurol 2022; 13:974183. [DOI: 10.3389/fneur.2022.974183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background and purposeHematoma expansion (HE) is a critical event following acute intracerebral hemorrhage (ICH). We aimed to construct a non-contrast computed tomography (NCCT) model combining clinical characteristics, radiological signs, and radiomics features to predict HE in patients with spontaneous ICH and to develop a nomogram to assess the risk of early HE.Materials and methodsWe retrospectively reviewed 388 patients with ICH who underwent initial NCCT within 6 h after onset and follow-up CT within 24 h after initial NCCT, between January 2015 and December 2021. Using the LASSO algorithm or stepwise logistic regression analysis, five models (clinical model, radiological model, clinical-radiological model, radiomics model, and combined model) were developed to predict HE in the training cohort (n = 235) and independently verified in the test cohort (n = 153). The Akaike information criterion (AIC) and the likelihood ratio test (LRT) were used for comparing the goodness of fit of the five models, and the AUC was used to evaluate their ability in discriminating HE. A nomogram was developed based on the model with the best performance.ResultsThe combined model (AIC = 202.599, χ2 = 80.6) was the best fitting model with the lowest AIC and the highest LRT chi-square value compared to the clinical model (AIC = 232.263, χ2 = 46.940), radiological model (AIC = 227.932, χ2 = 51.270), clinical-radiological model (AIC = 212.711, χ2 = 55.490) or radiomics model (AIC = 217.647, χ2 = 57.550). In both cohorts, the nomogram derived from the combined model showed satisfactory discrimination and calibration for predicting HE (AUC = 0.900, sensitivity = 83.87%; AUC = 0.850, sensitivity = 80.10%, respectively).ConclusionThe NCCT-based model combining clinical characteristics, radiological signs, and radiomics features could efficiently discriminate early HE, and the nomogram derived from the combined model, as a non-invasive tool, exhibited satisfactory performance in stratifying HE risks.
Collapse
|
85
|
Activation of Nrf2 to Optimise Immune Responses to Intracerebral Haemorrhage. Biomolecules 2022; 12:biom12101438. [PMID: 36291647 PMCID: PMC9599325 DOI: 10.3390/biom12101438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Haemorrhage into the brain parenchyma can be devastating. This manifests as spontaneous intracerebral haemorrhage (ICH) after head trauma, and in the context of vascular dementia. Randomised controlled trials have not reliably shown that haemostatic treatments aimed at limiting ICH haematoma expansion and surgical approaches to reducing haematoma volume are effective. Consequently, treatments to modulate the pathophysiological responses to ICH, which may cause secondary brain injury, are appealing. Following ICH, microglia and monocyte derived cells are recruited to the peri-haematomal environment where they phagocytose haematoma breakdown products and secrete inflammatory cytokines, which may trigger both protective and harmful responses. The transcription factor Nrf2, is activated by oxidative stress, is highly expressed by central nervous system microglia and macroglia. When active, Nrf2 induces a transcriptional programme characterised by increased expression of antioxidant, haem and heavy metal detoxification and proteostasis genes, as well as suppression of proinflammatory factors. Therefore, Nrf2 activation may facilitate adaptive-protective immune cell responses to ICH by boosting resistance to oxidative stress and heavy metal toxicity, whilst limiting harmful inflammatory signalling, which can contribute to further blood brain barrier dysfunction and cerebral oedema. In this review, we consider the responses of immune cells to ICH and how these might be modulated by Nrf2 activation. Finally, we propose potential therapeutic strategies to harness Nrf2 to improve the outcomes of patients with ICH.
Collapse
|
86
|
Nehme A, Ducroux C, Panzini MA, Bard C, Bereznyakova O, Boisseau W, Deschaintre Y, Diestro JDB, Guilbert F, Jacquin G, Maallah MT, Nelson K, Padilha IG, Poppe AY, Rioux B, Roy D, Touma L, Weill A, Gioia LC, Létourneau-Guillon L. Non-contrast CT markers of intracerebral hematoma expansion: a reliability study. Eur Radiol 2022; 32:6126-6135. [PMID: 35348859 DOI: 10.1007/s00330-022-08710-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVES We evaluated whether clinicians agree in the detection of non-contrast CT markers of intracerebral hemorrhage (ICH) expansion. METHODS From our local dataset, we randomly sampled 60 patients diagnosed with spontaneous ICH. Fifteen physicians and trainees (Stroke Neurology, Interventional and Diagnostic Neuroradiology) were trained to identify six density (Barras density, black hole, blend, hypodensity, fluid level, swirl) and three shape (Barras shape, island, satellite) expansion markers, using standardized definitions. Thirteen raters performed a second assessment. Inter- and intra-rater agreement were measured using Gwet's AC1, with a coefficient > 0.60 indicating substantial to almost perfect agreement. RESULTS Almost perfect inter-rater agreement was observed for the swirl (0.85, 95% CI: 0.78-0.90) and fluid level (0.84, 95% CI: 0.76-0.90) markers, while the hypodensity (0.67, 95% CI: 0.56-0.76) and blend (0.62, 95% CI: 0.51-0.71) markers showed substantial agreement. Inter-rater agreement was otherwise moderate, and comparable between density and shape markers. Inter-rater agreement was lower for the three markers that require the rater to identify one specific axial slice (Barras density, Barras shape, island: 0.46, 95% CI: 0.40-0.52 versus others: 0.60, 95% CI: 0.56-0.63). Inter-observer agreement did not differ when stratified for raters' experience, hematoma location, volume, or anticoagulation status. Intra-rater agreement was substantial to almost perfect for all but the black hole marker. CONCLUSION In a large sample of raters with different backgrounds and expertise levels, only four of nine non-contrast CT markers of ICH expansion showed substantial to almost perfect inter-rater agreement. KEY POINTS • In a sample of 15 raters and 60 patients, only four of nine non-contrast CT markers of ICH expansion showed substantial to almost perfect inter-rater agreement (Gwet's AC1> 0.60). • Intra-rater agreement was substantial to almost perfect for eight of nine hematoma expansion markers. • Only the blend, fluid level, and swirl markers achieved substantial to almost perfect agreement across all three measures of reliability (inter-rater agreement, intra-rater agreement, agreement with the results of a reference reading).
