51
|
Indelicato E, Boesch S, Mencacci NE, Ghezzi D, Prokisch H, Winkelmann J, Zech M. Dystonia in ATP Synthase Defects: Reconnecting Mitochondria and Dopamine. Mov Disord 2024; 39:29-35. [PMID: 37964479 DOI: 10.1002/mds.29657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023] Open
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Niccolo' E Mencacci
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany
- DZPG, Deutsches Zentrum für Psychische Gesundheit, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| |
Collapse
|
52
|
Poggio E, Barazzuol L, Salmaso A, Milani C, Deligiannopoulou A, Cazorla ÁG, Jang SS, Juliá-Palacios N, Keren B, Kopajtich R, Lynch SA, Mignot C, Moorwood C, Neuhofer C, Nigro V, Oostra A, Prokisch H, Saillour V, Schuermans N, Torella A, Verloo P, Yazbeck E, Zollino M, Jech R, Winkelmann J, Necpal J, Calì T, Brini M, Zech M. ATP2B2 de novo variants as a cause of variable neurodevelopmental disorders that feature dystonia, ataxia, intellectual disability, behavioral symptoms, and seizures. Genet Med 2023; 25:100971. [PMID: 37675773 DOI: 10.1016/j.gim.2023.100971] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
PURPOSE ATP2B2 encodes the variant-constrained plasma-membrane calcium-transporting ATPase-2, expressed in sensory ear cells and specialized neurons. ATP2B2/Atp2b2 variants were previously linked to isolated hearing loss in patients and neurodevelopmental deficits with ataxia in mice. We aimed to establish the association between ATP2B2 and human neurological disorders. METHODS Multinational case recruitment, scrutiny of trio-based genomics data, in silico analyses, and functional variant characterization were performed. RESULTS We assembled 7 individuals harboring rare, predicted deleterious heterozygous ATP2B2 variants. The alleles comprised 5 missense substitutions that affected evolutionarily conserved sites and 2 frameshift variants in the penultimate exon. For 6 variants, a de novo status was confirmed. Unlike described patients with hearing loss, the individuals displayed a spectrum of neurological abnormalities, ranging from ataxia with dystonic features to complex neurodevelopmental manifestations with intellectual disability, autism, and seizures. Two cases with recurrent amino-acid variation showed distinctive overlap with cerebellar atrophy-associated ataxia and epilepsy. In cell-based studies, all variants caused significant alterations in cytosolic calcium handling with both loss- and gain-of-function effects. CONCLUSION Presentations in our series recapitulate key phenotypic aspects of Atp2b2-mouse models and underline the importance of precise calcium regulation for neurodevelopment and cerebellar function. Our study documents a role for ATP2B2 variants in causing heterogeneous neurodevelopmental and movement-disorder syndromes.
Collapse
Affiliation(s)
- Elena Poggio
- Department of Biology, University of Padua, Padua, Italy
| | - Lucia Barazzuol
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Andrea Salmaso
- Department of Biology, University of Padua, Padua, Italy
| | - Celeste Milani
- Department of Biology, University of Padua, Padua, Italy
| | | | - Ángeles García Cazorla
- European Reference Network for Hereditary Metabolic Diseases (MetabERN), Madrid, Spain; Neurometabolic Unit and Synaptic Metabolism Laboratory, Neurology Department Sant Joan de Déu Hospital, IPR, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Se Song Jang
- Seoul National University (SNU) College of Medicine, Seoul, South Korea
| | - Natalia Juliá-Palacios
- Neurology Department, Neurometabolic Unit, Institut de Recerca, CIBERER and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Boris Keren
- APHP.Sorbonne Université, Department of Medical Genetics, Pitié-Salpêtrière University Hospital, and Centre de Référence Maladies Rares Déficiences Intellectuelles de Causes Rares, Paris, France
| | - Robert Kopajtich
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sally Ann Lynch
- Department of Clinical Genetics, Temple Street Children's University Hospital, Dublin, Ireland
| | - Cyril Mignot
- APHP.Sorbonne Université, Department of Medical Genetics, Pitié-Salpêtrière University Hospital, and Centre de Référence Maladies Rares Déficiences Intellectuelles de Causes Rares, Paris, France
| | - Catherine Moorwood
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Christiane Neuhofer
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania, Luigi Vanvitelli, Napoli, Italy
| | - Anna Oostra
- Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Virginie Saillour
- Laboratoire de biologie médicale multisites Seqoia - FMG2025, Paris, France
| | - Nika Schuermans
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University Hospital, Ghent, Belgium
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania, Luigi Vanvitelli, Napoli, Italy
| | - Patrick Verloo
- Department of Pediatric Neurology, Center for Inherited Metabolic Disorders and metabERN, University Hospital Ghent, Ghent, Belgium
| | - Elise Yazbeck
- Pediatric Neurology Department, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Saclay, Bicêtre Hospital, Le Kremlin Bicêtre, France
| | - Marcella Zollino
- Unit of Medical Genetics, Section of Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Robert Jech
- Department of Neurology, Charles University in Prague, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| | - Jan Necpal
- 2nd Department of Neurology, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Department of Neurology, Zvolen Hospital, Zvolen, Slovakia
| | - Tito Calì
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Centro Studi per la Neurodegenerazione (CESNE), University of Padua, Padua, Italy; Neuroscience Center (PNC), University of Padua, Padua, Italy
| | - Marisa Brini
- Department of Biology, University of Padua, Padua, Italy; Centro Studi per la Neurodegenerazione (CESNE), University of Padua, Padua, Italy
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; Institute for Advanced Study, Technical University of Munich, Garching, Germany.
| |
Collapse
|
53
|
Harrer P, Škorvánek M, Kittke V, Dzinovic I, Borngräber F, Thomsen M, Mandel V, Svorenova T, Ostrozovicova M, Kulcsarova K, Berutti R, Busch H, Ott F, Kopajtich R, Prokisch H, Kumar KR, Mencacci NE, Kurian MA, Di Fonzo A, Boesch S, Kühn AA, Blümlein U, Lohmann K, Haslinger B, Weise D, Jech R, Winkelmann J, Zech M. Dystonia Linked to EIF4A2 Haploinsufficiency: A Disorder of Protein Translation Dysfunction. Mov Disord 2023; 38:1914-1924. [PMID: 37485550 DOI: 10.1002/mds.29562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/06/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Protein synthesis is a tightly controlled process, involving a host of translation-initiation factors and microRNA-associated repressors. Variants in the translational regulator EIF2AK2 were first linked to neurodevelopmental-delay phenotypes, followed by their implication in dystonia. Recently, de novo variants in EIF4A2, encoding eukaryotic translation initiation factor 4A isoform 2 (eIF4A2), have been described in pediatric cases with developmental delay and intellectual disability. OBJECTIVE We sought to characterize the role of EIF4A2 variants in dystonic conditions. METHODS We undertook an unbiased search for likely deleterious variants in mutation-constrained genes among 1100 families studied with dystonia. Independent cohorts were screened for EIF4A2 variants. Western blotting and immunocytochemical studies were performed in patient-derived fibroblasts. RESULTS We report the discovery of a novel heterozygous EIF4A2 frameshift deletion (c.896_897del) in seven patients from two unrelated families. The disease was characterized by adolescence- to adulthood-onset dystonia with tremor. In patient-derived fibroblasts, eIF4A2 production amounted to only 50% of the normal quantity. Reduction of eIF4A2 was associated with abnormally increased levels of IMP1, a target of Ccr4-Not, the complex that interacts with eIF4A2 to mediate microRNA-dependent translational repression. By complementing the analyses with fibroblasts bearing EIF4A2 biallelic mutations, we established a correlation between IMP1 expression alterations and eIF4A2 functional dosage. Moreover, eIF4A2 and Ccr4-Not displayed significantly diminished colocalization in dystonia patient cells. Review of international databases identified EIF4A2 deletion variants (c.470_472del, c.1144_1145del) in another two dystonia-affected pedigrees. CONCLUSIONS Our findings demonstrate that EIF4A2 haploinsufficiency underlies a previously unrecognized dominant dystonia-tremor syndrome. The data imply that translational deregulation is more broadly linked to both early neurodevelopmental phenotypes and later-onset dystonic conditions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Philip Harrer
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matej Škorvánek
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Volker Kittke
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Ivana Dzinovic
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Friederike Borngräber
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mirja Thomsen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Vanessa Mandel
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Tatiana Svorenova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Miriam Ostrozovicova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Kristina Kulcsarova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Riccardo Berutti
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hauke Busch
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Fabian Ott
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Robert Kopajtich
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Kishore R Kumar
- Translational Neurogenomics Group, Molecular Medicine Laboratory and Neurology Department, Concord Clinical School, Concord Repatriation General Hospital, The University of Sydney, Sydney, New South Wales, Australia
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Niccolo E Mencacci
- Ken and Ruth Davee Department of Neurology, Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Manju A Kurian
- Department of Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Blümlein
- Department of Pediatrics, Carl-Thiem-Klinikum Cottbus, Cottbus, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Bernhard Haslinger
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - David Weise
- Department of Neurology, Asklepios Fachklinikum Stadtroda, Stadtroda, Germany
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Robert Jech
- Department of Neurology, Charles University in Prague, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
54
|
van Eyk CL, Fahey MC, Gecz J. Redefining cerebral palsies as a diverse group of neurodevelopmental disorders with genetic aetiology. Nat Rev Neurol 2023; 19:542-555. [PMID: 37537278 DOI: 10.1038/s41582-023-00847-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/05/2023]
Abstract
Cerebral palsy is a clinical descriptor covering a diverse group of permanent, non-degenerative disorders of motor function. Around one-third of cases have now been shown to have an underlying genetic aetiology, with the genetic landscape overlapping with those of neurodevelopmental disorders including intellectual disability, epilepsy, speech and language disorders and autism. Here we review the current state of genomic testing in cerebral palsy, highlighting the benefits for personalized medicine and the imperative to consider aetiology during clinical diagnosis. With earlier clinical diagnosis now possible, we emphasize the opportunity for comprehensive and early genomic testing as a crucial component of the routine diagnostic work-up in people with cerebral palsy.
Collapse
Affiliation(s)
- Clare L van Eyk
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Jozef Gecz
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia.
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
| |
Collapse
|
55
|
Koy A, Kühn AA, Schiller P, Huebl J, Schneider GH, Eckenweiler M, Rensing-Zimmermann C, Coenen VA, Krauss JK, Saryyeva A, Hartmann H, Lorenz D, Volkmann J, Matthies C, Schnitzler A, Vesper J, Gharabaghi A, Weiss D, Bevot A, Marks W, Howser A, Monbaliu E, Mueller J, Prinz-Langenohl R, Visser-Vandewalle V, Timmermann L. Long-Term Follow-Up of Pediatric Patients with Dyskinetic Cerebral Palsy and Deep Brain Stimulation. Mov Disord 2023; 38:1736-1742. [PMID: 37358761 DOI: 10.1002/mds.29516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) has been increasingly used in the management of dyskinetic cerebral palsy (DCP). Data on long-term effects and the safety profile are rare. OBJECTIVES We assessed the efficacy and safety of pallidal DBS in pediatric patients with DCP. METHODS The STIM-CP trial was a prospective, single-arm, multicenter study in which patients from the parental trial agreed to be followed-up for up to 36 months. Assessments included motor and non-motor domains. RESULTS Of the 16 patients included initially, 14 (mean inclusion age 14 years) were assessed. There was a significant change in the (blinded) ratings of the total Dyskinesia Impairment Scale at 36 months. Twelve serious adverse events (possibly) related to treatment were documented. CONCLUSION DBS significantly improved dyskinesia, but other outcome parameters did not change significantly. Investigations of larger homogeneous cohorts are needed to further ascertain the impact of DBS and guide treatment decisions in DCP. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anne Koy
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Petra Schiller
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julius Huebl
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurology, Munich Municipal Hospital Bogenhausen, Munich, Germany
| | | | - Matthias Eckenweiler
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelia Rensing-Zimmermann
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker Arnd Coenen
- Department of Stereotactic and Functional Neurosurgery, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Deep Brain Stimulation, University Medical Center, Freiburg, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Hans Hartmann
- Clinic for Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Delia Lorenz
- Department of Pediatrics, University Children's Hospital, Wuerzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Cordula Matthies
- Department of Stereotactic and Functional Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan Vesper
- Department of Functional Neurosurgery and Stereotaxy, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
| | - Daniel Weiss
- Department of Neurology, Medical Faculty, University of Tübingen, Tübingen, Germany
| | - Andrea Bevot
- Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital Tübingen, Tübingen, Germany
| | - Warren Marks
- Department of Neurology, Cook Children's Medical Center, Fort Worth, Texas, USA
- Department of Pediatrics, University of North Texas Health Sciences Center, Fort Worth, Texas, USA
| | - Angela Howser
- Department of Pediatrics, University of North Texas Health Sciences Center, Fort Worth, Texas, USA
| | - Elegast Monbaliu
- Department of Rehabilitation Sciences, KU Leuven Campus Bruges, Brugge, Belgium
| | - Joerg Mueller
- Department of Neurology, Vivantes Klinikum Spandau, Berlin, Germany
| | | | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital of Marburg, Marburg, Germany
| |
Collapse
|
56
|
Schroader JH, Handley MT, Reddy K. Inosine triphosphate pyrophosphatase: A guardian of the cellular nucleotide pool and potential mediator of RNA function. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1790. [PMID: 37092460 DOI: 10.1002/wrna.1790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023]
Abstract
Inosine triphosphate pyrophosphatase (ITPase), encoded by the ITPA gene in humans, is an important enzyme that preserves the integrity of cellular nucleotide pools by hydrolyzing the noncanonical purine nucleotides (deoxy)inosine and (deoxy)xanthosine triphosphate into monophosphates and pyrophosphate. Variants in the ITPA gene can cause partial or complete ITPase deficiency. Partial ITPase deficiency is benign but clinically relevant as it is linked to altered drug responses. Complete ITPase deficiency causes a severe multisystem disorder characterized by seizures and encephalopathy that is frequently associated with fatal infantile dilated cardiomyopathy. In the absence of ITPase activity, its substrate noncanonical nucleotides have the potential to accumulate and become aberrantly incorporated into DNA and RNA. Hence, the pathophysiology of ITPase deficiency could arise from metabolic imbalance, altered DNA or RNA regulation, or from a combination of these factors. Here, we review the known functions of ITPase and highlight recent work aimed at determining the molecular basis for ITPA-associated pathogenesis which provides evidence for RNA dysfunction. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jacob H Schroader
- The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Mark T Handley
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kaalak Reddy
- The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
57
|
O'Neill AG, Burrell AL, Zech M, Elpeleg O, Harel T, Edvardson S, Mor-Shaked H, Rippert AL, Nomakuchi T, Izumi K, Kollman JM. Neurodevelopmental disorder mutations in the purine biosynthetic enzyme IMPDH2 disrupt its allosteric regulation. J Biol Chem 2023; 299:105012. [PMID: 37414152 PMCID: PMC10407431 DOI: 10.1016/j.jbc.2023.105012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023] Open
Abstract
Inosine 5' monophosphate dehydrogenase (IMPDH) is a critical regulatory enzyme in purine nucleotide biosynthesis that is inhibited by the downstream product GTP. Multiple point mutations in the human isoform IMPDH2 have recently been associated with dystonia and other neurodevelopmental disorders, but the effect of the mutations on enzyme function has not been described. Here, we report the identification of two additional missense variants in IMPDH2 from affected individuals and show that all of the disease-associated mutations disrupt GTP regulation. Cryo-EM structures of one IMPDH2 mutant suggest this regulatory defect arises from a shift in the conformational equilibrium toward a more active state. This structural and functional analysis provides insight into IMPDH2-associated disease mechanisms that point to potential therapeutic approaches and raises new questions about fundamental aspects of IMPDH regulation.
