51
|
Bencardino S, D’Amico F, Faggiani I, Bernardi F, Allocca M, Furfaro F, Parigi TL, Zilli A, Fiorino G, Peyrin-Biroulet L, Danese S. Efficacy and Safety of S1P1 Receptor Modulator Drugs for Patients with Moderate-to-Severe Ulcerative Colitis. J Clin Med 2023; 12:5014. [PMID: 37568417 PMCID: PMC10419826 DOI: 10.3390/jcm12155014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) that negatively impacts patients' quality of life. In the last decades, the therapeutic options available for the management of patients with moderate to severe UC have increased significantly, including not only biological drugs but also small molecules. However, there is a persistent need to develop new drugs that act on new targets while minimizing the risk of adverse events. Sphingosine-1-phosphate (S1P) is a membrane-derived lysophospholipid. The S1P gradient between tissues and the circulatory system has a key role in regulating the trafficking of immune cells as autoreactive B and T lymphocytes. S1P receptor modulators could be a safe and efficacious alternative mechanism for reducing inflammation in immune-mediated disorders, including UC, by reducing lymphocyte egress from the lymph nodes to the bloodstream. Several S1P receptor modulators have been developed and tested in UC. Ozanimod is already approved by Food and Drug Administration (FDA) and European Medical Agency (EMA), while etrasimod and VTX002 are still under approval. Oral administration route, rapidity and reliable safety profile are the main advantages of this class of drugs. The aim of this review is to summarize the available evidence for the efficacy, safety, and pharmacokinetics of ozanimod, etrasimod, and VTX002 in UC.
Collapse
Affiliation(s)
- Sarah Bencardino
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (S.B.); (F.D.); (I.F.); (F.B.); (M.A.); (F.F.); (T.L.P.); (A.Z.); (G.F.)
| | - Ferdinando D’Amico
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (S.B.); (F.D.); (I.F.); (F.B.); (M.A.); (F.F.); (T.L.P.); (A.Z.); (G.F.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Ilaria Faggiani
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (S.B.); (F.D.); (I.F.); (F.B.); (M.A.); (F.F.); (T.L.P.); (A.Z.); (G.F.)
| | - Francesca Bernardi
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (S.B.); (F.D.); (I.F.); (F.B.); (M.A.); (F.F.); (T.L.P.); (A.Z.); (G.F.)
| | - Mariangela Allocca
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (S.B.); (F.D.); (I.F.); (F.B.); (M.A.); (F.F.); (T.L.P.); (A.Z.); (G.F.)
| | - Federica Furfaro
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (S.B.); (F.D.); (I.F.); (F.B.); (M.A.); (F.F.); (T.L.P.); (A.Z.); (G.F.)
| | - Tommaso Lorenzo Parigi
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (S.B.); (F.D.); (I.F.); (F.B.); (M.A.); (F.F.); (T.L.P.); (A.Z.); (G.F.)
| | - Alessandra Zilli
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (S.B.); (F.D.); (I.F.); (F.B.); (M.A.); (F.F.); (T.L.P.); (A.Z.); (G.F.)
| | - Gionata Fiorino
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (S.B.); (F.D.); (I.F.); (F.B.); (M.A.); (F.F.); (T.L.P.); (A.Z.); (G.F.)
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, University of Lorraine, CHRU-Nancy, F-54000 Nancy, France;
- Department of Gastroenterology, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- INSERM, NGERE, University of Lorraine, F-54000 Nancy, France
- INFINY Institute, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- FHU-CURE, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- Groupe Hospitalier privé Ambroise Paré-Hartmann, Paris IBD Center, F-92200 Neuilly sur Seine, France
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (S.B.); (F.D.); (I.F.); (F.B.); (M.A.); (F.F.); (T.L.P.); (A.Z.); (G.F.)
| |
Collapse
|
52
|
Carlomagno V, Mirabella M, Lucchini M. Current Status of Oral Disease-Modifying Treatment Effects on Cognitive Outcomes in Multiple Sclerosis: A Scoping Review. Bioengineering (Basel) 2023; 10:848. [PMID: 37508875 PMCID: PMC10376579 DOI: 10.3390/bioengineering10070848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Cognitive impairment represents one of the most hidden and disabling clinical aspects of multiple sclerosis (MS). In this regard, the major challenges are represented by the need for a comprehensive and standardised cognitive evaluation of each patient, both at disease onset and during follow-up, and by the lack of clear-cut data on the effects of treatments. In the present review, we summarize the current evidence on the effects of the available oral disease-modifying treatments (DMTs) on cognitive outcome measures. MATERIALS AND METHODS In this systematised review, we extract all the studies that reported longitudinally acquired cognitive outcome data on oral DMTs in MS patients. RESULTS We found 29 studies that evaluated at least one oral DMT, including observational studies, randomised controlled trials, and their extension studies. Most of the studies (n = 20) evaluated sphingosine-1-phosphate (S1P) modulators, while we found seven studies on dimethyl fumarate, six on teriflunomide, and one on cladribine. The most frequently used cognitive outcome measures were SDMT and PASAT. Most of the studies reported substantial stability or mild improvement in cognitive outcomes in a short-time follow-up (duration of most studies ≤2 years). A few studies also reported MRI measures of brain atrophy. CONCLUSION Cognitive outcomes were evaluated only in a minority of prospective studies on oral DMTs in MS patients with variable findings. More solid and numerous data are present for the S1P modulators. A standardised cognitive evaluation remains a yet unmet need to better clarify the possible positive effect of oral DMTs on cognition.
Collapse
Affiliation(s)
- Vincenzo Carlomagno
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, 00168 Rome, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Centro di ricerca Sclerosi Multipla (CERSM), 00168 Rome, Italy
| | - Massimiliano Mirabella
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, 00168 Rome, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Centro di ricerca Sclerosi Multipla (CERSM), 00168 Rome, Italy
| | - Matteo Lucchini
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, 00168 Rome, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Centro di ricerca Sclerosi Multipla (CERSM), 00168 Rome, Italy
| |
Collapse
|
53
|
Macaron G, Larochelle C, Arbour N, Galmard M, Girard JM, Prat A, Duquette P. Impact of aging on treatment considerations for multiple sclerosis patients. Front Neurol 2023; 14:1197212. [PMID: 37483447 PMCID: PMC10361071 DOI: 10.3389/fneur.2023.1197212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/18/2023] [Indexed: 07/25/2023] Open
Abstract
With a rapidly aging global population and improvement of outcomes with newer multiple sclerosis (MS)-specific disease-modifying therapies (DMTs), the epidemiology of MS has shifted to an older than previously described population, with a peak prevalence of the disease seen in the 55-65 years age group. Changes in the pathophysiology of MS appear to be age-dependent. Several studies have identified a consistent phase of disability worsening around the fifth decade of life. The latter appears to be independent of prior disease duration and inflammatory activity and concomitant to pathological changes from acute focal active demyelination to chronic smoldering plaques, slow-expanding lesions, and compartmentalized inflammation within the central nervous system (CNS). On the other hand, decreased CNS tissue reserve and poorer remyelinating capacity with aging lead to loss of relapse recovery potential. Aging with MS may imply longer exposure to DMTs, although treatment efficacy in patients >55 years has not been evaluated in pivotal randomized controlled trials and appears to decrease with age. Older individuals are more prone to adverse effects of DMTs, an important aspect of treatment individualization. Aging with MS also implies a higher global burden of comorbid illnesses that contribute to overall impairments and represent a crucial confounder in interpreting clinical worsening. Discontinuation of DMTs after age 55, when no evidence of clinical or radiological activity is detected, is currently under the spotlight. In this review, we will discuss the impact of aging on MS pathobiology, the effect of comorbidities and other confounders on clinical worsening, and focus on current therapeutic considerations in this age group.
Collapse
Affiliation(s)
- Gabrielle Macaron
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Faculté de Médecine, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | - Catherine Larochelle
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Nathalie Arbour
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Manon Galmard
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Jean Marc Girard
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Alexandre Prat
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Pierre Duquette
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
54
|
Samjoo IA, Drudge C, Walsh S, Tiwari S, Brennan R, Boer I, Häring DA, Klotz L, Adlard N, Banhazi J. Comparative efficacy of therapies for relapsing multiple sclerosis: a systematic review and network meta-analysis. J Comp Eff Res 2023; 12:e230016. [PMID: 37265062 PMCID: PMC10508312 DOI: 10.57264/cer-2023-0016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
Aim: To assess the relative efficacy of disease-modifying therapies (DMTs) for relapsing multiple sclerosis (RMS) including newer therapies (ozanimod, ponesimod, ublituximab) using network meta-analysis (NMA). Materials & methods: Bayesian NMAs for annualised relapse rate (ARR) and time to 3-month and 6-month confirmed disability progression (3mCDP and 6mCDP) were conducted. Results: For each outcome, the three most efficacious treatments versus placebo were monoclonal antibody (mAb) therapies: alemtuzumab, ofatumumab, and ublituximab for ARR; alemtuzumab, ocrelizumab, and ofatumumab for 3mCDP; and alemtuzumab, natalizumab, and either ocrelizumab or ofatumumab (depending on the CDP definition used for included ofatumumab trials) for 6mCDP. Conclusion: The most efficacious DMTs for RMS were mAb therapies. Of the newer therapies, only ublituximab ranked among the three most efficacious treatments (for ARR).
Collapse
Affiliation(s)
| | | | - Sarah Walsh
- Value & Evidence, EVERSANA™, Burlington, Ontario, Canada
| | | | | | | | | | - Luisa Klotz
- Department of Neurology, University Hospital Münster, Westfälische-Wilhelms-University Münster, Münster, Germany
| | | | | |
Collapse
|
55
|
Sorensen PS, Magyari M, Sellebjerg F. An update on combination therapies for multiple sclerosis: where are we now? Expert Rev Neurother 2023; 23:1173-1187. [PMID: 38058171 DOI: 10.1080/14737175.2023.2289572] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
INTRODUCTION In theory, combination of two agents, which are suboptimal when given individually, may result in a significant increase in therapeutic effect. Combination therapies have proven particularly effective against infections such as HIV, cancer, and also chronic autoimmune diseases such as rheumatoid arthritis. AREAS COVERED The authors review the literature, searching for randomized placebo-controlled or comparative, double-blind or investigator-blinded clinical trials, not including open label clinical trials, of treatment of multiple sclerosis (MS) with combination therapy or add-on therapy, including trials of induction therapy, trials for prevention of disease activity or worsening, amelioration of adverse effects, and treatment of relapses, and trials to increase remyelination. EXPERT OPINION Combination of two platform therapies (Interferon-beta or glatiramer acetate) was without additional effect. Clinical trials with add-on, often applying repurposed drugs (e.g. simvastatin, atorvastatin, minocycline, estriol, cyclophosphamide, azathioprine, albuterol, vitamin D), have been negative, apart from monthly methylprednisolone that, however, had low tolerability. Combination therapy for neuroprotection/remyelination showed some interesting results, though we are still awaiting results of phase III trials. The results of combination of anti-inflammatory therapies have in general been disappointing. In the future, combination of new effective neuroprotective/remyelinating drugs and highly effective anti-inflammatory treatments may benefit people with MS.
Collapse
Affiliation(s)
- Per Soelberg Sorensen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Melinda Magyari
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- The Danish Multiple Sclerosis Registry, Department of Neurology, Rigshospitalet, Glostrup, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
56
|
Telesford KM, Amezcua L, Tardo L, Horton L, Lund BT, Reder AT, Vartanian T, Monson NL. Understanding humoral immunity and multiple sclerosis severity in Black, and Latinx patients. Front Immunol 2023; 14:1172993. [PMID: 37215103 PMCID: PMC10196635 DOI: 10.3389/fimmu.2023.1172993] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
People identified with Black/African American or Hispanic/Latinx ethnicity are more likely to exhibit a more severe multiple sclerosis disease course relative to those who identify as White. While social determinants of health account for some of this discordant severity, investigation into contributing immunobiology remains sparse. The limited immunologic data stands in stark contrast to the volume of clinical studies describing ethnicity-associated discordant presentation, and to advancement made in our understanding of MS immunopathogenesis over the past several decades. In this perspective, we posit that humoral immune responses offer a promising avenue to better understand underpinnings of discordant MS severity among Black/African American, and Hispanic/Latinx-identifying patients.