Collapse
Affiliation(s)
- Ahmad Nehme
- Neurovascular Health Program, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada.
| | - Célina Ducroux
- Neurovascular Health Program, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Marie-Andrée Panzini
- Neurovascular Health Program, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Céline Bard
- Département de Radiologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Olena Bereznyakova
- Neurovascular Health Program, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
- Axe Neurosciences, Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
- Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - William Boisseau
- Département de Radiologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Yan Deschaintre
- Neurovascular Health Program, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
- Axe Neurosciences, Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
- Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada
| | | | - François Guilbert
- Département de Radiologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Grégory Jacquin
- Neurovascular Health Program, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
- Axe Neurosciences, Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
- Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Mohamed Taoubane Maallah
- Département de Radiologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Kristoff Nelson
- Département de Radiologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Igor Gomes Padilha
- Département de Radiologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Alexandre Y Poppe
- Neurovascular Health Program, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
- Axe Neurosciences, Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
- Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Bastien Rioux
- Neurovascular Health Program, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Daniel Roy
- Département de Radiologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Lahoud Touma
- Neurovascular Health Program, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Alain Weill
- Département de Radiologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Laura C Gioia
- Neurovascular Health Program, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
- Axe Neurosciences, Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
- Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Laurent Létourneau-Guillon
- Département de Radiologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
- Imaging and Engineering Axis, Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| |
Collapse
|
87
|
Zou J, Chen H, Liu C, Cai Z, Yang J, Zhang Y, Li S, Lin H, Tan M. Development and validation of a nomogram to predict the 30-day mortality risk of patients with intracerebral hemorrhage. Front Neurosci 2022; 16:942100. [PMID: 36033629 PMCID: PMC9400715 DOI: 10.3389/fnins.2022.942100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/15/2022] [Indexed: 12/28/2022] Open
Abstract
Background Intracerebral hemorrhage (ICH) is a stroke syndrome with an unfavorable prognosis. Currently, there is no comprehensive clinical indicator for mortality prediction of ICH patients. The purpose of our study was to construct and evaluate a nomogram for predicting the 30-day mortality risk of ICH patients. Methods ICH patients were extracted from the MIMIC-III database according to the ICD-9 code and randomly divided into training and verification cohorts. The least absolute shrinkage and selection operator (LASSO) method and multivariate logistic regression were applied to determine independent risk factors. These risk factors were used to construct a nomogram model for predicting the 30-day mortality risk of ICH patients. The nomogram was verified by the area under the receiver operating characteristic curve (AUC), integrated discrimination improvement (IDI), net reclassification improvement (NRI), and decision curve analysis (DCA). Results A total of 890 ICH patients were included in the study. Logistic regression analysis revealed that age (OR = 1.05, P < 0.001), Glasgow Coma Scale score (OR = 0.91, P < 0.001), creatinine (OR = 1.30, P < 0.001), white blood cell count (OR = 1.10, P < 0.001), temperature (OR = 1.73, P < 0.001), glucose (OR = 1.01, P < 0.001), urine output (OR = 1.00, P = 0.020), and bleeding volume (OR = 1.02, P < 0.001) were independent risk factors for 30-day mortality of ICH patients. The calibration curve indicated that the nomogram was well calibrated. When predicting the 30-day mortality risk, the nomogram exhibited good discrimination in the training and validation cohorts (C-index: 0.782 and 0.778, respectively). The AUCs were 0.778, 0.733, and 0.728 for the nomogram, Simplified Acute Physiology Score II (SAPSII), and Oxford Acute Severity of Illness Score (OASIS), respectively, in the validation cohort. The IDI and NRI calculations and DCA analysis revealed that the nomogram model had a greater net benefit than the SAPSII and OASIS scoring systems. Conclusion This study identified independent risk factors for 30-day mortality of ICH patients and constructed a predictive nomogram model, which may help to improve the prognosis of ICH patients.