Collapse
Affiliation(s)
- Audrey G O'Neill
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Anika L Burrell
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Simon Edvardson
- Alyn Hospital, Hebrew University School of Medicine, Jerusalem, Israel
| | - Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alyssa L Rippert
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tomoki Nomakuchi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kosuke Izumi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
58
|
Leuzzi V, Galosi S. Experimental pharmacology: Targeting metabolic pathways. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:259-315. [PMID: 37482395 DOI: 10.1016/bs.irn.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Since the discovery of the treatment for Wilson disease a growing number of treatable inherited dystonias have been identified and their search and treatment have progressively been implemented in the clinics of patients with dystonia. While waiting for gene therapy to be more widely and adequately translated into the clinical setting, the efforts to divert the natural course of dystonia reside in unveiling its pathogenesis. Specific metabolic treatments can rewrite the natural history of the disease by preventing neurotoxic metabolite accumulation or interfering with the cell accumulation of damaging metabolites, restoring energetic cell fuel, supplementing defective metabolites, and supplementing the defective enzyme. A metabolic derangement of cell homeostasis is part of the progression of many non-metabolic genetic lesions and could be the target for possible metabolic approaches. In this chapter, we provided an update on treatment strategies for treatable inherited dystonias and an overview of genetic dystonias with new experimental therapeutic approaches available or close to clinical translation.
Collapse
Affiliation(s)
- Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University, Rome, Italy.
| |
Collapse
|
59
|
Nasca A, Mencacci NE, Invernizzi F, Zech M, Keller Sarmiento IJ, Legati A, Frascarelli C, Bustos BI, Romito LM, Krainc D, Winkelmann J, Carecchio M, Nardocci N, Zorzi G, Prokisch H, Lubbe SJ, Garavaglia B, Ghezzi D. Variants in ATP5F1B are associated with dominantly inherited dystonia. Brain 2023; 146:2730-2738. [PMID: 36860166 PMCID: PMC10316767 DOI: 10.1093/brain/awad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/31/2022] [Accepted: 02/05/2023] [Indexed: 03/03/2023] Open
Abstract
ATP5F1B is a subunit of the mitochondrial ATP synthase or complex V of the mitochondrial respiratory chain. Pathogenic variants in nuclear genes encoding assembly factors or structural subunits are associated with complex V deficiency, typically characterized by autosomal recessive inheritance and multisystem phenotypes. Movement disorders have been described in a subset of cases carrying autosomal dominant variants in structural subunits genes ATP5F1A and ATP5MC3. Here, we report the identification of two different ATP5F1B missense variants (c.1000A>C; p.Thr334Pro and c.1445T>C; p.Val482Ala) segregating with early-onset isolated dystonia in two families, both with autosomal dominant mode of inheritance and incomplete penetrance. Functional studies in mutant fibroblasts revealed no decrease of ATP5F1B protein amount but severe reduction of complex V activity and impaired mitochondrial membrane potential, suggesting a dominant-negative effect. In conclusion, our study describes a new candidate gene associated with isolated dystonia and confirms that heterozygous variants in genes encoding subunits of the mitochondrial ATP synthase may cause autosomal dominant isolated dystonia with incomplete penetrance, likely through a dominant-negative mechanism.
Collapse
Affiliation(s)
- Alessia Nasca
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Niccolò E Mencacci
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago 60611, IL, USA
| | - Federica Invernizzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Michael Zech
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Ignacio J Keller Sarmiento
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago 60611, IL, USA
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Chiara Frascarelli
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Bernabe I Bustos
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago 60611, IL, USA
| | - Luigi M Romito
- Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago 60611, IL, USA
| | - Juliane Winkelmann
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany
- Lehrstuhl für Neurogenetik, Technische Universität München, 81675 Munich, Germany
- Munich Cluster for Systems Neurology, SyNergy, 81377 Munich, Germany
| | - Miryam Carecchio
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
- Department Neuroscience, University of Padua, 35128 Padua, Italy
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Nardo Nardocci
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Giovanna Zorzi
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago 60611, IL, USA
| | - Barbara Garavaglia
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| |
Collapse
|
60
|
Santos M, Massano J, Lopes AM, Brandão AF, Freixo JP, Oliveira J. Aberrant Splicing Caused by a Novel VPS16 Variant Linked to Dystonia Type 30. Neurogenetics 2023; 24:215-218. [PMID: 37226038 DOI: 10.1007/s10048-023-00720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Dystonia is a hyperkinetic movement disorder characterized by sustained or intermittent involuntary muscle contractions, causing abnormal postures and/or repetitive movements. In this report, we identified a novel heterozygous splice-site variant in VPS16 (NM_022575.4:c.240+3G>C) in a patient with cervical and upper limb dystonia without other neurological or extra-neurological features. Analysis of patient's blood mRNA showed disruption of exon 3/intron 3 donor splice-site, leading to exon 3 skipping, which predictably results in a frameshift [p.(Ala48Valfs*14)]. Despite the scarcity of splice-affecting variants described in VPS16-related dystonia, our report contributes with the first fully characterized variant at the mRNA level.
Collapse
Affiliation(s)
- Mariana Santos
- UnIGENe, IBMC-Institute for Molecular and Cell Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135, Porto, Portugal.
| | - João Massano
- Department of Neurology, Centro Hospitalar Universitário de São João, and Faculty of Medicine University of Porto, Porto, Portugal
| | - Alexandra Manuel Lopes
- CGPP-Center for Predictive and Preventive Genetics, IBMC-Institute for Molecular and Cell Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana Filipa Brandão
- CGPP-Center for Predictive and Preventive Genetics, IBMC-Institute for Molecular and Cell Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - João Parente Freixo
- CGPP-Center for Predictive and Preventive Genetics, IBMC-Institute for Molecular and Cell Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Jorge Oliveira
- CGPP-Center for Predictive and Preventive Genetics, IBMC-Institute for Molecular and Cell Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
61
|
Dzinovic I, Graf E, Brugger M, Berutti R, Příhodová I, Blaschek A, Winkelmann J, Jech R, Vill K, Zech M. Challenges in Establishing the Diagnosis of PRRT2-Related Dystonia: Recurrent Pathogenic Variants in a Homopolymeric Stretch. Mov Disord Clin Pract 2023; 10:1159-1161. [PMID: 37476319 PMCID: PMC10354604 DOI: 10.1002/mdc3.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/07/2023] [Accepted: 05/05/2023] [Indexed: 07/22/2023] Open
Affiliation(s)
- Ivana Dzinovic
- Institute of Neurogenomics, Helmholtz Zentrum MünchenMunichGermany
- Institute of Human Genetics, School of MedicineTechnical University of MunichMunichGermany
| | - Elisabeth Graf
- Institute of Human Genetics, School of MedicineTechnical University of MunichMunichGermany
| | - Melanie Brugger
- Institute of Human Genetics, School of MedicineTechnical University of MunichMunichGermany
| | - Riccardo Berutti
- Institute of Neurogenomics, Helmholtz Zentrum MünchenMunichGermany
- Institute of Human Genetics, School of MedicineTechnical University of MunichMunichGermany
| | - Iva Příhodová
- Department of NeurologyCharles University, 1st Faculty of Medicine and General University Hospital in PraguePragueCzech Republic
| | - Astrid Blaschek
- Dr. v. Hauner Children's Hospital, Department of Pediatric Neurology and Developmental MedicineLudwig‐Maximilians‐UniversitätMunichGermany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum MünchenMunichGermany
- Institute of Human Genetics, School of MedicineTechnical University of MunichMunichGermany
- Lehrstuhl für Neurogenetik, Technische Universität MünchenMunichGermany
- Munich Cluster for Systems Neurology, SyNergyMunichGermany
| | - Robert Jech
- Department of NeurologyCharles University, 1st Faculty of Medicine and General University Hospital in PraguePragueCzech Republic
| | - Katharina Vill
- Dr. v. Hauner Children's Hospital, Department of Pediatric Neurology and Developmental MedicineLudwig‐Maximilians‐UniversitätMunichGermany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum MünchenMunichGermany
- Institute of Human Genetics, School of MedicineTechnical University of MunichMunichGermany
| |
Collapse
|
62
|
Salamon A, Nagy ZF, Pál M, Szabó M, Csősz Á, Szpisjak L, Gárdián G, Zádori D, Széll M, Klivényi P. Genetic Screening of a Hungarian Cohort with Focal Dystonia Identified Several Novel Putative Pathogenic Gene Variants. Int J Mol Sci 2023; 24:10745. [PMID: 37445923 DOI: 10.3390/ijms241310745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Dystonia is a rare movement disorder which is characterized by sustained or intermittent muscle contractions causing abnormal and often repetitive movements, postures, or both. The two most common forms of adult-onset focal dystonia are cervical dystonia (CD) and benign essential blepharospasm (BSP). A total of 121 patients (CD, 74; BSP, 47) were included in the study. The average age of the patients was 64 years. For the next-generation sequencing (NGS) approach, 30 genes were selected on the basis of a thorough search of the scientific literature. Assessment of 30 CD- and BSP-associated genes from 121 patients revealed a total of 209 different heterozygous variants in 24 genes. Established clinical and genetic validity was determined for nine heterozygous variations (three likely pathogenic and six variants of uncertain significance). Detailed genetic examination is an important part of the work-up for focal dystonia forms. To our knowledge, our investigation is the first such study to be carried out in the Middle-European region.
