51
|
Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile). Proc Natl Acad Sci U S A 2011; 108:5673-8. [PMID: 21282631 DOI: 10.1073/pnas.1008617108] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ants are some of the most abundant and familiar animals on Earth, and they play vital roles in most terrestrial ecosystems. Although all ants are eusocial, and display a variety of complex and fascinating behaviors, few genomic resources exist for them. Here, we report the draft genome sequence of a particularly widespread and well-studied species, the invasive Argentine ant (Linepithema humile), which was accomplished using a combination of 454 (Roche) and Illumina sequencing and community-based funding rather than federal grant support. Manual annotation of >1,000 genes from a variety of different gene families and functional classes reveals unique features of the Argentine ant's biology, as well as similarities to Apis mellifera and Nasonia vitripennis. Distinctive features of the Argentine ant genome include remarkable expansions of gustatory (116 genes) and odorant receptors (367 genes), an abundance of cytochrome P450 genes (>110), lineage-specific expansions of yellow/major royal jelly proteins and desaturases, and complete CpG DNA methylation and RNAi toolkits. The Argentine ant genome contains fewer immune genes than Drosophila and Tribolium, which may reflect the prominent role played by behavioral and chemical suppression of pathogens. Analysis of the ratio of observed to expected CpG nucleotides for genes in the reproductive development and apoptosis pathways suggests higher levels of methylation than in the genome overall. The resources provided by this genome sequence will offer an abundance of tools for researchers seeking to illuminate the fascinating biology of this emerging model organism.
Collapse
|
52
|
Amenya DA, Chou W, Li J, Yan G, Gershon PD, James AA, Marinotti O. Proteomics reveals novel components of the Anopheles gambiae eggshell. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1414-9. [PMID: 20433845 PMCID: PMC2918668 DOI: 10.1016/j.jinsphys.2010.04.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 04/19/2010] [Accepted: 04/20/2010] [Indexed: 05/20/2023]
Abstract
While genome and transcriptome sequencing has revealed a large number and diversity of Anopheles gambiae predicted proteins, identifying their functions and biosynthetic pathways remains challenging. Applied mass spectrometry-based proteomics in conjunction with mosquito genome and transcriptome databases were used to identify 44 proteins as putative components of the eggshell. Among the identified molecules are two vitelline membrane proteins and a group of seven putative chorion proteins. Enzymes with peroxidase, laccase and phenoloxidase activities, likely involved in cross-linking reactions that stabilize the eggshell structure, also were identified. Seven odorant binding proteins were found in association with the mosquito eggshell, although their role has yet to be demonstrated. This analysis fills a considerable gap of knowledge about proteins that build the eggshell of anopheline mosquitoes.
Collapse
Affiliation(s)
- Dolphine A. Amenya
- Program in Public Health, University of California, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| | - Wayne Chou
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA 92697
| | - Paul D. Gershon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| | - Anthony A. James
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697
| | - Osvaldo Marinotti
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| |
Collapse
|
53
|
Arakane Y, Dittmer NT, Tomoyasu Y, Kramer KJ, Muthukrishnan S, Beeman RW, Kanost MR. Identification, mRNA expression and functional analysis of several yellow family genes in Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:259-266. [PMID: 20149870 DOI: 10.1016/j.ibmb.2010.01.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 01/22/2010] [Accepted: 01/29/2010] [Indexed: 05/28/2023]
Abstract
Querying the genome of the red flour beetle, Tribolium castaneum, with the Drosophila melanogaster Yellow-y (DmY-y) protein sequence identified 14 Yellow homologs. One of these is an ortholog of DmY-y, which is required for cuticle pigmentation (melanization), and another is an ortholog of DmY-f/f2, which functions as a dopachrome conversion enzyme (DCE). Phylogenetic analysis identified putative T. castaneum orthologs for eight of the D. melanogaster yellow genes, including DmY-b, -c, -e, -f, -g, -g2, -h and -y. However, one clade of five beetle genes, TcY-1-5, has no orthologs in D. melanogaster. Expression profiles of all T. castaneum yellow genes were determined by RT-PCR of pharate pupal to young adult stages. TcY-b and TcY-c were expressed throughout all developmental stages analyzed, whereas each of the remaining yellow genes had a unique expression pattern, suggestive of distinct physiological functions. TcY-b, -c and -e were all identified by mass spectrometry of elytral proteins from young adults. Eight of the 14 genes showed differential expression between elytra and hindwings during the last three days of the pupal stage when the adult cuticle is synthesized. Double-stranded RNA (dsRNA)-mediated transcript knockdown revealed that TcY-y is required for melanin production in the hindwings, particularly in the region of the pterostigma, while TcY-f appears to be required for adult cuticle sclerotization but not pigmentation.
Collapse
Affiliation(s)
- Yasuyuki Arakane
- Department of Biochemistry, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506-3702, USA.
| | | | | | | | | | | | | |
Collapse
|
54
|
Alterations in DNA replication and histone levels promote histone gene amplification in Saccharomyces cerevisiae. Genetics 2010; 184:985-97. [PMID: 20139344 DOI: 10.1534/genetics.109.113662] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gene amplification, a process that increases the copy number of a gene or a genomic region to two or more, is utilized by many organisms in response to environmental stress or decreased levels of a gene product. Our previous studies in Saccharomyces cerevisiae identified the amplification of a histone H2A-H2B gene pair, HTA2-HTB2, in response to the deletion of the other H2A-H2B gene pair, HTA1-HTB1. This amplification arises from a recombination event between two flanking Ty1 elements to form a new, stable circular chromosome and occurs at a frequency higher than has been observed for other Ty1-Ty1 recombination events. To understand the regulation of this amplification event, we screened the S. cerevisiae nonessential deletion set for mutations that alter the amplification frequency. Among the deletions that increase HTA2-HTB2 amplification frequency, we identified those that either decrease DNA replication fork progression (rrm3Delta, dpb3Delta, dpb4Delta, and clb5Delta) or that reduce histone H3-H4 levels (hht2-hhf2Delta). These two classes are related because reduced histone H3-H4 levels increase replication fork pauses, and impaired replication forks cause a reduction in histone levels. Consistent with our mutant screen, we found that the introduction of DNA replication stress by hydroxyurea induces the HTA2-HTB2 amplification event. Taken together, our results suggest that either reduced histone levels or slowed replication forks stimulate the HTA2-HTB2 amplification event, contributing to the restoration of normal chromatin structure.
Collapse
|
55
|
Irles P, Bellés X, Piulachs MD. Brownie, a gene involved in building complex respiratory devices in insect eggshells. PLoS One 2009; 4:e8353. [PMID: 20020062 PMCID: PMC2792769 DOI: 10.1371/journal.pone.0008353] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 11/21/2009] [Indexed: 11/25/2022] Open
Abstract
Background Insect eggshells must combine protection for the yolk and embryo with provisions for respiration and for the entry of sperm, which are ensured by aeropyles and micropyles, respectively. Insects which oviposit the eggs in an egg-case have a double problem of respiration as gas exchange then involves two barriers. An example of this situation is found in the cockroach Blattella germanica, where the aeropyle and the micropyle are combined in a complex structure called the sponge-like body. The sponge-like body has been well described morphologically, but nothing is known about how it is built up. Methodology/Principal Findings In a library designed to find genes expressed during late chorion formation in B. germanica, we isolated the novel sequence Bg30009 (now called Brownie), which was outstanding due to its high copy number. In the present work, we show that Brownie is expressed in the follicle cells localized in the anterior pole of the oocyte in late choriogenesis. RNA interference (RNAi) of Brownie impaired correct formation of the sponge-like body and, as a result, the egg-case was also ill-formed and the eggs were not viable. Conclusions/Significance Results indicate that the novel gene Brownie plays a pivotal role in building up the sponge-like body. Brownie is the first reported gene involved in the construction of complex eggshell respiratory structures.