Collapse
Affiliation(s)
- Jianyu Zou
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huihuang Chen
- Department of Rehabilitation, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Cuiqing Liu
- Department of Nursing, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhenbin Cai
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jie Yang
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunlong Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shaojin Li
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hongsheng Lin
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Hongsheng Lin,
| | - Minghui Tan
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Minghui Tan,
| |
Collapse
|
88
|
Jakowenko ND, Kopp BJ, Erstad BL. Appraising the use of tranexamic acid in traumatic and non-traumatic intracranial hemorrhage: A narrative review. J Am Coll Emerg Physicians Open 2022; 3:e12777. [PMID: 35859856 PMCID: PMC9286528 DOI: 10.1002/emp2.12777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Recently there has been increasing interest and debate on the use of tranexamic acid (TXA), an antifibrinolytic drug, in both traumatic and non-traumatic intracranial hemorrhage. In this review we aim to discuss recent investigations looking at TXA in traumatic brain injury (TBI) and different categories of spontaneous intracranial hemorrhage. We also discuss differences between setting (hospital vs pre-hospital), dosing and timing strategies, and other logistical challenges surrounding optimal use of TXA for isolated intracranial hemorrhage. Last, we hope to provide guidance for clinicians when considering the use of TXA in a patient with traumatic or non-traumatic intracranial hemorrhage based on appraisal of the available literature as well as some potential ideas for future research in this area.
Collapse
Affiliation(s)
| | - Brian J. Kopp
- Department of PharmacyBanner University Medical Center–TucsonTucsonArizonaUSA
| | - Brian L. Erstad
- Department of Pharmacy Practice and ScienceUniversity of Arizona College of PharmacyTucsonArizonaUSA
| |
Collapse
|
89
|
Naidech AM, Grotta J, Elm J, Janis S, Dowlatshahi D, Toyoda K, Steiner T, Mayer SA, Khanolkar P, Denlinger J, Audebert HJ, Molina C, Khatri P, Sprigg N, Vagal A, Broderick JP. Recombinant factor VIIa for hemorrhagic stroke treatment at earliest possible time (FASTEST): Protocol for a phase III, double-blind, randomized, placebo-controlled trial. Int J Stroke 2022; 17:806-809. [PMID: 34427473 PMCID: PMC9933458 DOI: 10.1177/17474930211042700] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Intracerebral hemorrhage is the deadliest form of stroke. Hematoma expansion, growth of the hematoma between the baseline computed tomography scan and a follow-up computed tomography scan at 24 ± 6 h, predicts long-term disability or death. Recombinant factor VIIa (rFVIIa) has reduced hematoma expansion in previous clinical trials with a variable effect on clinical outcomes, with the greatest impact on hematoma expansion and potential benefit when administered within 2 h of symptom onset. METHODS Factor VIIa for Hemorrhagic Stroke Treatment at Earliest Possible Time (FASTEST, NCT03496883) is a randomized controlled trial that will enroll 860 patients at ∼100 emergency departments and mobile stroke units in five countries. Patients are eligible for enrollment if they have acute intracerebral hemorrhage within 2 h of symptom onset confirmed by computed tomography, a hematoma volume of 2 to 60 mL, no or small volumes of intraventricular hemorrhage, do not take anticoagulant medications or concurrent heparin/heparinoids (antiplatelet medications are permissible), and are not deeply comatose. Enrolled patients will receive rFVIIa 80 µg/kg or placebo intravenously over 2 min. The primary outcome measure is the distribution of the ordinal modified Rankin Scale at 180 days. FASTEST is monitored by a Data Safety Monitoring Board. Safety endpoints include thrombotic events (e.g. myocardial infarction). Human subjects research is monitored by an external Institutional Review Board in participating countries. DISCUSSION In the US, FASTEST will be first NIH StrokeNet Trial with an Exception from Informed Consent which allows enrollment of non-communicative patients without an immediately identifiable proxy.