Collapse
Affiliation(s)
- András Salamon
- Department of Neurology, University of Szeged, 6, Semmelweis Str., H-6725 Szeged, Hungary
| | - Zsófia Flóra Nagy
- Department of Medical Genetics, University of Szeged, 4, Somogyi Béla Str., H-6720 Szeged, Hungary
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, 78/b, Üllői Str., H-1083 Budapest, Hungary
| | - Margit Pál
- Department of Medical Genetics, University of Szeged, 4, Somogyi Béla Str., H-6720 Szeged, Hungary
- ELKH-SZTE Functional Clinical Genetics Research Group, Eötvös Loránd Research Network, 4, Somogyi Béla Str., H-6720 Szeged, Hungary
| | - Máté Szabó
- Department of Neurology, University of Szeged, 6, Semmelweis Str., H-6725 Szeged, Hungary
| | - Ádám Csősz
- Department of Neurology, University of Szeged, 6, Semmelweis Str., H-6725 Szeged, Hungary
| | - László Szpisjak
- Department of Neurology, University of Szeged, 6, Semmelweis Str., H-6725 Szeged, Hungary
| | - Gabriella Gárdián
- Department of Neurology, University of Szeged, 6, Semmelweis Str., H-6725 Szeged, Hungary
| | - Dénes Zádori
- Department of Neurology, University of Szeged, 6, Semmelweis Str., H-6725 Szeged, Hungary
| | - Márta Széll
- Department of Medical Genetics, University of Szeged, 4, Somogyi Béla Str., H-6720 Szeged, Hungary
- ELKH-SZTE Functional Clinical Genetics Research Group, Eötvös Loránd Research Network, 4, Somogyi Béla Str., H-6720 Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, University of Szeged, 6, Semmelweis Str., H-6725 Szeged, Hungary
| |
Collapse
|
63
|
Erro R, Monfrini E, Di Fonzo A. Early-onset inherited dystonias versus late-onset idiopathic dystonias: Same or different biological mechanisms? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:329-346. [PMID: 37482397 DOI: 10.1016/bs.irn.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dystonia syndromes encompass a heterogeneous group of movement disorders which might be differentiated by several clinical-historical features. Among the latter, age-at-onset is probably the most important in predicting the likelihood both for the symptoms to spread from focal to generalized and for a genetic cause to be found. Accordingly, dystonia syndromes are generally stratified into early-onset and late-onset forms, the former having a greater likelihood of being monogenic disorders and the latter to be possibly multifactorial diseases, despite being currently labeled as idiopathic. Nonetheless, there are several similarities between these two groups of dystonia, including shared pathophysiological and biological mechanisms. Moreover, there is also initial evidence of age-related modifiers of early-onset dystonia syndromes and of critical periods of vulnerability of the sensorimotor network, during which a combination of genetic and non-genetic insults is more likely to produce symptoms. Based on these lines of evidence, we reappraise the double-hit hypothesis of dystonia, which would accommodate both similarities and differences between early-onset and late-onset dystonia in a single framework.
Collapse
Affiliation(s)
- Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.
| | - Edoardo Monfrini
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| |
Collapse
|
64
|
Camici M, Garcia-Gil M, Allegrini S, Pesi R, Bernardini G, Micheli V, Tozzi MG. Inborn Errors of Purine Salvage and Catabolism. Metabolites 2023; 13:787. [PMID: 37512494 PMCID: PMC10383617 DOI: 10.3390/metabo13070787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Cellular purine nucleotides derive mainly from de novo synthesis or nucleic acid turnover and, only marginally, from dietary intake. They are subjected to catabolism, eventually forming uric acid in humans, while bases and nucleosides may be converted back to nucleotides through the salvage pathways. Inborn errors of the purine salvage pathway and catabolism have been described by several researchers and are usually referred to as rare diseases. Since purine compounds play a fundamental role, it is not surprising that their dysmetabolism is accompanied by devastating symptoms. Nevertheless, some of these manifestations are unexpected and, so far, have no explanation or therapy. Herein, we describe several known inborn errors of purine metabolism, highlighting their unexplained pathological aspects. Our intent is to offer new points of view on this topic and suggest diagnostic tools that may possibly indicate to clinicians that the inborn errors of purine metabolism may not be very rare diseases after all.
Collapse
Affiliation(s)
- Marcella Camici
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Mercedes Garcia-Gil
- Unità di Fisiologia Generale, Dipartimento di Biologia, Università di Pisa, Via San Zeno 31, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Simone Allegrini
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Rossana Pesi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Vanna Micheli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
- LND Famiglie Italiane ODV-Via Giovanetti 15-20, 16149 Genova, Italy
| | - Maria Grazia Tozzi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| |
Collapse
|
65
|
Baker EK, Han J, Langley WA, Reott MA, Hallinan BE, Hopkin RJ, Zhang W. RNA sequencing reveals a complete picture of a homozygous missense variant in a patient with VPS13D movement disorder: a case report and review of the literature. Mol Genet Genomics 2023:10.1007/s00438-023-02044-y. [PMID: 37340120 DOI: 10.1007/s00438-023-02044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/04/2023] [Indexed: 06/22/2023]
Abstract
RNA sequencing (RNA-seq) is a complementary diagnostic tool to exome sequencing (ES), only recently clinically available to undiagnosed patients post-ES, that provides functional information on variants of unknown significance (VUS) by evaluating its effect on RNA transcription. ES became clinically available in the early 2010s and promised an agnostic platform for patients with a neurological disease, especially for those who believed to have a genetic etiology. However, the massive data generated by ES pose challenges in variant interpretation, especially for rare missense, synonymous, and deep intronic variants that may have a splicing effect. Without functional study and/or family segregation analysis, these rare variants would be likely interpreted as VUS which is difficult for clinicians to use in clinical care. Clinicians are able to assess the VUS for phenotypic overlap, but this additional information alone is usually not enough to re-classify a variant. Here, we report a case of a 14-month-old male who presented to clinic with a history of seizures, nystagmus, cerebral palsy, oral aversion, global developmental delay, and poor weight gain requiring gastric tube placement. ES revealed a previously unreported homozygous missense VUS, c.7406A > G p.(Asn2469Ser), in VPS13D. This variant has not been previously reported in genome aggregation database (gnomAD), ClinVar, or in any peer-reviewed published literature. By RNA-seq, we demonstrated that this variant mainly impacts splicing and results in a frameshift and early termination. It is expected to generate either a truncated protein, p.(Val2468fs*19), or no protein from this transcript due to nonsense-mediated mRNA decay leading to VPS13D deficiency. To our knowledge, this is the first case utilizing RNA-seq to further functionally characterize a homozygous novel missense VUS in VPS13D and confirm its impact on splicing. This confirmed pathogenicity gave the diagnosis of VPS13D movement disorder to this patient. Therefore, clinicians should consider utilizing RNA-seq to clarify VUS by evaluating its effect on RNA transcription.
Collapse
Affiliation(s)
- Elizabeth K Baker
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML7016, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jingfen Han
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML7016, Cincinnati, OH, 45229, USA
| | | | | | - Barbara E Hallinan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medicine, Cincinnati, OH, USA
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML7016, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wenying Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML7016, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
66
|
Trieschmann G, Wilhelm C, Berweck S, Zech M. De novo retinoic acid receptor beta (RARB) variant associated with microphthalmia and dystonia. Eur J Med Genet 2023; 66:104802. [PMID: 37321544 DOI: 10.1016/j.ejmg.2023.104802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Definition of the individual genotypes that cause a Mendelian phenotype is of great importance both to clinical diagnostics and disease characterization. Heterozygous de novo gain-of-function missense variants in RARB are associated with syndromic microphthalmia 12 (MCOPS12), a developmental disorder characterized by eye malformations and variable involvement of other organs. A subset of patients were described with poorly delineated movement disorders. Additionally, RARB bi-allelic loss-of-function variants, inherited from asymptomatic heterozygous carrier parents, have been found in a recessive family with four MCOPS12-affected members. PATIENT/METHODS We used trio whole-exome sequencing to explore the molecular basis of disease in an individual with congenital eye abnormality and movement disorder. All patients with reported RARB variants were reviewed. RESULTS We report on identification of a heterozygous de novo RARB nonsense variant in a girl with microphthalmia and progressive generalized dystonia. Public database entries indicate that the de novo variant is recurrently present in clinically affected subjects but a literature report has not yet been available. CONCLUSIONS We provide the first detailed evidence for a role of dominant RARB truncating alterations in congenital eye-brain disease, expanding the spectrum of MCOPS12-associated mutations. Considered together with the published family with bi-allelic variants, the data suggest manifestation and non-manifestation of disease in relation to almost identical RARB loss-of-function variations, an apparent paradox that is seen in a growing number of human genetic conditions associated with both recessive and dominant inheritance patterns.
Collapse
Affiliation(s)
- Gesa Trieschmann
- Specialist Centre for Paediatric Neurology, Neurorehabilitation and Epileptology, Schoen Clinic Vogtareuth, Vogtareuth, Germany
| | | | - Steffen Berweck
- Specialist Centre for Paediatric Neurology, Neurorehabilitation and Epileptology, Schoen Clinic Vogtareuth, Vogtareuth, Germany; LMU Hospital, Department of Pediatrics-Dr. von Hauner Childrens's Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians University, Munich, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
67
|
Di Fonzo A, Jinnah HA, Zech M. Dystonia genes and their biological pathways. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:61-103. [PMID: 37482402 DOI: 10.1016/bs.irn.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
High-throughput sequencing has been instrumental in uncovering the spectrum of pathogenic genetic alterations that contribute to the etiology of dystonia. Despite the immense heterogeneity in monogenic causes, studies performed during the past few years have highlighted that many rare deleterious variants associated with dystonic presentations affect genes that have roles in certain conserved pathways in neural physiology. These various gene mutations that appear to converge towards the disruption of interconnected cellular networks were shown to produce a wide range of different dystonic disease phenotypes, including isolated and combined dystonias as well as numerous clinically complex, often neurodevelopmental disorder-related conditions that can manifest with dystonic features in the context of multisystem disturbances. In this chapter, we summarize the manifold dystonia-gene relationships based on their association with a discrete number of unifying pathophysiological mechanisms and molecular cascade abnormalities. The themes on which we focus comprise dopamine signaling, heavy metal accumulation and calcifications in the brain, nuclear envelope function and stress response, gene transcription control, energy homeostasis, lysosomal trafficking, calcium and ion channel-mediated signaling, synaptic transmission beyond dopamine pathways, extra- and intracellular structural organization, and protein synthesis and degradation. Enhancing knowledge about the concept of shared etiological pathways in the pathogenesis of dystonia will motivate clinicians and researchers to find more efficacious treatments that allow to reverse pathologies in patient-specific core molecular networks and connected multipathway loops.
Collapse
Affiliation(s)
- Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - H A Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Atlanta, GA, United States
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
68
|
Loens S, Hamami F, Lohmann K, Odorfer T, Ip CW, Zittel S, Zeuner KE, Everding J, Becktepe J, Marth K, Borngräber F, Kollewe K, Kamm C, Kühn AA, Gelderblom M, Volkmann J, Klein C, Bäumer T. Tremor is associated with familial clustering of dystonia. Parkinsonism Relat Disord 2023; 110:105400. [PMID: 37086575 DOI: 10.1016/j.parkreldis.2023.105400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/17/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023]
Abstract
INTRODUCTION Dystonia is a movement disorder of variable etiology and clinical presentation and is accompanied by tremor in about 50% of cases. Monogenic causes in dystonia are rare, but also in the group of non-monogenic dystonias 10-30% of patients report a family history of dystonia. This points to a number of patients currently classified as idiopathic that have at least in part an underlying genetic contribution. The present study aims to identify clinical and demographic features associated with heritability of yet idiopathic dystonia. METHODS Seven hundred thirty-three datasets were obtained from the DysTract dystonia registry, patients with acquired dystonia or monogenic causes were excluded. Affected individuals were assigned to a familial and sporadic group, and clinical features were compared across these groups. Additionally, the history of movement disorders was also counted in family members. RESULTS 18.2% of patients reported a family history of dystonia. Groups differed in age at onset, disease duration and presence of tremor on a descriptive level. Logistic regression analysis revealed that tremor was the only predictor for a positive family history of dystonia (OR 2.49, CI = 1.54-4.11, p < 0.001). Tremor turned out to be the most common movement disorder in available relatives of patients, and presence of tremor in relatives was associated with tremor in index patients (X2(1) = 16.2, p < 0.001). CONCLUSIONS Tremor is associated with an increased risk of familial clustering of dystonia and with a family history of tremor itself. This indicates a hereditable dystonia-tremor syndrome with a clinical spectrum ranging from tremor-predominant diseases to dystonia.
Collapse
Affiliation(s)
- Sebastian Loens
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany; Department of Rare Diseases, University Hospital Schleswig Holstein, Lübeck, Germany.
| | - Feline Hamami
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Thorsten Odorfer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kirsten E Zeuner
- Department of Neurology, University Hospital Kiel, Kiel, Germany
| | - Judith Everding
- Department of Neurology, University Hospital Kiel, Kiel, Germany
| | - Jos Becktepe
- Department of Neurology, University Hospital Kiel, Kiel, Germany
| | - Katrin Marth
- Department of Neurology, University Hospital Rostock, Rostock, Germany
| | | | - Katja Kollewe
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Christoph Kamm
- Department of Neurology, University Hospital Rostock, Rostock, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Germany
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Tobias Bäumer
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany; Department of Rare Diseases, University Hospital Schleswig Holstein, Lübeck, Germany
| |
Collapse
|
69
|
Lin J, Li C, Cui Y, Hou Y, Zhang L, Ou R, Wei Q, Liu K, Yang T, Xiao Y, Jiang Q, Zhao B, Yang J, Chen X, Shang H. Rare variants in IMPDH2 cause autosomal dominant dystonia in Chinese population. J Neurol 2023; 270:2197-2203. [PMID: 36648520 DOI: 10.1007/s00415-023-11564-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
STUDY OBJECTIVES Recently, IMPDH2 has been linked to dystonia. However, no replication study from other cohorts has been conducted to confirm the association. We aimed to systematically evaluate the genetic associations of IMPDH2 with dystonia in a large dystonia cohort. METHODS We analyzed rare variants (minor allele frequency < 0.01) of IMPDH2 in 688 Chinese dystonia patients with whole exome sequencing. The over-representation of rare variants in patients was examined with Fisher's exact test at allele and gene levels. RESULTS Four rare variants were detected in IMPDH2 in four patients with dystonia in our cohort, including three missense variants (p.Ser508Leu, p.Ala396Thr, and p.Phe24Val) and one splice acceptor variant (c.1296-1G>T). Two of them (c.1296-1G>T and p.Ser508Leu) were co-segregated in the family co-segregation analysis and were classified as pathogenic and likely pathogenic variant according to the American College of Medical Genetics and Genomics (ACMG) guidelines, respectively. Gene burden analysis revealed enrichment of rare variants in IMPDH2 in dystonia. CONCLUSIONS Our work supplemented the evidence on the role of IMPDH2 in autosomal dominant dystonia in Chinese population, and expanded the genetic and phenotypic spectrum of IMPDH2, paving way for future studies.