Collapse
Affiliation(s)
- Kiel M. Telesford
- Department of Neurology, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Lilyana Amezcua
- Multiple Sclerosis Comprehensive Care Center, University of Southern California, Los Angeles, CA, United States
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lauren Tardo
- Department of Neurology, University of Texas Southwestern Medical Center (UT), Dallas, TX, United States
| | - Lindsay Horton
- Department of Neurology, University of Texas Southwestern Medical Center (UT), Dallas, TX, United States
| | - Brett T. Lund
- Multiple Sclerosis Comprehensive Care Center, University of Southern California, Los Angeles, CA, United States
| | - Anthony T. Reder
- Department of Neurology, University of Chicago, Chicago, IL, United States
| | - Timothy Vartanian
- Department of Neurology, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Nancy L. Monson
- Department of Neurology, University of Texas Southwestern Medical Center (UT), Dallas, TX, United States
| |
Collapse
|
57
|
Kihara Y, Chun J. Molecular and neuroimmune pharmacology of S1P receptor modulators and other disease-modifying therapies for multiple sclerosis. Pharmacol Ther 2023; 246:108432. [PMID: 37149155 DOI: 10.1016/j.pharmthera.2023.108432] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Multiple sclerosis (MS) is a neurological, immune-mediated demyelinating disease that affects people in the prime of life. Environmental, infectious, and genetic factors have been implicated in its etiology, although a definitive cause has yet to be determined. Nevertheless, multiple disease-modifying therapies (DMTs: including interferons, glatiramer acetate, fumarates, cladribine, teriflunomide, fingolimod, siponimod, ozanimod, ponesimod, and monoclonal antibodies targeting ITGA4, CD20, and CD52) have been developed and approved for the treatment of MS. All the DMTs approved to date target immunomodulation as their mechanism of action (MOA); however, the direct effects of some DMTs on the central nervous system (CNS), particularly sphingosine 1-phosphate (S1P) receptor (S1PR) modulators, implicate a parallel MOA that may also reduce neurodegenerative sequelae. This review summarizes the currently approved DMTs for the treatment of MS and provides details and recent advances in the molecular pharmacology, immunopharmacology, and neuropharmacology of S1PR modulators, with a special focus on the CNS-oriented, astrocyte-centric MOA of fingolimod.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, United States of America.
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, United States of America
| |
Collapse
|
58
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
59
|
Malar DS, Thitilertdecha P, Ruckvongacheep KS, Brimson S, Tencomnao T, Brimson JM. Targeting Sigma Receptors for the Treatment of Neurodegenerative and Neurodevelopmental Disorders. CNS Drugs 2023; 37:399-440. [PMID: 37166702 PMCID: PMC10173947 DOI: 10.1007/s40263-023-01007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
The sigma-1 receptor is a 223 amino acid-long protein with a recently identified structure. The sigma-2 receptor is a genetically unrelated protein with a similarly shaped binding pocket and acts to influence cellular activities similar to the sigma-1 receptor. Both proteins are highly expressed in neuronal tissues. As such, they have become targets for treating neurological diseases, including Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), multiple sclerosis (MS), Rett syndrome (RS), developmental and epileptic encephalopathies (DEE), and motor neuron disease/amyotrophic lateral sclerosis (MND/ALS). In recent years, there have been many pre-clinical and clinical studies of sigma receptor (1 and 2) ligands for treating neurological disease. Drugs such as blarcamesine, dextromethorphan and pridopidine, which have sigma-1 receptor activity as part of their pharmacological profile, are effective in treating multiple aspects of several neurological diseases. Furthermore, several sigma-2 receptor ligands are under investigation, including CT1812, rivastigmine and SAS0132. This review aims to provide a current and up-to-date analysis of the current clinical and pre-clinical data of drugs with sigma receptor activities for treating neurological disease.
Collapse
Affiliation(s)
- Dicson S Malar
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Premrutai Thitilertdecha
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanokphorn S Ruckvongacheep
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sirikalaya Brimson
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - James M Brimson
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand.
- Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Room 409, ChulaPat-1 Building, 154 Rama 1 Road, Bangkok, 10330, Thailand.
| |
Collapse
|
60
|
Morgan A, Tallantyre E, Ontaneda D. The benefits and risks of escalation versus early highly effective treatment in patients with multiple sclerosis. Expert Rev Neurother 2023; 23:433-444. [PMID: 37129299 DOI: 10.1080/14737175.2023.2208347] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
INTRODUCTION Multiple sclerosis is a chronic, demyelinating, inflammatory, and neurodegenerative disease of the central nervous system that affects over 2 million people worldwide. Considerable advances have been made in the availability of disease modifying therapies for relapsing-remitting multiple sclerosis since their introduction in the 1990s. This has led to debate regarding the optimal first-line treatment approach: a strategy of escalation versus early highly effective treatment. AREAS COVERED This review defines the strategies of escalation and early highly effective treatment, outlines the pros and cons of each, and provides an analysis of both the current literature and expected future directions of the field. EXPERT OPINION There is growing support for using early highly effective treatment as the initial therapeutic approach in relapsing-remitting multiple sclerosis. However, much of this support stems from observational real-world studies that use historic data and lack safety outcomes or randomized control trials that compare individual high versus low-moderate efficacy therapies, instead of the approaches themselves. Randomized control trials (DELIVER-MS, TREAT-MS) are needed to systemically and prospectively compare contemporary escalation versus early highly effective treatment approaches.
Collapse
Affiliation(s)
- Annalisa Morgan
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Emma Tallantyre
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Daniel Ontaneda
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
61
|
Leßmann V, Kartalou GI, Endres T, Pawlitzki M, Gottmann K. Repurposing drugs against Alzheimer's disease: can the anti-multiple sclerosis drug fingolimod (FTY720) effectively tackle inflammation processes in AD? J Neural Transm (Vienna) 2023:10.1007/s00702-023-02618-5. [PMID: 37014414 PMCID: PMC10374694 DOI: 10.1007/s00702-023-02618-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/02/2023] [Indexed: 04/05/2023]
Abstract
Therapeutic approaches providing effective medication for Alzheimer's disease (AD) patients after disease onset are urgently needed. Previous studies in AD mouse models and in humans suggested that physical exercise or changed lifestyle can delay AD-related synaptic and memory dysfunctions when treatment started in juvenile animals or in elderly humans before onset of disease symptoms. However, a pharmacological treatment that can reverse memory deficits in AD patients was thus far not identified. Importantly, AD disease-related dysfunctions have increasingly been associated with neuro-inflammatory mechanisms and searching for anti-inflammatory medication to treat AD seems promising. Like for other diseases, repurposing of FDA-approved drugs for treatment of AD is an ideally suited strategy to reduce the time to bring such medication into clinical practice. Of note, the sphingosine-1-phosphate analogue fingolimod (FTY720) was FDA-approved in 2010 for treatment of multiple sclerosis patients. It binds to the five different isoforms of Sphingosine-1-phosphate receptors (S1PRs) that are widely distributed across human organs. Interestingly, recent studies in five different mouse models of AD suggest that FTY720 treatment, even when starting after onset of AD symptoms, can reverse synaptic deficits and memory dysfunction in these AD mouse models. Furthermore, a very recent multi-omics study identified mutations in the sphingosine/ceramide pathway as a risk factor for sporadic AD, suggesting S1PRs as promising drug target in AD patients. Therefore, progressing with FDA-approved S1PR modulators into human clinical trials might pave the way for these potential disease modifying anti-AD drugs.
Collapse
Affiliation(s)
- Volkmar Leßmann
- Institute for Physiology, Medical Faculty, Otto-Von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Magdeburg, Germany.
| | - Georgia-Ioanna Kartalou
- Institute for Physiology, Medical Faculty, Otto-Von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Thomas Endres
- Institute for Physiology, Medical Faculty, Otto-Von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Duesseldorf, Germany
| | - Kurt Gottmann
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany.
| |
Collapse
|
62
|
Dumitrescu L, Papathanasiou A, Coclitu C, Garjani A, Evangelou N, Constantinescu CS, Popescu BO, Tanasescu R. An update on the use of sphingosine 1-phosphate receptor modulators for the treatment of relapsing multiple sclerosis. Expert Opin Pharmacother 2023; 24:495-509. [PMID: 36946625 PMCID: PMC10069376 DOI: 10.1080/14656566.2023.2178898] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is an immune-mediated disorder of the CNS manifested by recurrent attacks of neurological symptoms (related to focal inflammation) and gradual disability accrual (related to progressive neurodegeneration and neuroinflammation). Sphingosine-1-phosphate-receptor (S1PR) modulators are a class of oral disease-modifying therapies (DMTs) for relapsing MS. The first S1PR modulator developed and approved for MS was fingolimod, followed by siponimod, ozanimod, and ponesimod. All are S1P analogues with different S1PR-subtype selectivity. They restrain the S1P-dependent lymphocyte egress from lymph nodes by binding the lymphocytic S1P-subtype-1-receptor. Depending on their pharmacodynamics and pharmacokinetics, they can also interfere with other biological functions. AREAS COVERED Our narrative review covers the PubMed English literature on S1PR modulators in MS until August 2022. We discuss their pharmacology, efficacy, safety profile, and risk management recommendations based on the results of phase II and III clinical trials. We briefly address their impact on the risk of infections and vaccines efficacy. EXPERT OPINION S1PR modulators decrease relapse rate and may modestly delay disease progression in people with relapsing MS. Aside their established benefit, their place and timing within the long-term DMT strategy in MS, as well as their immunological effects in the new and evolving context of the post-COVID-19 pandemic and vaccination campaigns warrant further study.
Collapse
Affiliation(s)
- Laura Dumitrescu
- Department of Clinical Neurosciences, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
- Department of Neurology, Colentina Clinical Hospital, Bucharest, Romania
| | - Athanasios Papathanasiou
- Department of Neurology, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK
| | - Catalina Coclitu
- Department of Multiple Sclerosis and Neuroimmunology, CHU Grenoble, Grenoble, France
| | - Afagh Garjani
- Academic Clinical Neurology, Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK
| | - Nikos Evangelou
- Department of Neurology, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK
- Academic Clinical Neurology, Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK
| | - Cris S Constantinescu
- Academic Clinical Neurology, Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Neurology, Cooper Neurological Institute, Camden, NJ, USA
| | - Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
- Department of Neurology, Colentina Clinical Hospital, Bucharest, Romania
| | - Radu Tanasescu
- Department of Neurology, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK
- Academic Clinical Neurology, Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
63
|
Guger M, Enzinger C, Leutmezer F, Di Pauli F, Kraus J, Kalcher S, Kvas E, Berger T. Effects of horizontal versus vertical switching of disease-modifying treatment after platform drugs on disease activity in patients with relapsing-remitting multiple sclerosis in Austria. J Neurol 2023; 270:3103-3111. [PMID: 36862148 DOI: 10.1007/s00415-023-11644-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
OBJECTIVES To compare in a nationwide observational cohort the effectiveness, frequency and reasons for treatment interruption of dimethylfumarate (DMF) and teriflunomide (TERI) (horizontal switchers) versus alemtuzumab (AZM), cladribine (CLAD), fingolimod (FTY), natalizumab (NTZ), ocrelizumab (OCR) and ozanimod (OZA) (vertical switchers) in patients with relapsing-remitting multiple sclerosis (pwRRMS) and prior interferon beta (IFN-beta) or glatiramer-acetate (GLAT) treatment. MATERIALS AND METHODS The "horizontal switch cohort" included 669 and the "vertical switch cohort" 800 RRMS patients. We used propensity scores for inverse probability weighting in generalized linear (GLM) and Cox proportional hazards models to correct for bias in this non-randomized registry study. RESULTS Estimated mean annualized relapse rates (ARR) were 0.39 for horizontal and 0.17 for vertical switchers. The incidence rate ratio (IRR) in the GLM model showed an increased relapse probability of 86% for horizontal versus vertical switchers (IRR = 1.86; 95% CI 1.38-2.50; p < 0.001). Analyzing the time to the first relapse after treatment switch by Cox regression, a hazard ratio of 1.58 (95% CI 1.24-2.02; p < 0.001) indicated an increased risk of 58% for horizontal switchers. The hazard ratios for treatment interruption comparing horizontal versus vertical switchers were 1.78 (95% CI 1.46-2.18; p < 0.001). CONCLUSIONS Horizontal switching after a platform therapy resulted in a higher relapse and interrupt probability and was associated with a trend towards less EDSS improvement comparing to vertical switching in Austrian RRMS patients.
Collapse
Affiliation(s)
- Michael Guger
- Department of Neurology, Pyhrn-Eisenwurzen Hospital Steyr, Sierninger Straße 170, 4400, Steyr, Austria.
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria.
| | | | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Franziska Di Pauli
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jörg Kraus
- Department of Laboratory Medicine, Paracelsus Medical University and Salzburger Landeskliniken, Salzburg, Austria
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
64
|
Li X, Zhang H, Zheng W, Sun J, Wang L, He Z. Ozanimod-Dependent Activation of SIRT3/NF-κB/AIM2 Pathway Attenuates Secondary Injury After Intracerebral Hemorrhage. Mol Neurobiol 2023; 60:1117-1131. [PMID: 36417102 DOI: 10.1007/s12035-022-03137-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022]
Abstract
Intracerebral hemorrhage (ICH) is characterized by poor prognosis and high mortality rates. To date, satisfactory therapeutic approaches for ICH remain limited, so it is urgently needed to develop a safer and more effective prescription. Secondary inflammatory response has been acknowledged as an aggravating factor to neurological deterioration after ICH. As a component of inflammasome sensors, absent in melanoma 2 (AIM2) plays an important role in the neuroinflammation process. Here, ozanimod, a novel selective sphingosine 1-phosphate receptor modulator, has gained much attention, which alleviates the resultant neuroinflammation and improves functional recovery derived from ICH. In this study, ozanimod improved neurological functions of ICH mice via reduction of hematoma size. Furthermore, both microglial and AIM2 inflammasome activations were reversed by ozanimod, which are confirmed by the downregulation of related inflammatory proteins and cytokines (IL-1β, IL-6, and TNF-α), coupled with the upregulation of SIRT3, by leveraging the Western blot and enzyme-linked immunosorbent assay. Additionally, we find that ozanimod decreases nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) expression. Notably, in vitro cell experiments induced by lipopolysaccharide confirms that the anti-inflammatory effect of ozanimod could be abolished by the SIRT3 inhibitor. In conclusion, these results indicate that ozanimod mitigates ICH-induced secondary inflammatory responses by modulating AIM2 inflammasome mediated by SIRT3/NF-κB/AIM2 pathway. This demonstrates ozanimod orchestrates ICH-induced neuroinflammation and could be a targeted therapy for improving prognosis of ICH.