Collapse
Affiliation(s)
| | | | - Jordan Elm
- Medical University of South Carolina, Charleston, SC, USA
| | - Scott Janis
- National Institute of Neurological Diseases and Stroke, Bethesda, MD, USA
| | | | - Kazunori Toyoda
- National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Thorsten Steiner
- National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Wang S, Xu X, Yu Q, Hu H, Han C, Wang R. Combining modified Graeb score and intracerebral hemorrhage score to predict poor outcome in patients with spontaneous intracerebral hemorrhage undergoing surgical treatment. Front Neurol 2022; 13:915370. [PMID: 35968295 PMCID: PMC9373905 DOI: 10.3389/fneur.2022.915370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Objective Spontaneous intracerebral hemorrhage (sICH) is a frequently encountered neurosurgical disease. The purpose of this study was to evaluate the relationship between modified Graeb Score (mGS) at admission and clinical outcomes of sICH and to investigate whether the combination of ICH score could improve the accuracy of outcome prediction. Methods We retrospectively reviewed the medical records of 511 patients who underwent surgery for sICH between January 2017 and June 2021. Patient outcome was evaluated by the Glasgow Outcome Scale (GOS) score at 3 months following sICH, where a GOS score of 1–3 was defined as a poor prognosis. Univariate and multivariate logistic regression analyses were conducted to determine risk factors for unfavorable clinical outcomes. Receiver operating characteristic (ROC) curve analysis was performed to detect the optimal cutoff value of mGS for predicting clinical outcomes. An ICH score combining mGS was created, and the performance of the ICH score combining mGS was assessed for discriminative ability. Results Multivariate analysis demonstrated that a higher mGS score was an independent predictor for poor prognosis (odds ratio [OR] 1.207, 95% confidence interval [CI], 1.130–1.290, p < 0.001). In ROC analysis, an optimal cutoff value of mGS to predict the clinical outcome at 3 months after sICH was 11 (p < 0.001). An increasing ICH-mGS score was associated with increased poor functional outcome. Combining ICH score with mGS resulted in an area under the curve (AUC) of 0.790, p < 0.001. Conclusion mGS was an independent risk factor for poor outcome and it had an additive predictive value for outcome in patients with sICH. Compared with the ICH score and mGS alone, the ICH score combined with mGS revealed a significantly higher discriminative ability for predicting postoperative outcome.
Collapse
Affiliation(s)
- Shen Wang
- Department of Neurosurgery, Shanghai University of Medicine and Health Sciences Affiliated Jia Ding Hospital, Shanghai, China
| | - Xuxu Xu
- Department of Neurosurgery, Shanghai Minhang District Central Hospital, Shanghai, China
| | - Qiang Yu
- Department of Neurosurgery, Fuyang Fifth People's Hospital, Anhui, China
| | - Haicheng Hu
- Department of Neurosurgery, Fuyang Fifth People's Hospital, Anhui, China
| | - Chao Han
- Department of Neurosurgery, Fuyang Fifth People's Hospital, Anhui, China
| | - Ruhai Wang
- Department of Neurosurgery, Fuyang Fifth People's Hospital, Anhui, China
- *Correspondence: Ruhai Wang
| |
Collapse
|
91
|
Machine learning prediction of hematoma expansion in acute intracerebral hemorrhage. Sci Rep 2022; 12:12452. [PMID: 35864139 PMCID: PMC9304401 DOI: 10.1038/s41598-022-15400-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/23/2022] [Indexed: 12/28/2022] Open
Abstract
To examine whether machine learning (ML) approach can be used to predict hematoma expansion in acute intracerebral hemorrhage (ICH) with accuracy and widespread applicability, we applied ML algorithms to multicenter clinical data and CT findings on admission. Patients with acute ICH from three hospitals (n = 351) and those from another hospital (n = 71) were retrospectively assigned to the development and validation cohorts, respectively. To develop ML predictive models, the k-nearest neighbors (k-NN) algorithm, logistic regression, support vector machines (SVMs), random forests, and XGBoost were applied to the patient data in the development cohort. The models were evaluated for their performance on the patient data in the validation cohort, which was compared with previous scoring methods, the BAT, BRAIN, and 9-point scores. The k-NN algorithm achieved the highest area under the receiver operating characteristic curve (AUC) of 0.790 among all ML models, and the sensitivity, specificity, and accuracy were 0.846, 0.733, and 0.775, respectively. The BRAIN score achieved the highest AUC of 0.676 among all previous scoring methods, which was lower than the k-NN algorithm (p = 0.016). We developed and validated ML predictive models of hematoma expansion in acute ICH. The models demonstrated good predictive ability, showing better performance than the previous scoring methods.
Collapse
|
92
|
Demerath T, Stanicki A, Roelz R, Farina Nunez MT, Bissolo M, Steiert C, Fistouris P, Coenen VA, Urbach H, Fung C, Beck J, Reinacher PC. Accuracy of augmented reality-guided drainage versus stereotactic and conventional puncture in an intracerebral hemorrhage phantom model. J Neurointerv Surg 2022:neurintsurg-2022-018678. [PMID: 35853700 DOI: 10.1136/neurintsurg-2022-018678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/19/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Minimally invasive intracranial drain placement is a common neurosurgical emergency procedure in patients with intracerebral hemorrhage (ICH). We aimed to retrospectively investigate the accuracy of conventional freehand (bedside) hemorrhage drain placement and to prospectively compare the accuracy of augmented/mixed reality-guided (AR) versus frame-based stereotaxy-guided (STX) and freehand drain placement in a phantom model. METHODS A retrospective, single-center analysis evaluated the accuracy of drain placement in 73 consecutive ICH with a visual rating of postinterventional CT data. In a head phantom with a simulated deep ICH, five neurosurgeons performed four punctures for each technique: STX, AR, and the freehand technique. The Euclidean distance to the target point and the lateral deviation of the achieved trajectory from the planned trajectory at target point level were compared between the three methods. RESULTS Analysis of the clinical cases revealed an optimal drainage position in only 46/73 (63%). Correction of the drain was necessary in 23/73 cases (32%). In the phantom study, accuracy of AR was significantly higher than the freehand method (P<0.001 for both Euclidean and lateral distances). The Euclidean distance using AR (median 3 mm) was close to that using STX (median 1.95 mm; P=0.023). CONCLUSIONS We demonstrated that the accuracy of the freehand technique was low and that subsequent position correction was common. In a phantom model, AR drainage placement was significantly more precise than the freehand method. AR has great potential to increase precision of emergency intracranial punctures in a bedside setting.