Collapse
Affiliation(s)
- Junyu Lin
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Chunyu Li
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Yiyuan Cui
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Yanbing Hou
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Lingyu Zhang
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Kuncheng Liu
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Tianmi Yang
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Yi Xiao
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Qirui Jiang
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Bi Zhao
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Jing Yang
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Xueping Chen
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Rare Disease Center, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, No 37, Guo Xue Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
70
|
Alawneh I, Amburgey K, Gonorazky H, Gorodetsky C. CAMK4-related Case of Hyperkinetic Movement Disorder. Mov Disord Clin Pract 2023; 10:707-709. [PMID: 37070062 PMCID: PMC10105089 DOI: 10.1002/mdc3.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Affiliation(s)
- Issa Alawneh
- Division of NeurologyThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Kimberley Amburgey
- Division of Neurology, Department of Pediatrics, The Hospital for Sick ChildrenUniversity of TorontoTorontoOntarioCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | - Hernan Gonorazky
- Division of NeurologyThe Hospital for Sick ChildrenTorontoOntarioCanada
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children. Program for Genetics and Genome Biology, The Hospital for Sick ChildrenUniversity of TorontoTorontoOntarioCanada
| | - Carolina Gorodetsky
- Division of NeurologyThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of pediatricsUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
71
|
Indelicato E, Pfeilstetter J, Zech M, Unterberger I, Wanschitz J, Berweck S, Boesch S. New-Onset Refractory Status Epilepticus Due to a Novel MT-TF Variant. NEUROLOGY GENETICS 2023; 9:e200063. [PMID: 37090940 PMCID: PMC10117698 DOI: 10.1212/nxg.0000000000200063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/25/2023] [Indexed: 03/17/2023]
Abstract
ObjectiveThe gene MT-TF encodes the mitochondrial tRNA of phenylalanine (tRNAphe). Its variations have been described as extremely rare etiologies of a variety of mitochondrial phenotypes.MethodsBy means of whole-exome sequencing (WES), we detected a novel likely causative MT-TF variant (m.610T>C) in a family presenting with a combined movement disorder and epilepsy phenotype. The variant was present at 97% heteroplasmy in the peripheral blood and in a homoplasmic state in skin fibroblast-derived DNA.ResultsThe inaugural manifestation in the index patient was new-onset refractory myoclonic status epilepticus (NORSE) at the age of 29 years. Her son presented later with developmental regression and myoclonic epilepsy. On the beginning of valproate because of ongoing myoclonic seizures, the index patient developed a generalized brain edema requiring bilateral craniotomy. In the course of the disease, epileptic manifestations abated, and both patients developed a severe movement disorder phenotype with prominent spastic-dystonic features. Both patients did not display any further sign of mitochondrial disease.DiscussionOur report expands the clinicogenetic background of tRNAphedisease spectrum and highlights pitfalls in the diagnostics and management of mitochondrial epilepsy. The present findings advocate the introduction of rapid genetic testing in the diagnostic flow chart of NORSE in adults.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck (E.I., S. Boesch); Department of Neurology (E.I., I.U., J.W., S. Boesch), Medical University of Innsbruck, Austria; Hospital for Neuropediatrics and Neurological Rehabilitation (J.P., S. Berweck), Centre of Epilepsy for Children and Adolescents, Schoen Klinik Vogtareuth, Germany; Institute of Neurogenomics (M.Z.), Helmholtz Zentrum München; Institute of Human Genetics (M.Z.), School of Medicine, Technical University of Munich; and Department of Pediatric Neurology and Developmental Medicine Dr. von Hauner Children´s Hospital (S. Berweck), Ludwig Maximilian University of Munich, Germany
| | - Johannes Pfeilstetter
- Center for Rare Movement Disorders Innsbruck (E.I., S. Boesch); Department of Neurology (E.I., I.U., J.W., S. Boesch), Medical University of Innsbruck, Austria; Hospital for Neuropediatrics and Neurological Rehabilitation (J.P., S. Berweck), Centre of Epilepsy for Children and Adolescents, Schoen Klinik Vogtareuth, Germany; Institute of Neurogenomics (M.Z.), Helmholtz Zentrum München; Institute of Human Genetics (M.Z.), School of Medicine, Technical University of Munich; and Department of Pediatric Neurology and Developmental Medicine Dr. von Hauner Children´s Hospital (S. Berweck), Ludwig Maximilian University of Munich, Germany
| | - Michael Zech
- Center for Rare Movement Disorders Innsbruck (E.I., S. Boesch); Department of Neurology (E.I., I.U., J.W., S. Boesch), Medical University of Innsbruck, Austria; Hospital for Neuropediatrics and Neurological Rehabilitation (J.P., S. Berweck), Centre of Epilepsy for Children and Adolescents, Schoen Klinik Vogtareuth, Germany; Institute of Neurogenomics (M.Z.), Helmholtz Zentrum München; Institute of Human Genetics (M.Z.), School of Medicine, Technical University of Munich; and Department of Pediatric Neurology and Developmental Medicine Dr. von Hauner Children´s Hospital (S. Berweck), Ludwig Maximilian University of Munich, Germany
| | - Iris Unterberger
- Center for Rare Movement Disorders Innsbruck (E.I., S. Boesch); Department of Neurology (E.I., I.U., J.W., S. Boesch), Medical University of Innsbruck, Austria; Hospital for Neuropediatrics and Neurological Rehabilitation (J.P., S. Berweck), Centre of Epilepsy for Children and Adolescents, Schoen Klinik Vogtareuth, Germany; Institute of Neurogenomics (M.Z.), Helmholtz Zentrum München; Institute of Human Genetics (M.Z.), School of Medicine, Technical University of Munich; and Department of Pediatric Neurology and Developmental Medicine Dr. von Hauner Children´s Hospital (S. Berweck), Ludwig Maximilian University of Munich, Germany
| | - Julia Wanschitz
- Center for Rare Movement Disorders Innsbruck (E.I., S. Boesch); Department of Neurology (E.I., I.U., J.W., S. Boesch), Medical University of Innsbruck, Austria; Hospital for Neuropediatrics and Neurological Rehabilitation (J.P., S. Berweck), Centre of Epilepsy for Children and Adolescents, Schoen Klinik Vogtareuth, Germany; Institute of Neurogenomics (M.Z.), Helmholtz Zentrum München; Institute of Human Genetics (M.Z.), School of Medicine, Technical University of Munich; and Department of Pediatric Neurology and Developmental Medicine Dr. von Hauner Children´s Hospital (S. Berweck), Ludwig Maximilian University of Munich, Germany
| | - Steffen Berweck
- Center for Rare Movement Disorders Innsbruck (E.I., S. Boesch); Department of Neurology (E.I., I.U., J.W., S. Boesch), Medical University of Innsbruck, Austria; Hospital for Neuropediatrics and Neurological Rehabilitation (J.P., S. Berweck), Centre of Epilepsy for Children and Adolescents, Schoen Klinik Vogtareuth, Germany; Institute of Neurogenomics (M.Z.), Helmholtz Zentrum München; Institute of Human Genetics (M.Z.), School of Medicine, Technical University of Munich; and Department of Pediatric Neurology and Developmental Medicine Dr. von Hauner Children´s Hospital (S. Berweck), Ludwig Maximilian University of Munich, Germany
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck (E.I., S. Boesch); Department of Neurology (E.I., I.U., J.W., S. Boesch), Medical University of Innsbruck, Austria; Hospital for Neuropediatrics and Neurological Rehabilitation (J.P., S. Berweck), Centre of Epilepsy for Children and Adolescents, Schoen Klinik Vogtareuth, Germany; Institute of Neurogenomics (M.Z.), Helmholtz Zentrum München; Institute of Human Genetics (M.Z.), School of Medicine, Technical University of Munich; and Department of Pediatric Neurology and Developmental Medicine Dr. von Hauner Children´s Hospital (S. Berweck), Ludwig Maximilian University of Munich, Germany
| |
Collapse
|
72
|
Li LX, Liu Y, Huang JH, Yang Y, Pan YG, Zhang XL, Pan LZ, Jin LJ. Genetic spectrum and clinical features in a cohort of Chinese patients with isolated dystonia. Clin Genet 2023; 103:459-465. [PMID: 36648081 DOI: 10.1111/cge.14298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Dystonia is a genetically and phenotypically heterogeneous disorder that occurs in isolation (isolated dystonia) or in combination with other movement disorders. To determine the genetic spectrum in isolated dystonia, we enrolled 88 patients with isolated dystonia for whole-exome sequencing (WES). Seventeen mutations, including nine novel ones, were identified in 19 of the 88 patients, providing a 21.59% positive molecular diagnostic rate. Eleven distinct genes were involved, of which TOR1A and THAP1 accounted for 47.37% (9/19) of the positive cases. A novel missense variant, p.S225R in TOR1A, was found in a patient with adolescence-onset generalized dystonia. Cellular experiments revealed that p.S255R results in the abnormal aggregation of Torsin-1A encoding by TOR1A. In addition, we reviewed the clinical and genetic features of the isolated dystonia patients carrying TOR1A, THAP1, ANO3, and GNAL mutations in the Chinese population. Our results expand the genetic spectrum and clinical profiles of patients with isolated dystonia and demonstrate WES as an effective strategy for the molecular diagnosis of isolated dystonia.
Collapse
Affiliation(s)
- Li-Xi Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ying Liu
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie-Hong Huang
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Yang
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital, School of Medicine, Tongji University, Shanghai, China
| | - You-Gui Pan
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao-Long Zhang
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-Zhen Pan
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling-Jing Jin
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
73
|
Shafique A, Arif B, Chu ML, Moran E, Hussain T, Zamora FM, Wohler E, Sobreira N, Klein C, Lohmann K, Naz S. MRM2 variants in families with complex dystonic syndromes: evidence for phenotypic heterogeneity. J Med Genet 2023; 60:352-358. [PMID: 36002240 DOI: 10.1136/jmg-2022-108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/25/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Dystonia involves repetitive movements and muscle contractions leading to abnormal postures. We investigated patients in two families, DYAF11 and M, exhibiting dystonic or involuntary movement disorders. METHODS Clinical investigations were performed for all patients. Genetic analyses included genome-wide linkage analysis and exome sequencing followed by Sanger sequencing validation. MRM2-specific transcripts were analysed from participants' blood samples in Family DYAF11 after cloning of gene-specific cDNA. RESULTS Four affected siblings in Family DYAF11 had progressive dystonic features. Two patients in Family M exhibited a neurodevelopmental disorder accompanied by involuntary movements. In Family DYAF11, linkage was detected to the telomere at chromosome 7p22.3, spanning <2 Mb. Exome sequencing identified a donor splice-site variant, c.8+1G>T in MRM2, which segregated with the phenotype, corresponding to the linkage data since all affected individuals were homozygous while the obligate unaffected carriers were heterozygous for the variant. In the MRM2 c.8+1G>T allele, an aberrant alternative acceptor splice-site located within exon 2 was used in a subset of the transcripts, creating a frameshift in the open reading frame. Exome sequencing in Family M revealed a rare missense variant c.242C>T, p.(Ala81Val), which affected a conserved amino acid. CONCLUSIONS Our results expand the clinical and allelic spectrum of MRM2 variants. Previously, these descriptions were based on observations in a single patient, diagnosed with mitochondrial DNA depletion syndrome 17, in whom movement disorder was accompanied by recurrent strokes and epilepsy. We also demonstrate a subset of correctly spliced tt-ag MRM2 transcripts, raising the possibility to develop treatment by understanding the disease mechanism.