Collapse
Affiliation(s)
- Xiaoxi Li
- Department of Geriatrics, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Heyu Zhang
- Department of Neurology, the First Affiliated Hospital, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
| | - Wenxu Zheng
- Department of Geriatrics, Dalian Friendship Hospital, Dalian, 116100, China
| | - Jizhou Sun
- Department of Neurosurgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Liyuan Wang
- Department of Neurology, the First Hospital of China Medical University, Shenyang, 110001, China.
| | - Zhiyi He
- Department of Neurology, the First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
65
|
Selkirk JV, Yan YG, Ching N, Paget K, Hargreaves R. In vitro assessment of the binding and functional responses of ozanimod and its plasma metabolites across human sphingosine 1-phosphate receptors. Eur J Pharmacol 2023; 941:175442. [PMID: 36470447 DOI: 10.1016/j.ejphar.2022.175442] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022]
Abstract
Ozanimod is approved in multiple countries for the treatment of adults with either relapsing multiple sclerosis or moderately to severely active ulcerative colitis. Ozanimod is metabolized in humans to form seven active plasma metabolites, including two major active metabolites CC112273 and CC1084037, and an inactive metabolite. Here, the binding and activity of ozanimod and its metabolites across human sphingosine 1-phosphate receptors were determined. Binding affinity was assessed in Chinese hamster ovary cell membranes expressing recombinant human sphingosine 1-phosphate receptors 1 and 5 via competitive radioligand binding using tritium-labeled ozanimod; selectivity via functional potency assessment was performed using [35S]-guanosine-5'-(γ-thio)-triphosphate binding assays. Receptor internalization was assessed in human embryonic kidney 293 cells overexpressing sphingosine 1-phosphate receptor 1-green fluorescent protein and Chinese hamster ovary cells overexpressing sphingosine 1-phosphate receptor 5-hemagglutinin via fluorescence activated cell sorting. Functional activity was assessed in primary cultures of human astrocytes via phosphorylation assays. Ozanimod and its functionally active metabolites bound to the same sites within sphingosine 1-phosphate receptors 1 and 5, with metabolites displaying the same selectivity profile as ozanimod. Agonism at sphingosine 1-phosphate receptor 1 induced receptor internalization, whereas sphingosine 1-phosphate receptor 5 did not. Ozanimod, CC112273, and CC1084037 elicited functional intracellular signaling in human astrocytes, pharmacologically characterized to be mediated by sphingosine 1-phosphate receptor 1. The active plasma metabolites of ozanimod bound to sphingosine 1-phosphate receptors 1 and 5 and displayed similar pharmacologic profiles as their parent compound, likely contributing to clinical efficacy in patients with relapsing multiple sclerosis or moderately to severely active ulcerative colitis.
Collapse
Affiliation(s)
| | | | | | - Kate Paget
- Bristol Myers Squibb, Princeton, NJ, USA
| | | |
Collapse
|
66
|
Ozanimod-Associated Iatrogenic Kaposi Sarcoma in a Patient With Ulcerative Colitis. ACG Case Rep J 2023; 10:e00929. [PMID: 36788790 PMCID: PMC9915949 DOI: 10.14309/crj.0000000000000929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/11/2022] [Accepted: 11/02/2022] [Indexed: 02/11/2023] Open
Abstract
Ozanimod is an oral sphingosine-1-phosphate receptor modulator. Although it can be an effective drug for the induction and maintenance of remission in patients with moderately to severely active ulcerative colitis, there have been a few reported cases of various malignancies after exposure to this small molecule. We describe a unique case of biopsy-proven Kaposi sarcoma of the skin and colon in a patient with biologic-resistant ulcerative colitis after treatment with ozanimod for 2 months. Given the potential risk of malignancy associated with this agent, physicians should be aware of this rare adverse event.
Collapse
|
67
|
Swallow E, Pham T, Patterson-Lomba O, Yin L, Gomez-Lievano A, Liu J, Tencer T, Gupte-Singh K. Comparative efficacy and safety of ozanimod and ponesimod for relapsing multiple sclerosis: A matching-adjusted indirect comparison. Mult Scler Relat Disord 2023; 71:104551. [PMID: 36791623 DOI: 10.1016/j.msard.2023.104551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/10/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND Ozanimod and ponesimod are sphingosine 1-phosphate receptor modulators approved by the U.S. Food and Drug Administration for treatment of relapsing forms of multiple sclerosis (MS). Given that no head-to-head trials have assessed these two treatments, we performed a matching-adjusted indirect comparison (MAIC) to compare efficacy and safety outcomes between ozanimod and ponesimod for MS. METHODS A MAIC compared efficacy and safety of ozanimod and ponesimod at 2 years. Outcomes included annualized relapse rate (ARR) and percentage change from baseline in brain volume loss (BVL) as well as rates of any treatment-emergent adverse events (TEAEs), serious adverse events (AEs), AEs leading to discontinuation, and other safety outcomes. Individual patient-level data were obtained for ozanimod from the RADIANCE-B trial, while aggregate-level patient data were obtained for ponesimod from the OPTIMUM trial. The MAIC was not anchored owing to lack of a common comparator across the two trials. The following characteristics were matched between the trials' populations: age, sex, time since MS symptom onset, relapses in prior year, Expanded Disability Status Scale score, disease-modifying therapies received in the prior 2 years, absence of gadolinium-enhancing T1 lesions, and percentage of patients from Eastern Europe. RESULTS After matching, key baseline characteristics were balanced between patients receiving ozanimod and ponesimod. Compared with ponesimod, ozanimod had a numerically lower ARR (rate ratio: 0.80 [95% CI: 0.57, 1.10]) and was associated with a significant reduction in BVL (% change difference: 0.20 [95% CI: 0.05, 0.36]). Additionally, ozanimod was associated with a significantly lower risk of TEAEs (risk difference: -11.9% [95% CI: -16.8%, -7.0%]), AEs leading to discontinuation (-6.1% [95% CI: -8.9%, -3.4%]), and lymphocyte count <0.2 K/μL (-2.3% [95% CI: -4.2%, -0.5%]). There were no statistically significant differences in the other safety outcomes. CONCLUSION The MAIC results suggest that, compared with ponesimod, ozanimod is more effective in preserving brain volume, is comparable in terms of reducing relapse rates, and has a favorable safety profile.
Collapse
Affiliation(s)
- Elyse Swallow
- Analysis Group, Inc., 111 Huntington Ave., 14th floor, Boston, MA 02199, United States of America.
| | - Timothy Pham
- Bristol Myers Squibb, 3401 Princeton Pike, Lawrence Township, NJ 08648, United States of America
| | - Oscar Patterson-Lomba
- Analysis Group, Inc., 111 Huntington Ave., 14th floor, Boston, MA 02199, United States of America
| | - Lei Yin
- Analysis Group, Inc., 333 S. Hope St., #27, Los Angeles, CA 90071, United States of America
| | - Andres Gomez-Lievano
- Analysis Group, Inc., 111 Huntington Ave., 14th floor, Boston, MA 02199, United States of America
| | - Jingyi Liu
- Analysis Group, Inc., 111 Huntington Ave., 14th floor, Boston, MA 02199, United States of America
| | - Tom Tencer
- Bristol Myers Squibb, 3401 Princeton Pike, Lawrence Township, NJ 08648, United States of America
| | - Komal Gupte-Singh
- Bristol Myers Squibb, 3401 Princeton Pike, Lawrence Township, NJ 08648, United States of America
| |
Collapse
|
68
|
Abstract
The multiple sclerosis (MS) neurotherapeutic landscape is rapidly evolving. New disease-modifying therapies (DMTs) with improved efficacy and safety, in addition to an expanding pipeline of agents with novel mechanisms, provide more options for patients with MS. While treatment of MS neuroinflammation is well tailored in the existing DMT armamentarium, concerted efforts are currently underway for identifying neuropathological targets and drug discovery for progressive MS. There is also ongoing research to develop agents for remyelination and neuroprotection. Further insights are needed to guide DMT initiation and sequencing as well as to determine the role of autologous stem cell transplantation in relapsing and progressive MS. This review provides a summary of these updates.
Collapse
Affiliation(s)
- Moein Amin
- Cleveland Clinic, Department of Neurology, Cleveland, OH 44195, USA
| | - Carrie M Hersh
- Cleveland Clinic, Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
| |
Collapse
|
69
|
Pennington P, Weinstock-Guttman B, Kolb C, Jakimovski D, Sacca K, Benedict RHB, Eckert S, Stecker M, Lizarraga A, Dwyer MG, Schumacher CB, Bergsland N, Picco P, Bernitsas E, Zabad R, Pardo G, Negroski D, Belkin M, Hojnacki D, Zivadinov R. Communicating the relevance of neurodegeneration and brain atrophy to multiple sclerosis patients: patient, provider and researcher perspectives. J Neurol 2023; 270:1095-1119. [PMID: 36376729 DOI: 10.1007/s00415-022-11405-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022]
Abstract
Central nervous system (CNS) atrophy provides valuable additional evidence of an ongoing neurodegeneration independent of lesion accrual in persons with multiple sclerosis (PwMS). However, there are limitations for interpretation of CNS volume changes at individual patient-level. Patients are receiving information on the topic of atrophy through various sources, including media, patient support groups and conferences, and discussions with their providers. Whether or not the topic of CNS atrophy should be proactively discussed with PwMS during office appointments is currently controversial. This commentary/perspective article represents perspectives of PwMS, providers and researchers with recommendations for minimizing confusion and anxiety, and facilitating proactive discussion about brain atrophy, as an upcoming routine measure in evaluating disease progression and treatment response monitoring. The following recommendations were created based on application of patient's and provider's surveys, and various workshops held over a period of 2 years: (1) PwMS should receive basic information on understanding of brain functional anatomy, and explanation of inflammation and neurodegeneration; (2) the expertise for atrophy measurements should be characterized as evolving; (3) quality patient education materials on these topics should be provided; (4) the need for standardization of MRI exams has to be explained and communicated; (5) providers should discuss background on volumetric changes, including references to normal aging; (6) the limitations of brain volume assessments at an individual-level should be explained; (7) the timing and language used to convey this information should be individualized based on the patient's background and disease status; (8) a discussion guide may be a very helpful resource for use by providers/staff to support these discussions; (9) understanding the role of brain atrophy and other MRI metrics may elicit greater patient satisfaction and acceptance of the value of therapies that have proven efficacy around these outcomes; (10) the areas that represent possibilities for positive self-management of MS symptoms that foster hope for improvement should be emphasized, and in particular regarding use of physical and mental exercise that build or maintain brain reserve through increased network efficiency, and (11) an additional time during clinical visits should be allotted to discuss these topics, including creation of specific educational programs.