Collapse
Affiliation(s)
- Theo Demerath
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Amin Stanicki
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roland Roelz
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mateo Tomas Farina Nunez
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Bissolo
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christine Steiert
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Panagiotis Fistouris
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker Arnd Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Fung
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Christoph Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany .,Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
| |
Collapse
|
93
|
Bahrami M, Keyhanifard M, Afzali M. Spontaneous intracerebral hemorrhage, initial computed tomography (CT) scan findings, clinical manifestations and possible risk factors. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2022; 12:106-112. [PMID: 35874296 PMCID: PMC9301088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Intracerebral hemorrhage is one of the types of stroke in patients with risk factors. In this study, we aimed to evaluate the initial computed tomography (CT) scan findings, clinical manifestations and possible risk factors of patients with intracerebral hemorrhage. This is a cross-sectional study that was performed in 2015-2022 on 900 patients with definite diagnosis of intracerebral hemorrhage. Data of patients were evaluated for patient's age, gender, clinical manifestations, primary radiologic signs in CT scan and possible risks factors for stroke. Lobar hemorrhage was the most common site of involvement (324 patients, 36%) followed by lenticular (putamen) (294 patients, 32.7%) and thalamus (135 patients, 15%). Among patients, 543 patients (60.3%) had hypertension, 81 patients (9%) had histories of anticoagulant. Hemorrhages in putamen were significantly more common in patients with hypertension (P<0.001) and lobar hemorrhages were significantly more common in patients with the use of anticoagulant drugs (P=0.033). The most common presentation of hemorrhagic stroke was decreased consciousness level (428 patients, 47.5%) followed by headache (343 patients, 38.1%), coma (81 patients, 9%) and seizure (48 patients, 5.4%). Evaluation of the relationships between patient's main symptoms and sites of involvement showed that patients with decreased consciousness as their most common symptom had more frequently diagnosed with lobar hemorrhage (54%) and putamen hemorrhage (30.4%) (P<0.001). Hypertension was the most common past medical history that was significantly related to hemorrhage in basal nuclei. Hemorrhages in putamen were common in hypertensive patients and lobar hemorrhages were common in patients with anticoagulant use.
Collapse
Affiliation(s)
- Mahshid Bahrami
- Department of Radiology, Isfahan University of Medical SciencesIsfahan, Iran
| | - Majid Keyhanifard
- Iranian Board of Neurology, Tehran University of Medical SciencesTehran, Iran
- Kurdistan Board of NeurologyIraq
- Fellowship of Interventional Neuroradiology, Zurich UniversitySwitzerland
| | - Mahdieh Afzali
- Department of Neurology, School of Medicine, Yas Hospital, Tehran University of Medical SciencesTehran, Iran
| |
Collapse
|
94
|
Schreuder FHBM, Scholte M, Ulehake MJ, Sondag L, Rovers MM, Dammers R, Klijn CJM, Grutters JPC. Identifying the Conditions for Cost-Effective Minimally Invasive Neurosurgery in Spontaneous Supratentorial Intracerebral Hemorrhage. Front Neurol 2022; 13:830614. [PMID: 35720058 PMCID: PMC9200972 DOI: 10.3389/fneur.2022.830614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundIn patients with spontaneous supratentorial intracerebral hemorrhage (ICH), open craniotomy has failed to improve a functional outcome. Innovative minimally invasive neurosurgery (MIS) may improve a health outcome and reduce healthcare costs.AimsBefore starting phase-III trials, we aim to assess conditions that need to be met to reach the potential cost-effectiveness of MIS compared to usual care in patients with spontaneous supratentorial ICH.MethodsWe used a state-transition model to determine at what effectiveness and cost MIS would become cost-effective compared to usual care in terms of quality-adjusted life-years (QALYs) and direct healthcare costs. Threshold and two-way sensitivity analyses were used to determine the minimal effectiveness and maximal costs of MIS, and the most cost-effective strategy for each combination of cost and effectiveness. Scenario and probabilistic sensitivity analyses addressed model uncertainty.ResultsGiven €10,000 of surgical costs, MIS would become cost-effective when at least 0.7–1.3% of patients improve to a modified Rankin Scale (mRS) score of 0–3 compared to usual care. When 11% of patients improve to mRS 0–3, surgical costs may be up to €83,301–€164,382, depending on the population studied. The cost-effectiveness of MIS was mainly determined by its effectiveness. In lower mRS states, MIS needs to be more effective to be cost-effective compared to higher mRS states.ConclusionMIS has the potential to be cost-effective in patients with spontaneous supratentorial ICH, even with relatively low effectiveness. These results support phase-III trials to investigate the effectiveness of MIS.
