51
|
Abstract
The poly(A) tail of mRNA has an important influence on the dynamics of gene expression. On one hand, it promotes enhanced mRNA stability to allow production of the protein, even after inactivation of transcription. On the other hand, shortening of the poly(A) tail (deadenylation) slows down translation of the mRNA, or prevents it entirely, by inducing mRNA decay. Thus deadenylation plays a crucial role in the post-transcriptional regulation of gene expression, deciding the fate of individual mRNAs. It acts both in basal mRNA turnover, as well as in temporally and spatially regulated translation and decay of specific mRNAs. In the present paper, we discuss mRNA deadenylation in eukaryotes, focusing on the main deadenylase, the Ccr4-Not complex, including its composition, regulation and functional roles.
Collapse
Affiliation(s)
- Katrin Wiederhold
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Lori A Passmore
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| |
Collapse
|
52
|
Alexander RD, Barrass JD, Dichtl B, Kos M, Obtulowicz T, Robert MC, Koper M, Karkusiewicz I, Mariconti L, Tollervey D, Dichtl B, Kufel J, Bertrand E, Beggs JD. RiboSys, a high-resolution, quantitative approach to measure the in vivo kinetics of pre-mRNA splicing and 3'-end processing in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2010; 16:2570-80. [PMID: 20974745 PMCID: PMC2995417 DOI: 10.1261/rna.2162610] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 09/08/2010] [Indexed: 05/03/2023]
Abstract
We describe methods for obtaining a quantitative description of RNA processing at high resolution in budding yeast. As a model gene expression system, we constructed tetON (for induction studies) and tetOFF (for repression, derepression, and RNA degradation studies) yeast strains with a series of reporter genes integrated in the genome under the control of a tetO7 promoter. Reverse transcription and quantitative real-time-PCR (RT-qPCR) methods were adapted to allow the determination of mRNA abundance as the average number of copies per cell in a population. Fluorescence in situ hybridization (FISH) measurements of transcript numbers in individual cells validated the RT-qPCR approach for the average copy-number determination despite the broad distribution of transcript levels within a population of cells. In addition, RT-qPCR was used to distinguish the products of the different steps in splicing of the reporter transcripts, and methods were developed to map and quantify 3'-end cleavage and polyadenylation. This system permits pre-mRNA production, splicing, 3'-end maturation and degradation to be quantitatively monitored with unprecedented kinetic detail, suitable for mathematical modeling. Using this approach, we demonstrate that reporter transcripts are spliced prior to their 3'-end cleavage and polyadenylation, that is, cotranscriptionally.
Collapse
Affiliation(s)
- Ross D Alexander
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Phosphorylation of tristetraprolin by MK2 impairs AU-rich element mRNA decay by preventing deadenylase recruitment. Mol Cell Biol 2010; 31:256-66. [PMID: 21078877 DOI: 10.1128/mcb.00717-10] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
mRNA turnover is a critical step in the control of gene expression. In mammalian cells, a subset of mRNAs regulated at the level of mRNA turnover contain destabilizing AU-rich elements (AREs) in their 3' untranslated regions. These transcripts are bound by a suite of ARE-binding proteins (AUBPs) that receive information from cell signaling events to modulate rates of ARE mRNA decay. Here we show that a key destabilizing AUBP, tristetraprolin (TTP), is repressed by the p38 mitogen-activated protein kinase (MAPK)-activated kinase MK2 due to the inability of phospho-TTP to recruit deadenylases to target mRNAs. TTP is tightly associated with cytoplasmic deadenylases and promotes rapid deadenylation of target mRNAs both in vitro and in cells. TTP can direct the deadenylation of substrate mRNAs when tethered to a heterologous mRNA, yet its ability to do so is inhibited upon phosphorylation by MK2. Phospho-TTP is not impaired in mRNA binding but does fail to recruit the major cytoplasmic deadenylases. These observations suggest that phosphorylation of TTP by MK2 primarily affects mRNA decay downstream of RNA binding by preventing recruitment of the deadenylation machinery. Thus, TTP may remain poised to rapidly reactivate deadenylation of bound transcripts to downregulate gene expression once the p38 MAPK pathway is deactivated.
Collapse
|
54
|
Nissan T, Rajyaguru P, She M, Song H, Parker R. Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Mol Cell 2010; 39:773-83. [PMID: 20832728 PMCID: PMC2946179 DOI: 10.1016/j.molcel.2010.08.025] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 04/30/2010] [Accepted: 07/01/2010] [Indexed: 11/23/2022]
Abstract
Eukaryotic mRNA degradation often occurs in a process whereby translation initiation is inhibited and the mRNA is targeted for decapping. In yeast cells, Pat1, Scd6, Edc3, and Dhh1 all function to promote decapping by an unknown mechanism(s). We demonstrate that purified Scd6 and a region of Pat1 directly repress translation in vitro by limiting the formation of a stable 48S preinitiation complex. Moreover, while Pat1, Edc3, Dhh1, and Scd6 all bind the decapping enzyme, only Pat1 and Edc3 enhance its activity. We also identify numerous direct interactions between Pat1, Dcp1, Dcp2, Dhh1, Scd6, Edc3, Xrn1, and the Lsm1-7 complex. These observations identify three classes of decapping activators that function to directly repress translation initiation and/or stimulate Dcp1/2. Moreover, Pat1 is identified as critical in mRNA decay by first inhibiting translation initiation, then serving as a scaffold to recruit components of the decapping complex, and finally activating Dcp2.