Collapse
Affiliation(s)
- Penny Pennington
- Advisory Council, Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Channa Kolb
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA
| | - Katherine Sacca
- Advisory Council, Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA
| | - Ralph H B Benedict
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Svetlana Eckert
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Marc Stecker
- Advisory Council, Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA
| | - Alexis Lizarraga
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michael G Dwyer
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Carol B Schumacher
- Advisory Council, Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA.,IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Patricia Picco
- Advisory Council, Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA
| | | | - Rana Zabad
- University of Nebraska Medical Center, Omaha, NE, USA
| | - Gabriel Pardo
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Martin Belkin
- Michigan Institute for Neurological Disorders (MIND), Farmington Hills, MI, USA
| | - David Hojnacki
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA. .,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
70
|
Bayas A, Christ M, Faissner S, Klehmet J, Pul R, Skripuletz T, Meuth SG. Disease-modifying therapies for relapsing/active secondary progressive multiple sclerosis - a review of population-specific evidence from randomized clinical trials. Ther Adv Neurol Disord 2023; 16:17562864221146836. [PMID: 36710720 PMCID: PMC9880589 DOI: 10.1177/17562864221146836] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/04/2022] [Indexed: 01/25/2023] Open
Abstract
Although the understanding of secondary progressive multiple sclerosis (SPMS) is evolving, early detection of relapse-independent progression remains difficult. This is further complicated by superimposed relapses and compensatory mechanisms that allow for silent progression. The term relapsing multiple sclerosis (RMS) subsumes relapsing-remitting multiple sclerosis (RRMS) and SPMS with relapses. The latter is termed 'active' SPMS, for which disease-modifying therapies (DMTs) approved for either RMS or active SPMS can be used. However, the level of evidence supporting efficacy and safety in SPMS differs between drugs approved for RMS and SPMS. Our review aims to identify current evidence from published clinical trials and European public assessment reports from the marketing authorization procedure on the efficacy, especially on progression, of DMTs approved for RMS and SPMS. To identify relevant evidence, a literature search has been conducted and European public assessment reports of DMTs approved for RMS have been screened for unpublished data specific to SPMS. Only two clinical trials demonstrated a significant reduction in disability progression in SPMS study populations: the EXPAND study for siponimod, which included a typical SPMS population, and the European study for interferon (IFN)-beta 1b s.c., which included patients with very early and active SPMS. Both DMTs also achieved significant reductions in relapse rates. Ocrelizumab, cladribine, ofatumumab, and ponesimod are all approved for RMS - ocrelizumab, ofatumumab, and ponesimod based on an RMS study, cladribine based on an RRMS study. Data on efficacy in SPMS are only available from post hoc analyses of very small subgroups, representing only up to 15% of the total study population. For these DMTs, approval for RMS, including active SPMS, was mainly based on the assumption that the reduction in relapse rate observed in patients with RRMS can also be applied to SPMS. Based on that, the potential of these drugs to reduce relapse-independent progression remains unclear.
Collapse
Affiliation(s)
- Antonios Bayas
- Department of Neurology, Faculty of Medicine,
University of Augsburg, Augsburg, Germany
| | - Monika Christ
- Department of Neurology, Faculty of Medicine,
University of Augsburg, Augsburg, Germany
| | - Simon Faissner
- Department of Neurology, St. Josef-Hospital,
Ruhr-University Bochum, Bochum, Germany
| | - Juliane Klehmet
- Department of Neurology, Jüdisches Krankenhaus
Berlin, Berlin, Germany
| | - Refik Pul
- Department of Neurology and Center for
Translational and Behavioral Neurosciences (C-TNBS), University Medicine
Essen, Essen, Germany
| | | | | |
Collapse
|
71
|
Kohle F, Dalakas MC, Lehmann HC. Repurposing MS immunotherapies for CIDP and other autoimmune neuropathies: unfulfilled promise or efficient strategy? Ther Adv Neurol Disord 2023; 16:17562864221137129. [PMID: 36620728 PMCID: PMC9810996 DOI: 10.1177/17562864221137129] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/19/2022] [Indexed: 01/03/2023] Open
Abstract
Despite advances in the treatment of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and other common autoimmune neuropathies (AN), still-many patients with these diseases do not respond satisfactorily to the available treatments. Repurposing of disease-modifying therapies (DMTs) from other autoimmune conditions, particularly multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD), is a promising strategy that may accelerate the establishment of novel treatment choices for AN. This approach appears attractive due to homologies in the pathogenesis of these diseases and the extensive post-marketing experience that has been gathered from treating MS and NMOSD patients. The idea is also strengthened by a number of studies that explored the efficacy of DMTs in animal models of AN but also in some CIDP patients. We here review the available preclinical and clinical data of approved MS therapeutics in terms of their applicability to AN, especially CIDP. Promising therapeutic approaches appear to be B cell-directed and complement-targeting strategies, such as anti-CD20/anti-CD19 agents, Bruton's tyrosine kinase inhibitors and anti-C5 agents, as they exert their effects in the periphery. This is a major advantage because, in contrast to MS, their action in the periphery is sufficient to exert significant immunomodulation.
Collapse
Affiliation(s)
- Felix Kohle
- Department of Neurology, Faculty of Medicine,
University of Cologne and University Hospital Cologne, Cologne,
Germany
| | - Marinos C. Dalakas
- Department of Neurology, Thomas Jefferson
University, Philadelphia, PA, USA
- Neuroimmunology Unit, National and Kapodistrian
University of Athens Medical School, Athens, Greece
| | - Helmar C. Lehmann
- Department of Neurology, Faculty of Medicine,
University of Cologne and University Hospital Cologne, Kerpener Strasse, 62,
50937 Cologne, Germany
| |
Collapse
|
72
|
Chen C, Zhang E, Zhu C, Wei R, Ma L, Dong X, Li R, Sun F, Zhou Y, Cui Y, Liu Z. Comparative efficacy and safety of disease-modifying therapies in patients with relapsing multiple sclerosis: A systematic review and network meta-analysis. J Am Pharm Assoc (2003) 2023; 63:8-22.e23. [PMID: 36055929 DOI: 10.1016/j.japh.2022.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Currently, 19 disease-modifying therapies (DMTs) have been approved for the treatment of patients with relapsing forms of multiple sclerosis (RMS). OBJECTIVE The objective of this study was to conduct a systematic review and network meta-analysis to evaluate the efficacy and safety of DMTs in adults with RMS. METHODS We searched PubMed, Embase, the Cochrane Central Register of Controlled Trials, ClinicalTrials.gov, the Food and Drug Administration, and European Medicines Agency websites for randomized controlled trials (RCTs) (from inception to July 2021). Eligible RCTs evaluated approved treatments for RMS as monotherapy and reported at least one of the primary outcome measures of interest. The primary outcome was efficacy (annualized relapse rate and 12-week confirmed disability progression) and safety (serious adverse events [AEs] and discontinuation due to AEs). We assessed the risk of bias (RoB) of included studies using the Cochrane RoB tool version 2.0 (https://www.bmj.com/content/343/bmj.d5928) for RCTs. Surface under the cumulative ranking (SUCRA) was used to rank therapies and to assess quality of general evidence, respectively. The Grading of Recommendations Assessment, Development and Evaluation framework was used to rank therapies and to assess quality of general evidence. RESULTS A total of 43 records represent 45 RCTs selected for network meta-analysis. In total, 30,720 participants (median of 732; interquartile range: 248-931) were included, of which 67% were female. By SUCRA analysis, alemtuzumab (94.3%) presented the highest probability of being the best alternative for annualized relapse rate, whereas ofatumumab (93.5%) presented the highest probability of being the best alternative for 12-week confirmed disability progression. Interferon beta-1b subcutaneous (87.0%) presented the highest probability of the best safety among all DMTs for serious AEs, whereas alemtuzumab (92.4%) presented the highest probability of the best safety among all DMTs for discontinuation due to AEs. CONCLUSION Network meta-analysis shows that alemtuzumab and ofatumumab present the highest efficacy among DMTs. Because there is little difference between these probabilities for many treatments, health professionals should use clinical shared decision making when formulating treatment plans with patients.
Collapse
|
73
|
Stamatellos VP, Papazisis G. Safety and Monitoring of the Treatment with Disease-Modifying Therapies (DMTs) for Multiple Sclerosis (MS). Curr Rev Clin Exp Pharmacol 2023; 18:39-50. [PMID: 35418296 DOI: 10.2174/2772432817666220412110720] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/08/2022] [Accepted: 01/27/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Disease-Modifying Therapies (DMTs) for Multiple Sclerosis (MS) are widely used given their proven efficacy in the relapsing form of the disease, while recently, Siponimod and Ocrelizumab have been approved for the progressive forms of the disease. Currently, 22 diseasemodifying drugs are approved by the FDA, while in 2012, only nine were present in the market. From March 2019 until August 2020, six new drugs were approved. This rapid development of new DMTs highlighted the need to update our knowledge about their short and long-term safety. OBJECTIVE This review summarizes the available safety data for all the Disease-Modifying Therapies for Multiple Sclerosis and presents the monitoring plan before and during the treatment. METHODS A literature search was conducted using PUBMED and COCHRANE databases. Key journals and abstracts from major annual meetings of Neurology, references of relevant reviews, and relative articles were also manually searched. We prioritized systematic reviews, large randomized controlled trials (RCTs), prospective cohort studies, and other observational studies. Special attention was paid to guidelines and papers focusing on the safety and monitoring of DMTs. CONCLUSION Data for oral (Sphingosine 1-phosphate (S1P) receptor modulators, Fumarates, Teriflunomide, Cladribine), injectables (Interferons, Glatiramer acetate, Ofatumumab), and infusion therapies (Natalizumab, Ocrelizumab, Alemtuzumab) are presented.
Collapse
Affiliation(s)
| | - Georgios Papazisis
- Clinical Trials Unit, Special Unit for Biomedical Research and Education & Department of Clinical Pharmacology School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
74
|
Muacevic A, Adler JR, Albeladi F, Tahiri AA, Kinani EM, Almohsen RA, Alamoudi NH, Alanazi AA, Alkhamshi SJ, Althomali NA, Alrubaiei SN, Altowairqi FK. An Overview of the History, Pathophysiology, and Pharmacological Interventions of Multiple Sclerosis. Cureus 2023; 15:e33242. [PMID: 36733554 PMCID: PMC9888604 DOI: 10.7759/cureus.33242] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2023] [Indexed: 01/03/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-inflammatory disease that attacks and damages myelinated axons in the central nervous system (CNS) and causes nontraumatic neurological impairment in young people. Historically, Lidwina of Schiedam documented the first MS case. After that, Augustus d'Este wrote for years about how his MS symptoms worsened. Age, sex, genetics, environment, smoking, injuries, and infections, including herpes simplex and rabies, are risk factors for MS. According to epidemiology, the average age of onset is between 20 and 40 years. MS is more prevalent in women and is common in Europe and America. As diagnostic methods and criteria change, people with MS may be discovered at earlier and earlier stages of the disease. MS therapy has advanced dramatically due to breakthroughs in our knowledge of the disease's etiology and progression. Therefore, the efficacy and risk of treatment medications increased exponentially. Management goals include reducing lesion activity and avoiding secondary progression. Current treatment approaches focus on managing acute episodes, relieving symptoms, and reducing biological activity. Disease-modifying drugs such as fingolimod, interferon-beta, natalizumab, and dimethyl fumarate are the most widely used treatments for MS. For proof of the efficacy and safety of these medications, investigations in the real world are necessary.
Collapse
|
75
|
Cholesterol pathway biomarkers are associated with neuropsychological measures in multiple sclerosis. Mult Scler Relat Disord 2023; 69:104374. [PMID: 36403378 DOI: 10.1016/j.msard.2022.104374] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/03/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Cognitive impairment (CI) is frequent in persons with multiple sclerosis (PwMS) and is linked to neurodegeneration. Cholesterol pathway biomarkers (CPB) are associated with blood-brain barrier breakdown, lesions, and neurodegeneration in multiple sclerosis (MS). CPB could influence CI. METHODS This cross-sectional study (n = 163) included 74 relapsing-remitting MS (RR-MS), 48 progressive MS (P-MS) and 41 healthy control (HC) subjects. The assessed physical disability and cognitive measures were: Nine-hole Peg Test (NHPT), Timed 25-Foot Walk, Symbol Digit Modalities Test (SDMT), Paced Auditory Serial Addition Test-3, and Beck Depression Inventory-Fast Screen. CPB panel included plasma total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and the apolipoproteins (Apo), ApoA-I, ApoA-II, ApoB, ApoC-II and ApoE. Disability and cognitive measures were assessed as dependent variables in regression analyzes with age, sex, body mass index, years of education, HC vs. RR-MS vs. P-MS status, CPB, and a HC vs. RR-MS vs. P-MS status × CPB interaction term as predictors. RESULTS SDMT was associated with the interaction terms for HDL-C (p = 0.045), ApoA-I (p = 0.032), ApoB (p = 0.032), TC/HDL-C (p = 0.013), and ApoB/ApoA-I (p = 0.008) ratios. CPB associations of SDMT were not abrogated upon adjusting for brain parenchymal volume. NHPT performance was associated with the interaction terms for TC (p = 0.047), LDL-C (p = 0.017), ApoB (p = 0.001), HDL-C (p = 0.035), ApoA-I (p = 0.032), ApoC-II (p = 0.049) and ApoE (p = 0.037), TC/HDL-C (p < 0.001), and ApoB/ApoA-I ratios (p < 0.001). CONCLUSIONS The LDL to HDL proportion is associated with SDMT and NHPT in MS. The findings are consistent with a potential role for CPB in CI.
Collapse
|
76
|
Dimitriou NG, Meuth SG, Martinez-Lapiscina EH, Albrecht P, Menge T. Treatment of Patients with Multiple Sclerosis Transitioning Between Relapsing and Progressive Disease. CNS Drugs 2023; 37:69-92. [PMID: 36598730 PMCID: PMC9829585 DOI: 10.1007/s40263-022-00977-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune demyelinating and neurodegenerative disease of the central nervous system with a wide variety of clinical phenotypes. In spite of the phenotypic classification of MS patients, current data provide evidence that diffuse neuroinflammation and neurodegeneration coexist in all MS forms, the latter gaining increasing clinical relevance in progressive phases. Given that the transition phase of relapsing-remitting MS (RRMS) to secondary progressive MS (SPMS) is not well defined, and widely accepted criteria for SPMS are lacking, randomised controlled trials (RCTs) specifically designed for the transition phase have not been conducted. This review summarizes primary and secondary analyses and reports derived from phase III prospective clinical RCTs listed in PubMed of compounds authorised through the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) for the treatment of MS. The best data are available for interferon beta-1a (IFNb-1a) subcutaneous (s.c.), IFNb-1b s.c., mitoxantrone and siponimod, the latter being the most modern compound with likely the best risk-to-effect ratio. Moreover, there is a labels discrepancy for many disease-modifying treatments (DMTs) between the FDA and EMA, which have to be taken into consideration when opting for a specific DMT.