Collapse
Affiliation(s)
- Paula Irles
- Institut de Biologia Evolutiva (UPF-CSIC), Barcelona, Spain
| | - Xavier Bellés
- Institut de Biologia Evolutiva (UPF-CSIC), Barcelona, Spain
| | | |
Collapse
|
56
|
Ito K, Katsuma S, Yamamoto K, Kadono-Okuda K, Mita K, Shimada T. Yellow-e determines the color pattern of larval head and tail spots of the silkworm Bombyx mori. J Biol Chem 2009; 285:5624-9. [PMID: 19996320 DOI: 10.1074/jbc.m109.035741] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yellow proteins form a large family in insects. In Drosophila melanogaster, there are 14 yellow genes in the genome. Previous studies have shown that the yellow gene is necessary for normal pigmentation; however, the roles of other yellow genes in body coloration are not known. Here, we provide the first evidence that yellow-e is required for normal body color pattern in insect larvae. In two mutant strains, bts and its allele bts2, of the silkworm Bombyx mori, the larval head cuticle and anal plates are reddish brown instead of the white color found in the wild type. Positional cloning revealed that deletions in the Bombyx homolog of the Drosophila yellow-e gene (Bmyellow-e) were responsible for the bts/bts2 phenotype. Bmyellow-e mRNA was strongly expressed in the trachea, testis, and integument, and expression markedly increased at the molting stages. This profile is quite similar to that of Bmyellow, a regulator of neonatal body color and body markings in Bombyx. Quantitative reverse transcription-PCR analysis showed that Bmyellow-e mRNA was heavily expressed in the integument of the head and tail in which the bts phenotype is observed. The present results suggest that Yellow-e plays a crucial role in the pigmentation process of lepidopteran larvae.
Collapse
Affiliation(s)
- Katsuhiko Ito
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
57
|
Abstract
A great many cell types are necessary for the myriad capabilities of complex, multicellular organisms. One interesting aspect of this diversity of cell type is that many cells in diploid organisms are polyploid. This is called endopolyploidy and arises from cell cycles that are often characterized as "variant," but in fact are widespread throughout nature. Endopolyploidy is essential for normal development and physiology in many different organisms. Here we review how both plants and animals use variations of the cell cycle, termed collectively as endoreplication, resulting in polyploid cells that support specific aspects of development. In addition, we discuss briefly how endoreplication occurs in response to certain physiological stresses, and how it may contribute to the development of cancer. Finally, we describe the molecular mechanisms that support the onset and progression of endoreplication.
Collapse
|
58
|
Lin HC, Wu JT, Tan BCM, Chien CT. Cul4 and DDB1 regulate Orc2 localization, BrdU incorporation and Dup stability during gene amplification in Drosophila follicle cells. J Cell Sci 2009; 122:2393-401. [PMID: 19531585 DOI: 10.1242/jcs.042861] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In higher eukaryotes, the pre-replication complex (pre-RC) component Cdt1 is the major regulator in licensing control for DNA replication. The Cul4-DDB1-based ubiquitin ligase mediates Cdt1 ubiquitylation for subsequent proteolysis. During the initiation of chorion gene amplification, Double-parked (Dup), the Drosophila ortholog of Cdt1, is restricted to chorion gene foci. We found that Dup accumulated in nuclei in Cul4 mutant follicle cells, and the accumulation was less prominent in DDB1 mutant cells. Loss of Cul4 or DDB1 activity in follicle cells also compromised chorion gene amplification and induced ectopic genomic DNA replication. The focal localization of Orc2, a subunit of the origin recognition complex, is frequently absent in Cul4 mutant follicle cells. Therefore, Cul4 and DDB1 have differential functions during chorion gene amplification.
Collapse
Affiliation(s)
- Hsiu-Chen Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | |
Collapse
|
59
|
Baker DA, Russell S. Gene expression during Drosophila melanogaster egg development before and after reproductive diapause. BMC Genomics 2009; 10:242. [PMID: 19463195 PMCID: PMC2700134 DOI: 10.1186/1471-2164-10-242] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 05/24/2009] [Indexed: 11/30/2022] Open
Abstract
Background Despite the importance of egg development to the female life cycle in Drosophila, global patterns of gene expression have not been examined in detail, primarily due to the difficulty in isolating synchronised developmental stages in sufficient quantities for gene expression profiling. Entry into vitellogenesis is a key stage of oogenesis and by forcing females into reproductive diapause we are able to arrest oogenesis at the pre-vitellogenic stages. Releasing females from diapause allows collection of relatively synchronous developing egg populations and an investigation of some of the transcriptional dynamics apparent before and after reproductive diapause. Results Focusing on gender-biased transcription, we identified mechanisms of egg development suppressed during reproductive dormancy as well as other molecular changes unique to the diapausing female. A microarray based analysis generated a set of 3565 transcripts with at least 2-fold greater expression in females as compared to control males, 1392 such changes were biased during reproductive dormancy. In addition, we also detect 1922 up-regulated transcriptional changes after entry into vitellogenesis, which were classified into discrete blocks of co-expression. We discuss some of the regulatory aspects apparent after re-initiation of egg development, exploring the underlying functions, maternal contribution and evolutionary conservation of co-expression patterns involved in egg production. Conclusion Although much of the work we present is descriptive, fundamental aspects of egg development and gender-biased transcription can be derived from our time-series experiment. We believe that our dataset will facilitate further exploration of the developmental and evolutionary characteristics of oogenesis as well as the nature of reproductive arrest in Drosophila.
Collapse
Affiliation(s)
- Dean A Baker
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB13QA, UK.
| | | |
Collapse
|
60
|
Irles P, Bellés X, Piulachs MD. Identifying genes related to choriogenesis in insect panoistic ovaries by Suppression Subtractive Hybridization. BMC Genomics 2009; 10:206. [PMID: 19405973 PMCID: PMC2683872 DOI: 10.1186/1471-2164-10-206] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Accepted: 04/30/2009] [Indexed: 12/13/2022] Open
Abstract
Background Insect ovarioles are classified into two categories: panoistic and meroistic, the later having apparently evolved from an ancestral panoistic type. Molecular data on oogenesis is practically restricted to meroistic ovaries. If we aim at studying the evolutionary transition from panoistic to meroistic, data on panoistic ovaries should be gathered. To this end, we planned the construction of a Suppression Subtractive Hybridization (SSH) library to identify genes involved in panoistic choriogenesis, using the cockroach Blattella germanica as model. Results We constructed a post-vitellogenic ovary library by SSH to isolate genes involved in choriogenesis in B. germanica. The tester library was prepared with an ovary pool from 6- to 7-day-old females, whereas the driver library was prepared with an ovary pool from 3- to 4-day-old females. From the SSH library, we obtained 258 high quality sequences which clustered into 34 unique sequences grouped in 19 contigs and 15 singlets. The sequences were compared against non-redundant NCBI databases using BLAST. We found that 44% of the unique sequences had homologous sequences in known genes of other organisms, whereas 56% had no significant similarity to any of the databases entries. A Gene Ontology analysis was carried out, classifying the 34 sequences into different functional categories. Seven of these gene sequences, representative of different categories and processes, were chosen to perform expression studies during the first gonadotrophic cycle by real-time PCR. Results showed that they were mainly expressed during post-vitellogenesis, which validates the SSH technique. In two of them corresponding to novel genes, we demonstrated that they are specifically expressed in the cytoplasm of follicular cells in basal oocytes at the time of choriogenesis. Conclusion The SSH approach has proven to be useful in identifying ovarian genes expressed after vitellogenesis in B. germanica. For most of the genes, functions related to choriogenesis are postulated. The relatively high percentage of novel genes obtained and the practical absence of chorion genes typical of meroistic ovaries suggest that mechanisms regulating chorion formation in panoistic ovaries are significantly different from those of meroistic ones.
Collapse
Affiliation(s)
- Paula Irles
- Institut de Biologia Evolutiva (UPF-CSIC), Passeig Marítim de la Barceloneta, Barcelona, Spain.
| | | | | |
Collapse
|
61
|
Boonen RA, van Tijn P, Zivkovic D. Wnt signaling in Alzheimer's disease: up or down, that is the question. Ageing Res Rev 2009; 8:71-82. [PMID: 19101658 DOI: 10.1016/j.arr.2008.11.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 11/26/2008] [Accepted: 11/26/2008] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, neuropathologically characterized by amyloid-beta (Abeta) plaques and hyperphosphorylated tau accumulation. AD occurs sporadically (SAD), or is caused by hereditary missense mutations in the amyloid precursor protein (APP) or presenilin-1 and -2 (PSEN1 and PSEN2) genes, leading to early-onset familial AD (FAD). Accumulating evidence points towards a role for altered Wnt/beta-catenin-dependent signaling in the etiology of both forms of AD. Presenilins are involved in modulating beta-catenin stability; therefore FAD-linked PSEN-mediated effects can deregulate the Wnt pathway. Genetic variations in the low-density lipoprotein receptor-related protein 6 and apolipoprotein E in AD have been associated with reduced Wnt signaling. In addition, tau phosphorylation is mediated by glycogen synthase kinase-3 (GSK-3), a key antagonist of the Wnt pathway. In this review, we discuss Wnt/beta-catenin signaling in both SAD and FAD, and recapitulate which of its aberrant functions may be critical for (F)AD pathogenesis. We discuss the intriguing possibility that Abeta toxicity may downregulate the Wnt/beta-catenin pathway, thereby upregulating GSK-3 and consequent tau hyperphosphorylation, linking Abeta and tangle pathology. The currently available evidence implies that disruption of tightly regulated Wnt signaling may constitute a key pathological event in AD. In this context, drug targets aimed at rescuing Wnt signaling may prove to be a constructive therapeutic strategy for AD.