Collapse
Affiliation(s)
- Tracy Nissan
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Purusharth Rajyaguru
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, Arizona, 85721-0106, USA
| | - Meipei She
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, Arizona, 85721-0106, USA
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, Proteos, Singapore 138673
| | - Haiwei Song
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, Proteos, Singapore 138673
| | - Roy Parker
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, Arizona, 85721-0106, USA
| |
Collapse
|
55
|
Schaeffer D, Clark A, Klauer AA, Tsanova B, van Hoof A. Functions of the Cytoplasmic Exosome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 702:79-90. [DOI: 10.1007/978-1-4419-7841-7_7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
56
|
Mauxion F, Chen CYA, Séraphin B, Shyu AB. BTG/TOB factors impact deadenylases. Trends Biochem Sci 2009; 34:640-7. [PMID: 19828319 DOI: 10.1016/j.tibs.2009.07.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 07/19/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
Abstract
BTG/TOB factors are a family of antiproliferative proteins whose expression is altered in numerous cancers. They have been implicated in cell differentiation, development and apoptosis. Although proposed to affect transcriptional regulation, these factors interact with CAF1, a subunit of the main eukaryotic deadenylase, and with poly(A)-binding-proteins, strongly suggesting a role in post-transcriptional regulation of gene expression. The recent determination of the structures of BTG2, TOB1 N-terminal domain (TOB1N138) and TOB1N138-CAF1 complexes support a role for BTG/TOB proteins in mRNA deadenylation, a function corroborated by recently published functional characterizations. We highlight molecular mechanisms by which BTG/TOB proteins influence deadenylation and discuss the need for a better understanding of BTG/TOB physiological functions.
Collapse
Affiliation(s)
- Fabienne Mauxion
- Equipe Labellisée La Ligue, Centre de Génétique Moléculaire, CNRS FRE3144, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
57
|
Schwede A, Manful T, Jha BA, Helbig C, Bercovich N, Stewart M, Clayton C. The role of deadenylation in the degradation of unstable mRNAs in trypanosomes. Nucleic Acids Res 2009; 37:5511-28. [PMID: 19596809 PMCID: PMC2760810 DOI: 10.1093/nar/gkp571] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Removal of the poly(A) tail is the first step in the degradation of many eukaryotic mRNAs. In metazoans and yeast, the Ccr4/Caf1/Not complex has the predominant deadenylase activity, while the Pan2/Pan3 complex may trim poly(A) tails to the correct size, or initiate deadenylation. In trypanosomes, turnover of several constitutively-expressed or long-lived mRNAs is not affected by depletion of the 5′–3′ exoribonuclease XRNA, but is almost completely inhibited by depletion of the deadenylase CAF1. In contrast, two highly unstable mRNAs, encoding EP procyclin and a phosphoglycerate kinase, PGKB, accumulate when XRNA levels are reduced. We here show that degradation of EP mRNA was partially inhibited after CAF1 depletion. RNAi-targeting trypanosome PAN2 had a mild effect on global deadenylation, and on degradation of a few mRNAs including EP. By amplifying and sequencing degradation intermediates, we demonstrated that a reduction in XRNA had no effect on degradation of a stable mRNA encoding a ribosomal protein, but caused accumulation of EP mRNA fragments that had lost substantial portions of the 5′ and 3′ ends. The results support a model in which trypanosome mRNAs can be degraded by at least two different, partially independent, cytoplasmic degradation pathways attacking both ends of the mRNA.
Collapse
Affiliation(s)
- Angela Schwede
- Zentrum für Molekulare Biologie (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
58
|
Liang W, Li C, Liu F, Jiang H, Li S, Sun J, Wu X, Li C. The Arabidopsis homologs of CCR4-associated factor 1 show mRNA deadenylation activity and play a role in plant defence responses. Cell Res 2009; 19:307-16. [PMID: 19065152 DOI: 10.1038/cr.2008.317] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Messenger RNA (mRNA) turnover in eukaryotic cells begins with shortening of the poly (A) tail at the 3' end, a process called deadenylation. In yeast, the deadenylation reaction is predominantly mediated by CCR4 and CCR4-associated factor 1 (CAF1), two components of the well-characterised protein complex named CCR4-NOT. We report here that AtCAF1a and AtCAF1b, putative Arabidopsis homologs of the yeast CAF1 gene, partially complement the growth defect of the yeast caf1 mutant in the presence of caffeine or at high temperatures. The expression of AtCAF1a and AtCAF1b is induced by multiple stress-related hormones and stimuli. Both AtCAF1a and AtCAF1b show deadenylation activity in vitro and point mutations in the predicted active sites disrupt this activity. T-DNA insertion mutants disrupting the expression of AtCAF1a and/or AtCAF1b are defective in deadenylation of stress-related mRNAs, indicating that the two AtCAF1 proteins are involved in regulated mRNA deadenylation in vivo. Interestingly, the single and double mutants of AtCAF1a and AtCAF1b show reduced expression of pathogenesis-related (PR) genes PR1 and PR2 and are more susceptible to Pseudomonas syringae pv tomato DC3000 (Pst DC3000) infection, whereas transgenic plants over-expressing AtCAF1a show elevated expression of PR1 and PR2 and increased resistance to the same pathogen. Our results suggest roles of the AtCAF1 proteins in regulated mRNA deadenylation and defence responses to pathogen infections.
Collapse
Affiliation(s)
- Wenxing Liang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
NMD (nonsense-mediated mRNA decay) is a mechanism that degrades transcripts containing PTCs (premature translation termination codons). NMD is a translation-associated process that is expected to take place throughout the cytoplasm. However, recent studies have indicated that the core NMD factors UPF1 (up-frameshift-1), UPF2 and UPF3 can associate with P-bodies (processing bodies), which are large cytoplasmic granules replete with proteins involved in general mRNA decay and related processes. It has been proposed that UPF1 directs PTC-containing mRNAs to P-bodies and triggers decay. Here, we discuss the link between P-bodies and NMD in view of recent studies that suggest that P-bodies are not required for NMD in Drosophila.
Collapse
|
60
|
Abstract
Dynamic changes of the lengths of mRNA poly(A) tails are catalysed by diverse deadenylase enzymes. Modulating the length of the poly(A) tail of an mRNA is a widespread means of controlling protein production and mRNA stability. Recent insights illuminate the specialized activities, biological functions and regulation of deadenylases. We propose that the recruitment of multifunctional deadenylase complexes provides unique opportunities to control mRNAs and that the heterogeneity of the deadenylase complexes is exploited to control translation and mRNA stability.