Collapse
Affiliation(s)
- Nikolaos G. Dimitriou
- grid.411327.20000 0001 2176 9917Department of Neurology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Sven G. Meuth
- grid.411327.20000 0001 2176 9917Department of Neurology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Elena H. Martinez-Lapiscina
- grid.10403.360000000091771775Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain ,grid.452397.eOffice of Therapies for Neurological and Psychiatric Disorders, Human Medicines Division, European Medicines Agency, Amsterdam, The Netherlands
| | - Philipp Albrecht
- Department of Neurology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany. .,Department of Neurology, Maria Hilf Clinic, Mönchengladbach, Germany.
| | - Til Menge
- grid.411327.20000 0001 2176 9917Department of Neurology, LVR-Klinikum Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
77
|
Specific Aspects of Immunotherapy for Multiple Sclerosis in Switzerland—A Structured Commentary, Update 2022. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2022. [DOI: 10.3390/ctn7010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS), particularly relapsing MS (RMS), has become a treatable disease in recent decades, and immunotherapies are now able to influence long-term disease course. A wide range of disease-modifying drugs are available, which makes the choice of therapy in individual cases considerably more complex. Due to specific regulatory aspects (partly diverging approvals by Swissmedic compared to the European Medicines Agency (EMA), and an independent evaluation process for the Federal Office of Public Health (FOPH) specialities list (SL)), we issued a consensus recommendation regarding specific aspects of immunotherapy for MS in Switzerland in 2019. Here, we present revised recommendations with an update on newly approved drugs and new safety aspects, also in reference to the risk of COVID-19 infection and vaccination.
Collapse
|
78
|
Sphingosine-1 Phosphate Receptor Modulators Increase In Vitro Melanoma Cell Line Proliferation at Therapeutic Doses Used in Patients with Multiple Sclerosis. Neurol Ther 2022; 12:289-302. [PMID: 36534273 PMCID: PMC9837347 DOI: 10.1007/s40120-022-00429-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION S1P1 receptor modulators (S1P1-RM) are oral disease-modifying therapies (DMTs) for multiple sclerosis (MS). Several authorities have raised doubts that S1P1-RM are responsible for an increased risk of melanoma in patients with MS. We studied the in vitro effects of S1P1-RM on different melanoma cell lines to compare the effect of available S1P1-RM on the proliferation of human melanoma cells. METHODS Four S1P1-RM were studied which are currently approved for managing MS, namely fingolimod (Gilenya®), siponimod (Mayzent®), ozanimod (Zeposia®), and ponesimod (Ponvory®). We tested these four drugs at different concentrations, including therapeutic doses (0.5, 1.6, 5.5, 18, and 60 µM), on human melanoma cell lines (501Mel cells, 1205LU cells, and M249R cells) to analyze in vitro cell proliferation monitored with the IncuCyte ZOOM live cell microscope (Essen Bioscience). RESULTS At therapeutic doses, median confluence increased overall for all lineages: + 122% for ozanimod (p < 0.001), + 71% for ponesimod (p < 0.001), + 67% for siponimod (NS), and + 41% for fingolimod (p = 0.094). Ozanimod- and ponesimod-treated cells increased confluency in 501Mel, 1205LU, and M249R cell lines (p < 0.001). CONCLUSION These data suggest an increased proliferation of various melanoma cell lines with S1P1-RM treatments used at therapeutic concentrations for patients with MS and should raise the question of increased dermatologic surveillance.
Collapse
|
79
|
Constantinescu V, Haase R, Akgün K, Ziemssen T. S1P receptor modulators and the cardiovascular autonomic nervous system in multiple sclerosis: a narrative review. Ther Adv Neurol Disord 2022; 15:17562864221133163. [PMID: 36437849 PMCID: PMC9685213 DOI: 10.1177/17562864221133163] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/29/2022] [Indexed: 01/21/2024] Open
Abstract
UNLABELLED Sphingosine 1-phosphate (S1P) receptor (S1PR) modulators have a complex mechanism of action, which are among the most efficient therapeutic options in multiple sclerosis (MS) and represent a promising approach for other immune-mediated diseases. The S1P signaling pathway involves the activation of five extracellular S1PR subtypes (S1PR1-S1PR5) that are ubiquitous and have a wide range of effects. Besides the immunomodulatory beneficial outcome in MS, S1P signaling regulates the cardiovascular function via S1PR1-S1PR3 subtypes, which reside on cardiac myocytes, endothelial, and vascular smooth muscle cells. In our review, we describe the mechanisms and clinical effects of S1PR modulators on the cardiovascular system. In the past, mostly short-term effects of S1PR modulators on the cardiovascular system have been studied, while data on long-term effects still need to be investigated. Immediate effects detected after treatment initiation are due to parasympathetic overactivation. In contrast, long-term effects may arise from a shift of the autonomic regulation toward sympathetic predominance along with S1PR1 downregulation. A mild increase in blood pressure has been reported in long-term studies, as well as decreased baroreflex sensitivity. In most studies, sustained hypertension was found to represent a significant adverse event related to treatment. The shift in the autonomic control and blood pressure values could not be just a consequence of disease progression but also related to S1PR modulation. Reduced cardiac autonomic activation and decreased heart rate variability during the long-term treatment with S1PR modulators may increase the risk for subsequent cardiac events. For second-generation S1PR modulators, this observation has to be confirmed in further studies with longer follow-ups. The periodic surveillance of cardiovascular function and detection of any cardiac autonomic dysfunction can help predict cardiac outcomes not only after the first dose but also throughout treatment. PLAIN LANGUAGE SUMMARY What is the cardiovascular effect of S1P receptor modulator therapy in multiple sclerosis? Sphingosine 1-phosphate (S1P) receptor (S1PR) modulators are among the most efficient therapies for multiple sclerosis. As small molecules, they are not only acting on the immune but on cardiovascular and nervous systems as well. Short-term effects of S1PR modulators on the cardiovascular system have already been extensively described, while long-term effects are less known. Our review describes the mechanisms of action and the short- and long-term effects of these therapeutic agents on the cardiovascular system in different clinical trials. We systematically reviewed the literature that had been published by January 2022. One hundred seven articles were initially identified by title and abstract using targeted keywords, and thirty-nine articles with relevance to cardiovascular effects of S1PR therapy in multiple sclerosis patients were thereafter considered, including their references for further accurate clarification. Studies on fingolimod, the first S1PR modulator approved for treating multiple sclerosis, primarily support the safety profile of this therapeutic class. The second-generation therapeutic agents along with a different treatment initiation approach helped mitigate several of the cardiovascular adverse effects that had previously been observed at the start of treatment. The heart rate may decrease when initiating S1PR modulators and, less commonly, the atrioventricular conduction may be prolonged, requiring cardiac monitoring for the first 6 h of medication. Continuous therapy with S1PR modulators can increase blood pressure values; therefore, the presence of arterial hypertension should be checked during long-term treatment. Periodic surveillance of the cardiovascular and autonomic functions can help predict cardiac outcomes and prevent possible adverse events in S1PR modulators treatment. Further studies with longer follow-ups are needed, especially for the second-generation of S1PR modulators, to confirm the safety profile of this therapeutic class.
Collapse
Affiliation(s)
- Victor Constantinescu
- Department of Neurology, Center of Clinical
Neuroscience, University Hospital Carl Gustav Carus, Dresden University of
Technology, Dresden, Germany
| | - Rocco Haase
- Department of Neurology, Center of Clinical
Neuroscience, University Hospital Carl Gustav Carus, Dresden University of
Technology, Dresden, Germany
| | - Katja Akgün
- Department of Neurology, Center of Clinical
Neuroscience, University Hospital Carl Gustav Carus, Dresden University of
Technology, Dresden, Germany
| | - Tjalf Ziemssen
- Department of Neurology, Center of Clinical
Neuroscience, University Hospital Carl Gustav Carus, Dresden University of
Technology, Fetscherstrasse 74, D-01307 Dresden, Germany
| |
Collapse
|
80
|
Ozanimod as a novel oral small molecule therapy for the treatment of Crohn's disease: The YELLOWSTONE clinical trial program. Contemp Clin Trials 2022; 122:106958. [PMID: 36208720 PMCID: PMC10008122 DOI: 10.1016/j.cct.2022.106958] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Ozanimod, an oral sphingosine 1-phosphate receptor modulator currently approved for the treatment of moderately to severely active ulcerative colitis and relapsing multiple sclerosis, showed clinical, endoscopic, and histological benefit in the phase 2 STEPSTONE trial for Crohn's disease (CD). We aim to describe the trial design of the YELLOWSTONE phase 3 program evaluating the safety and efficacy of ozanimod in patients with moderately to severely active CD. METHODS The YELLOWSTONE program consists of phase 3, randomized, double-blind, placebo-controlled induction (NCT03440372 and NCT03440385) and maintenance (NCT03464097) trials and an open-label extension (OLE) study (NCT03467958). Patients with inadequate response or intolerance to ≥1 CD treatment are randomized to receive daily ozanimod 0.92 mg (equivalent to ozanimod HCl 1 mg) or placebo for 12 weeks during induction. Those who respond to ozanimod are rerandomized to continue ozanimod or placebo maintenance therapy for 52 weeks. Patients who do not meet criteria for maintenance, experience relapse during maintenance, or complete maintenance or ≥ 1 year of STEPSTONE are eligible for open-label treatment for up to 234 weeks. Efficacy endpoints include clinical, endoscopic, and histologic outcomes. RESULTS Expected 2023 (induction studies), 2024 (maintenance study), and 2026 (OLE). CONCLUSION YELLOWSTONE will provide pivotal phase 3 data on the safety and efficacy of ozanimod in patients with moderately to severely active CD using state-of-the-art methods, including centrally read endoscopic and histologic measurements, along with subjective assessments of symptom control based on the Crohn's Disease Activity Index. These studies could enable approval of ozanimod as a new CD therapy. CLINICAL TRIAL REGISTRATION NUMBERS NCT03440372, NCT03440385, NCT03464097, NCT03467958.
Collapse
|
81
|
Constantinescu V, Akgün K, Ziemssen T. Current status and new developments in sphingosine-1-phosphate receptor antagonism: fingolimod and more. Expert Opin Drug Metab Toxicol 2022; 18:675-693. [PMID: 36260948 DOI: 10.1080/17425255.2022.2138330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Fingolimod was the first oral disease-modifying treatment approved for relapsing-remitting multiple sclerosis (MS) that serves as a sphingosine-1-phosphate receptor (S1PR) agonist. The efficacy is primarily mediated by S1PR subtype 1 activation, leading to agonist-induced down-modulation of receptor expression and further functional antagonism, blocking the egression of auto-aggressive lymphocytes from the lymph nodes in the peripheral compartment. The role of S1P signaling in the regulation of other pathways in human organisms through different S1PR subtypes has received much attention due to its immune-modulatory function and its significance for the regeneration of the central nervous system (CNS). The more selective second-generation S1PR modulators have improved safety and tolerability profiles. AREAS COVERED This review has been carried out based on current data on S1PR modulators, emphasizing the benefits of recent advances in this emergent class of immunomodulatory treatment for MS. EXPERT OPINION Ongoing clinical research suggests that S1PR modulators represent an alternative to first-line therapies in selected cases of MS. A better understanding of the relevance of selective S1PR pathways and the ambition to optimize selective modulation has improved the safety and tolerability of S1PR modulators in MS therapy and opened new perspectives for the treatment of other diseases.
Collapse
Affiliation(s)
- Victor Constantinescu
- Center of Clinical Neuroscience, University Hospital, Fetscher Str. 74, 01307 Dresden, Germany
| | - Katja Akgün
- Center of Clinical Neuroscience, University Hospital, Fetscher Str. 74, 01307 Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, University Hospital, Fetscher Str. 74, 01307 Dresden, Germany
| |
Collapse
|
82
|
Gandhi S, Zelman S, De Armas RE, Hemond C, Levy AN, Singh S, Korzenik J, Jangi S. Natural History of New-onset Inflammatory Bowel Disease Among Patients With Multiple Sclerosis. Inflamm Bowel Dis 2022; 28:1614-1617. [PMID: 35348692 PMCID: PMC9527605 DOI: 10.1093/ibd/izac053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Indexed: 12/09/2022]
Abstract
Lay Summary
Patients with MS and IBD were as likely to have stricturing, fistulizing, and extensive IBD as IBD controls. Although MS-IBD patients were less likely to initiate anti-TNF therapy, they did not have worsened risk of progression to surgery on follow-up.