Collapse
|
62
|
Sun J, Smith L, Armento A, Deng WM. Regulation of the endocycle/gene amplification switch by Notch and ecdysone signaling. ACTA ACUST UNITED AC 2008; 182:885-96. [PMID: 18779369 PMCID: PMC2528591 DOI: 10.1083/jcb.200802084] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The developmental signals that regulate the switch from genome-wide DNA replication to site-specific amplification remain largely unknown. Drosophila melanogaster epithelial follicle cells, which begin synchronized chorion gene amplification after three rounds of endocycle, provide an excellent model for study of the endocycle/gene amplification (E/A) switch. Here, we report that down-regulation of Notch signaling and activation of ecdysone receptor (EcR) are required for the E/A switch in these cells. Extended Notch activity suppresses EcR activation and prevents exit from the endocycle. Tramtrack (Ttk), a zinc-finger protein essential for the switch, is regulated negatively by Notch and positively by EcR. Ttk overexpression stops endoreplication prematurely and alleviates the endocycle exit defect caused by extended Notch activity or removal of EcR function. Our results reveal a developmental pathway that includes down-regulation of Notch, activation of the EcR, up-regulation of Ttk to execute the E/A switch, and, for the first time, the genetic interaction between Notch and ecdysone signaling in regulation of cell cycle programs and differentiation.
Collapse
Affiliation(s)
- Jianjun Sun
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | | | | | | |
Collapse
|
63
|
Wu J, Capp C, Feng L, Hsieh TS. Drosophila homologue of the Rothmund-Thomson syndrome gene: essential function in DNA replication during development. Dev Biol 2008; 323:130-42. [PMID: 18755177 DOI: 10.1016/j.ydbio.2008.08.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Revised: 08/05/2008] [Accepted: 08/06/2008] [Indexed: 11/16/2022]
Abstract
Members of the RecQ family play critical roles in maintaining genome integrity. Mutations in human RecQL4 cause a rare genetic disorder, Rothmund-Thomson syndrome. Transgenic mice experiments showed that the RecQ4 null mutant causes embryonic lethality. Although biochemical evidence suggests that the Xenopus RecQ4 is required for the initiation of DNA replication in the oocyte extract, its biological functions during development remain to be elucidated. We present here our results in establishing the use of Drosophila as a model system to probe RecQ4 functions. Immunofluorescence experiments monitoring the cellular distribution of RecQ4 demonstrated that RecQ4 expression peaks during S phase, and RecQ4 is expressed only in tissues active in DNA replication, but not in quiescent cells. We have isolated Drosophila RecQ4 hypomorphic mutants, recq(EP) and recq4(23), which specifically reduce chorion gene amplification of follicle cells by 4-5 fold, resulting in thin and fragile eggshells, and female sterility. Quantitative analysis on amplification defects over a 14-kb domain in chorion gene cluster suggests that RecQ4 may have a specific function at or near the origin of replication. A null allele recq4(19) causes a failure in cell proliferation, decrease in DNA replication, chromosomal fragmentation, and lethality at the stage of first instar larvae. The mosaic analysis indicates that cell clones with homozygous recq4(19) fail to proliferate. These results indicate that RecQ4 is essential for viability and fertility, and is required for most aspects of DNA replication during development.
Collapse
Affiliation(s)
- Jianhong Wu
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
64
|
Cavaliere V, Bernardi F, Romani P, Duchi S, Gargiulo G. Building up theDrosophilaeggshell: First of all the eggshell genes must be transcribed. Dev Dyn 2008; 237:2061-72. [DOI: 10.1002/dvdy.21625] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
65
|
Isolation of a Drosophila amplification origin developmentally activated by transcription. Proc Natl Acad Sci U S A 2008; 105:9651-6. [PMID: 18621687 DOI: 10.1073/pnas.0804146105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We exploited the Drosophila Amplicon in Follicle Cells, DAFC-62D, to identify a new metazoan amplification origin, ori62. In addition to the origin, DAFC-62D contains two other developmental stage-specific binding regions for the Origin Recognition Complex (ORC) and the replicative helicase MCM2-7. All three of these regions are required for proper amplification. There are two rounds of amplification initiation at ori62, and the second round is preceded by transcription across ori62. We show by alpha-amanitin inhibition that RNA polymerase II (RNAPII) transcription is required to localize MCM2-7 (but not ORC) to permit the second round of origin firing. This role for transcription appears unique to DAFC-62D, because neither other DAFCs nor ectopic transposons with the DAFC-62D replication elements bounded by functional chromatin insulators are affected by alpha-amanitin. By sequential chromatin immunoprecipitation, we show that the MCM complex and RNAPII are bound to the same 100-500 bp pieces of chromatin during late origin firing. These results raise the possibility that RNAPII may recruit MCM2-7 at some metazoan replication origins.
Collapse
|
66
|
Elalayli M, Hall JD, Fakhouri M, Neiswender H, Ellison TT, Han Z, Roon P, LeMosy EK. Palisade is required in the Drosophila ovary for assembly and function of the protective vitelline membrane. Dev Biol 2008; 319:359-69. [PMID: 18514182 DOI: 10.1016/j.ydbio.2008.04.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 03/15/2008] [Accepted: 04/26/2008] [Indexed: 11/17/2022]
Abstract
The innermost layer of the Drosophila eggshell, the vitelline membrane, provides structural support and positional information to the embryo. It is assembled in an incompletely understood manner from four major proteins to form a homogeneous, transparent extracellular matrix. Here we show that RNAi knockdown or genetic deletion of a minor constituent of this matrix, Palisade, results in structural disruptions during the initial synthesis of the vitelline membrane by somatic follicle cells surrounding the oocyte, including wide size variation among the precursor vitelline bodies and disorganization of follicle cell microvilli. Loss of Palisade or the microvillar protein Cad99C results in abnormal uptake into the oocyte of sV17, a major vitelline membrane protein, and defects in non-disulfide cross-linking of sV17 and sV23, while loss of Palisade has additional effects on processing and disulfide cross-linking of these proteins. Embryos surrounded by the abnormal vitelline membranes synthesized when Palisade is reduced are fertilized but undergo developmental arrest, usually during the first 13 nuclear divisions, with a nuclear phenotype of chromatin margination similar to that described for wild-type embryos subjected to anoxia. Our results demonstrate that Palisade is involved in coordinating assembly of the vitelline membrane and is required for functional properties of the eggshell.
Collapse
Affiliation(s)
- Maggie Elalayli
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Conservation of epigenetic regulation, ORC binding and developmental timing of DNA replication origins in the genus Drosophila. Genetics 2008; 177:1291-301. [PMID: 18039868 DOI: 10.1534/genetics.107.070862] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There is much interest in how DNA replication origins are regulated so that the genome is completely duplicated each cell division cycle and in how the division of cells is spatially and temporally integrated with development. In the Drosophila melanogaster ovary, the cell cycle of somatic follicle cells is modified at precise times in oogenesis. Follicle cells first proliferate via a canonical mitotic division cycle and then enter an endocycle, resulting in their polyploidization. They subsequently enter a specialized amplification phase during which only a few, select origins repeatedly initiate DNA replication, resulting in gene copy number increases at several loci important for eggshell synthesis. Here we investigate the importance of these modified cell cycles for oogenesis by determining whether they have been conserved in evolution. We find that their developmental timing has been strictly conserved among Drosophila species that have been separate for approximately 40 million years of evolution and provide evidence that additional gene loci may be amplified in some species. Further, we find that the acetylation of nucleosomes and Orc2 protein binding at active amplification origins is conserved. Conservation of DNA subsequences within amplification origins from the 12 recently sequenced Drosophila species genomes implicates members of a Myb protein complex in recruiting acetylases to the origin. Our findings suggest that conserved developmental mechanisms integrate egg chamber morphogenesis with cell cycle modifications and the epigenetic regulation of origins.