Collapse
|
61
|
Shock JL, Fischer KF, DeRisi JL. Whole-genome analysis of mRNA decay in Plasmodium falciparum reveals a global lengthening of mRNA half-life during the intra-erythrocytic development cycle. Genome Biol 2008; 8:R134. [PMID: 17612404 PMCID: PMC2323219 DOI: 10.1186/gb-2007-8-7-r134] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 07/05/2007] [Indexed: 11/23/2022] Open
Abstract
A consistent bias in tree reconciliation methods is described that occurs when the inferred gene tree is not correct, casting doubt on previous conclusions about ancient duplications and losses in vertebrate genome history. Background: The rate of mRNA decay is an essential element of post-transcriptional regulation in all organisms. Previously, studies in several organisms found that the specific half-life of each mRNA is precisely related to its physiologic role, and plays an important role in determining levels of gene expression. Results: We used a genome-wide approach to characterize mRNA decay in Plasmodium falciparum. We found that, globally, rates of mRNA decay increase dramatically during the asexual intra-erythrocytic developmental cycle. During the ring stage of the cycle, the average mRNA half-life was 9.5 min, but this was extended to an average of 65 min during the late schizont stage of development. Thus, a major determinant of mRNA decay rate appears to be linked to the stage of intra-erythrocytic development. Furthermore, we found specific variations in decay patterns superimposed upon the dominant trend of progressive half-life lengthening. These variations in decay pattern were frequently enriched for genes with specific cellular functions or processes. Conclusion: Elucidation of Plasmodium mRNA decay rates provides a key element for deciphering mechanisms of genetic control in this parasite, by complementing and extending previous mRNA abundance studies. Our results indicate that progressive stage-dependent decreases in mRNA decay rate function are a major determinant of mRNA accumulation during the schizont stage of intra-erythrocytic development. This type of genome-wide change in mRNA decay rate has not been observed in any other organism to date, and indicates that post-transcriptional regulation may be the dominant mechanism of gene regulation in P. falciparum.
Collapse
Affiliation(s)
- Jennifer L Shock
- Department of Biochemistry and Biophysics, University of California San Francisco, 1700 4Street, San Francisco, California 94158-2330, USA
| | - Kael F Fischer
- Department of Biochemistry and Biophysics, University of California San Francisco, 1700 4Street, San Francisco, California 94158-2330, USA
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, 1700 4Street, San Francisco, California 94158-2330, USA
- Howard Hughes Medical Institute, Jones Bridge Road, Chevy Chase, Maryland 20815-6789, USA
| |
Collapse
|
62
|
She M, Decker CJ, Svergun DI, Round A, Chen N, Muhlrad D, Parker R, Song H. Structural basis of dcp2 recognition and activation by dcp1. Mol Cell 2008; 29:337-49. [PMID: 18280239 PMCID: PMC2323275 DOI: 10.1016/j.molcel.2008.01.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 10/23/2007] [Accepted: 01/02/2008] [Indexed: 01/13/2023]
Abstract
A critical step in mRNA degradation is the removal of the 5' cap structure, which is catalyzed by the Dcp1-Dcp2 complex. The crystal structure of an S. pombe Dcp1p-Dcp2n complex combined with small-angle X-ray scattering analysis (SAXS) reveals that Dcp2p exists in open and closed conformations, with the closed complex being, or closely resembling, the catalytically more active form. This suggests that a conformational change between these open and closed complexes might control decapping. A bipartite RNA-binding channel containing the catalytic site and Box B motif is identified with a bound ATP located in the catalytic pocket in the closed complex, suggesting possible interactions that facilitate substrate binding. Dcp1 stimulates the activity of Dcp2 by promoting and/or stabilizing the closed complex. Notably, the interface of Dcp1 and Dcp2 is not fully conserved, explaining why the Dcp1-Dcp2 interaction in higher eukaryotes requires an additional factor.
Collapse
Affiliation(s)
- Meipei She
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore 138673
| | - Carolyn J. Decker
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Dmitri I. Svergun
- Hamburg Outstation, European Molecular Biology Laboratory, Hamburg, Germany
- Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Adam Round
- Hamburg Outstation, European Molecular Biology Laboratory, Hamburg, Germany
| | - Nan Chen
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore 138673
| | - Denise Muhlrad
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Roy Parker
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Haiwei Song
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore 138673
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore 117543
| |
Collapse
|
63
|
Abstract
The circadian clock is a conserved internal timekeeping mechanism that controls many aspects of physiology and behavior via the rhythmic expression of many genes. One of these rhythmic genes, Nocturnin, encodes a deadenylase--a ribonuclease that specifically removes the poly(A) tails from mRNAs. This enzyme is expressed at high levels during the night in a number of tissues in mammals and has recently been implicated in circadian control of metabolism. Targeted ablation of this gene in mice results in resistance to hepatic steatosis and diet-induced obesity. Nocturnin appears to exert rhythmic posttranscriptional control of genes necessary for metabolic functions including nutrient absorption, glucose/insulin sensitivity, and lipid storage. In the Western world and many developing countries, overnutrition--the 'obesity epidemic' suggests that the ability to sequester fat stores in times of plenty is no longer advantageous to our survival. Understanding the role that the circadian clock plays in controlling these metabolic processes is important in treatment and eventual eradication of this public health crisis.
Collapse
Affiliation(s)
- Nicholas Douris
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | |
Collapse
|
64
|
Coller J. Chapter 14 Methods to Determine mRNA Half‐Life in Saccharomyces cerevisiae. Methods Enzymol 2008; 448:267-84. [DOI: 10.1016/s0076-6879(08)02614-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
65
|
Abstract
Proper degradation of plant messenger RNA is crucial for the maintenance of cellular and organismal homeostasis, and it must be properly regulated to enable rapid adjustments in response to endogenous and external cues. Only a few dedicated studies have been done so far to address the fundamental mechanisms of mRNA decay in plants, especially as compared with fungal and mammalian model systems. Consequently, our systems-level understanding of plant mRNA decay remains fairly rudimentary. Nevertheless, a number of serendipitous findings in recent years have reasserted the central position of the regulated mRNA decay in plant physiology. In addition, the meteoric rise to prominence of the plant small RNA field has spawned a renewed interest in the general plant mRNA turnover pathways. Combined with the advent of widely accessible microarray platforms, these advances allow for a renewed hope of rapid progress in our understanding of the fundamental rules governing regulated mRNA degradation in plants. This chapter summarizes recent findings in this field.