Collapse
Affiliation(s)
- Floris H. B. M. Schreuder
- Department of Neurology, Center for Neuroscience, Donders Institute of Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
- *Correspondence: Floris H. B. M. Schreuder
| | - Mirre Scholte
- Department of Operating Rooms, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marike J. Ulehake
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lotte Sondag
- Department of Neurology, Center for Neuroscience, Donders Institute of Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Maroeska M. Rovers
- Department of Operating Rooms, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ruben Dammers
- Department of Neurosurgery, Erasmus Medical Center, Erasmus MC Stroke Center, Rotterdam, Netherlands
| | - Catharina J. M. Klijn
- Department of Neurology, Center for Neuroscience, Donders Institute of Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Janneke P. C. Grutters
- Department of Operating Rooms, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
95
|
Li H, Xie Y, Liu H, Wang X. Non-Contrast CT-Based Radiomics Score for Predicting Hematoma Enlargement in Spontaneous Intracerebral Hemorrhage. Clin Neuroradiol 2022; 32:517-528. [PMID: 34324004 DOI: 10.1007/s00062-021-01062-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE To develop a non-contrast computed tomography-(CT)-based radiomics score for predicting the risk of hematoma early enlargement in spontaneous intracerebral hemorrhage. METHODS A total of 258 patients from a single-center database with acute spontaneous intracerebral parenchymal hemorrhage were collected. Radiomics software was explored to segment hematomas on baseline non-contrast CT images, and the texture features were extracted. Minimal Redundancy and Maximal Relevance (mRMR) and Least Absolute Shrinkage and Selection Operator (LASSO), were used to select optimized subset of features and radiomics score was calculated. The radiomics model (radiomics score-based), radiomics nomogram (radiomics score combined with clinical factors-based) and clinical model (clinical factors-based) were built in a training cohort and validated in a test cohort. The discrimination, calibration, and clinical usefulness of the models were evaluated. Finally, a subgroup analysis was performed to assess the predictive value of radiomics score in specific hemorrhage location. RESULTS Radiomics score was composed of 12 radiomics features. The radiomics model and radiomics nomogram both showed good performance in predicting hematoma enlargement (area under the curve, AUC 0.83 [0.71-0.95], AUC 0.82 [0.72, 0.93]), and were both better than clinical model (AUC 0.66 [0.54-0.79]). The radiomics model and radiomics nomogram showed satisfactory calibration and clinical usefulness for detecting hematoma enlargement. For subgroup analysis, radiomics score also showed good predictive value for hematoma enlargement in different locations (AUC were 0.828, 0.940, 0.836 and 0.904, respectively, for supratentorial, subtentorial, deep and lobes). CONCLUSION A radiomics score based on non-contrast CT may be considered as a potential biomarker for prediction of hematoma enlargement in patients with spontaneous intracerebral hemorrhage (SICH), and it presented a high incremental value to clinical factors for hematoma enlargement prediction.
Collapse
Affiliation(s)
- Hui Li
- Department of Radiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiangan District, 430014, Wuhan City, Hubei Province, China
| | - Yuanliang Xie
- Department of Radiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiangan District, 430014, Wuhan City, Hubei Province, China
| | - Huan Liu
- GE Healthcare, 201203, Shanghai, China
| | - Xiang Wang
- Department of Radiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiangan District, 430014, Wuhan City, Hubei Province, China.
| |
Collapse
|
96
|
Shiga Y, Nezu T, Shimomura R, Sato K, Himeno T, Terasawa Y, Aoki S, Hosomi N, Kohriyama T, Maruyama H. Various effects of nutritional status on clinical outcomes after intracerebral hemorrhage. Intern Emerg Med 2022; 17:1043-1052. [PMID: 34853991 DOI: 10.1007/s11739-021-02901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022]
Abstract
Although the assessment of nutrition is essential for stroke patients, detailed associations between nutritional status at admission, subsequent complications, and clinical outcomes in patients with acute intracerebral hemorrhage (ICH) are unclear. We aimed to elucidate these associations using the Controlling Nutritional Status (CONUT) score. Consecutive patients with acute ICH were investigated. Nutritional status was evaluated using the CONUT score, calculated from the serum albumin level, lymphocyte count, and total cholesterol level. Subsequent complications, such as hemorrhage expansion (HE) during the acute stage and aspiration pneumonia during hospitalization, were evaluated. Poor outcome was defined as a modified Rankin Scale score of ≥ 3 at 3 months. Of the 721 patients, 49 had HE, 111 had aspiration pneumonia, and 409 had poor outcomes. Patients with HE had significantly lower total cholesterol levels than those without HE. Patients with aspiration pneumonia had significantly lower albumin levels, lower lymphocyte counts, and higher CONUT scores than those without aspiration pneumonia. Patients with poor outcomes had significantly lower albumin levels, lower lymphocyte counts, lower total cholesterol levels, and higher CONUT scores than those with good outcomes. Multivariable logistic analysis showed that higher CONUT scores were independently associated with poor outcome (odds ratio, 1.28; 95% confidence interval, 1.09-1.49; P = 0.002) after adjusting for baseline characteristics, HE, and aspiration pneumonia. Each component of CONUT was a useful predictor of subsequent complications. Malnutrition, determined using the CONUT score, was independently associated with poor outcomes in patients with ICH after adjusting for these complications.