Collapse
|
68
|
Dopman EB, Hartl DL. A portrait of copy-number polymorphism in Drosophila melanogaster. Proc Natl Acad Sci U S A 2007; 104:19920-5. [PMID: 18056801 PMCID: PMC2148398 DOI: 10.1073/pnas.0709888104] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Indexed: 11/18/2022] Open
Abstract
Thomas Hunt Morgan and colleagues identified variation in gene copy number in Drosophila in the 1920s and 1930s and linked such variation to phenotypic differences [Bridges CB (1936) Science 83:210]. Yet the extent of variation in the number of chromosomes, chromosomal regions, or gene copies, and the importance of this variation within species, remain poorly understood. Here, we focus on copy-number variation in Drosophila melanogaster. We characterize copy-number polymorphism (CNP) across genomic regions, and we contrast patterns to infer the evolutionary processes acting on this variation. Copy-number variation in D. melanogaster is nonrandomly distributed, presumably because of a mutational bias produced by tandem repeats or other mechanisms. Comparisons of coding and noncoding CNPs, however, reveal a strong effect of purifying selection in the removal of structural variation from functionally constrained regions. Most patterns of CNP in D. melanogaster suggest that negative selection and mutational biases are the primary agents responsible for shaping structural variation.
Collapse
Affiliation(s)
- Erik B. Dopman
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138
| | - Daniel L. Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138
| |
Collapse
|
69
|
Baker DA, Meadows LA, Wang J, Dow JA, Russell S. Variable sexually dimorphic gene expression in laboratory strains of Drosophila melanogaster. BMC Genomics 2007; 8:454. [PMID: 18070343 PMCID: PMC2244638 DOI: 10.1186/1471-2164-8-454] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 12/10/2007] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Wild-type laboratory strains of model organisms are typically kept in isolation for many years, with the action of genetic drift and selection on mutational variation causing lineages to diverge with time. Natural populations from which such strains are established, show that gender-specific interactions in particular drive many aspects of sequence level and transcriptional level variation. Here, our goal was to identify genes that display transcriptional variation between laboratory strains of Drosophila melanogaster, and to explore evidence of gender-biased interactions underlying that variability. RESULTS Transcriptional variation among the laboratory genotypes studied occurs more frequently in males than in females. Qualitative differences are also apparent to suggest that genes within particular functional classes disproportionately display variation in gene expression. Our analysis indicates that genes with reproductive functions are most often divergent between genotypes in both sexes, however a large proportion of female variation can also be attributed to genes without expression in the ovaries. CONCLUSION The present study clearly shows that transcriptional variation between common laboratory strains of Drosophila can differ dramatically due to sexual dimorphism. Much of this variation reflects sex-specific challenges associated with divergent physiological trade-offs, morphology and regulatory pathways operating within males and females.
Collapse
Affiliation(s)
- Dean A Baker
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB1 3QA, UK.
| | | | | | | | | |
Collapse
|
70
|
Drosophila follicle cell amplicons as models for metazoan DNA replication: a cyclinE mutant exhibits increased replication fork elongation. Proc Natl Acad Sci U S A 2007; 104:16739-46. [PMID: 17940024 DOI: 10.1073/pnas.0707804104] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gene clusters amplified in the ovarian follicle cells of Drosophila serve as powerful models for metazoan DNA replication. In response to developmental signals, specific genomic regions undergo amplification by repeated firing of replication origins and bidirectional movement of replication forks for approximately 50 kb in each direction. Previous work focused on initiation of amplification, defining replication origins, establishing the role of the prereplication complex and origin recognition complex (ORC), and uncovering regulatory functions for the Myb, E2F1, and Rb transcription factors. Here, we exploit follicle cell amplification to investigate the control of DNA replication fork progression and termination, poorly understood processes in metazoans. We identified a mutant in which, during gene amplification, the replication forks move twice as far from the origin compared with wild type. This phenotype is the result of an amino acid substitution mutation in the cyclinE gene, cyclinE(1f36). The rate of oogenesis is normal in cyclinE(1f36)/cyclinE(Pz8) mutant ovaries, indicating that increased replication fork progression is due to increased replication fork speed, possibly from increased processivity. The increased amplification domains observed in the mutant imply that there are not replication fork barriers preventing replication forks from progressing beyond the normal 100-kb amplified region. These results reveal a previously unrecognized role for CyclinE in controlling replication fork movement.
Collapse
|
71
|
Affleck JG, Walker VK. Transgenic rescue of methotrexate-induced teratogenicity in Drosophila melanogaster. Toxicol Sci 2007; 99:522-31. [PMID: 17519396 DOI: 10.1093/toxsci/kfm123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The folic acid analog methotrexate (MTX), a competitive inhibitor of dihydrofolate reductase (DHFR), is used to treat a variety of cancers and autoimmune disorders. However, MTX also causes a wide range of toxic effects in healthy cells and is an established teratogen. Efforts to "rescue" the defects caused by MTX by administering a folate analog or by transgenic expression of a DHFR with an altered affinity for MTX have been attempted in a variety of mammals but limited protection was conferred. As a result, our understanding of the effect of MTX at the molecular genetic level remains incomplete and, in addition, continued mammalian sacrifice is not ideal. Due to the similarity of teratogenic effects produced by MTX in Drosophila melanogaster these insects were transformed with DHFR alleles to determine if rescue could be achieved. The resulting "MTX-resistant" flies were subsequently used to investigate changes in gene expression in response to MTX using semiquantitative reverse transcription PCR. The majority (12/14) of key transcripts that were affected in MTX-exposed females including transcripts involved in cell cycle, defense response, and transport were "rescued" in the "MTX-resistant" transgenic flies. These studies illustrate the utility of this invertebrate model for the investigation of molecular effects of MTX-induced teratogenicity, MTX-resistant DHFRs for gene therapy techniques, and teratogenic protection.
Collapse
Affiliation(s)
- Joslynn G Affleck
- Department of Biology, Biosciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
72
|
Gräff J, Jemielity S, Parker JD, Parker KM, Keller L. Differential gene expression between adult queens and workers in the ant Lasius niger. Mol Ecol 2007; 16:675-83. [PMID: 17257122 DOI: 10.1111/j.1365-294x.2007.03162.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ants and other social insects forming large societies are generally characterized by marked reproductive division of labour. Queens largely monopolize reproduction whereas workers have little reproductive potential. In addition, some social insect species show tremendous lifespan differences between the queen and worker caste. Remarkably, queens and workers are usually genotypically identical, meaning that any phenotypic differences between the two castes arise from caste-specific gene expression. Using a combination of differential display, microarrays and reverse Northern blots, we found 16 genes that were differentially expressed between adult queens and workers in the ant Lasius niger, a species with highly pronounced reproductive division of labour and a several-fold lifespan difference between queens and workers. RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE) and gene walking were used to further characterize these genes. On the basis of the molecular function of their nearest homologues, three genes appear to be involved in reproductive division of labour. Another three genes, which were exclusively overexpressed in queens, are possibly involved in the maintenance and repair of the soma, a candidate mechanism for lifespan determination. In-depth functional analyses of these genes are now needed to reveal their exact role.
Collapse
Affiliation(s)
- Johannes Gräff
- Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
73
|
Eve DJ, Dennis JS, Citron BA. Transcription factor p53 in degenerating spinal cords. Brain Res 2007; 1150:174-81. [PMID: 17434459 DOI: 10.1016/j.brainres.2007.02.088] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 02/19/2007] [Accepted: 02/21/2007] [Indexed: 10/23/2022]
Abstract
The causes of spinal cord cell loss in motor neuron disorders such as amyotrophic lateral sclerosis (ALS) are currently unknown. A role can be postulated for the transcription factor p53, which can induce apoptosis via upregulation of proapoptotic genes (e.g., Bax) and inhibition of antiapoptotic genes (e.g., Bcl-2). A model of motor neuron loss is the wobbler mouse that exhibits rapid motor neuron cell death as well as motor deficit from 21 days after birth. Affymetrix microarray data from wobbler mice demonstrate a 2.2-fold increase in p53 signal compared with their normal littermates, whereas qRT-PCR of RNA from laser capture microdissected ventral horns of normal and wobbler mice reveals a larger 6.6-fold increase in gene expression and this was supported by western blotting. Human ventral horns obtained from ALS and age-matched normal spinal cords also demonstrated an increase (2.7-fold) in p53 expression as determined by qRT-PCR. Evidence of a causative role for p53 in spinal cord cell death was provided by use of a p53 inhibitor, pifithrin-alpha, in organotypic slice cultures of mouse spinal cord. A 24-h pretreatment with pifithrin-alpha (and continuing in the presence of insult), significantly reduced the toxicity of a 48-h treatment with FeSO(4), tested with the MTT viability assay. These results indicate that p53 plays a functional role in oxidative stress-induced cell death and supports the possibility that elevated p53 could be involved in motor neuron death in ALS and the wobbler mouse.