Collapse
Affiliation(s)
- D A Belostotsky
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| |
Collapse
|
66
|
Pat1 contains distinct functional domains that promote P-body assembly and activation of decapping. Mol Cell Biol 2007; 28:1298-312. [PMID: 18086885 DOI: 10.1128/mcb.00936-07] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The control of mRNA degradation and translation are important aspects of gene regulation. Recent results suggest that translation repression and mRNA decapping can be intertwined and involve the formation of a quiescent mRNP, which can accumulate in cytoplasmic foci referred to as P bodies. The Pat1 protein is a key component of this complex and an important activator of decapping, yet little is known about its function. In this work, we analyze Pat1 in Saccharomyces cerevisiae function by deletion and functional analyses. Our results identify two primary functional domains in Pat1: one promoting translation repression and P-body assembly and a second domain promoting mRNA decapping after assembly of the mRNA into a P-body mRNP. In addition, we provide evidence that Pat1 binds RNA and has numerous domain-specific interactions with mRNA decapping factors. These results indicate that Pat1 is an RNA binding protein and a multidomain protein that functions at multiple stages in the process of translation repression and mRNA decapping.
Collapse
|
67
|
Ezzeddine N, Chang TC, Zhu W, Yamashita A, Chen CYA, Zhong Z, Yamashita Y, Zheng D, Shyu AB. Human TOB, an antiproliferative transcription factor, is a poly(A)-binding protein-dependent positive regulator of cytoplasmic mRNA deadenylation. Mol Cell Biol 2007; 27:7791-801. [PMID: 17785442 PMCID: PMC2169145 DOI: 10.1128/mcb.01254-07] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In mammalian cells, mRNA decay begins with deadenylation, which involves two consecutive phases mediated by the PAN2-PAN3 and the CCR4-CAF1 complexes, respectively. The regulation of the critical deadenylation step and its relationship with RNA-processing bodies (P-bodies), which are thought to be a site where poly(A)-shortened mRNAs get degraded, are poorly understood. Using the Tet-Off transcriptional pulsing approach to investigate mRNA decay in mouse NIH 3T3 fibroblasts, we found that TOB, an antiproliferative transcription factor, enhances mRNA deadenylation in vivo. Results from glutathione S-transferase pull-down and coimmunoprecipitation experiments indicate that TOB can simultaneously interact with the poly(A) nuclease complex CCR4-CAF1 and the cytoplasmic poly(A)-binding protein, PABPC1. Combining these findings with those from mutagenesis studies, we further identified the protein motifs on TOB and PABPC1 that are necessary for their interaction and found that interaction with PABPC1 is necessary for TOB's deadenylation-enhancing effect. Moreover, our immunofluorescence microscopy results revealed that TOB colocalizes with P-bodies, suggesting a role of TOB in linking deadenylation to the P-bodies. Our findings reveal a new mechanism by which the fate of mammalian mRNA is modulated at the deadenylation step by a protein that recruits poly(A) nuclease(s) to the 3' poly(A) tail-PABP complex.
Collapse
Affiliation(s)
- Nader Ezzeddine
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Yao G, Chiang YC, Zhang C, Lee DJ, Laue TM, Denis CL. PAB1 self-association precludes its binding to poly(A), thereby accelerating CCR4 deadenylation in vivo. Mol Cell Biol 2007; 27:6243-53. [PMID: 17620415 PMCID: PMC1952152 DOI: 10.1128/mcb.00734-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mRNA deadenylation process, catalyzed by the CCR4 deadenylase, is known to be the major factor controlling mRNA decay rates in Saccharomyces cerevisiae. We have identified the proline-rich region and RRM1 domains of poly(A) binding protein (PAB1) as necessary for CCR4 deadenylation. Deletion of either of these regions but not other regions of PAB1 significantly reduced PAB1-PAB1 protein interactions, suggesting that PAB1 oligomerization is a required step for deadenylation. Moreover, defects in these two regions inhibited the formation of a novel, circular monomeric PAB1 species that forms in the absence of poly(A). Removal of the PAB1 RRM3 domain, which promoted PAB1 oligomerization and circularization, correspondingly accelerated CCR4 deadenylation. Circular PAB1 was unable to bind poly(A), and PAB1 multimers were severely deficient or unable to bind poly(A), implicating the PAB1 RNA binding surface as critical in making contacts that allow PAB1 self-association. These results support the model that the control of CCR4 deadenylation in vivo occurs in part through the removal of PAB1 from the poly(A) tail following its self-association into multimers and/or a circular species. Known alterations in the P domains of different PAB proteins and factors and conditions that affect PAB1 self-association would, therefore, be expected to be critical to controlling mRNA turnover in the cell.
Collapse
Affiliation(s)
- Gang Yao
- Department of Biochemistry and Molecular Biology, Rudman Hall, University of New Hampshire, Durham, NH 03824, USA
| | | | | | | | | | | |
Collapse
|
69
|
Chowdhury A, Mukhopadhyay J, Tharun S. The decapping activator Lsm1p-7p-Pat1p complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs. RNA (NEW YORK, N.Y.) 2007; 13:998-1016. [PMID: 17513695 PMCID: PMC1894922 DOI: 10.1261/rna.502507] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Accepted: 04/19/2007] [Indexed: 05/15/2023]
Abstract
Decapping is a critical step in mRNA decay. In the 5'-to-3' mRNA decay pathway conserved in all eukaryotes, decay is initiated by poly(A) shortening, and oligoadenylated mRNAs (but not polyadenylated mRNAs) are selectively decapped allowing their subsequent degradation by 5' to 3' exonucleolysis. The highly conserved heptameric Lsm1p-7p complex (made up of the seven Sm-like proteins, Lsm1p-Lsm7p) and its interacting partner Pat1p activate decapping by an unknown mechanism and localize with other decapping factors to the P-bodies in the cytoplasm. The Lsm1p-7p-Pat1p complex also protects the 3'-ends of mRNAs in vivo from trimming, presumably by binding to the 3'-ends. In order to determine the intrinsic RNA-binding properties of this complex, we have purified it from yeast and carried out in vitro analyses. Our studies revealed that it directly binds RNA at/near the 3'-end. Importantly, it possesses the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs such that the former are bound with much higher affinity than the latter. These results indicate that the intrinsic RNA-binding characteristics of this complex form a critical determinant of its in vivo interactions and functions.