Collapse
Affiliation(s)
- Yuji Shiga
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Tomohisa Nezu
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Ryo Shimomura
- Department of Neurology, Brain Attack Center Ota Memorial Hospital, Fukuyama, Japan
| | - Kota Sato
- Department of Neurology, Brain Attack Center Ota Memorial Hospital, Fukuyama, Japan
| | - Takahiro Himeno
- Department of Neurology, Brain Attack Center Ota Memorial Hospital, Fukuyama, Japan
| | - Yuka Terasawa
- Department of Neurology, Brain Attack Center Ota Memorial Hospital, Fukuyama, Japan
| | - Shiro Aoki
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naohisa Hosomi
- Department of Neurology, Chikamori Hospital, Kochi, Japan
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tatsuo Kohriyama
- Department of Neurology, Brain Attack Center Ota Memorial Hospital, Fukuyama, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
97
|
Wei J, Zhao L, Liao J, Du X, Gong H, Tan Q, Lei M, Zhao R, Wang D, Liu Q. Large Relative Surface Area of Hematomas Predict a Poor Outcome in Patients with Spontaneous Intracerebral Hemorrhage. J Stroke Cerebrovasc Dis 2022; 31:106381. [DOI: 10.1016/j.jstrokecerebrovasdis.2022.106381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/10/2022] [Accepted: 01/29/2022] [Indexed: 10/18/2022] Open
|
98
|
Greenberg SM, Ziai WC, Cordonnier C, Dowlatshahi D, Francis B, Goldstein JN, Hemphill JC, Johnson R, Keigher KM, Mack WJ, Mocco J, Newton EJ, Ruff IM, Sansing LH, Schulman S, Selim MH, Sheth KN, Sprigg N, Sunnerhagen KS. 2022 Guideline for the Management of Patients With Spontaneous Intracerebral Hemorrhage: A Guideline From the American Heart Association/American Stroke Association. Stroke 2022; 53:e282-e361. [PMID: 35579034 DOI: 10.1161/str.0000000000000407] [Citation(s) in RCA: 443] [Impact Index Per Article: 221.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - William J Mack
- AHA Stroke Council Scientific Statement Oversight Committee on Clinical Practice Guideline liaison
| | | | | | - Ilana M Ruff
- AHA Stroke Council Stroke Performance Measures Oversight Committee liaison
| | | | | | | | - Kevin N Sheth
- AHA Stroke Council Scientific Statement Oversight Committee on Clinical Practice Guideline liaison.,AAN representative
| | | | | | | |
Collapse
|
99
|
Diffusion-Weighted Imaging Hyperintensities in Acute and Subacute-Phase Intracerebral Hemorrhage. J Stroke Cerebrovasc Dis 2022; 31:106549. [PMID: 35569404 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Diffusion-weighted imaging hyperintensities are observed in intracerebral hemorrhage patients at times and might be associated with unfavorable functional outcomes. However, the suitable time to evaluate diffusion-weighted imaging hyperintensities to influence stroke outcome remains unclear. This study investigated the associations between acute and sub-acute diffusion-weighted imaging hyperintensities and functional outcomes among patients with acute intracerebral hemorrhage. METHODS Diffusion-weighted imaging hyperintensities were evaluated within 24 h (acute phase) and at 14 ± 5 days (sub-acute phase). An unfavorable functional outcome was a score of 5-6 on the modified Rankin Scale at 3 months. RESULTS Among 268 intracerebral hemorrhage patients, diffusion-weighted imaging hyperintensities in the acute phase were observed in 32 (11.9%). Among 227 patients who underwent a second magnetic resonance imaging in the sub-acute phase, diffusion-weighted imaging hyperintensities were observed in 57 (25.1%). Multivariable analysis revealed that the baseline intracerebral hemorrhage volume, history of stroke, and severe white matter lesions were associated with sub-acute diffusion-weighted imaging hyperintensities. The patients with unfavorable outcomes (n = 37) had a higher frequency of sub-acute diffusion-weighted imaging hyperintensities than those without (n = 190) (51.4% vs. 20.0%, P < 0.001); the frequencies of acute diffusion-weighted imaging hyperintensities were not significantly different between the groups (13.5% vs. 10.0%, P = 0.559). Sub-acute diffusion-weighted imaging hyperintensities were independently associated with unfavorable outcomes after adjusting for confounding factors (Odds Ratio, 3.35, 95% CI 1.20-9.35, P = 0.021). CONCLUSION The rate of sub-acute diffusion-weighted imaging hyperintensities was higher than acute diffusion-weighted imaging hyperintensities among acute intracerebral hemorrhage patients and likely to be associated with unfavorable outcomes.