Collapse
Affiliation(s)
- David J Eve
- Laboratory of Molecular Biology, Research and Development 151, Bay Pines VA Healthcare System, Bay Pines, FL 33744, USA
| | | | | |
Collapse
|
74
|
Beall EL, Lewis PW, Bell M, Rocha M, Jones DL, Botchan MR. Discovery of tMAC: a Drosophila testis-specific meiotic arrest complex paralogous to Myb-Muv B. Genes Dev 2007; 21:904-19. [PMID: 17403774 PMCID: PMC1847709 DOI: 10.1101/gad.1516607] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The Drosophila Myb-Muv B (MMB)/dREAM complex regulates gene expression and DNA replication site-specifically, but its activities in vivo have not been thoroughly explored. In ovarian amplification-stage follicle cell nuclei, the largest subunit, Mip130, is a negative regulator of replication, whereas another subunit, Myb, is a positive regulator. Here, we identified a mutation in mip40 and generated a mutation in mip120, two additional MMB subunits. Both mutants were viable, but mip120 mutants had many complex phenotypes including shortened longevity and severe eye defects. mip40 mutant females had severely reduced fertility, whereas mip120 mutant females were sterile, substantiating ovarian regulatory role(s) for MMB. Myb accumulation and binding to polytene chromosomes was dependent on the core factors of the MMB complex. In contrast to the documented mip130 mutant phenotypes, both mip40 and mip120 mutant males were sterile. We purified Mip40-containing complexes from testis nuclear extracts and identified tMAC, a new testis-specific meiotic arrest complex that contained Mip40, Caf1/p55, the Mip130 family member, Always early (Aly), and a Mip120 family member, Tombola (Tomb). Together, these data demonstrate that MMB serves diverse roles in different developmental pathways, and members of MMB can be found in alternative, noninteracting complexes in different cell types.
Collapse
Affiliation(s)
- Eileen L. Beall
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Peter W. Lewis
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Maren Bell
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Michael Rocha
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037, USA
| | - D. Leanne Jones
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037, USA
| | - Michael R. Botchan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
- Corresponding author.E-MAIL ; FAX (510) 643-1729
| |
Collapse
|
75
|
Yang Y, Herrup K. Cell division in the CNS: protective response or lethal event in post-mitotic neurons? BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1772:457-66. [PMID: 17158035 PMCID: PMC2785903 DOI: 10.1016/j.bbadis.2006.10.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 10/02/2006] [Indexed: 02/07/2023]
Abstract
Cell cycle events have been documented to be associated with several human neurodegenerative diseases. This review focuses on two diseases--Alzheimer's disease and ataxia telangiectasia--as well as their mouse models. Cell cycle studies have shown that ectopic expression of cell cycle markers is spatially and regional correlated well with neuronal cell death in both disease conditions. Further evidence of ectopic cell cycling is found in both human diseases and in its mouse models. These findings suggest that loss of cell cycle control represents a common pathological root of disease, which underlies the defects in the affected brain tissues in both human and mouse. Loss of cell cycle control is a unifying hypothesis for inducing neuronal death in CNS. In the disease models we have examined, cell cycle markers appear before the more well-recognized pathological changes and thus could serve as early stress markers--outcome measures for preclinical trials of potential disease therapies. As a marker these events could serve as a new criterion in human pathological diagnosis. The evidence to date is compatible with the requirement for a second "hit" for a neuron to progress cell cycle initiation and DNA replication to death. If this were true, any intervention of blocking 'second' processes might prevent or slow the neuronal cell death in the process of disease. What is not known is whether, in an adult neuron, the cell cycle event is part of the pathology or rather a desperate attempt of a neuron under stress to protect itself.
Collapse
Affiliation(s)
- Yan Yang
- Department of Neurology, University Hospitals of Cleveland, Alzheimer Research Lab, E504, Case Western Reserve University School of Medicine, 10900 Euclid Avenue Cleveland, OH 44106, USA.
| | | |
Collapse
|
76
|
Carmon A, Wilkin M, Hassan J, Baron M, MacIntyre R. Concerted evolution within the Drosophila dumpy gene. Genetics 2007; 176:309-25. [PMID: 17237523 PMCID: PMC1893059 DOI: 10.1534/genetics.106.060897] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have determined by reverse Southern analysis and direct sequence comparisons that most of the dumpy gene has evolved in the dipteran and other insect orders by purifying selection acting on amino acid replacements. One region, however, is evolving rapidly due to unequal crossing over and/or gene conversion. This region, called "PIGSFEAST," or PF, encodes in D. melanogaster 30-47 repeats of 102 amino acids rich in serines, threonines, and prolines. We show that the processes of concerted evolution have been operating on all species of Drosophila examined to date, but that an adjacent region has expanded in Anopheles gambiae, Aedes aegypti, and Tribolium castaneum, while the PF repeats are reduced in size and number. In addition, processes of concerted evolution have radically altered the codon usage patterns in D. melanogaster, D. pseudoobscura, and D. virilis compared with the rest of the dumpy gene. We show also that the dumpy gene is expressed on the inner surface of the micropyle of the mature oocyte and propose that, as in the abalone system, concerted evolution may be involved in adaptive changes affecting Dumpy's possible role in sperm-egg recognition.
Collapse
Affiliation(s)
- Amber Carmon
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
77
|
Hartl T, Boswell C, Orr-Weaver TL, Bosco G. Developmentally regulated histone modifications in Drosophila follicle cells: initiation of gene amplification is associated with histone H3 and H4 hyperacetylation and H1 phosphorylation. Chromosoma 2007; 116:197-214. [PMID: 17219175 DOI: 10.1007/s00412-006-0092-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2006] [Accepted: 11/22/2006] [Indexed: 12/18/2022]
Abstract
We have used gene amplification in Drosophila follicle cells as a model of metazoan DNA replication to address whether changes in histone modifications are associated with replication origin activation. We observe that replication initiation is associated with distinct histone modifications. Acetylated lysines K5, K8, and K12 on histone H4 and K14 on histone H3 are specifically enriched during replication initiation at the amplification origins. Strikingly, H4 acetylation persists at an amplification origin well after replication forks have progressed significantly outward from the origin, indicating that H4 acetylation is associated with origin regulation and not histone deposition at the replication forks. Origin recognition complex subunit 2 (orc2) mutants with severe amplification defects do not abolish H4 acetylation, whereas the dup/cdt1 mutant delays the appearance of acetylation foci, and mutants in rbf result in temporal persistence. These data indicate that core histone acetylation is associated with origin activity. Furthermore, follicle cells undergoing gene amplification exhibit high levels of histone H1 phosphorylation. The patterns of H1 phosphorylation provide insights into cell cycle states during amplification, as H1 kinase activity in follicle cells is responsive to high Cyclin E activity, and it can be abolished by overexpressing the retinoblastoma homolog, Rbf, that represses Cyclin E. These data suggest that amplification origins are able to initiate when the cells are in a late S-phase, when the genome is normally not licensed for replication.
Collapse
Affiliation(s)
- Tom Hartl
- Department of Molecular and Cellular Biology, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
78
|
GRÄFF JOHANNES, JEMIELITY STEPHANIE, PARKER JOELD, PARKER KARENM, KELLER LAURENT. Differential gene expression between adult queens and workers in the ant Lasius niger. Mol Ecol 2007. [DOI: 10.1111/j.1365-294x.2006.03162.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
79
|
Yamamoto D. The neural and genetic substrates of sexual behavior in Drosophila. ADVANCES IN GENETICS 2007; 59:39-66. [PMID: 17888794 DOI: 10.1016/s0065-2660(07)59002-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
fruitless (fru), originally identified with its mutant conferring male homosexuality, is a neural sex determination gene in Drosophila that produces sexually dimorphic sets of transcripts. In the nervous system, Fru is translated only in males. Fru proteins likely regulate the transcription of a set of downstream genes. The expression of Fru proteins is sufficient to induce male sexual behavior in females. A group of fru-expressing neurons called "mAL" neurons in the brain shows conspicuous sexual dimorphism. mAL is composed of 5 neurons in females and 30 neurons in males. It includes neurons with bilateral projections in males and contralateral projections in females. Terminal arborization patterns are also sexually dimorphic. These three characteristics are feminized in fru mutant males. The inactivation of cell death genes results in the production of additional mAL neurons that are of the male type in the female brain. This suggests that male-specific Fru inhibits mAL neuron death, leading to the formation of a male-specific neural circuit that underlies male sexual behavior. Fru orchestrates a spectrum of downstream genes as a master control gene to establish the maleness of the brain.