Collapse
Affiliation(s)
- Ashis Chowdhury
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA
| | | | | |
Collapse
|
70
|
Bönisch C, Temme C, Moritz B, Wahle E. Degradation of hsp70 and other mRNAs in Drosophila via the 5' 3' pathway and its regulation by heat shock. J Biol Chem 2007; 282:21818-28. [PMID: 17545151 DOI: 10.1074/jbc.m702998200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Two general pathways of mRNA decay have been characterized in yeast. Both start with deadenylation. The major pathway then proceeds via cap hydrolysis and 5'-exonucleolytic degradation whereas the minor pathway consists of 3'-exonucleolytic decay followed by hydrolysis of the remaining cap structure. In higher eukaryotes, these pathways of mRNA decay are believed to be conserved but have not been well characterized. We have investigated the decay of the hsp70 mRNA in Drosophila Schneider cells. As shown by the use of reporter constructs, rapid deadenylation of this mRNA is directed by its 3'-untranslated region. The main deadenylase is the CCR4.NOT complex; the PAN nuclease makes a lesser contribution. Heat shock prevents deadenylation not only of the hsp70 but also of bulk mRNA. A completely deadenylated capped hsp70 mRNA decay intermediate accumulates transiently and is degraded via cap hydrolysis and 5'-decay. Thus, decapping is a slow step in the degradation pathway. Cap hydrolysis is also inhibited during heat shock. Degradation of reporter RNAs from the 3'-end became detectable only upon inhibition of 5'-decay and thus represents a minor decay pathway. Because two reporter RNAs and at least two endogenous mRNAs were degraded primarily from the 5'-end with cap hydrolysis as a slow step, this pathway appears to be of general importance for mRNA decay in Drosophila.
Collapse
Affiliation(s)
- Clemens Bönisch
- Institute of Biochemistry and Biotechnology, University of Halle, Kurt-Mothes-Strasse 3, Halle, Germany
| | | | | | | |
Collapse
|
71
|
Garbarino-Pico E, Niu S, Rollag MD, Strayer CA, Besharse JC, Green CB. Immediate early response of the circadian polyA ribonuclease nocturnin to two extracellular stimuli. RNA (NEW YORK, N.Y.) 2007; 13:745-55. [PMID: 17400819 PMCID: PMC1852813 DOI: 10.1261/rna.286507] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Nocturnin (Noc, also called Ccrn4l [carbon catabolite repression 4-like]) is a circadian deadenylase that is rhythmically expressed in multiple tissues in mice with peak mRNA levels in early night. Since several other circadian genes are induced by extracellular stimuli, we tested the hypothesis that Noc is acutely regulated in NIH3T3 cells. A serum shock and the phorbol ester TPA induced Noc transcript levels in quiescent NIH3T3 cultures while dexamethasone and forskolin, which are known to induce other clock genes in culture, were without effect. NOC protein levels also were induced by serum. The half-life of the TPA-induced Noc mRNA is short, and the inhibition of protein synthesis by cycloheximide prevents Noc mRNA degradation and revealed a 30-fold increase in the transcript levels after 4 h of TPA treatment. Since this acute induction is not dependent on protein synthesis, Noc behaves like other immediate early genes. Remarkably, these acute effects are specific to Noc as the mRNAs encoding other known mouse deadenylases, CCR4, CAF1, PAN2, and PARN, were not induced in the same paradigm. Our data show that in addition to its robust circadian regulation, Noc expression can be regulated acutely, and imply that it can respond directly and specifically to physiological cues. NOC may act in turning off the expression of genes that are required to be silenced as a response to these extracellular signals.
Collapse
|
72
|
Jonstrup AT, Andersen KR, Van LB, Brodersen DE. The 1.4-A crystal structure of the S. pombe Pop2p deadenylase subunit unveils the configuration of an active enzyme. Nucleic Acids Res 2007; 35:3153-64. [PMID: 17452359 PMCID: PMC1888821 DOI: 10.1093/nar/gkm178] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Deadenylation is the first and probably also rate-limiting step of controlled mRNA decay in eukaryotes and therefore central for the overall rate of gene expression. In yeast, the process is maintained by the mega-Dalton Ccr4-Not complex, of which both the Ccr4p and Pop2p subunits are 3′–5′ exonucleases potentially responsible for the deadenylation reaction. Here, we present the crystal structure of the Pop2p subunit from Schizosaccharomyces pombe determined to 1.4 Å resolution and show that the enzyme is a competent ribonuclease with a tunable specificity towards poly-A. In contrast to S. cerevisiae Pop2p, the S. pombe enzyme contains a fully conserved DEDDh active site, and the high resolution allows for a detailed analysis of its configuration, including divalent metal ion binding. Functional data further indicates that the identity of the ions in the active site can modulate both activity and specificity of the enzyme, and finally structural superposition of single nucleotides and poly-A oligonucleotides provide insight into the catalytic cycle of the protein.
Collapse
|
73
|
Ohn T, Chiang YC, Lee DJ, Yao G, Zhang C, Denis CL. CAF1 plays an important role in mRNA deadenylation separate from its contact to CCR4. Nucleic Acids Res 2007; 35:3002-15. [PMID: 17439972 PMCID: PMC1888822 DOI: 10.1093/nar/gkm196] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The CAF1 protein is a component of the CCR4-NOT deadenylase complex. While yeast CAF1 displays deadenylase activity, this activity is not required for its deadenylation function in vivo, and CCR4 is the primary deadenylase in the complex. In order to identify CAF1-specific functional regions required for deadenylation in vivo, we targeted for mutagenesis six regions of CAF1 that are specifically conserved among CAF1 orthologs. Defects in residues 213-215, found to be a site required for binding CCR4, reduced the rate of deadenylation to a lesser extent and resulted in in vivo phenotypes that were less severe than did defects in other regions of CAF1 that displayed greater contact to CCR4. These results imply that CAF1, while affecting deadenylation through its contact to CCR4, has functions in deadenylation separate from its contact to CCR4. Synthetic lethalities of caf1Delta, but not that of ccr4Delta, with defects in DHH1 or PAB1, both of which are involved in translation, further supports a role of CAF1 separate from that of CCR4. Importantly, other mutations in PAB1 that reduced translation, while not affecting deadenylation by themselves or when combined with ccr4Delta, severely blocked deadenylation when coupled with a caf1 deletion. These results indicate that both CAF1 and factors involved in translation are required for deadenylation.