Collapse
|
100
|
Bowry R, Parker SA, Bratina P, Singh N, Yamal JM, Rajan SS, Jacob AP, Phan K, Czap A, Grotta JC. Hemorrhage Enlargement Is More Frequent in the First 2 Hours: A Prehospital Mobile Stroke Unit Study. Stroke 2022; 53:2352-2360. [DOI: 10.1161/strokeaha.121.037591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
Hematoma enlargement (HE) after intracerebral hemorrhage (ICH) is a therapeutic target for improving outcomes. Hemostatic therapies to prevent HE may be more effective the earlier they are attempted. An understanding of HE in first 1 to 2 hours specifically in the prehospital setting would help guide future treatment interventions in this time frame and setting.
Methods:
Patients with spontaneous ICH within 4 hours of symptom onset were prospectively evaluated between May 2014 and April 2020 as a prespecified substudy within a multicenter trial of prehospital mobile stroke unit versus standard management. Baseline computed tomography scans obtained <1, 1 to 2, and 2 to 4 hours postsymptom onset on the mobile stroke unit in the prehospital setting were compared with computed tomography scans repeated 1 hour later and at 24 hours in the hospital. HE was defined as >6 mL if baseline ICH volume was
<
20 mL and 33% increase if baseline volume >20 mL. The association between time from symptom onset to baseline computed tomography (hours) and HE was investigated using Wilcoxon rank-sum test when time was treated as a continuous variable and using Fisher exact test when time was categorized. Kruskal-Wallis and Wilcoxon rank-sum tests evaluated differences in baseline volumes and HE. Univariable and multivariable logistic regression analyses were conducted to identify factors associated with HE and variable selection was performed using cross-validated L1-regularized (Lasso regression). This study adhered to STROBE guidelines (Strengthening the Reporting of Observational Studies in Epidemiology) for cohort studies.
Results:
One hundred thirty-nine patients were included. There was no difference between baseline ICH volumes obtained <1 hour (n=43) versus 1 to 2 hour (n=51) versus >2 hours (n=45) from symptom onset (median [interquartile range], 13 mL [6–24] versus 14 mL [6–30] versus 12 mL [4–19];
P
=0.65). However, within the same 3 time epochs, initial hematoma growth (volume/time from onset) was greater with earlier baseline scanning (median [interquartile range], 17 mL/hour [9–35] versus 9 mL/hour [5–23]) versus 4 mL/hour [2–7];
P
<0.001). Forty-nine patients had repeat scans 1 hour after baseline imaging (median, 2.3 hours [interquartile range. 1.9–3.1] after symptom onset). Eight patients (16%) had HE during that 1-hour interval; all of these occurred in patients with baseline imaging within 2 hours of onset (5/18=28% with baseline imaging within 1 hour, 3/18=17% within 1–2 hour, 0/13=0% >2 hours;
P
=0.02). HE did not occur between the scans repeated at 1 hour and 24 hours. No association between baseline variables and HE was detected in multivariable analyses.
Conclusions:
HE in the next hour occurs in 28% of ICH patients with baseline imaging within the first hour after symptom onset, and in 17% of those with baseline imaging between 1 and 2 hours. These patients would be a target for ultraearly hemostatic intervention.
Collapse
Affiliation(s)
- Ritvij Bowry
- Department of Neurology, McGovern Medical School, University of Texas Health Sciences Center, Houston (R.B., S.A.P., P.B., A.C.)
| | - Stephanie A. Parker
- Department of Neurology, McGovern Medical School, University of Texas Health Sciences Center, Houston (R.B., S.A.P., P.B., A.C.)
| | - Patti Bratina
- Department of Neurology, McGovern Medical School, University of Texas Health Sciences Center, Houston (R.B., S.A.P., P.B., A.C.)
| | - Noopur Singh
- Department of Biostatics and Data Science (N.S., J.M.Y., A.P.J.)
| | | | - Suja S. Rajan
- Department of Management, Policy and Community Health (S.S.R.)
| | - Asha P. Jacob
- Department of Biostatics and Data Science (N.S., J.M.Y., A.P.J.)
| | - Kenny Phan
- University of Texas School of Public Health, Houston. Clinical Innovation and Research Institute, Memorial Hermann Hospital, Houston, TX (K.P., J.C.G.)
| | - Alexandra Czap
- Department of Neurology, McGovern Medical School, University of Texas Health Sciences Center, Houston (R.B., S.A.P., P.B., A.C.)
| | - James C. Grotta
- University of Texas School of Public Health, Houston. Clinical Innovation and Research Institute, Memorial Hermann Hospital, Houston, TX (K.P., J.C.G.)
| |
Collapse
|