Collapse
Affiliation(s)
- Shiv Gandhi
- Division of Gastroenterology, Tufts Medical Center, Boston, MA, United States
| | - Sara Zelman
- Division of Gastroenterology, Tufts Medical Center, Boston, MA, United States
| | | | - Christopher Hemond
- Division of Neurology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Alexander N Levy
- Division of Gastroenterology, Tufts Medical Center, Boston, MA, United States
| | - Siddharth Singh
- Division of Gastroenterology, University of California, La Jolla, CA, United States
| | - Joshua Korzenik
- Division of Gastroenterology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Sushrut Jangi
- Division of Gastroenterology, Tufts Medical Center, Boston, MA, United States
| |
Collapse
|
83
|
The Memory T Cell “Communication Web” in Context with Gastrointestinal Disorders—How Memory T Cells Affect Their Surroundings and How They Are Influenced by It. Cells 2022; 11:cells11182780. [PMID: 36139354 PMCID: PMC9497182 DOI: 10.3390/cells11182780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
Gut-related diseases like ulcerative colitis, Crohn’s disease, or colorectal cancer affect millions of people worldwide. It is an ongoing process finding causes leading to the development and manifestation of those disorders. This is highly relevant since understanding molecular processes and signalling pathways offers new opportunities in finding novel ways to interfere with and apply new pharmaceuticals. Memory T cells (mT cells) and their pro-inflammatory properties have been proven to play an important role in gastrointestinal diseases and are therefore increasingly spotlighted. This review focuses on mT cells and their subsets in the context of disease pathogenesis and maintenance. It illustrates the network of regulatory proteins and metabolites connecting mT cells with other cell types and tissue compartments. Furthermore, the crosstalk with various microbes will be a subject of discussion. Characterizing mT cell interactions will help to further elucidate the sophisticated molecular and cellular networking system in the intestine and may present new ideas for future research approaches to control gut-related diseases.
Collapse
|
84
|
Śladowska K, Kawalec P, Holko P, Osiecka O. Comparative safety of high-efficacy disease-modifying therapies in relapsing–remitting multiple sclerosis: a systematic review and network meta-analysis. Neurol Sci 2022; 43:5479-5500. [DOI: 10.1007/s10072-022-06197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
|
85
|
Faissner S, Gold R. Efficacy and Safety of Multiple Sclerosis Drugs Approved Since 2018 and Future Developments. CNS Drugs 2022; 36:803-817. [PMID: 35869335 PMCID: PMC9307218 DOI: 10.1007/s40263-022-00939-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
Multiple sclerosis treatment made substantial headway during the last two decades with the implementation of therapeutics with new modes of action and routes of application. We are now in the situation that second-generation molecules, approved since 2018, are on the market, characterized by reduced side effects using a more tailored therapeutic approach. Diroximel fumarate is a second-generation fumarate with reduced gastrointestinal side effects. Moreover, several novel, selective, sphingosine-1-phosphate receptor modulators with reduced off-target effects have been developed; namely siponimod, ozanimod, and ponesimod; all oral formulations. B-cell-targeted therapies such as ocrelizumab, given intravenously, and since 2021 ofatumumab, applied subcutaneously, complement the spectrum of novel therapies. The glycoengineered antibody ublituximab is the next anti-CD20 therapy about to be approved. Within the next years, oral inhibitors of Bruton's tyrosine kinase, currently under investigation in several phase III trials, may be licensed for multiple sclerosis. Those developments currently offer an individualized multiple sclerosis therapy, targeting patient needs with substantial effects on relapses, disability progression, and implications for daily life. In this up-to-date review, we provide a holistic overview about novel developments of the therapeutic landscape and upcoming approaches for multiple sclerosis treatment.
Collapse
Affiliation(s)
- Simon Faissner
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Gudrunstr. 56, 44791, Bochum, Germany.
| | - Ralf Gold
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Gudrunstr. 56, 44791, Bochum, Germany
| |
Collapse
|
86
|
Abstract
PURPOSE OF REVIEW Given the expansion of options for the treatment of relapsing multiple sclerosis, this review outlines the framework for developing a treatment strategy, with consideration of when to switch or discontinue therapies, and a comprehensive elaboration of the mechanisms of action, efficacy, and safety considerations for each of the therapeutic classes. RECENT FINDINGS The armamentarium of immunotherapies has grown rapidly, to encompass 19 US Food and Drug Administration (FDA)-approved immunotherapies available in 2021, which are addressed in the review. The coronavirus pandemic that began in 2020 underscored existing concerns regarding vaccine efficacy in those treated with immune-suppressing immunotherapies, which are also addressed here. SUMMARY By choosing a treatment strategy before exploring the individual medications, patients and providers can focus their efforts on a subset of the therapeutic options. Although the mechanisms of action, routes of administration, efficacy, safety, and tolerability of the described agents and classes differ, all are effective in reducing relapse frequency in multiple sclerosis (MS), with most also showing a reduction in the accumulation of neurologic disability. These powerful effects are improving the lives of people with MS. Pharmacovigilance is critical for the safe use of these immune-modulating and -suppressing agents, and vaccine efficacy may be reduced by those with immune-suppressing effects.
Collapse
|
87
|
Bierhansl L, Hartung HP, Aktas O, Ruck T, Roden M, Meuth SG. Thinking outside the box: non-canonical targets in multiple sclerosis. Nat Rev Drug Discov 2022; 21:578-600. [PMID: 35668103 PMCID: PMC9169033 DOI: 10.1038/s41573-022-00477-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system that causes demyelination, axonal degeneration and astrogliosis, resulting in progressive neurological disability. Fuelled by an evolving understanding of MS immunopathogenesis, the range of available immunotherapies for clinical use has expanded over the past two decades. However, MS remains an incurable disease and even targeted immunotherapies often fail to control insidious disease progression, indicating the need for new and exceptional therapeutic options beyond the established immunological landscape. In this Review, we highlight such non-canonical targets in preclinical MS research with a focus on five highly promising areas: oligodendrocytes; the blood-brain barrier; metabolites and cellular metabolism; the coagulation system; and tolerance induction. Recent findings in these areas may guide the field towards novel targets for future therapeutic approaches in MS.
Collapse
Affiliation(s)
- Laura Bierhansl
- Department of Neurology, Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center of Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
88
|
Dal Buono A, Gabbiadini R, Alfarone L, Solitano V, Repici A, Vetrano S, Spinelli A, Armuzzi A. Sphingosine 1-Phosphate Modulation in Inflammatory Bowel Diseases: Keeping Lymphocytes Out of the Intestine. Biomedicines 2022; 10:1735. [PMID: 35885040 PMCID: PMC9313037 DOI: 10.3390/biomedicines10071735] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic and disabling conditions that, uncontrolled, lead to irreversible bowel damage and associated comorbidities. Despite the new era of biological therapies, IBDs remain not curative. The treatment purpose is to induce endoscopic remission, reduce the progression of the disease and improve the quality of life. Optimal and early treatment could enable the prevention of their complications. Small molecules, administrated as oral agents, have the capacity of overcoming the limitations of biologic agents (i.e., parenteral administration, rapidity of action and primary and secondary non-responsiveness). Of special interest are results from the use of oral sphingosine 1-phosphate (S1P) receptor modulators (ozanimod, etrasimod, fingolimod and laquinimod), based on S1P activities to target lymphocyte recirculation in the mucosa, acting as immunosuppressive agents. Most S1P modulators are reported to be safe and effective in the treatment of both UC and CD. High and satisfactory rates of clinical remission as well as endoscopic improvement and remission can be achieved with these molecules. Safety alarms remain rather low, although the S1P binding to two of its G protein-coupled receptors, 2 and 3 (S1PR2 and S1PR3), may be associated with cardiovascular risks. Cost-effectiveness studies and head-to-head trials are needed to better define their place in therapy. This review summarizes these emerging data published by PubMed and EMBASE databases and from ongoing clinical trials on the safety and efficacy of selectivity of S1P modulators in the treatment of IBD.
Collapse
Affiliation(s)
- Arianna Dal Buono
- IBD Center, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; (A.D.B.); (R.G.); (L.A.); (V.S.)
| | - Roberto Gabbiadini
- IBD Center, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; (A.D.B.); (R.G.); (L.A.); (V.S.)
| | - Ludovico Alfarone
- IBD Center, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; (A.D.B.); (R.G.); (L.A.); (V.S.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy; (A.R.); (S.V.); (A.S.)
| | - Virginia Solitano
- IBD Center, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; (A.D.B.); (R.G.); (L.A.); (V.S.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy; (A.R.); (S.V.); (A.S.)
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy; (A.R.); (S.V.); (A.S.)
- Endoscopy Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Stefania Vetrano
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy; (A.R.); (S.V.); (A.S.)
- IBD Center, Laboratory of Immunology in Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Antonino Spinelli
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy; (A.R.); (S.V.); (A.S.)
- Colon and Rectal Surgery Division, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Alessandro Armuzzi
- IBD Center, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; (A.D.B.); (R.G.); (L.A.); (V.S.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy; (A.R.); (S.V.); (A.S.)
| |
Collapse
|
89
|
Rowles WM, Hsu WY, McPolin K, Li A, Merrill S, Guo CY, Green AJ, Gelfand JM, Bove RM. Transitioning From S1P Receptor Modulators to B Cell-Depleting Therapies in Multiple Sclerosis: Clinical, Radiographic, and Laboratory Data. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:e1183. [PMID: 35581005 PMCID: PMC9128034 DOI: 10.1212/nxi.0000000000001183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 03/29/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND OBJECTIVES Patients with multiple sclerosis (MS) transition from oral sphingosine-1-receptor (S1P) modulators to anti-CD20 therapies for several circumstances. Optimal timing of this transition is uncertain, given competing concerns of rebound disease activity and ensuring immune reconstitution. The objective of this study was to evaluate the relationship between inflammatory activity and the transition period from fingolimod to anti-CD20 therapies in a real-world MS cohort. METHODS Medical records were reviewed for all patients at our center transitioning from fingolimod to rituximab or ocrelizumab between 2010 and October 2020. Time periods reviewed were the following: before fingolimod discontinuation, interval between fingolimod and anti-CD20 treatments, and after the first anti-CD20 infusion. The primary outcome was clinical relapses; MRI activity, time to absolute lymphocyte count (ALC) recovery, and infections were secondary. Clinical and demographic factors significant in univariable analyses were included in multivariable analyses. RESULTS Transition data were available for 108 patients (68.5% women, 68.5% relapsing-remitting MS, mean age 44.6 years). The median (interquartile range) interval between fingolimod and anti-CD20 therapy was 28 (1-115.2) days. Six of 51 patients (11.8%) with intervals >1 month and 0/57 patients with shorter intervals experienced a relapse (MRI confirmed) within 6 months of fingolimod discontinuation. In the year following anti-CD20 initiation, 4/108 patients (3.7%) experienced a relapse (median 214.5 days after infusion). An additional 7% of those undergoing contrast-enhanced MRIs developed Gd+ lesions. ALC normalized following treatment switch in 89/92; the interval between treatments was unrelated to ALC recovery or infection. DISCUSSION Delaying anti-CD20 start to monitor ALC after S1P modulator discontinuation may not be necessary and could increase rebound risk. ALC monitoring could instead occur after a rapid switch to anti-CD20 treatment.