Collapse
Affiliation(s)
| | | | | | | | | | - Clyde L. Denis
- *To whom correspondence should be addressed. +1-603-862-2427+1-603-862-4013
| |
Collapse
|
74
|
Conrad NK, Mili S, Marshall EL, Shu MD, Steitz JA. Identification of a rapid mammalian deadenylation-dependent decay pathway and its inhibition by a viral RNA element. Mol Cell 2007; 24:943-53. [PMID: 17189195 DOI: 10.1016/j.molcel.2006.10.029] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 07/18/2006] [Accepted: 10/24/2006] [Indexed: 12/26/2022]
Abstract
Cellular RNAs are subject to quality-control pathways that insure the fidelity of gene expression. We previously identified a 79 nt element, the ENE, that is essential for the nuclear accumulation of a viral polyadenylated nuclear (PAN) RNA. Here, we show that intron-less polyadenylated transcripts such as PAN RNA and beta-globin cRNA exhibit two-component exponential decay kinetics in which some transcripts are rapidly degraded (t(1/2) = approximately 15 min) while others decay more slowly (t(1/2) = approximately 3 hr). Inclusion of the ENE protects such transcripts from rapid decay in a poly(A)-dependent fashion. The ENE inhibits deadenylation and decay in nuclear extract and prevents deadenylation of naked RNA by a purified deadenylase, likely through snoRNA-like intramolecular hybridization with the poly(A) tail. The ENE causes increased accumulation of splicing-defective beta-globin pre-mRNAs in vivo. We propose that the ENE-controlled rapid-decay mechanism for polyadenylated transcripts comprises a nuclear pre-mRNA surveillance system in mammalian cells.
Collapse
Affiliation(s)
- Nicholas K Conrad
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06536, USA
| | | | | | | | | |
Collapse
|
75
|
Garbarino-Pico E, Green CB. Posttranscriptional regulation of mammalian circadian clock output. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:145-156. [PMID: 18419272 DOI: 10.1101/sqb.2007.72.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Circadian clocks are present in many different cell types/tissues and control many aspects of physiology. This broad control is exerted, at least in part, by the circadian regulation of many genes, resulting in rhythmic expression patterns of 5-10% of the mRNAs in a given tissue. Although transcriptional regulation is certainly involved in this process, it is becoming clear that posttranscriptional mechanisms also have important roles in producing the appropriate rhythmic expression profiles. In this chapter, we review the available data about posttranscriptional regulation of circadian gene expression and highlight the potential role of Nocturnin (Noc) in such processes. NOC is a deadenylase-a ribonuclease that specifically removes poly(A) tails from mRNAs-that is expressed widely in the mouse with high-amplitude rhythmicity. Deadenylation affects the stability and translational properties of mRNAs. Mice lacking the Noc gene have metabolic defects including a resistance to diet-induced obesity, decreased fat storage, changes in lipid-related gene expression profiles in the liver, and altered glucose and insulin sensitivities. These findings suggest that NOC has a pivotal role downstream from the circadian clockwork in the post-transcriptional regulation genes involved in the circadian control of metabolism.
Collapse
Affiliation(s)
- E Garbarino-Pico
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | | |
Collapse
|
76
|
Gunsch CK, Kinney KA, Szaniszlo PJ, Whitman CP. Relative gene expression quantification in a fungal gas-phase biofilter. Biotechnol Bioeng 2007; 98:101-11. [PMID: 17318912 DOI: 10.1002/bit.21393] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Monitoring of gas-phase biofilter performance generally relies on macroscale measurements that neglect the molecular level phenomena that can control the biodegradation process. The present study was undertaken to determine whether or not quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) could detect changes in relative gene expression resulting from feed variations typically encountered in the field. Specifically, homogentisate-1,2-dioxygenase, ElHDO, expression was quantified as a function of short-term chemical feed variations and shutdown period in a biofilter seeded with a pure culture of the fungus Exophiala lecanii-corni. ElHDO was previously shown to be involved in ethylbenzene degradation in E. lecanii-corni. Overall, relative gene target expression numbers (T(N)) were consistent with gas-phase biofilter performance during each short-term experiment although no direct mathematical correlation was found between T(N) and ethylbenzene removal rate. During the chemical feed experiments, no effect on T(N) was measured in the presence of o-xylene which does not affect ElHDO expression. In the presence of phenylacetate, an inducer of ElHDO, T(N) increased once a threshold substrate concentration was exceeded. When methyl propyl ketone, a repressor of ElHDO, was introduced, T(N) decreased rapidly and acted as a leading indicator of bioreactor failure. In the transient loading experiments, ElHDO expression slowly decreased over a 24-h time period when the ethylbenzene feed was discontinued, but rapidly recovered upon its re-introduction. These results indicate that qRT-PCR reflects microbial activity changes that occur in gas-phase biofilters in response to short-term changes in feed conditions and provides a useful complement to the macroscale measurements typically collected.