Collapse
Affiliation(s)
- Daisuke Yamamoto
- Division of Neurogenetics, Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
80
|
Drapeau MD, Albert S, Kucharski R, Prusko C, Maleszka R. Evolution of the Yellow/Major Royal Jelly Protein family and the emergence of social behavior in honey bees. Genes Dev 2006; 16:1385-94. [PMID: 17065613 PMCID: PMC1626640 DOI: 10.1101/gr.5012006] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2005] [Accepted: 06/07/2006] [Indexed: 11/25/2022]
Abstract
The genomic architecture underlying the evolution of insect social behavior is largely a mystery. Eusociality, defined by overlapping generations, parental brood care, and reproductive division of labor, has most commonly evolved in the Hymenopteran insects, including the honey bee Apis mellifera. In this species, the Major Royal Jelly Protein (MRJP) family is required for all major aspects of eusocial behavior. Here, using data obtained from the A. mellifera genome sequencing project, we demonstrate that the MRJP family is encoded by nine genes arranged in an approximately 60-kb tandem array. Furthermore, the MRJP protein family appears to have evolved from a single progenitor gene that encodes a member of the ancient Yellow protein family. Five genes encoding Yellow-family proteins flank the genomic region containing the genes encoding MRJPs. We describe the molecular evolution of these protein families. We then characterize developmental-stage-specific, sex-specific, and caste-specific expression patterns of the mrjp and yellow genes in the honey bee. We review empirical evidence concerning the functions of Yellow proteins in fruit flies and social ants, in order to shed light on the roles of both Yellow and MRJP proteins in A. mellifera. In total, the available evidence suggests that Yellows and MRJPs are multifunctional proteins with diverse, context-dependent physiological and developmental roles. However, many members of the Yellow/MRJP family act as facilitators of reproductive maturation. Finally, it appears that MRJP protein subfamily evolution from the Yellow protein family may have coincided with the evolution of honey bee eusociality.
Collapse
Affiliation(s)
- Mark David Drapeau
- Department of Biology, New York University, New York, New York 10003, USA
| | - Stefan Albert
- Institut für Medizinische Strahlenkunde und Zellforschung, Universität Würzburg, 97078 Würzburg, Germany
| | - Robert Kucharski
- Visual Sciences and Centre for the Molecular Genetics of Development, Research School of Biological Sciences, The Australian National University, Canberra ACT 0200, Australia
| | - Carsten Prusko
- Institut für Medizinische Strahlenkunde und Zellforschung, Universität Würzburg, 97078 Würzburg, Germany
| | - Ryszard Maleszka
- Visual Sciences and Centre for the Molecular Genetics of Development, Research School of Biological Sciences, The Australian National University, Canberra ACT 0200, Australia
| |
Collapse
|
81
|
Xia AH, Zhou QX, Yu LL, Li WG, Yi YZ, Zhang YZ, Zhang ZF. Identification and analysis of YELLOW protein family genes in the silkworm, Bombyx mori. BMC Genomics 2006; 7:195. [PMID: 16884544 PMCID: PMC1553450 DOI: 10.1186/1471-2164-7-195] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 08/03/2006] [Indexed: 12/03/2022] Open
Abstract
Background The major royal jelly proteins/yellow (MRJP/YELLOW) family possesses several physiological and chemical functions in the development of Apis mellifera and Drosophila melanogaster. Each protein of the family has a conserved domain named MRJP. However, there is no report of MRJP/YELLOW family proteins in the Lepidoptera. Results Using the YELLOW protein sequence in Drosophila melanogaster to BLAST silkworm EST database, we found a gene family composed of seven members with a conserved MRJP domain each and named it YELLOW protein family of Bombyx mori. We completed the cDNA sequences with RACE method. The protein of each member possesses a MRJP domain and a putative cleavable signal peptide consisting of a hydrophobic sequence. In view of genetic evolution, the whole Bm YELLOW protein family composes a monophyletic group, which is distinctly separate from Drosophila melanogaster and Apis mellifera. We then showed the tissue expression profiles of Bm YELLOW protein family genes by RT-PCR. Conclusion A Bombyx mori YELLOW protein family is found to be composed of at least seven members. The low homogeneity and unique pattern of gene expression by each member among the family ensure us to prophesy that the members of Bm YELLOW protein family would play some important physiological functions in silkworm development.
Collapse
Affiliation(s)
- Ai-Hua Xia
- The Biotechnology Research Institute, National Engineering of crop germplasm and genetic improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qing-Xiang Zhou
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang City, Jiangsu Province, 212018, China
- The Biotechnology Research Institute, National Engineering of crop germplasm and genetic improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lin-Lin Yu
- The Biotechnology Research Institute, National Engineering of crop germplasm and genetic improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei-Guo Li
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang City, Jiangsu Province, 212018, China
| | - Yong-Zhu Yi
- Institute of Biochemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, 310018, China
| | - Yao-Zhou Zhang
- Institute of Biochemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, 310018, China
| | - Zhi-Fang Zhang
- The Biotechnology Research Institute, National Engineering of crop germplasm and genetic improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
82
|
Foulk MS, Liang C, Wu N, Blitzblau HG, Smith H, Alam D, Batra M, Gerbi SA. Ecdysone induces transcription and amplification in Sciara coprophila DNA puff II/9A. Dev Biol 2006; 299:151-63. [PMID: 16938289 DOI: 10.1016/j.ydbio.2006.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/13/2006] [Accepted: 07/14/2006] [Indexed: 01/10/2023]
Abstract
DNA replication is normally tightly regulated to ensure the production of only one copy of the genome per cell cycle. However, DNA puffs of the salivary gland giant polytene chromosomes of Sciara coprophila undergo DNA amplification during the normal course of development, overriding this control. This developmental strategy provides more template for the production of large amounts of protein needed for pupation. We have focused on DNA puff II/9A, which amplifies approximately 17-fold over the rest of the genome. Evidence presented here suggests that DNA amplification at this locus is controlled by the steroid hormone ecdysone, the master regulator of insect development. Explanted, pre-amplification stage salivary glands undergo premature amplification when incubated with ecdysone. Injection of ecdysone into pre-amplification stage larvae induces amplification. Ecdysone also induces transcription of the II/9A genes. We report the presence of a putative ecdysone response element directly adjacent to the origin recognition complex (ORC)-binding site in the II/9A origin and demonstrate that it is efficiently bound by the Sciara ecdysone receptor. These results implicate ecdysone in the regulation of DNA amplification in Sciara and suggest the ecdysone receptor may be the elusive amplification factor. This would be a new role for this transcription factor.
Collapse
Affiliation(s)
- Michael S Foulk
- Brown University, 69 Brown St.-J.W. Wilson Laboratory, Providence, RI 02912, USA
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Fakhouri M, Elalayli M, Sherling D, Hall JD, Miller E, Sun X, Wells L, LeMosy EK. Minor proteins and enzymes of the Drosophila eggshell matrix. Dev Biol 2006; 293:127-41. [PMID: 16515779 PMCID: PMC2701256 DOI: 10.1016/j.ydbio.2006.01.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 01/26/2006] [Accepted: 01/27/2006] [Indexed: 11/29/2022]
Abstract
The Drosophila eggshell provides an in vivo model system for extracellular matrix assembly, in which programmed gene expression, cell migrations, extracellular protein trafficking, proteolytic processing, and cross-linking are all required to generate a multi-layered and regionally complex architecture. While abundant structural components of the eggshell are known and are being characterized, less is known about non-abundant structural, regulatory, and enzymatic components that are likely to play critical roles in eggshell assembly. We have used sensitive mass spectrometry-based analyses of fractionated eggshell matrices to validate six previously predicted eggshell proteins and to identify eleven novel components, and have characterized the expression patterns of many of their mRNAs. Among these are several putative structural or regulatory (non-enzymatic) proteins, most larger in mass than the major eggshell proteins and often showing preferential expression in follicle cells overlying specific structural features of the eggshell. Of particular note are the putative enzymes, some likely to be involved in matrix cross-linking (two yellow family members previously implicated in eggshell integrity, a heme peroxidase, and a small-molecule oxidoreductase) and others possibly involved in matrix proteolysis or adhesion (proteins related to cathepsins B and D). This work provides a framework for future molecular studies of eggshell assembly.