Collapse
Affiliation(s)
- William M. Rowles
- From the UCSF Weill Institute for Neurosciences (W.M.R., W.-Y.H., K.M., A.L., C.-Y.G., A.J.G., J.M.G., R.M.B.), Division of Neuroimmunology and Glial Biology, Department of Neurology, Department of Clinical Pharmacy (S.M.), and UCSF Department of Ophthalmology (A.J.G.), University of California, San Francisco
| | - Wan-Yu Hsu
- From the UCSF Weill Institute for Neurosciences (W.M.R., W.-Y.H., K.M., A.L., C.-Y.G., A.J.G., J.M.G., R.M.B.), Division of Neuroimmunology and Glial Biology, Department of Neurology, Department of Clinical Pharmacy (S.M.), and UCSF Department of Ophthalmology (A.J.G.), University of California, San Francisco
| | - Kira McPolin
- From the UCSF Weill Institute for Neurosciences (W.M.R., W.-Y.H., K.M., A.L., C.-Y.G., A.J.G., J.M.G., R.M.B.), Division of Neuroimmunology and Glial Biology, Department of Neurology, Department of Clinical Pharmacy (S.M.), and UCSF Department of Ophthalmology (A.J.G.), University of California, San Francisco
| | - Alyssa Li
- From the UCSF Weill Institute for Neurosciences (W.M.R., W.-Y.H., K.M., A.L., C.-Y.G., A.J.G., J.M.G., R.M.B.), Division of Neuroimmunology and Glial Biology, Department of Neurology, Department of Clinical Pharmacy (S.M.), and UCSF Department of Ophthalmology (A.J.G.), University of California, San Francisco
| | - Steven Merrill
- From the UCSF Weill Institute for Neurosciences (W.M.R., W.-Y.H., K.M., A.L., C.-Y.G., A.J.G., J.M.G., R.M.B.), Division of Neuroimmunology and Glial Biology, Department of Neurology, Department of Clinical Pharmacy (S.M.), and UCSF Department of Ophthalmology (A.J.G.), University of California, San Francisco
| | - Chu-Yueh Guo
- From the UCSF Weill Institute for Neurosciences (W.M.R., W.-Y.H., K.M., A.L., C.-Y.G., A.J.G., J.M.G., R.M.B.), Division of Neuroimmunology and Glial Biology, Department of Neurology, Department of Clinical Pharmacy (S.M.), and UCSF Department of Ophthalmology (A.J.G.), University of California, San Francisco
| | - Ari J. Green
- From the UCSF Weill Institute for Neurosciences (W.M.R., W.-Y.H., K.M., A.L., C.-Y.G., A.J.G., J.M.G., R.M.B.), Division of Neuroimmunology and Glial Biology, Department of Neurology, Department of Clinical Pharmacy (S.M.), and UCSF Department of Ophthalmology (A.J.G.), University of California, San Francisco
| | - Jeffrey Marc Gelfand
- From the UCSF Weill Institute for Neurosciences (W.M.R., W.-Y.H., K.M., A.L., C.-Y.G., A.J.G., J.M.G., R.M.B.), Division of Neuroimmunology and Glial Biology, Department of Neurology, Department of Clinical Pharmacy (S.M.), and UCSF Department of Ophthalmology (A.J.G.), University of California, San Francisco
| | - Riley M. Bove
- From the UCSF Weill Institute for Neurosciences (W.M.R., W.-Y.H., K.M., A.L., C.-Y.G., A.J.G., J.M.G., R.M.B.), Division of Neuroimmunology and Glial Biology, Department of Neurology, Department of Clinical Pharmacy (S.M.), and UCSF Department of Ophthalmology (A.J.G.), University of California, San Francisco
| |
Collapse
|
90
|
Kearns PKA, Martin SJ, Chang J, Meijboom R, York EN, Chen Y, Weaver C, Stenson A, Hafezi K, Thomson S, Freyer E, Murphy L, Harroud A, Foley P, Hunt D, McLeod M, O'Riordan J, Carod-Artal FJ, MacDougall NJJ, Baranzini SE, Waldman AD, Connick P, Chandran S. FutureMS cohort profile: a Scottish multicentre inception cohort study of relapsing-remitting multiple sclerosis. BMJ Open 2022; 12:e058506. [PMID: 35768080 PMCID: PMC9244691 DOI: 10.1136/bmjopen-2021-058506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/14/2022] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Multiple sclerosis (MS) is an immune-mediated, neuroinflammatory disease of the central nervous system and in industrialised countries is the most common cause of progressive neurological disability in working age persons. While treatable, there is substantial interindividual heterogeneity in disease activity and response to treatment. Currently, the ability to predict at diagnosis who will have a benign, intermediate or aggressive disease course is very limited. There is, therefore, a need for integrated predictive tools to inform individualised treatment decision making. PARTICIPANTS Established with the aim of addressing this need for individualised predictive tools, FutureMS is a nationally representative, prospective observational cohort study of 440 adults with a new diagnosis of relapsing-remitting MS living in Scotland at the time of diagnosis between May 2016 and March 2019. FINDINGS TO DATE The study aims to explore the pathobiology and determinants of disease heterogeneity in MS and combines detailed clinical phenotyping with imaging, genetic and biomarker metrics of disease activity and progression. Recruitment, baseline assessment and follow-up at year 1 is complete. Here, we describe the cohort design and present a profile of the participants at baseline and 1 year of follow-up. FUTURE PLANS A third follow-up wave for the cohort has recently begun at 5 years after first visit and a further wave of follow-up is funded for year 10. Longer-term follow-up is anticipated thereafter.
Collapse
Affiliation(s)
- Patrick K A Kearns
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh Centre for Clinical Brain Sciences, Edinburgh, UK
- Chromatin Lab, Genome Regulation Section, The University of Edinburgh MRC Human Genetics Unit, Edinburgh, UK
- Department of Clinical Neurosciences, Royal Infirmary of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Department of Neurology, Institute of Clinical Neurosciences, NHS Greater Glasgow and Clyde, Glasgow, UK
- Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Sarah J Martin
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Department of Neurology, Institute of Clinical Neurosciences, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Jessie Chang
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh Centre for Clinical Brain Sciences, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Rozanna Meijboom
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Elizabeth N York
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Yingdi Chen
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh Centre for Clinical Brain Sciences, Edinburgh, UK
| | - Christine Weaver
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh Centre for Clinical Brain Sciences, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Amy Stenson
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh Centre for Clinical Brain Sciences, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | | | - Stacey Thomson
- Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Elizabeth Freyer
- Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Lee Murphy
- Wellcome Trust Clinical Research Facility, Edinburgh, UK
| | - Adil Harroud
- Department of Neurology, Weill Institute of Clinical Neuroscience, San Francisco, California, USA
| | - Peter Foley
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh Centre for Clinical Brain Sciences, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - David Hunt
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh Centre for Clinical Brain Sciences, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Margaret McLeod
- Department of Neurology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Jonathon O'Riordan
- Tayside Centre for Clinical Neurosciences, University of Dundee Division of Neuroscience, Dundee, UK
| | | | - Niall J J MacDougall
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh Centre for Clinical Brain Sciences, Edinburgh, UK
- Department of Neurology, Wishaw General Hospital, Wishaw, UK
| | - Sergio E Baranzini
- Department of Neurology, Weill Institute of Clinical Neuroscience, San Francisco, California, USA
| | - Adam D Waldman
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Peter Connick
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh Centre for Clinical Brain Sciences, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
91
|
Cree BA, Selmaj KW, Steinman L, Comi G, Bar-Or A, Arnold DL, Hartung HP, Montalbán X, Havrdová EK, Sheffield JK, Minton N, Cheng CY, Silva D, Kappos L, Cohen JA. Long-term safety and efficacy of ozanimod in relapsing multiple sclerosis: Up to 5 years of follow-up in the DAYBREAK open-label extension trial. Mult Scler 2022; 28:1944-1962. [PMID: 35765217 PMCID: PMC9493410 DOI: 10.1177/13524585221102584] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background: Ozanimod, an oral sphingosine 1-phosphate receptor 1 and 5 modulator, is
approved in multiple countries for treatment of relapsing forms of MS. Objective: To characterize long-term safety and efficacy of ozanimod. Methods: Patients with relapsing MS who completed a phase 1‒3 ozanimod trial were
eligible for an open-label extension study (DAYBREAK) of ozanimod 0.92 mg/d.
DAYBREAK began 16 October 2015; cutoff for this interim analysis was 2
February 2021. Results: This analysis included 2494 participants with mean 46.8 (SD 11.9; range
0.033‒62.7) months of ozanimod exposure in DAYBREAK. During DAYBREAK, 2143
patients (85.9%) had treatment-emergent adverse events (TEAEs; similar in
nature to those in the parent trials), 298 (11.9%) had a serious TEAE, and
75 (3.0%) discontinued treatment due to TEAEs. Serious infections (2.8%),
herpes zoster infections (1.7%), confirmed macular edema cases (0.2%), and
cardiac TEAEs (2.8%) were infrequent. Adjusted annualized relapse rate was
0.103 (95% confidence interval, 0.086‒0.123). Over 48 months, 71% of
patients remained relapse free. Adjusted mean numbers of new/enlarging T2
lesions/scan and gadolinium-enhancing lesions were low and similar across
parent trial treatment subgroups. Conclusions: This long-term extension of ozanimod trials confirmed a favorable
safety/tolerability profile and sustained benefit on clinical and magnetic
resonance imaging measures of disease activity.
Collapse
Affiliation(s)
- Bruce Ac Cree
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Krzysztof W Selmaj
- Center for Neurology, Łódź, Poland and Collegium Medicum, Department of Neurology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Beckman Center for Molecular Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Giancarlo Comi
- Vita-Salute San Raffaele University and Casa di Cura del Policlinico, Milan, Italy
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas L Arnold
- NeuroRx Research and Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany/Brain and Mind Centre, The University of Sydney, Sydney, Australia/Department of Neurology, Medical University of Vienna, Vienna, Austria/Department of Neurology, Palacky University Olomouc, Olomouc, Czech Republic
| | - Xavier Montalbán
- Department of Neurology-Neuroimmunology, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Eva K Havrdová
- Department of Neurology and Center for Clinical Neuroscience, First Medical Faculty, Charles University, Prague, Czech Republic
| | | | | | | | | | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Head, Spine and Neuromedicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland
| | - Jeffrey A Cohen
- Mellen Center for MS Treatment and Research, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
92
|
Ziemssen T, Richter S, Mäurer M, Buttmann M, Kreusel B, Poehler AM, Lampl M, Linker RA. OzEAN Study to Collect Real-World Evidence of Persistent Use, Effectiveness, and Safety of Ozanimod Over 5 Years in Patients With Relapsing-Remitting Multiple Sclerosis in Germany. Front Neurol 2022; 13:913616. [PMID: 35832177 PMCID: PMC9271678 DOI: 10.3389/fneur.2022.913616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background:Ozanimod, a sphingosine 1-phosphate receptor 1 and 5 modulator, was approved as a disease-modifying therapy for active relapsing-remitting multiple sclerosis (RRMS) in 2020 and for active ulcerative colitis in 2021. Long-term, real-world studies in a nonselective population are needed. OzEAN is an ongoing study to assess the real-world persistent use, effectiveness, and safety of ozanimod and its impact on quality of life (QoL) in patients with RRMS over a 5-year period.MethodsThis prospective, noninterventional, postmarketing authorization study will enroll ~1,300 patients (≥18 years of age) with active RRMS. The decision to initiate ozanimod must have been made before and independent from study participation. Enrollment began in March 2021. Recruitment is ongoing and will last for 36 months across 140 sites in Germany. Treatment-naive patients or those having prior experience with a disease-modifying therapy receive oral ozanimod 0.92 mg/day after an initial dose escalation, per the summary of product characteristics recommendations, for up to 60 months. Persistence with ozanimod treatment (primary endpoint) is assessed at month 60. Secondary endpoints include additional physician-reported outcomes [persistence at earlier time points, annualized relapse rate, Expanded Disability Status Scale score, cognition (Symbol Digit Modalities Test), and incidence of adverse events], and patient-reported outcomes assessing patient satisfaction, adherence, and treatment modalities (Treatment Satisfaction Questionnaire for Medication, v1.4), disability (United Kingdom Neurological Disability Rating Scale), QoL (MSQOL-54 questionnaire), fatigue (Fatigue Scale for Motor and Cognitive Functions), and health economics [Work Productivity and Activity Impairment Questionnaire for Multiple Sclerosis (German v2.1); Multiple Sclerosis Health Resource Survey, v3.0]. A Multiple Sclerosis Documentation System with an internet-based e-health portal allows patients to view files and complete questionnaires. A safety follow-up will occur 3–8 months after the last ozanimod dose for patients who discontinue treatment early. Long-term results are anticipated after study completion in 2029. Yearly interim analyses are planned after enrollment has reached 25%.ConclusionThis is the first long-term, real-world study of ozanimod in patients with RRMS and, to our knowledge, the first noninterventional study utilizing a patient portal. These data will add to the safety/efficacy profile of ozanimod demonstrated in phase 3 trials.Clinical Trial RegistrationClinicaltrials.gov, identifier: NCT05335031.
Collapse
Affiliation(s)
- Tjalf Ziemssen
- Department of Neurology, Center of Clinical Neuroscience, Carl Gustav Carus University Clinic, University Hospital of Dresden, Dresden, Germany
- *Correspondence: Tjalf Ziemssen
| | | | - Mathias Mäurer
- Department of Neurology, Klinikum Würzburg Mitte, Würzburg, Germany
| | - Mathias Buttmann
- Department of Neurology, Caritas Hospital Bad Mergentheim, Bad Mergentheim, Germany
| | - Boris Kreusel
- Bristol Myers Squibb GmbH & Co. KGaA, Munich, Germany
| | | | - Maren Lampl
- Bristol Myers Squibb GmbH & Co. KGaA, Munich, Germany
| | - Ralf A. Linker
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany
| |
Collapse
|
93
|
Spampinato SF, Sortino MA, Salomone S. Sphingosine-1-phosphate and Sphingosine-1-phosphate receptors in the cardiovascular system: pharmacology and clinical implications. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:95-139. [PMID: 35659378 DOI: 10.1016/bs.apha.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a lipid that binds and activates five distinct receptor subtypes, S1P1, S1P2, S1P3, S1P4, S1P5, widely expressed in different cells, tissues and organs. In the cardiovascular system these receptors have been extensively studied, but no drug acting on them has been approved so far for treating cardiovascular diseases. In contrast, a number of S1P receptor agonists are approved as immunomodulators, mainly for multiple sclerosis, because of their action on lymphocyte trafficking. This chapter summarizes the available information on S1P receptors in the cardiovascular system and discusses their potential for treating cardiovascular conditions and/or their role on the clinical pharmacology of drugs so far approved for non-cardiovascular conditions. Basic research has recently produced data useful to understand the molecular pharmacology of S1P and S1P receptors, regarding biased agonism, S1P storage, release and vehiculation and chaperoning by lipoproteins, paracrine actions, intracellular non-receptorial S1P actions. On the other hand, the approval of fingolimod and newer generation S1P receptor ligands as immunomodulators, provides information on a number of clinical observations on the impact of these drugs on cardiovascular system which need to be integrated with preclinical data. S1P receptors are potential targets for prevention and treatment of major cardiovascular conditions, including hypertension, myocardial infarction, heart failure and stroke.