Collapse
Affiliation(s)
- Claudia K Gunsch
- Civil, Architectural and Environmental Engineering Department, University of Texas, Austin, Texas, USA.
| | | | | | | |
Collapse
|
77
|
Read GS, Patterson M. Packaging of the virion host shutoff (Vhs) protein of herpes simplex virus: two forms of the Vhs polypeptide are associated with intranuclear B and C capsids, but only one is associated with enveloped virions. J Virol 2006; 81:1148-61. [PMID: 17093196 PMCID: PMC1797492 DOI: 10.1128/jvi.01812-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The virion host shutoff (Vhs) protein (UL41) is a minor component of herpes simplex virus virions which, following penetration, accelerates turnover of host and viral mRNAs. Infected cells contain 58-kDa and 59.5-kDa forms of Vhs, which differ in the extent of phosphorylation, yet only a 58-kDa polypeptide is incorporated into virions. In pulse-chase experiments, the primary Vhs translation product comigrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with the 58-kDa virion polypeptide, and could be chased to 59.5 kDa. While both 59.5-kDa and 58-kDa forms were found in nuclear and cytoplasmic fractions, the 59.5-kDa form was significantly enriched in the nucleus. Both forms were associated with intranuclear B and C capsids, yet only the 58-kDa polypeptide was found in enveloped cytoplasmic virions. A 58-kDa form, but not the 59.5-kDa form, was found in L particles, noninfectious particles that contain an envelope and tegument but no capsid. The data suggest that virions contain two populations of Vhs that are packaged by different pathways. In the first pathway, the primary translation product is processed to 59.5 kDa, is transported to the nucleus, binds intranuclear capsids, and is converted to 58 kDa at some stage prior to final envelopment. The second pathway does not involve the 59.5-kDa form or interactions between Vhs and capsids. Instead, the primary translation product is phosphorylated to the 58-kDa virion form and packaged through interactions with other tegument proteins in the cytoplasm or viral envelope proteins at the site of final envelopment.
Collapse
Affiliation(s)
- G Sullivan Read
- School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA.
| | | |
Collapse
|
78
|
Amrani N, Sachs MS, Jacobson A. Early nonsense: mRNA decay solves a translational problem. Nat Rev Mol Cell Biol 2006; 7:415-25. [PMID: 16723977 DOI: 10.1038/nrm1942] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene expression is highly accurate and rarely generates defective proteins. Several mechanisms ensure this fidelity, including specialized surveillance pathways that rid the cell of mRNAs that are incompletely processed or that lack complete open reading frames. One such mechanism, nonsense-mediated mRNA decay, is triggered when ribosomes encounter a premature translation-termination--or nonsense--codon. New evidence indicates that the specialized factors that are recruited for this process not only promote rapid mRNA degradation, but are also required to resolve a poorly dissociable termination complex.
Collapse
Affiliation(s)
- Nadia Amrani
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0122, USA
| | | | | |
Collapse
|
79
|
Segal SP, Dunckley T, Parker R. Sbp1p affects translational repression and decapping in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:5120-30. [PMID: 16782896 PMCID: PMC1489156 DOI: 10.1128/mcb.01913-05] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 10/31/2005] [Accepted: 03/31/2006] [Indexed: 11/20/2022] Open
Abstract
The relationship between translation and mRNA turnover is critical to the regulation of gene expression. One major pathway for mRNA turnover occurs by deadenylation, which leads to decapping and subsequent 5'-to-3' degradation of the body of the mRNA. Prior to mRNA decapping, a transcript exits translation and enters P bodies to become a potential decapping substrate. To understand the transition from translation to decapping, it is important to identify the factors involved in this process. In this work, we identify Sbp1p (formerly known as Ssb1p), an abundant RNA binding protein, as a high-copy-number suppressor of a conditional allele in the decapping enzyme. Sbp1p overexpression restores normal decay rates in decapping-defective strains and increases P-body size and number. In addition, Sbp1p promotes translational repression of mRNA during glucose deprivation. Moreover, P-body formation is reduced in strains lacking Sbp1p. Sbp1p acts in conjunction with Dhh1p, as it is required for translational repression and P-body formation in pat1Delta strains under these conditions. These results identify Sbp1p as a new protein that functions in the transition of mRNAs from translation to an mRNP complex destined for decapping.
Collapse
Affiliation(s)
- Scott P Segal
- Department of Molecular Cellular Biology and Howard Hughes Medical Institute, University of Arizona, 1007 E. Lowell St., Tucson, AZ 85721, USA
| | | | | |
Collapse
|
80
|
Meaux S, Van Hoof A. Yeast transcripts cleaved by an internal ribozyme provide new insight into the role of the cap and poly(A) tail in translation and mRNA decay. RNA (NEW YORK, N.Y.) 2006; 12:1323-37. [PMID: 16714281 PMCID: PMC1484436 DOI: 10.1261/rna.46306] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
It has been proposed that the 7-methylguanosine cap and poly(A) tail of mRNAs have important functions in translation and transcript stability. To directly test these roles of the cap and poly(A) tail, we have constructed plasmids with a ribozyme within the coding region or 3' UTR of reporter genes. We show that the unadenylated 5' cleavage product is translated and is rapidly degraded by the cytoplasmic exosome. This exosome-mediated decay is independent of the nonstop mRNA decay pathway, and, thus, reveals an additional substrate for exosome-mediated decay that may have physiological equivalents. The rapid decay of this transcript in the cytoplasm indicates that this unadenylated cleavage product is rapidly exported from the nucleus. We also show that this cleavage product is not subject to rapid decapping; thus, the lack of a poly(A) tail does not always trigger rapid decapping of the transcript. We show that the 3' cleavage product is rapidly degraded by Xrn1p in the cytoplasm. We cannot detect any protein from this 3' cleavage product, which supports previous data concluding that the 5' cap is required for translation. The reporter genes we have utilized in these studies should be generally useful tools in studying the importance of the poly(A) tail and 5' cap of a transcript for export, translation, mRNA decay, and other aspects of mRNA metabolism in vivo.
Collapse
Affiliation(s)
- Stacie Meaux
- Deparment of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, TX 77030, USA
| | | |
Collapse
|
81
|
Zak DR, Blackwood CB, Waldrop MP. A molecular dawn for biogeochemistry. Trends Ecol Evol 2006; 21:288-95. [PMID: 16769427 DOI: 10.1016/j.tree.2006.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 03/13/2006] [Accepted: 04/03/2006] [Indexed: 10/24/2022]
Abstract
Biogeochemistry is at the dawn of an era in which molecular advances enable the discovery of novel microorganisms having unforeseen metabolic capabilities, revealing new insight into the underlying processes regulating elemental cycles at local to global scales. Traditionally, biogeochemical inquiry began by studying a process of interest, and then focusing downward to uncover the microorganisms and metabolic pathways mediating that process. With the ability to sequence functional genes from the environment, molecular approaches now enable the flow of inquiry in the opposite direction. Here, we argue that a focus on functional genes, the microorganisms in which they reside, and the interaction of those organisms with the broader microbial community could transform our understanding of many globally important biogeochemical processes.