Collapse
Affiliation(s)
- Anum Shafique
- School of Biological Sciences, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Beenish Arif
- School of Biological Sciences, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Mary Lynn Chu
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, USA
- Langone Orthopedic Hospital, New York University, New York, New York, USA
| | - Ellen Moran
- Clinical Genetics, Center for Children, Hassenfeld Children's Hospital, New York University, New York, New York, USA
| | - Tooba Hussain
- School of Biological Sciences, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | | | - Elizabeth Wohler
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| |
Collapse
|
74
|
Reid KM, Steel D, Nair S, Bhate S, Biassoni L, Sudhakar S, Heys M, Burke E, Kamsteeg EJ, Hameed B, Zech M, Mencacci NE, Barwick K, Topf M, Kurian MA, Genomics England Research Consortium. Loss-of-Function Variants in DRD1 in Infantile Parkinsonism-Dystonia. Cells 2023; 12:cells12071046. [PMID: 37048120 PMCID: PMC10093404 DOI: 10.3390/cells12071046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
The human dopaminergic system is vital for a broad range of neurological processes, including the control of voluntary movement. Here we report a proband presenting with clinical features of dopamine deficiency: severe infantile parkinsonism-dystonia, characterised by frequent oculogyric crises, dysautonomia and global neurodevelopmental impairment. CSF neurotransmitter analysis was unexpectedly normal. Triome whole-genome sequencing revealed a homozygous variant (c.110C>A, (p.T37K)) in DRD1, encoding the most abundant dopamine receptor (D1) in the central nervous system, most highly expressed in the striatum. This variant was absent from gnomAD, with a CADD score of 27.5. Using an in vitro heterologous expression system, we determined that DRD1-T37K results in loss of protein function. Structure-function modelling studies predicted reduced substrate binding, which was confirmed in vitro. Exposure of mutant protein to the selective D1 agonist Chloro APB resulted in significantly reduced cyclic AMP levels. Numerous D1 agonists failed to rescue the cellular defect, reflected clinically in the patient, who had no benefit from dopaminergic therapy. Our study identifies DRD1 as a new disease-associated gene, suggesting a crucial role for the D1 receptor in motor control.
Collapse
|
75
|
Alvarez-Mora MI, Rodríguez-Revenga L, Jodar M, Potrony M, Sanchez A, Badenas C, Oriola J, Villanueva-Cañas JL, Muñoz E, Valldeoriola F, Cámara A, Compta Y, Carreño M, Martí MJ, Sánchez-Valle R, Madrigal I. Implementation of Exome Sequencing in Clinical Practice for Neurological Disorders. Genes (Basel) 2023; 14:genes14040813. [PMID: 37107571 PMCID: PMC10137364 DOI: 10.3390/genes14040813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Neurological disorders (ND) are diseases that affect the brain and the central and autonomic nervous systems, such as neurodevelopmental disorders, cerebellar ataxias, Parkinson’s disease, or epilepsies. Nowadays, recommendations of the American College of Medical Genetics and Genomics strongly recommend applying next generation sequencing (NGS) as a first-line test in patients with these disorders. Whole exome sequencing (WES) is widely regarded as the current technology of choice for diagnosing monogenic ND. The introduction of NGS allows for rapid and inexpensive large-scale genomic analysis and has led to enormous progress in deciphering monogenic forms of various genetic diseases. The simultaneous analysis of several potentially mutated genes improves the diagnostic process, making it faster and more efficient. The main aim of this report is to discuss the impact and advantages of the implementation of WES into the clinical diagnosis and management of ND. Therefore, we have performed a retrospective evaluation of WES application in 209 cases referred to the Department of Biochemistry and Molecular Genetics of the Hospital Clinic of Barcelona for WES sequencing derived from neurologists or clinical geneticists. In addition, we have further discussed some important facts regarding classification criteria for pathogenicity of rare variants, variants of unknown significance, deleterious variants, different clinical phenotypes, or frequency of actionable secondary findings. Different studies have shown that WES implementation establish diagnostic rate around 32% in ND and the continuous molecular diagnosis is essential to solve the remaining cases.
Collapse
|
76
|
Mutation screening of AOPEP variants in a large dystonia cohort. J Neurol 2023; 270:3225-3233. [PMID: 36933031 DOI: 10.1007/s00415-023-11665-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023]
Abstract
STUDY OBJECTIVES Recently, AOPEP has been identified to be a novel causative gene of autosomal-recessive dystonia. However, no large cohort study has been conducted to confirm the association. We aimed to systematically evaluate the genetic associations of AOPEP with dystonia in a large Chinese dystonia cohort. METHODS We analyzed rare variants of AOPEP in 878 dystonia patients with whole-exome sequencing. The over-representation of rare variants in patients was examined with Fisher's exact test at allele and gene levels. RESULTS Among the 878 patients with dystonia, we found two patients with biallelic likely pathogenic variants in the AOPEP gene. One patient carried putative compound heterozygous variants (p.A212D and p.G216R) and presented with childhood-onset segmental dystonia involving the upper limbs and craniocervical muscles accompanied by myoclonus of the dystonia affected areas. One patient carried homozygote of p.M291Nfs*68 and presented with adult-onset isolated cervical dystonia. Another 15 patients were identified to carry heterozygous rare variants in AOPEP, including 2 loss-of-function variants (p.M291Nfs*68 and p.R493X) and 6 missense variants. One loss-of-function variant (p.R493X) was the same as previously reported. Nearly, all of the 15 patients carrying heterozygous variants in AOPEP presented with isolated dystonia with only craniocervical muscles affected, except for one patient who carried the p.R493X variant presented with segmental dystonia affecting the neck and right upper limb combined with parkinsonism. Gene-based burden analysis detected enrichment of rare variants and rare damaging variants of AOPEP in dystonia. CONCLUSIONS Our study supplemented the evidence on the role of AOPEP in autosomal-recessive dystonia in Chinese population, and expanded the genotypic and phenotypic spectrum of AOPEP.
Collapse
|
77
|
O'Neill AG, Burrell AL, Zech M, Elpeleg O, Harel T, Edvardson S, Shaked HM, Rippert AL, Nomakuchi T, Izumi K, Kollman JM. Point mutations in IMPDH2 which cause early-onset neurodevelopmental disorders disrupt enzyme regulation and filament structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532669. [PMID: 36993700 PMCID: PMC10055058 DOI: 10.1101/2023.03.15.532669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Inosine 5' monophosphate dehydrogenase (IMPDH) is a critical regulatory enzyme in purine nucleotide biosynthesis that is inhibited by the downstream product GTP. Multiple point mutations in the human isoform IMPDH2 have recently been associated with dystonia and other neurodevelopmental disorders, but the effect of the mutations on enzyme function has not been described. Here, we report identification of two additional affected individuals with missense variants in IMPDH2 and show that all of the disease-associated mutations disrupt GTP regulation. Cryo-EM structures of one IMPDH2 mutant suggest this regulatory defect arises from a shift in the conformational equilibrium toward a more active state. This structural and functional analysis provides insight into IMPDH2-associated disease mechanisms that point to potential therapeutic approaches and raises new questions about fundamental aspects of IMPDH regulation.
Collapse
Affiliation(s)
- Audrey G O'Neill
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Anika L Burrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Simon Edvardson
- Alyn Hospital, Hebrew University School of Medicine, Jerusalem, Israel
| | - Hagar Mor Shaked
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alyssa L Rippert
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tomoki Nomakuchi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kosuke Izumi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
78
|
O'Shea SA, Shih LC. Global Epidemiology of Movement Disorders: Rare or Underdiagnosed? Semin Neurol 2023; 43:4-16. [PMID: 36893797 DOI: 10.1055/s-0043-1764140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
In this manuscript, we review the epidemiology of movement disorders including Parkinson's disease (PD), atypical parkinsonism, essential tremor, dystonia, functional movement disorders, tic disorders, chorea, and ataxias. We emphasize age-, sex-, and geography-based incidence and prevalence, as well as notable trends including the rising incidence and prevalence of PD. Given the growing global interest in refining clinical diagnostic skills in recognizing movement disorders, we highlight some key epidemiological findings that may be of interest to clinicians and health systems tasked with diagnosing and managing the health of patients with movement disorders.
Collapse
Affiliation(s)
- Sarah A O'Shea
- Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York City, New York
| | - Ludy C Shih
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurology, Boston Medical Center, Boston, Massachusetts
| |
Collapse
|
79
|
Pavelekova P, Necpal J, Jech R, Havrankova P, Svantnerova J, Jurkova V, Gdovinova Z, Lackova A, Han V, Winkelmann J, Zech M, Skorvanek M. Predictors of whole exome sequencing in dystonic cerebral palsy and cerebral palsy-like disorders. Parkinsonism Relat Disord 2023:105352. [PMID: 36997436 DOI: 10.1016/j.parkreldis.2023.105352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/16/2023] [Accepted: 02/25/2023] [Indexed: 03/07/2023]
Abstract
INTRODUCTION Cerebral palsy (CP) is a group of permanent disorders attributed to non-progressive disturbances that occurred in the developing fetal or infant brain. Cerebral palsy-like (CP-like) disorders may clinically resemble CP but do not fulfill CP criteria and have often a progressive course and/or neurodevelopmental regression. To assess which patients with dystonic CP and dystonic CP-like disorder should undergo Whole Exome Sequencing (WES), we compared the rate of likely causative variants in individuals regarding their clinical picture, co-morbidities, and environmental risk factors. METHOD Individuals with early onset neurodevelopmental disorder (ND) manifesting with dystonia as a core feature were divided into CP or CP-like cohorts based on their clinical picture and disease course. Detailed clinical picture, co-morbidities, and environmental risk factors including prematurity, asphyxia, SIRS, IRDS, and cerebral bleeding were evaluated. RESULTS A total of 122 patients were included and divided into the CP group with 70 subjects (30 males; mean age 18y5m±16y6m, mean GMFCS score 3.3 ± 1.4), and the CP-like group with 52 subjects (29 males; mean age 17y7m±1y,6 m, mean GMFCS score 2,6 ± 1,5). The WES-based diagnosis was present in 19 (27.1%) CP patients and 30 CP-like patients (57.7%) with genetic conditions overlap in both groups. We found significant differences in diagnostic rate in CP individuals with vs. without risk factors (13.9% vs. 43.3%); Fisher's exact p = 0.0065. We did not observe the same tendency in CP-like (45.5% vs 58.5%); Fisher's exact p = 0.5. CONCLUSION WES is a useful diagnostic method for patients with dystonic ND, regardless of their presentation as a CP or CP-like phenotype.
Collapse
|
80
|
Mutation Screening of MED27 in a Large Dystonia Cohort. Acta Neurol Scand 2023. [DOI: 10.1155/2023/4967173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Objectives. Recently, biallelic variants in MED27 have been identified to correlate with complex dystonia. However, no replicative study has been conducted in larger dystonia cohorts. In this study, we aimed to systematically evaluate the genetic associations of MED27 with dystonia in a large dystonia cohort. Materials and Methods. We analyzed rare variants (minor allele
) of MED27 in a large Chinese dystonia cohort with whole exome sequencing. The overrepresentation of rare variants in patients was examined with Fisher’s exact test at allele and gene levels. Results. A total of 688 patients with dystonia were included in the study, including 483 isolated dystonia, 133 combined dystonia, and 72 complex dystonia. The average age at onset (SD) was 34.3 (19.1) years old. After applying filtering criteria, five rare variants, namely, p.R247H, p.P174A, p.P123A, p.L120F, and p.F56C, were identified in six individuals. All of them carried the variant in the heterozygous form, and no patients with compound heterozygous or homozygous alleles were identified. At allele level, no variant was associated with risk of dystonia. Gene-based burden analysis did not detect enrichment of rare variants of MED27 in dystonia either. Conclusion. Variants of MED27 were rare in Chinese dystonia patients, probably because that mutations in MED27 are more associated with more complex neurodevelopmental disorders that can also include dystonia among the various neurological features. Further studies are needed to confirm the role of MED27 in dystonia and other neurological disorders.
Collapse
|
81
|
Kilic-Berkmen G, Scorr LM, Rosen A, Wu E, Freeman A, Silver M, Hanfelt J, Jinnah HA. Thyroid disease in cervical dystonia. Parkinsonism Relat Disord 2023; 107:105274. [PMID: 36621155 PMCID: PMC10257803 DOI: 10.1016/j.parkreldis.2022.105274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/04/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
There are many possible etiologies for cervical dystonia (CD), but a cause cannot be identified in most cases. Most recent attention has focused on genetic causes, although a few prior studies have highlighted autoimmune mechanisms instead. Because autoimmune disorders frequently co-exist, the current study evaluated the hypothesis that autoimmune disorders might be more common in CD than neurological controls. The frequency of 32 common autoimmune disorders was evaluated using a systematic survey comparing 300 subjects with CD with 391 neurological controls. The frequency of thyroid disease was significantly higher in CD (20%) compared with controls (6%). Regression analyses that accounted for age and sex revealed an odds ratio of 4.5 (95% CI 2.5-8.1, p < 0.001). All other autoimmune disorders occurred with similar frequencies in CD and controls. Although these studies do not establish a mechanistic link between CD and autoimmune disease, they suggest the need for further attention to a potential relationship, and more specifically with thyroid disease.
Collapse
Affiliation(s)
- Gamze Kilic-Berkmen
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Laura M Scorr
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ami Rosen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ellen Wu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Alan Freeman
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Michael Silver
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - John Hanfelt
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, 30322, USA
| | - H A Jinnah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA; Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
82
|
Chen PS, Wu MC, Tai CH, Chang YY, Lan MY, Chen YF, Lin HI, Lee NC, Lin CH. Genetic analysis of IMPDH2 gene in Taiwanese patients with isolated or combined dystonia. Parkinsonism Relat Disord 2023; 107:105294. [PMID: 36657279 DOI: 10.1016/j.parkreldis.2023.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/31/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
The inosine monophosphate dehydrogenase gene (IMPDH2) was recently reported as a novel gene associated with autosomal dominantly inherited dystonia. We investigated 245 Taiwanese patients with molecularly unassigned isolated or combined dystonia without features of neurodevelopmental disorders and found none had pathogenic variants. Our findings suggest that IMPDH2 may not play a major role in dystonia.