Collapse
Affiliation(s)
- Mazen Fakhouri
- Department of Cellular Biology and Anatomy, Medical College of Georgia, 1120 15 St., CB2915, Augusta, GA 30912, USA
| | - Maggie Elalayli
- Department of Cellular Biology and Anatomy, Medical College of Georgia, 1120 15 St., CB2915, Augusta, GA 30912, USA
| | | | - Jacklyn D. Hall
- Department of Cellular Biology and Anatomy, Medical College of Georgia, 1120 15 St., CB2915, Augusta, GA 30912, USA
| | | | - Xutong Sun
- Department of Cellular Biology and Anatomy, Medical College of Georgia, 1120 15 St., CB2915, Augusta, GA 30912, USA
| | | | - Ellen K. LeMosy
- Department of Cellular Biology and Anatomy, Medical College of Georgia, 1120 15 St., CB2915, Augusta, GA 30912, USA
| |
Collapse
|
84
|
Yang Y, Varvel NH, Lamb BT, Herrup K. Ectopic cell cycle events link human Alzheimer's disease and amyloid precursor protein transgenic mouse models. J Neurosci 2006; 26:775-84. [PMID: 16421297 PMCID: PMC6675370 DOI: 10.1523/jneurosci.3707-05.2006] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nerve cells that re-enter a cell cycle will die rather than divide, a fact that likely underlies the neurodegeneration in Alzheimer's disease (AD). Several mouse models of familial AD have been created, and although many display amyloid plaques in their brains, none captures the extensive pattern of nerve cell death found in the human disease. Using both immunocytochemistry and fluorescent in situ hybridization, we show that neurons in three different mouse models reproduce the ectopic cell cycling found in human AD. The temporal and spatial appearance of the cell cycle events in the mouse closely mimics the human disease progression. The cell-cycle events are evident 6 months before the first amyloid deposits and significantly precede the appearance of the first CD45+ microglia. These data suggest that the ectopic initiation of cell-cycle processes in neurons is an early sign of neuronal distress in both human and mouse AD. The close phenotypic correspondence indicates a previously unsuspected level of fidelity of the mouse model to the human disease. Finally, the relative timing suggests that neither the activated microglia nor the amyloid plaques themselves are necessary to initiate the pathogenic events in AD.
Collapse
Affiliation(s)
- Yan Yang
- Department of Neurology, University Hospitals of Cleveland, Cleveland, Ohio 44106, USA.
| | | | | | | |
Collapse
|
85
|
Erickson JN, Spana EP. [18] Mapping Drosophila Genomic Aberration Breakpoints with Comparative Genome Hybridization on Microarrays. Methods Enzymol 2006; 410:377-86. [PMID: 16938561 DOI: 10.1016/s0076-6879(06)10018-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Chromosomal aberrations are genetic "reagents" that are commonly used in Drosophila research. Stocks containing chromosomes carrying large deletions of DNA (deficiency stocks, designated Df) as well as stocks carrying an extra copy of a chromosomal region (duplication stocks, designated Dp) are essential for a variety of genetic analyses. The extent of what is deleted or duplicated has typically been determined cytologically by salivary gland polytene chromosome squashes, which identify the edges of the aberration (so-called breakpoints) of each Df or Dp at low resolution. The margin of error for this technique can be quite high, however, because it is dependent on the quality of the squash and the experience of the scientist interpreting the data. Comparative genome hybridization on microarrays provides a precise molecular method to identify which regions of the genome are deleted or duplicated in these stocks by examining a change in chromosomal ploidy across the whole genome. Furthermore, this technique allows genetic data obtained with these strains to be placed in a molecular genomic context.
Collapse
Affiliation(s)
- Jeremy N Erickson
- Model System Genomics, Department of Biology, Duke University, Durham, North Carolina, USA
| | | |
Collapse
|
86
|
Albertová V, Su S, Brockmann A, Gadau J, Albert S. Organization and potential function of the mrjp3 locus in four honeybee species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:8075-81. [PMID: 16190673 DOI: 10.1021/jf051417x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Royal jelly is a nutritious secretion produced by nurse honeybees to provision queens and growing larvae. Major proteins of royal jelly are mutually similar, and they all belong to the MRJP/yellow protein family (pfam03022). The mrjp3 loci in four traditional honeybee species (Apis mellifera, Apis cerana,Apis dorsata, and Apis florea) were sequenced and found to share high sequence and structural similarities. PCR analyses confirmed the presence of an extensive repetitive region, which showed size and sequence polymorphisms in all species. The evolutionary history of mrjp genes and their repetitive regions was reconstructed from their nucleotide sequences. The analyses proved that the repeat region appeared early in the evolution of the mrjp gene family and that the extreme elongation of the repeat is mrjp3 specific. In the MRJPs was documented a correlation between nitrogen content and repeat length. Therefore, it is argued that the repeat occurred due to a selection for an increase in nitrogen storage for a more efficient nutrition of queens and larvae.
Collapse
Affiliation(s)
- Viera Albertová
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), Universität Würzburg, Versbacher Strasse 5, 97078 Würzburg, Germany
| | | | | | | | | |
Collapse
|
87
|
Rattray AJ, Shafer BK, Neelam B, Strathern JN. A mechanism of palindromic gene amplification in Saccharomyces cerevisiae. Genes Dev 2005; 19:1390-9. [PMID: 15937224 PMCID: PMC1142561 DOI: 10.1101/gad.1315805] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Selective gene amplification is associated with normal development, neoplasia, and drug resistance. One class of amplification events results in large arrays of inverted repeats that are often complex in structure, thus providing little information about their genesis. We made a recombination substrate in Saccharomyces cerevisiae that frequently generates palindromic duplications to repair a site-specific double-strand break in strains deleted for the SAE2 gene. The resulting palindromes are stable in sae2Delta cells, but unstable in wild-type cells. We previously proposed that the palindromes are formed by invasion and break-induced replication, followed by an unknown end joining mechanism. Here we demonstrate that palindrome formation can occur in the absence of RAD50, YKU70, and LIG4, indicating that palindrome formation defines a new class of nonhomologous end joining events. Sequence data from 24 independent palindromic duplication junctions suggest that the duplication mechanism utilizes extremely short (4-6 bp), closely spaced (2-9 bp), inverted repeats to prime DNA synthesis via an intramolecular foldback of a 3' end. In view of our data, we present a foldback priming model for how a single copy sequence is duplicated to generate a palindrome.
Collapse
Affiliation(s)
- Alison J Rattray
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21702, USA
| | | | | | | |
Collapse
|
88
|
May NR, Thomer M, Murnen KF, Calvi BR. Levels of the origin-binding protein Double parked and its inhibitor Geminin increase in response to replication stress. J Cell Sci 2005; 118:4207-17. [PMID: 16141238 DOI: 10.1242/jcs.02534] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The regulation of a pre-replicative complex (pre-RC) at origins ensures that the genome is replicated only once per cell cycle. Cdt1 is an essential component of the pre-RC that is rapidly degraded at G1-S and also inhibited by Geminin (Gem) protein to prevent re-replication. We have previously shown that destruction of the Drosophila homolog of Cdt1, Double-parked (Dup), at G1-S is dependent upon cyclin-E/CDK2 and important to prevent re-replication and cell death. Dup is phosphorylated by cyclin-E/Cdk2, but this direct phosphorylation was not sufficient to explain the rapid destruction of Dup at G1-S. Here, we present evidence that it is DNA replication itself that triggers rapid Dup destruction. We find that a range of defects in DNA replication stabilize Dup protein and that this stabilization is not dependent on ATM/ATR checkpoint kinases. This response to replication stress was cell-type specific, with neuroblast stem cells of the larval brain having the largest increase in Dup protein. Defects at different steps in replication also increased Dup protein during an S-phase-like amplification cell cycle in the ovary, suggesting that Dup stabilization is sensitive to DNA replication and not an indirect consequence of a cell-cycle arrest. Finally, we find that cells with high levels of Dup also have elevated levels of Gem protein. We propose that, in cycling cells, Dup destruction is coupled to DNA replication and that increased levels of Gem balance elevated Dup levels to prevent pre-RC reformation when Dup degradation fails.