Collapse
Affiliation(s)
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy.
| |
Collapse
|
94
|
Arnold DL, Sprenger T, Bar-Or A, Wolinsky JS, Kappos L, Kolind S, Bonati U, Magon S, van Beek J, Koendgen H, Bortolami O, Bernasconi C, Gaetano L, Traboulsee A. Ocrelizumab reduces thalamic volume loss in patients with RMS and PPMS. Mult Scler 2022; 28:1927-1936. [PMID: 35672926 PMCID: PMC9493406 DOI: 10.1177/13524585221097561] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: In multiple sclerosis (MS), thalamic integrity is affected directly by demyelination and neuronal loss, and indirectly by gray/white matter lesions outside the thalamus, altering thalamic neuronal projections. Objective: To assess the efficacy of ocrelizumab compared with interferon beta-1a (IFNβ1a)/placebo on thalamic volume loss and the effect of switching to ocrelizumab on volume change in the Phase III trials in relapsing MS (RMS, OPERA I/II; NCT01247324/NCT01412333) and in primary progressive MS (PPMS, ORATORIO; NCT01194570). Methods: Thalamic volume change was computed using paired Jacobian integration and analyzed using an adjusted mixed-effects repeated measurement model. Results: Over the double-blind period, ocrelizumab treatment significantly reduced thalamic volume loss with the largest effect size (Cohen’s d: RMS: 0.561 at week 96; PPMS: 0.427 at week 120) compared with whole brain, cortical gray matter, and white matter volume loss. At the end of up to 7 years of follow-up, patients initially randomized to ocrelizumab still showed less thalamic volume loss than those switching from IFNβ1a ( p < 0.001) or placebo ( p < 0.001). Conclusion: Ocrelizumab effectively reduced thalamic volume loss compared with IFNβ1a/placebo. Early treatment effects on thalamic tissue preservation persisted over time. Thalamic volume loss could be a potential sensitive marker of persisting tissue damage.
Collapse
Affiliation(s)
- Douglas L Arnold
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada/NeuroRx Research, Montreal, QC, Canada
| | - Till Sprenger
- Department of Neurology, DKD Helios Klinik Wiesbaden, Wiesbaden, Germany/Research Center for Clinical Neuroimmunology and Neuroscience and MS Center, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Amit Bar-Or
- Department of Neurology and Center for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jerry S Wolinsky
- McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience and MS Center, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | | | | | | | - Johan van Beek
- F. Hoffmann-La Roche Ltd, Basel, Switzerland/Biogen, Baar, Switzerland
| | - Harold Koendgen
- F. Hoffmann-La Roche Ltd, Basel, Switzerland/UCB Farchim SA, Bulle, Switzerland
| | | | | | | | | |
Collapse
|
95
|
Yang JH, Rempe T, Whitmire N, Dunn-Pirio A, Graves JS. Therapeutic Advances in Multiple Sclerosis. Front Neurol 2022; 13:824926. [PMID: 35720070 PMCID: PMC9205455 DOI: 10.3389/fneur.2022.824926] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous system that causes significant disability and healthcare burden. The treatment of MS has evolved over the past three decades with development of new, high efficacy disease modifying therapies targeting various mechanisms including immune modulation, immune cell suppression or depletion and enhanced immune cell sequestration. Emerging therapies include CNS-penetrant Bruton's tyrosine kinase inhibitors and autologous hematopoietic stem cell transplantation as well as therapies aimed at remyelination or neuroprotection. Therapy development for progressive MS has been more challenging with limited efficacy of current approved agents for inactive disease and older patients with MS. The aim of this review is to provide a broad overview of the current therapeutic landscape for MS.
Collapse
Affiliation(s)
- Jennifer H. Yang
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
- *Correspondence: Jennifer H. Yang
| | - Torge Rempe
- Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Natalie Whitmire
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
| | - Anastasie Dunn-Pirio
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
| | - Jennifer S. Graves
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
96
|
Brenton JN, Lehner-Gulotta D, Woolbright E, Banwell B, Bergqvist AGC, Chen S, Coleman R, Conaway M, Goldman MD. Phase II study of ketogenic diets in relapsing multiple sclerosis: safety, tolerability and potential clinical benefits. J Neurol Neurosurg Psychiatry 2022; 93:637-644. [PMID: 35418509 PMCID: PMC9350909 DOI: 10.1136/jnnp-2022-329074] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/16/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Dietary changes impact human physiology and immune function and have potential as therapeutic strategies. OBJECTIVE Assess the tolerability of a ketogenic diet (KD) in patients with relapsing multiple sclerosis (MS) and define the impact on laboratory and clinical outcome metrics. METHODS Sixty-five subjects with relapsing MS enrolled into a 6-month prospective, intention-to-treat KD intervention. Adherence was monitored with daily urine ketone testing. At baseline, fatigue, depression and quality of life (QoL) scores were obtained in addition to fasting adipokines and MS-related clinical outcome metrics. Baseline metrics were repeated at 3 and/or 6 months on-diet. RESULTS Eighty-three percent of participants adhered to the KD for the study duration. Subjects exhibited significant reductions in fat mass and showed a nearly 50% decline in self-reported fatigue and depression scores. MS QoL physical health (67±16 vs 79±12, p<0.001) and mental health (71±17 vs 82±11, p<0.001) composite scores increased on-diet. Significant improvements were noted in Expanded Disability Status Scale scores (2.3±0.9 vs 1.9±1.1, p<0.001), 6-minute walk (1631±302 vs 1733±330 ft, p<0.001) and Nine-Hole Peg Test (21.5±3.6 vs 20.3±3.7 s, p<0.001). Serum leptin was lower (25.5±15.7 vs 14.0±11.7 ng/mL, p<0.001) and adiponectin was higher (11.4±7.8 vs 13.5±8.4 µg/mL, p=0.002) on the KD. CONCLUSION KDs are safe and tolerable over a 6-month study period and yield improvements in body composition, fatigue, depression, QoL, neurological disability and adipose-related inflammation in persons living with relapsing MS. TRIAL REGISTRATION INFORMATION Registered on ClinicalTrials.gov under registration number NCT03718247, posted on 24 October 2018. First patient enrolment date: 1 November 2018. Link: https://clinicaltrials.gov/ct2/show/NCT03718247?term=NCT03718247&draw=2&rank=1.
Collapse
Affiliation(s)
- J Nicholas Brenton
- Department of Neurology, Division of Child Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Diana Lehner-Gulotta
- Department of Neurology, Division of Child Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Emma Woolbright
- Division of Child Neurology, Children's Hospital of Philadelphia, Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brenda Banwell
- Department of Neurology, Universitygi of Virginia, Charlottesville, Virginia, USA
| | | | - Shanshan Chen
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Rachael Coleman
- Division of Child Neurology, Children's Hospital of Philadelphia, Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark Conaway
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Myla D Goldman
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
97
|
Sphingosine 1-phosphate modulation and immune cell trafficking in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2022; 19:351-366. [PMID: 35165437 DOI: 10.1038/s41575-021-00574-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/12/2022]
Abstract
Immune cell trafficking is a critical element of the intestinal immune response, both in homeostasis and in pathological conditions associated with inflammatory bowel disease (IBD). This process involves adhesion molecules, chemoattractants and receptors expressed on immune cell surfaces, blood vessels and stromal intestinal tissue as well as signalling pathways, including those modulated by sphingosine 1-phosphate (S1P). The complex biological processes of leukocyte recruitment, activation, adhesion and migration have been targeted by various monoclonal antibodies (vedolizumab, etrolizumab, ontamalimab). Promising preclinical and clinical data with several oral S1P modulators suggest that inhibition of lymphocyte egress from the lymph nodes to the bloodstream might be a safe and efficacious alternative mechanism for reducing inflammation in immune-mediated disorders, including Crohn's disease and ulcerative colitis. Although various questions remain, including the potential positioning of S1P modulators in treatment algorithms and their long-term safety, this novel class of compounds holds great promise. This Review summarizes the critical mediators and mechanisms involved in immune cell trafficking in IBD and the available evidence for efficacy, safety and pharmacokinetics of S1P receptor modulators in IBD and other immune-mediated disorders. Further, it discusses potential future approaches to incorporate S1P modulators into the treatment of IBD.
Collapse
|
98
|
GPCR-mediated EGFR transactivation ameliorates skin toxicities induced by afatinib. Acta Pharmacol Sin 2022; 43:1534-1543. [PMID: 34552215 PMCID: PMC9160022 DOI: 10.1038/s41401-021-00774-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023] Open
Abstract
Many G-protein-coupled receptor (GPCR) agonists have been studied for transactivating epidermal growth factor receptor (EGFR) signaling through extracellular or intracellular pathways. Accumulated evidence has confirmed that GPCR transactivation participates in various diseases. However, the clinical application of GPCR transactivation has not been explored, and more translational studies are needed to develop therapies to target GPCR-mediated EGFR transactivation. In cancer patients treated with EGFR inhibitors (EGFRi), especially afatinib, a unique acneiform rash is frequently developed. In this study, we first established the connection between GPCR transactivation and EGFRi-induced skin disease. We examined the ability of three different GPCR agonists to reverse signaling inhibition and ameliorate rash induced by EGFRi. The activation of different agonists follows unique time and kinase patterns. Rats treated with EGFRi show a similar skin phenotype, with rash occurring in the clinic; correspondingly, treatment with GPCR agonists reduced keratinocyte apoptosis, growth retardation and infiltration of inflammatory cytokines by transactivation. This phenomenon demonstrates that EGFR inhibition in keratinocytes regulates key factors associated with rash. Our findings indicate that maintaining EGFR signaling by GPCR agonists might provide a possible therapy for EGFR inhibitor-induced skin toxicities. Our study provides the first example of the translational application of GPCR transactivation in treating diseases.
Collapse
|
99
|
Sphingosine-1-phosphate receptor modulators versus interferon beta for the treatment of relapsing–remitting multiple sclerosis: findings from randomized controlled trials. Neurol Sci 2022; 43:3565-3581. [DOI: 10.1007/s10072-022-05988-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 02/25/2022] [Indexed: 10/18/2022]
|
100
|
Rowan C, Ungaro R, Mehandru S, Colombel JF. An overview of ozanimod as a therapeutic option for adults with moderate-to-severe active ulcerative colitis. Expert Opin Pharmacother 2022; 23:893-904. [PMID: 35503955 DOI: 10.1080/14656566.2022.2071605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Ulcerative colitis (UC) is a chronic inflammatory condition of the gastrointestinal tract involving a dysregulated immune response. Sphingosine-1-phosphate (S1P) is involved in immune cell regulation. S1P-receptor modulators, such as ozanimod, inhibit lymphocyte migration and have therapeutic potential in UC. AREAS COVERED Ozanimod is the first S1P-receptor modulator approved for the treatment of UC. It acts as a functional antagonist, causing internalization of S1P receptors on T-cells. Lymphocyte egress from lymph nodes is inhibited, and migration to sites of active inflammation is curtailed. There are several S1P-receptor subtypes, present in various organs, which inform understanding of ozanimod's side-effect profile including bradycardia and macular edema. In this review, the authors discuss the mechanism of action, pharmacokinetics, clinical efficacy, and safety profile of ozanimod in the treatment of patients with moderate-to-severe UC. EXPERT OPINION The S1P-receptor modulator ozanimod is an oral small molecule with a rapid onset of action and a novel therapeutic mechanism in the treatment of UC. It is an effective treatment both in bio-naïve and bio-exposed patients. Although the safety profile of ozanimod looks favorable, more long-term data are needed. Further studies are required to compare ozanimod to currently available therapies to best define its positioning in UC treatment algorithms.
Collapse
Affiliation(s)
- Catherine Rowan
- Henry D. Janowitz Division of Gastroenterology, Susan and Leonard Feinstein Inflammatory Bowel Disease Center, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ryan Ungaro
- Henry D. Janowitz Division of Gastroenterology, Susan and Leonard Feinstein Inflammatory Bowel Disease Center, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Saurabh Mehandru
- Henry D. Janowitz Division of Gastroenterology, Susan and Leonard Feinstein Inflammatory Bowel Disease Center, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jean-Frederic Colombel
- Henry D. Janowitz Division of Gastroenterology, Susan and Leonard Feinstein Inflammatory Bowel Disease Center, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|