Collapse
Affiliation(s)
- Pin-Shiuan Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Meng-Chen Wu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan; Department of Geriatrics and Gerontology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Yee Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Min-Yu Lan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ying-Fa Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Han-I Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
83
|
Harrer P, Schalk A, Shimura M, Baer S, Calmels N, Spitz MA, Warde MTA, Schaefer E, Kittke VMS, Dincer Y, Wagner M, Dzinovic I, Berutti R, Sato T, Shirakawa T, Okazaki Y, Murayama K, Oexle K, Prokisch H, Mall V, Melčák I, Winkelmann J, Zech M. Recessive NUP54 Variants Underlie Early-Onset Dystonia with Striatal Lesions. Ann Neurol 2023; 93:330-335. [PMID: 36333996 DOI: 10.1002/ana.26544] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Infantile striatonigral degeneration is caused by a homozygous variant of the nuclear-pore complex (NPC) gene NUP62, involved in nucleo-cytoplasmic trafficking. By querying sequencing-datasets of patients with dystonia and/or Leigh(-like) syndromes, we identified 3 unrelated individuals with biallelic variants in NUP54. All variants clustered in the C-terminal protein region that interacts with NUP62. Associated phenotypes were similar to those of NUP62-related disease, including early-onset dystonia with dysphagia, choreoathetosis, and T2-hyperintense lesions in striatum. In silico and protein-biochemical studies gave further evidence for the argument that the variants were pathogenic. We expand the spectrum of NPC component-associated dystonic conditions with localized basal-ganglia abnormalities. ANN NEUROL 2023;93:330-335.
Collapse
Affiliation(s)
- Philip Harrer
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Audrey Schalk
- Institut de génétique médicale d'Alsace (IGMA), Laboratoires de Diagnostic Génétique, Hôpitaux universitaires de Strasbourg, Strasbourg, France
| | - Masaru Shimura
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Sarah Baer
- Department of Neuropediatrics, ERN EpiCare, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institute for Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
| | - Nadège Calmels
- Institut de génétique médicale d'Alsace (IGMA), Laboratoires de Diagnostic Génétique, Hôpitaux universitaires de Strasbourg, Strasbourg, France.,Laboratoire de Génétique Médicale, INSERM U1112, Institut de génétique médicale d'Alsace, CRBS, Strasbourg, France
| | - Marie Aude Spitz
- Department of Neuropediatrics, ERN EpiCare, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Marie-Thérèse Abi Warde
- Department of Neuropediatrics, ERN EpiCare, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Elise Schaefer
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Volker M Sc Kittke
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Yasemin Dincer
- Lehrstuhl für Sozialpädiatrie, Department of Pediatrics, Technische Universität München, Munich, Germany.,Zentrum für Humangenetik und Laboratoriumsdiagnostik (MVZ), Martinsried, Germany
| | - Matias Wagner
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Ivana Dzinovic
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Riccardo Berutti
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Tatsuharu Sato
- Department of Pediatrics, Nagasaki University Hospital, Nagasaki, Japan
| | | | - Yasushi Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kei Murayama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, Chiba, Japan.,Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Konrad Oexle
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Volker Mall
- Lehrstuhl für Sozialpädiatrie, Department of Pediatrics, Technische Universität München, Munich, Germany.,kbo-Kinderzentrum München, Munich, Germany
| | - Ivo Melčák
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory School of Medicine, Atlanta, Georgia, USA
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.,Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
84
|
Vidailhet M. The multiple twists in the tale: Brain iron accumulation, facial jerks, and truncal dystonia: Expert commentary. Parkinsonism Relat Disord 2023; 106:105223. [PMID: 36435730 DOI: 10.1016/j.parkreldis.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 11/21/2022]
Affiliation(s)
- M Vidailhet
- Department of Neurology AP-HP, Sorbonne Université, Paris Brain Institute, Salpetriere Hospital, Paris, France.
| |
Collapse
|
85
|
Xin C, Guan X, Wang L, Liu J. Integrative Multi-Omics Research in Cerebral Palsy: Current Progress and Future Prospects. Neurochem Res 2022; 48:1269-1279. [PMID: 36512293 DOI: 10.1007/s11064-022-03839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Cerebral palsy (CP) describes a heterogeneous group of non-progressive neurodevelopmental disorders affecting movement and posture. The etiology and diagnostic biomarkers of CP are a hot topic in clinical research. Recent advances in omics techniques, including genomics, epigenomics, transcriptomics, metabolomics and proteomics, have offered new insights to further understand the pathophysiology of CP and have allowed for identification of diagnostic biomarkers of CP. In present study, we reviewed the latest multi-omics investigations of CP and provided an in-depth summary of current research progress in CP. This review will offer the basis and recommendations for future fundamental research on the pathogenesis of CP, identification of diagnostic biomarkers, and prevention strategies for CP.
Collapse
Affiliation(s)
- Chengqi Xin
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China
| | - Xin Guan
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China.
| |
Collapse
|
86
|
Krenn M, Sommer R, Sycha T, Zech M. GNAO1 Haploinsufficiency Associated with a Mild Delayed-Onset Dystonia Phenotype. Mov Disord 2022; 37:2464-2466. [PMID: 36273395 DOI: 10.1002/mds.29258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 01/13/2023] Open
Affiliation(s)
- Martin Krenn
- Department of Neurology, Medical University of Vienna, Vienna, Austria.,Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Rudolf Sommer
- Department of Neurology, Krankenhaus der Barmherzigen Brüder, Linz, Austria
| | - Thomas Sycha
- Department of Neurology, Medical University of Vienna, Vienna, Austria.,Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Michael Zech
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
87
|
Srivastava S, Lewis SA, Cohen JS, Zhang B, Aravamuthan BR, Chopra M, Sahin M, Kruer MC, Poduri A. Molecular Diagnostic Yield of Exome Sequencing and Chromosomal Microarray in Cerebral Palsy: A Systematic Review and Meta-analysis. JAMA Neurol 2022; 79:1287-1295. [PMID: 36279113 PMCID: PMC9593320 DOI: 10.1001/jamaneurol.2022.3549] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/26/2022] [Indexed: 01/14/2023]
Abstract
Importance There are many known acquired risk factors for cerebral palsy (CP), but in some cases, CP is evident without risk factors (cryptogenic CP). Early CP cohort studies report a wide range of diagnostic yields for sequence variants assessed by exome sequencing (ES) and copy number variants (CNVs) assessed by chromosomal microarray (CMA). Objective To synthesize the emerging CP genetics literature and address the question of what percentage of individuals with CP have a genetic disorder via ES and CMA. Data Sources Searched articles were indexed by PubMed with relevant queries pertaining to CP and ES/CMA (query date, March 15, 2022). Study Selection Inclusion criteria were as follows: primary research study, case series with 10 or more nonrelated individuals, CP diagnosis, and ES and/or CMA data used for genetic evaluation. Nonblinded review was performed. Data Extraction and Synthesis Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were used for assessing data quality and validity. Data were extracted by a single observer. Main Outcomes and Measures A separate meta-analysis was performed for each modality (ES, CMA). The primary outcome was proportion/molecular diagnostic yield (number of patients with a discovered genetic disorder divided by the total number of patients in the cohort), evaluated via meta-analysis of single proportions using random-effects logistic regression. A subgroup meta-analysis was conducted, using risk factor classification as a subgroup. A forest plot was used to display diagnostic yields of individual studies. Results In the meta-analysis of ES yield in CP, the overall diagnostic yield of ES among the cohorts (15 study cohorts comprising 2419 individuals from 11 articles) was 23% (95% CI, 15%-34%). The diagnostic yield across cryptogenic CP cohorts was 35% (95% CI, 27%-45%), compared with 7% (95% CI, 4%-12%) across cohorts with known risk factors (noncryptogenic CP). In the meta-analysis of CMA yield in CP, the diagnostic yield of CMA among the cohorts (5 study cohorts comprising 294 individuals from 5 articles) was 5% (95% CI, 2%-12%). Conclusions and Relevance Results of this systematic review and meta-analysis suggest that for individuals with cryptogenic CP, ES followed by CMA to identify molecular disorders may be warranted.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | - Sara A. Lewis
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, Arizona
- Department of Child Health, Program in Genetics, University of Arizona College of Medicine, Phoenix
- Department of Neurology, Program in Genetics, University of Arizona College of Medicine, Phoenix
- Department of Cellular & Molecular Medicine, Program in Genetics, University of Arizona College of Medicine, Phoenix
- Department of Program in Genetics, University of Arizona College of Medicine, Phoenix
| | - Julie S. Cohen
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bo Zhang
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | | | - Maya Chopra
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | - Michael C. Kruer
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, Arizona
- Department of Child Health, Program in Genetics, University of Arizona College of Medicine, Phoenix
- Department of Neurology, Program in Genetics, University of Arizona College of Medicine, Phoenix
- Department of Cellular & Molecular Medicine, Program in Genetics, University of Arizona College of Medicine, Phoenix
- Department of Program in Genetics, University of Arizona College of Medicine, Phoenix
| | - Annapurna Poduri
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Epilepsy, Boston Children’s Hospital, Boston, Massachusetts
| |
Collapse
|
88
|
Friedman JM, van Essen P, van Karnebeek CDM. Cerebral palsy and related neuromotor disorders: Overview of genetic and genomic studies. Mol Genet Metab 2022; 137:399-419. [PMID: 34872807 DOI: 10.1016/j.ymgme.2021.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022]
Abstract
Cerebral palsy (CP) is a debilitating condition characterized by abnormal movement or posture, beginning early in development. Early family and twin studies and more recent genomic investigations clearly demonstrate that genetic factors of major effect contribute to the etiology of CP. Most copy number variants and small alterations of nucleotide sequence that cause CP arise as a result of de novo mutations, so studies that estimate heritability on basis of recurrence frequency within families substantially underestimate genetic contributions to the etiology. At least 4% of patients with typical CP have disease-causing CNVs, and at least 14% have disease-causing single nucleotide variants or indels. The rate of pathogenic genomic lesions is probably more than twice as high among patients who have atypical CP, i.e., neuromotor dysfunction with additional neurodevelopmental abnormalities or malformations, or with MRI findings and medical history that are not characteristic of a perinatal insult. Mutations of many different genetic loci can produce a CP-like phenotype. The importance of genetic variants of minor effect and of epigenetic modifications in producing a multifactorial predisposition to CP is less clear. Recognizing the specific cause of CP in an affected individual is essential to providing optimal clinical management. An etiological diagnosis provides families an "enhanced compass" that improves overall well-being, facilitates access to educational and social services, permits accurate genetic counseling, and, for a subset of patients such as those with underlying inherited metabolic disorders, may make precision therapy that targets the pathophysiology available. Trio exome sequencing with assessment of copy number or trio genome sequencing with bioinformatics analysis for single nucleotide variants, indels, and copy number variants is clinically indicated in the initial workup of CP patients, especially those with additional malformations or neurodevelopmental abnormalities.
Collapse
Affiliation(s)
- Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Peter van Essen
- Department of Pediatrics, Amalia Children's Hospital, Radboud Centre for Mitochondrial Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Clara D M van Karnebeek
- Department of Pediatrics, Amalia Children's Hospital, Radboud Centre for Mitochondrial Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Departments of Human Genetics and Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centres, Amsterdam, the Netherlands; Department of Pediatrics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
89
|
Wadon ME, Fenner E, Kendall KM, Bailey GA, Sandor C, Rees E, Peall KJ. Clinical and genotypic analysis in determining dystonia non-motor phenotypic heterogeneity: a UK Biobank study. J Neurol 2022; 269:6436-6451. [PMID: 35925398 PMCID: PMC9618530 DOI: 10.1007/s00415-022-11307-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/10/2022]
Abstract
The spectrum of non-motor symptoms in dystonia remains unclear. Using UK Biobank data, we analysed clinical phenotypic and genetic information in the largest dystonia cohort reported to date. Case-control comparison of dystonia and matched control cohort was undertaken to identify domains (psychiatric, pain, sleep and cognition) of increased symptom burden in dystonia. Whole exome data were used to determine the rate and likely pathogenicity of variants in Mendelian inherited dystonia causing genes and linked to clinical data. Within the dystonia cohort, phenotypic and genetic single-nucleotide polymorphism (SNP) data were combined in a mixed model analysis to derive genetically informed phenotypic axes. A total of 1572 individuals with dystonia were identified, including cervical dystonia (n = 775), blepharospasm (n = 131), tremor (n = 488) and dystonia, unspecified (n = 154) groups. Phenotypic patterns highlighted a predominance of psychiatric symptoms (anxiety and depression), excess pain and sleep disturbance. Cognitive impairment was limited to prospective memory and fluid intelligence. Whole exome sequencing identified 798 loss of function variants in dystonia-linked genes, 67 missense variants (MPC > 3) and 305 other forms of non-synonymous variants (including inframe deletion, inframe insertion, stop loss and start loss variants). A single loss of function variant (ANO3) was identified in the dystonia cohort. Combined SNP and clinical data identified multiple genetically informed phenotypic axes with predominance of psychiatric, pain and sleep non-motor domains. An excess of psychiatric, pain and sleep symptoms were evident across all forms of dystonia. Combination with genetic data highlights phenotypic subgroups consistent with the heterogeneity observed in clinical practice.