Collapse
Affiliation(s)
- Noah R May
- Department of Genetics, University of Pennsylvania School of Medicine, 415 Curie Blvd, Philadelphia, PA 19104-6145, USA
| | | | | | | |
Collapse
|
89
|
Jordan KC, Hatfield SD, Tworoger M, Ward EJ, Fischer KA, Bowers S, Ruohola-Baker H. Genome wide analysis of transcript levels after perturbation of the EGFR pathway in the Drosophila ovary. Dev Dyn 2005; 232:709-24. [PMID: 15704171 DOI: 10.1002/dvdy.20318] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Defects in the epidermal growth factor receptor (EGFR) pathway can lead to aggressive tumor formation. Activation of this pathway during normal development produces multiple outcomes at the cellular level, leading to cellular differentiation and cell cycle activation. To elucidate the downstream events induced by this pathway, we used genome-wide cDNA microarray technology to identify potential EGFR targets in Drosophila oogenesis. We focused on genes for which the transcriptional responses due to EGFR pathway activation and inactivation were in opposite directions, as this is expected for genes that are directly regulated by the pathway in this tissue type. We perturbed the EGFR pathway in epithelial follicle cells using seven different genetic backgrounds. To activate the pathway, we overexpressed an activated form of the EGFR (UAS-caEGFR), and an activated form of the signal transducer Raf (UAS-caRaf); we also over- or ectopically expressed the downstream homeobox transcription factor Mirror (UAS-mirr) and the ligand-activating serine protease Rhomboid (UAS-rho). To reduce pathway activity we used loss-of-function mutations in the ligand (gurken) and receptor (torpedo). From microarrays containing 6,255 genes, we found 454 genes that responded in an opposite manner in gain-of-function and loss-of-function conditions among which are many Wingless signaling pathway components. Further analysis of two such components, sugarless and pangolin, revealed a function for these genes in late follicle cell patterning. Of interest, components of other signaling pathways were also enriched in the EGFR target group, suggesting that one reason for the pleiotropic effects seen with EGFR activity in cancer progression and development may be its ability to regulate many other signaling pathways.
Collapse
Affiliation(s)
- Katherine C Jordan
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA
| | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
Developmentally regulated gene amplification serves to increase the number of templates for transcription, yielding greatly increased protein and/or RNA product for gene(s) at the amplified loci. It is observed with genes that are very actively transcribed and during narrow windows of developmental time where copious amounts of those particular gene products are required. Amplification results from repeated firing of origins at a few genomic loci, while the rest of the genome either does not replicate, or replicates to a lesser extent. As such, amplification is a striking exception to the once-and-only-once rule of DNA replication and may be informative as to that mechanism. Drosophila amplifies eggshell (chorion) genes in the follicle cells of the ovary to allow for rapid eggshell synthesis. Sciara amplifies multiple genes in larval salivary gland cells that encode proteins secreted in the saliva for the pupal case. Finally, Tetrahymena amplifies its rRNA genes several thousand-fold in the creation of the transcriptionally active macronucleus. Due to the ease of molecular and genetic analysis with these systems, the study of origin regulation has advanced rapidly. Comparisons reveal an evolutionarily conserved trans-regulatory apparatus and a similar organization of sequence-specific cis-regulatory replicator and origin elements. The studies indicate a regulatory role for chromatin structure and transcriptionally active genes near the origins.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-1340, USA.
| |
Collapse
|
91
|
Beall EL, Bell M, Georlette D, Botchan MR. Dm-myb mutant lethality in Drosophila is dependent upon mip130: positive and negative regulation of DNA replication. Genes Dev 2004; 18:1667-80. [PMID: 15256498 PMCID: PMC478189 DOI: 10.1101/gad.1206604] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gene amplification at the chorion loci in Drosophila ovarian follicle cells is a model for the developmental regulation of DNA replication. Previously, we showed that the Drosophila homolog of the Myb oncoprotein family (DmMyb) is tightly associated with four additional proteins and that DmMyb is required for this replication-mediated amplification. Here we used targeted mutagenesis to generate a mutant in the largest subunit of the DmMyb complex, the Aly and Lin-9 family member, Myb-interacting protein 130 (Mip130). We found that mip130 mutant females are sterile and display inappropriate bromodeoxyuridine (BrdU) incorporation throughout the follicle cell nuclei at stages undergoing gene amplification. Whereas mutations in Dm-myb are lethal, mutations in mip130 are viable. Surprisingly, Dm-myb mip130 double mutants are also viable and display the same phenotypes as mip130 mutants alone. This suggests that Mip130 activity without DmMyb counteraction may be responsible for the Dm-myb mutant lethality. RNA interference (RNAi) to selectively remove each DmMyb complex member revealed that DmMyb protein levels are dependent upon the presence of several of the complex members. Together, these data support a model in which DmMyb activates a repressive complex containing Mip130 into a complex competent to support replication at specific loci in a temporally and developmentally proscribed manner.
Collapse
Affiliation(s)
- Eileen L Beall
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
92
|
Thomer M, May NR, Aggarwal BD, Kwok G, Calvi BR. Drosophila double-parked is sufficient to induce re-replication during development and is regulated by cyclin E/CDK2. Development 2004; 131:4807-18. [PMID: 15342466 DOI: 10.1242/dev.01348] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is important that chromosomes are duplicated only once per cell cycle. Over-replication is prevented by multiple mechanisms that block the reformation of a pre-replicative complex (pre-RC) onto origins in S and G2 phase. We have investigated the developmental regulation of Double-parked (Dup) protein, the Drosophila ortholog of Cdt1, a conserved and essential pre-RC component found in human and other organisms. We find that phosphorylation and degradation of Dup protein at G1/S requires cyclin E/CDK2. The N terminus of Dup, which contains ten potential CDK phosphorylation sites, is necessary and sufficient for Dup degradation during S phase of mitotic cycles and endocycles. Mutation of these ten phosphorylation sites, however, only partially stabilizes the protein, suggesting that multiple mechanisms ensure Dup degradation. This regulation is important because increased Dup protein is sufficient to induce profound rereplication and death of developing cells. Mis-expression has different effects on genomic replication than on developmental amplification from chorion origins. The C terminus alone has no effect on genomic replication, but it is better than full-length protein at stimulating amplification. Mutation of the Dup CDK sites increases genomic re-replication, but is dominant negative for amplification. These two results suggest that phosphorylation regulates Dup activity differently during these developmentally specific types of DNA replication. Moreover, the ability of the CDK site mutant to rapidly inhibit BrdU incorporation suggests that Dup is required for fork elongation during amplification. In the context of findings from human and other cells, our results indicate that stringent regulation of Dup protein is critical to protect genome integrity.
Collapse
Affiliation(s)
- Marguerite Thomer
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6145, USA
| | | | | | | | | |
Collapse
|
93
|
Aggarwal BD, Calvi BR. Chromatin regulates origin activity in Drosophila follicle cells. Nature 2004; 430:372-6. [PMID: 15254542 DOI: 10.1038/nature02694] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 05/27/2004] [Indexed: 12/29/2022]
Abstract
It is widely believed that DNA replication in multicellular animals (metazoa) begins at specific origins to which a pre-replicative complex (pre-RC) binds. Nevertheless, a consensus sequence for origins has yet to be identified in metazoa. Origin identity can change during development, suggesting that there are epigenetic influences. A notable example of developmental specificity occurs in Drosophila, where somatic follicle cells of the ovary transition from genomic replication to exclusive re-replication at origins that control amplification of the eggshell (chorion) protein genes. Here we show that chromatin acetylation is critical for this developmental transition in origin specificity. We find that histones at the active origins are hyperacetylated, coincident with binding of the origin recognition complex (ORC). Mutation of the histone deacetylase (HDAC) Rpd3 induced genome-wide hyperacetylation, genomic replication and a redistribution of the origin-binding protein ORC2 in amplification-stage cells, independent of effects on transcription. Tethering Rpd3 or Polycomb proteins to the origin decreased its activity, whereas tethering the Chameau acetyltransferase increased origin activity. These results suggest that nucleosome acetylation and other epigenetic changes are important modulators of origin activity in metazoa.
Collapse
Affiliation(s)
- Bhagwan D Aggarwal
- Department of Genetics, University of Pennsylvania School of Medicine, 415 Curie Blvd, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
94
|
Abstract
The Keystone Symposium on the Cell Cycle and Development brought together biologists with an interest in how cell cycle control is integrated into the ontogenetic program of multicellular organisms, and showcased research using a wide variety of systems from both animals and plants. A clear indication from the meeting is that this research is changing the conventional wisdom on both cell cycle control and development.
Collapse
Affiliation(s)
- James A Coffman
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA.
| |
Collapse
|
95
|
Abstract
Gene amplification is used by follicle cells to increase the copy number of Drosophila chorion genes, which encode structural components of the eggshell. A new study by Claycomb et al. in this issue of Developmental Cell raises the possibility that gene amplification might also be used for the developmental patterning of the egg chamber and oocyte.
Collapse
Affiliation(s)
- Mike Botchan
- Department of Molecular & Cell Biology, Division of Biochemistry & Molecular Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|