Collapse
Affiliation(s)
- Megan E Wadon
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK.
| | - Eilidh Fenner
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Kimberley M Kendall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Grace A Bailey
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK
| | - Cynthia Sandor
- UK Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Elliott Rees
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Kathryn J Peall
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK.
| |
Collapse
|
90
|
Švantnerová J, Minár M, Radová S, Kolníková M, Vlkovič P, Zech M. ASXL3 De Novo Variant-Related Neurodevelopmental Disorder Presenting as Dystonic Cerebral Palsy. Neuropediatrics 2022; 53:361-365. [PMID: 35863334 DOI: 10.1055/s-0042-1750721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
ASXL3 loss-of-function variants represent a well-established cause of Bainbridge-Ropers syndrome, a syndromic neurodevelopmental disorder with intellectual and motor disabilities. Although a recent large-scale genomics-based study has suggested an association between ASXL3 variation and cerebral palsy, there have been no detailed case descriptions. We report, here, a female individual with a de novo pathogenic c.1210C > T, p.Gln404* nonsense variant in ASXL3, identified within the frame of an ongoing research project applying trio whole-exome sequencing to the diagnosis of dystonic cerebral palsy. The patient presented with a mixture of infantile-onset limb/trunk dystonic postures and secondarily evolving distal spastic contractures, in addition to more typical features of ASXL3-related diseases such as severe feeding issues, intellectual disability, speech impairment, and facial dysmorphic abnormalities. Our case study confirms a role for ASXL3 pathogenic variants in the etiology of cerebral-palsy phenotypes and indicates that dystonic features can be part of the clinical spectrum in Bainbridge-Ropers syndrome. ASXL3 should be added to target-gene lists used for molecular evaluation of cerebral palsy.
Collapse
Affiliation(s)
- Jana Švantnerová
- Second Department of Neurology, Faculty of Medicine, Comenius University, University Hospital Bratislava, Bratislava, Slovakia
| | - Michal Minár
- Second Department of Neurology, Faculty of Medicine, Comenius University, University Hospital Bratislava, Bratislava, Slovakia
| | - Silvia Radová
- Department of Pediatric Neurology, Faculty of Medicine, Comenius University, University Hospital Bratislava National Institute of Children's Diseases, Bratislava, Slovakia
| | - Miriam Kolníková
- Department of Pediatric Neurology, Faculty of Medicine, Comenius University, University Hospital Bratislava National Institute of Children's Diseases, Bratislava, Slovakia
| | - Peter Vlkovič
- Second Department of Neurology, Faculty of Medicine, Comenius University, University Hospital Bratislava, Bratislava, Slovakia
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
91
|
van Egmond ME, Lagrand TJ, Lizaitiene G, Smit M, Tijssen MAJ. A novel diagnostic approach for patients with adult-onset dystonia. J Neurol Neurosurg Psychiatry 2022; 93:1039-1048. [PMID: 35688632 DOI: 10.1136/jnnp-2021-328120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/07/2022] [Indexed: 11/04/2022]
Abstract
Adult-onset dystonia can be acquired, inherited or idiopathic. The dystonia is usually focal or segmental and for a limited number of cases causal treatment is available. In recent years, rapid developments in neuroimmunology have led to increased knowledge on autoantibody-related dystonias. At the same time, genetic diagnostics in sequencing technology have evolved and revealed several new genes associated with adult-onset dystonia. Furthermore, new phenotype-genotype correlations have been elucidated. Consequently, clinicians face the dilemma of which additional investigations should be performed and whether to perform genetic testing or not. To ensure early diagnosis and to prevent unnecessary investigations, integration of new diagnostic strategies is needed.We designed a new five-step diagnostic approach for adult-onset dystonia. The first four steps are based on a broad literature search and expert opinion, the fifth step, on when to perform genetic testing, is based on a detailed systematic literature review up to 1 December 2021.The basic principle of the algorithm is that genetic testing is unlikely to lead to changes in management in three groups: (1) patients with an acquired form of adult-onset dystonia; (2) patients with neurodegenerative disorders, presenting with a combined movement disorder including dystonic symptoms and (3) patients with adult-onset isolated focal or segmental dystonia. Throughout the approach, focus lies on early identification of treatable forms of dystonia, either acquired or genetic.This novel diagnostic approach for adult-onset dystonia can help clinicians to decide when to perform additional tests, including genetic testing and facilitates early aetiological diagnosis, to enable timely treatment.
Collapse
Affiliation(s)
- Martje E van Egmond
- Neurology, University Medical Centre Groningen, Groningen, The Netherlands.,Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Tjerk J Lagrand
- Neurology, University Medical Centre Groningen, Groningen, The Netherlands.,Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Neurology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Gintaute Lizaitiene
- Neurology, University Medical Centre Groningen, Groningen, The Netherlands.,Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Marenka Smit
- Neurology, University Medical Centre Groningen, Groningen, The Netherlands.,Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Marina A J Tijssen
- Neurology, University Medical Centre Groningen, Groningen, The Netherlands .,Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
92
|
Trieschmann G, Wach K, Abel M, Tilgner E, Berweck S, Zech M. A Novel Homozygous PDE 10A Variant Leading to Infantile-Onset Hyperkinesia. Neuropediatrics 2022; 53:386-387. [PMID: 35790203 DOI: 10.1055/a-1892-1547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Gesa Trieschmann
- Specialist Centre for Paediatric Neurology, Neurorehabilitation and Epileptology, Schoen Clinic Vogtareuth, Vogtareuth, Bayern, Germany
| | - Katharina Wach
- Specialist Centre for Paediatric Neurology, Neurorehabilitation and Epileptology, Schoen Clinic Vogtareuth, Vogtareuth, Bayern, Germany.,Department of Paediatrics, University Hospital Goettingen, Goettingen, Germany
| | - Maria Abel
- Specialist Centre for Neurosurgery and Epilepsy Surgery, Vogtareuth, Bayern, Germany
| | - Eva Tilgner
- Social Paediatric Centre, DONAUISAR Klinikum Deggendorf, Deggendorf, Germany
| | - Steffen Berweck
- Specialist Centre for Paediatric Neurology, Neurorehabilitation and Epileptology, Schoen Clinic Vogtareuth, Vogtareuth, Bayern, Germany.,LMU Hospital, Department of Pediatrics-Dr. von Hauner Childrens's Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians University, Munich, Germany
| | - Michael Zech
- Institute of Human Genetics, School of Medicine, Technical University of Munich, München, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, München, Neuherberg, Germany
| |
Collapse
|
93
|
Reid KM, Spaull R, Salian S, Barwick K, Meyer E, Zhen J, Hirata H, Sheipouri D, Benkerroum H, Gorman KM, Papandreou A, Simpson MA, Hirano Y, Farabella I, Topf M, Grozeva D, Carss K, Smith M, Pall H, Lunt P, De Gressi S, Kamsteeg E, Haack TB, Carr L, Guerreiro R, Bras J, Maher ER, Scott RH, Vandenberg RJ, Raymond FL, Chong WK, Sudhakar S, Mankad K, Reith ME, Campeau PM, Harvey RJ, Kurian MA. MED27, SLC6A7, and MPPE1 Variants in a Complex Neurodevelopmental Disorder with Severe Dystonia. Mov Disord 2022; 37:2139-2146. [PMID: 35876425 PMCID: PMC9796674 DOI: 10.1002/mds.29147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/19/2022] [Accepted: 06/13/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Despite advances in next generation sequencing technologies, the identification of variants of uncertain significance (VUS) can often hinder definitive diagnosis in patients with complex neurodevelopmental disorders. OBJECTIVE The objective of this study was to identify and characterize the underlying cause of disease in a family with two children with severe developmental delay associated with generalized dystonia and episodic status dystonicus, chorea, epilepsy, and cataracts. METHODS Candidate genes identified by autozygosity mapping and whole-exome sequencing were characterized using cellular and vertebrate model systems. RESULTS Homozygous variants were found in three candidate genes: MED27, SLC6A7, and MPPE1. Although the patients had features of MED27-related disorder, the SLC6A7 and MPPE1 variants were functionally investigated. SLC6A7 variant in vitro overexpression caused decreased proline transport as a result of reduced cell-surface expression, and zebrafish knockdown of slc6a7 exhibited developmental delay and fragile motor neuron morphology that could not be rescued by L-proline transporter-G396S RNA. Lastly, patient fibroblasts displayed reduced cell-surface expression of glycophosphatidylinositol-anchored proteins linked to MPPE1 dysfunction. CONCLUSIONS We report a family harboring a homozygous MED27 variant with additional loss-of-function SLC6A7 and MPPE1 gene variants, which potentially contribute to a blended phenotype caused by multilocus pathogenic variants. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kimberley M. Reid
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in ChildrenUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Robert Spaull
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in ChildrenUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom,Department of NeurologyGreat Ormond Street HospitalLondonUnited Kingdom
| | - Smrithi Salian
- Department of Pediatrics, CHU Sainte‐Justine Research CenterUniversity of MontrealMontrealQuebecCanada
| | - Katy Barwick
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in ChildrenUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Esther Meyer
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in ChildrenUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Juan Zhen
- Cell Therapy and Cell Engineering FacilityMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Hiromi Hirata
- Department of Chemistry and Biological ScienceCollege of Science and Engineering, Aoyama Gakuin UniversitySagamiharaJapan
| | - Diba Sheipouri
- School of Medical Sciences, University of SydneySydneyNew South WalesAustralia
| | - Hind Benkerroum
- Department of Pediatrics, CHU Sainte‐Justine Research CenterUniversity of MontrealMontrealQuebecCanada
| | - Kathleen M. Gorman
- Department of Neurology and Clinical NeurophysiologyChildren's Health Ireland at Temple StreetDublinIreland,School of Medicine and Medical SciencesUniversity College DublinDublinIreland
| | - Apostolos Papandreou
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in ChildrenUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom,Department of NeurologyGreat Ormond Street HospitalLondonUnited Kingdom
| | - Michael A. Simpson
- Division of Genetics and Molecular MedicineKing's College London School of MedicineLondonUnited Kingdom
| | - Yoshinobu Hirano
- Department of Chemistry and Biological ScienceCollege of Science and Engineering, Aoyama Gakuin UniversitySagamiharaJapan
| | - Irene Farabella
- Institute of Structural and Molecular Biology, Crystallography/Department of Biological SciencesBirkbeck College, University of LondonLondonUnited Kingdom,CNAG‐CRG, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Maya Topf
- Leibniz Institute for Virology (HPI) and Universitätsklinikum Hamburg Eppendorf (UKE)Centre for Structural Systems Biology (CSSB)HamburgGermany,Institute of Structural and Molecular Biology, Crystallography/Department of Biological SciencesBirkbeck College, University of LondonLondonUnited Kingdom
| | - Detelina Grozeva
- Department of Medical GeneticsCambridge Institute for Medical Research, University of CambridgeCambridgeUnited Kingdom,Centre for Trials Research, Neuadd MeirionnyddCardiff UniversityCardiffUnited Kingdom
| | - Keren Carss
- Wellcome Trust Sanger InstituteCambridgeUnited Kingdom
| | - Martin Smith
- Department of NeurologyJohn Radcliffe HospitalOxfordUnited Kingdom
| | - Hardev Pall
- Department of NeurologyQueen Elizabeth HospitalBirminghamUnited Kingdom
| | - Peter Lunt
- Clinical Genetic ServiceGloucester Royal HospitalGloucesterUnited Kingdom
| | - Susanna De Gressi
- Department of PaediatricsCheltenham General HospitalGloucestershireUnited Kingdom
| | - Erik‐Jan Kamsteeg
- Department of Human GeneticsRadboud University Medical CenterNijmegenNetherlands
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied GenomicsUniversity of TuebingenTuebingenGermany
| | - Lucinda Carr
- Department of NeurologyGreat Ormond Street HospitalLondonUnited Kingdom
| | - Rita Guerreiro
- Department of Neurodegenerative ScienceVan Andel InstituteGrand RapidsMichiganUSA
| | - Jose Bras
- Department of Neurodegenerative ScienceVan Andel InstituteGrand RapidsMichiganUSA
| | - Eamonn R. Maher
- Department of Medical GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Richard H. Scott
- Department of Clinical GeneticsGreat Ormond Street HospitalLondonUnited Kingdom
| | | | - F. Lucy Raymond
- Centre for Trials Research, Neuadd MeirionnyddCardiff UniversityCardiffUnited Kingdom
| | - Wui K. Chong
- Department of RadiologyGreat Ormond Street HospitalLondonUnited Kingdom,Developmental Neurosciences DepartmentUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Sniya Sudhakar
- Department of RadiologyGreat Ormond Street HospitalLondonUnited Kingdom,Developmental Neurosciences DepartmentUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Kshitij Mankad
- Department of RadiologyGreat Ormond Street HospitalLondonUnited Kingdom,Developmental Neurosciences DepartmentUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Maarten E. Reith
- Department of PsychiatryNew York University School of MedicineNew YorkNew YorkUSA
| | - Philippe M. Campeau
- Department of Pediatrics, CHU Sainte‐Justine Research CenterUniversity of MontrealMontrealQuebecCanada
| | - Robert J. Harvey
- School of Health and Behavioural SciencesUniversity of the Sunshine CoastSippy DownsQueenslandAustralia,Sunshine Coast Health InstituteBirtinyaQueenslandAustralia
| | - Manju A. Kurian
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in ChildrenUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom,Department of NeurologyGreat Ormond Street HospitalLondonUnited Kingdom
| |
Collapse
|
94
|
Grofik M, Cibulka M, Olekšáková J, Turčanová Koprušáková M, Galanda T, Necpál J, Jungová P, Kurča E, Winkelmann J, Zech M, Jech R. A case of novel DYT6 dystonia variant with serious complications after deep brain stimulation therapy: a case report. BMC Neurol 2022; 22:344. [PMID: 36096774 PMCID: PMC9465909 DOI: 10.1186/s12883-022-02871-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Background DYT6 dystonia belongs to a group of isolated, genetically determined, generalized dystonia associated with mutations in the THAP1 gene. Case presentation We present the case of a young patient with DYT6 dystonia associated with a newly discovered c14G>A (p.Cys5Tyr) mutation in the THAP1 gene. We describe the clinical phenotype of this new mutation, effect of pallidal deep brain stimulation (DBS), which was accompanied by two rare postimplantation complications: an early intracerebral hemorrhage and delayed epileptic seizures. Among the published case reports of patients with DYT6 dystonia, the mentioned complications have not been described so far. Conclusions DBS in the case of DYT6 dystonia is a challenge to thoroughly consider possible therapeutic benefits and potential risks associated with surgery. Genetic heterogeneity of the disease may also play an important role in predicting the development of the clinical phenotype as well as the effect of treatment including DBS. Therefore, it is beneficial to analyze the genetic and clinical relationships of DYT6 dystonia.
Collapse
Affiliation(s)
- M Grofik
- Department of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava and University Hospital Martin, Martin, Slovakia
| | - M Cibulka
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Bratislava, Slovakia.
| | - J Olekšáková
- Department of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava and University Hospital Martin, Martin, Slovakia
| | - M Turčanová Koprušáková
- Department of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava and University Hospital Martin, Martin, Slovakia
| | - T Galanda
- Department of Neurosurgery, Slovak Medical University and Roosevelt Hospital, Banska Bystrica, Slovakia
| | - J Necpál
- Department of Neurology, Zvolen Hospital, Zvolen, Slovakia
| | - P Jungová
- Department of Molecular and Biochemical Genetics - Centre of Rare Genetic Diseases, Faculty of Medicine & Comenius University, University Hospital Bratislava, Bratislava, Slovakia
| | - E Kurča
- Department of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava and University Hospital Martin, Martin, Slovakia
| | - J Winkelmann
- Institute of Neurogenomics, Helmholtz Centrum, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - M Zech
- Department of Molecular and Biochemical Genetics - Centre of Rare Genetic Diseases, Faculty of Medicine & Comenius University, University Hospital Bratislava, Bratislava, Slovakia.,Institute of Neurogenomics, Helmholtz Centrum, Munich, Germany
| | - R Jech
- Department of Neurology, Charles University, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic
| |
Collapse
|
95
|
Lasa-Aranzasti A, Cazurro-Gutiérrez A, Bescós A, González V, Ispierto L, Tardáguila M, Valenzuela I, Plaja A, Moreno-Galdó A, Macaya-Ruiz A, Pérez-Dueñas B. 16q12.2q21 deletion: A newly recognized cause of dystonia related to GNAO1 haploinsufficiency. Parkinsonism Relat Disord 2022; 103:112-114. [PMID: 36096018 DOI: 10.1016/j.parkreldis.2022.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Amaia Lasa-Aranzasti
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain; Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain; Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Cazurro-Gutiérrez
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Agustín Bescós
- Pediatric Neuromodulation Unit, Hospital Vall d'Hebrón and Hospital Germans Trias I Pujol, Barcelona, Spain; Department of Neurosurgery, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Victoria González
- Pediatric Neuromodulation Unit, Hospital Vall d'Hebrón and Hospital Germans Trias I Pujol, Barcelona, Spain; Department of Neurology, Department of Neurology, Vall Hebron University Hospital Barcelona, Spain
| | - Lourdes Ispierto
- Pediatric Neuromodulation Unit, Hospital Vall d'Hebrón and Hospital Germans Trias I Pujol, Barcelona, Spain; Neurodegenerative Diseases Unit, Neurology Service and Neurosciences Department, University Hospital Germans Trias i Pujol, Barcelona, Spain
| | - Manel Tardáguila
- Pediatric Neuromodulation Unit, Hospital Vall d'Hebrón and Hospital Germans Trias I Pujol, Barcelona, Spain; Department of Neurological Surgery, University Hospital Germans Trias i Pujol, Barcelona, Spain
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain; Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
| | - Alberto Plaja
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain; Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
| | - Antonio Moreno-Galdó
- Department of Pediatrics, Universitat Autónoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; CIBER of Rare diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Alfons Macaya-Ruiz
- Department of Pediatrics, Universitat Autónoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
| | - Belen Pérez-Dueñas
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain; Pediatric Neuromodulation Unit, Hospital Vall d'Hebrón and Hospital Germans Trias I Pujol, Barcelona, Spain; CIBER of Rare diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
| |
Collapse
|
96
|
Buey RM, Fernández‐Justel D, Jiménez A, Revuelta JL. The gateway to guanine nucleotides: Allosteric regulation of IMP dehydrogenases. Protein Sci 2022; 31:e4399. [PMID: 36040265 PMCID: PMC9375230 DOI: 10.1002/pro.4399] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022]
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) is an evolutionarily conserved enzyme that mediates the first committed step in de novo guanine nucleotide biosynthetic pathway. It is an essential enzyme in purine nucleotide biosynthesis that modulates the metabolic flux at the branch point between adenine and guanine nucleotides. IMPDH plays key roles in cell homeostasis, proliferation, and the immune response, and is the cellular target of several drugs that are widely used for antiviral and immunosuppressive chemotherapy. IMPDH enzyme is tightly regulated at multiple levels, from transcriptional control to allosteric modulation, enzyme filamentation, and posttranslational modifications. Herein, we review recent developments in our understanding of the mechanisms of IMPDH regulation, including all layers of allosteric control that fine-tune the enzyme activity.
Collapse
Affiliation(s)
- Rubén M. Buey
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - David Fernández‐Justel
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - José L. Revuelta
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| |
Collapse
|
97
|
Kilic-Berkmen G, Defazio G, Hallett M, Berardelli A, Ferrazzano G, Belvisi D, Klein C, Bäumer T, Weissbach A, Perlmutter JS, Feuerstein J, Jinnah HA. Diagnosis and classification of blepharospasm: Recommendations based on empirical evidence. J Neurol Sci 2022; 439:120319. [PMID: 35716653 PMCID: PMC9357089 DOI: 10.1016/j.jns.2022.120319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Blepharospasm is one of the most common subtypes of dystonia, and often spreads to other body regions. Despite published guidelines, the approach to diagnosis and classification of affected body regions varies among clinicians. OBJECTIVE To delineate the clinical features used by movement disorder specialists in the diagnosis and classification of blepharospasm according to body regions affected, and to develop recommendations for a more consistent approach. METHODS Cross-sectional data for subjects diagnosed with all types of isolated dystonia were acquired from the Dystonia Coalition, an international, multicenter collaborative research network. Data were evaluated to determine how examinations recorded by movement disorder specialists were used to classify blepharospasm as focal, segmental, or multifocal. RESULTS Among all 3222 participants with isolated dystonia, 210 (6.5%) had a diagnosis of focal blepharospasm. Among these 210 participants, 34 (16.2%) had dystonia outside of upper face region. Factors such as dystonia severity across different body regions and number of body regions affected influenced the classification of blepharospasm as focal, segmental, or multifocal. CONCLUSIONS Although focal blepharospasm is the second most common type of dystonia, a high percentage of individuals given this diagnosis had dystonia outside of the eye/upper face region. These findings are not consistent with existing guidelines for the diagnosis and classification of focal blepharospasm, and point to the need for more specific guidelines for more consistent application of existing recommendations for diagnosis and classification.
Collapse
Affiliation(s)
- Gamze Kilic-Berkmen
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Giovanni Defazio
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, USA
| | - Alfredo Berardelli
- Department of Human Neuroscience, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy; IRCCS NEUROMED, Via Atinense 18, 86077 Pozzilli, Italy
| | - Gina Ferrazzano
- Department of Human Neuroscience, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| | - Daniele Belvisi
- Department of Human Neuroscience, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy; IRCCS NEUROMED, Via Atinense 18, 86077 Pozzilli, Italy
| | - Christine Klein
- Institute of Neurogenetics and Department of Neurology, University of Luebeck, University Hospital of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Tobias Bäumer
- Institute of System Motor Science, University of Lübeck, Ratzeburger Allee 160, Lübeck, Germany
| | - Anne Weissbach
- Institute of Neurogenetics and Department of Neurology, University of Luebeck, University Hospital of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany; Institute of System Motor Science, University of Lübeck, Ratzeburger Allee 160, Lübeck, Germany
| | - Joel S Perlmutter
- Department of Neurology, Radiology, Neuroscience, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St Louis, MO, USA
| | | | - H A Jinnah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
98
|
Dzinovic I, Winkelmann J, Zech M. Genetic intersection between dystonia and neurodevelopmental disorders: Insights from genomic sequencing. Parkinsonism Relat Disord 2022; 102:131-140. [DOI: 10.1016/j.parkreldis.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
|
99
|
Svorenova T, Romito LM, Colangelo I, Han V, Jech R, Prokisch H, Winkelmann J, Skorvanek M, Garavaglia B, Zech M. Dystonia as a prominent feature of TCF20-associated neurodevelopmental disorder: Expanding the phenotype. Parkinsonism Relat Disord 2022; 102:89-91. [DOI: 10.1016/j.parkreldis.2022.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/17/2022]
|
100
|
Medina A, Nilles C, Martino D, Pelletier C, Pringsheim T. The prevalence of idiopathic or inherited isolated dystonia: a systematic review and meta‐analysis. Mov Disord Clin Pract 2022; 9:860-868. [PMID: 36247920 PMCID: PMC9547134 DOI: 10.1002/mdc3.13524] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022] Open
Abstract
Background A systematic review of epidemiological studies of primary dystonia from 1985 and 2010 found an overall prevalence of 16.43 per 100,000 (95% CI = 12.09–22.32). Methods We performed a systematic review of studies from 2010 and 2022 to determine if there are important differences in epidemiology between these time periods. Results Nineteen studies were included. Incidence of cervical dystonia, blepharospasm, and oromandibular dystonia were each reported in one study; one study reported incidence for all adult onset idiopathic focal dystonias combined. Using data from 11 studies, we performed random effects meta‐analyses of the prevalence of cervical dystonia (9.95 per 100,000; 95% CI = 3.51–28.17), blepharospasm (2.82 per 100,000; 95% CI = 1.12–7.12), laryngeal dystonia (0.40 per 100,000; 95% CI = 0.09–1.83), upper limb dystonia (1.27 per 100,000; 95% CI = 0.36–4.52), oromandibular dystonia (0.57 per 100,000; 95% CI = 0.15–2.15), and idiopathic or inherited isolated dystonia all subtypes combined (30.85 per 100,000; 95% CI = 5.06–187.74). All studies reported more cases of dystonia in females. There was no significant difference in prevalence by subgroup analysis based on time of study publication (1985–2010 vs. 2010–2022). Subgroup analysis of differences in prevalence by dystonia subtype by continent using all studies published (1985–2022) revealed significant regional differences in the prevalence of cervical and laryngeal dystonia. Conclusion The incidence and prevalence of idiopathic or inherited isolated dystonia in the last decade was not significantly different from earlier reports. Population‐based studies across multiple geographic areas are needed to obtain a clearer understanding of the epidemiology of this condition.
Collapse
Affiliation(s)
- Alex Medina
- Department of Clinical Neurosciences, Cumming School of Medicine University of Calgary Calgary Alberta Canada
| | - Christelle Nilles
- Department of Clinical Neurosciences, Cumming School of Medicine University of Calgary Calgary Alberta Canada
| | - Davide Martino
- Department of Clinical Neurosciences, Cumming School of Medicine University of Calgary Calgary Alberta Canada
- Hotchkiss Brain Institute University of Calgary Calgary Alberta Canada
| | | | - Tamara Pringsheim
- Department of Clinical Neurosciences, Cumming School of Medicine University of Calgary Calgary Alberta Canada
- Hotchkiss Brain Institute University of Calgary Calgary Alberta Canada
- Department of Psychiatry, Pediatrics, Community Health Sciences University of Calgary Calgary Alberta Canada
| |
Collapse
|