Collapse
Affiliation(s)
- Donald R Zak
- School of Natural Resources & Environment, University of Michigan, Ann Arbor, MI 48109-1115, USA.
| | | | | |
Collapse
|
82
|
Abstract
The mammalian nucleus is arguably the most complex cellular organelle. It houses the vast majority of an organism's genetic material and is the site of all major genome regulatory processes. Reductionist approaches have been spectacularly successful at dissecting at the molecular level many of the key processes that occur within the nucleus, particularly gene expression. At the same time, the limitations of analyzing single nuclear processes in spatial and temporal isolation and the validity of generalizing observations of single gene loci are becoming evident. The next level of understanding of genome function is to integrate our knowledge of their sequences and the molecular mechanisms involved in nuclear processes with our insights into the spatial and temporal organization of the nucleus and to elucidate the interplay between protein and gene networks in regulatory circuits. To do so, catalogues of genomes and proteomes as well as a precise understanding of the behavior of molecules in living cells are required. Converging technological developments in genomics, proteomics, dynamics and computation are now leading towards such an integrated biological understanding of genome biology and nuclear function.
Collapse
Affiliation(s)
- Stanislaw Gorski
- National Cancer Institute, NIH, 41 Library Drive, Bethesda, MD 20892, USA.
| | | |
Collapse
|
83
|
Abstract
MOTIVATION Recently, biologists learnt that the transport and degradation of transcribed mRNA and protein present critically important steps for the regulation of gene expression through extensive studies of RNA interference, none-sense mediated decay and ubiquitination. However, adequate consideration of these factors has not been done in the past in in silico analysis compared with transcriptional regulations. RESULTS We have developed a bio-system simulator 'Bio-Object' and assessed the contribution of numerous factors including movements, stability and interactions of both mRNAs and proteins in the virtual cell space to the Drosophila circadian rhythm. The oscillations of period (per), timeless (tim) and Drosophila Clock (dClk) mRNAs and proteins predicted by the simulations agreed with the observed data in Drosophila and were lost with the knock-out of either the per or the dClk gene as observed experimentally. Bio-Object predicts that (1) the stability of dClk mRNA, (2) the stability of dCLK and (3) the affinity of the PER-TIM complex are determinants of the circadian duration. AVAILABILITY The source code is available for download from http://www.tmd.ac.jp/mri/mri-end/bio-object/download/
Collapse
Affiliation(s)
- Nobukazu Ohki
- Department of Functional Genomics, Medical Research Institute, 1-5-45 Yushima, Tokyo 113-0034, Japan
| | | |
Collapse
|
84
|
Tharun S, Muhlrad D, Chowdhury A, Parker R. Mutations in the Saccharomyces cerevisiae LSM1 gene that affect mRNA decapping and 3' end protection. Genetics 2005; 170:33-46. [PMID: 15716506 PMCID: PMC1449704 DOI: 10.1534/genetics.104.034322] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 01/20/2005] [Indexed: 11/18/2022] Open
Abstract
The decapping of eukaryotic mRNAs is a key step in their degradation. The heteroheptameric Lsm1p-7p complex is a general activator of decapping and also functions in protecting the 3' ends of deadenylated mRNAs from a 3'-trimming reaction. Lsm1p is the unique member of the Lsm1p-7p complex, distinguishing that complex from the functionally different Lsm2p-8p complex. To understand the function of Lsm1p, we constructed a series of deletion and point mutations of the LSM1 gene and examined their effects on phenotype. These studies revealed the following: (i) Mutations affecting the predicted RNA-binding and inter-subunit interaction residues of Lsm1p led to impairment of mRNA decay, suggesting that the integrity of the Lsm1p-7p complex and the ability of the Lsm1p-7p complex to interact with mRNA are important for mRNA decay function; (ii) mutations affecting the predicted RNA contact residues did not affect the localization of the Lsm1p-7p complex to the P-bodies; (iii) mRNA 3'-end protection could be indicative of the binding of the Lsm1p-7p complex to the mRNA prior to activation of decapping, since all the mutants defective in mRNA 3' end protection were also blocked in mRNA decay; and (iv) in addition to the Sm domain, the C-terminal domain of Lsm1p is also important for mRNA decay function.
Collapse
Affiliation(s)
- Sundaresan Tharun
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA.
| | | | | | | |
Collapse
|
85
|
Meyer S, Temme C, Wahle E. Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit Rev Biochem Mol Biol 2005; 39:197-216. [PMID: 15596551 DOI: 10.1080/10409230490513991] [Citation(s) in RCA: 275] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The control of mRNA degradation is an important component of the regulation of gene expression since the steady-state concentration of mRNA is determined both by the rates of synthesis and of decay. Two general pathways of mRNA decay have been described in eukaryotes. Both pathways share the exonucleolytic removal of the poly(A) tail (deadenylation) as the first step. In one pathway, deadenylation is followed by the hydrolysis of the cap and processive degradation of the mRNA body by a 5' exonuclease. In the second pathway, the mRNA body is degraded by a complex of 3' exonucleases before the remaining cap structure is hydrolyzed. This review discusses the proteins involved in the catalysis and control of both decay pathways.
Collapse
Affiliation(s)
- Sylke Meyer
- Institut für Biochemie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | | | | |
Collapse
|
86
|
Muhlrad D, Parker R. The yeast EDC1 mRNA undergoes deadenylation-independent decapping stimulated by Not2p, Not4p, and Not5p. EMBO J 2005; 24:1033-45. [PMID: 15706350 PMCID: PMC554118 DOI: 10.1038/sj.emboj.7600560] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 12/27/2004] [Indexed: 11/09/2022] Open
Abstract
A major mechanism of eukaryotic mRNA degradation initiates with deadenylation followed by decapping and 5' to 3' degradation. We demonstrate that the yeast EDC1 mRNA, which encodes a protein that enhances decapping, has unique properties and is both protected from deadenylation and undergoes deadenylation-independent decapping. The 3' UTR of the EDC1 mRNA is sufficient for both protection from deadenylation and deadenylation-independent decapping and an extended poly(U) tract within the 3' UTR is required. These observations highlight the diverse forms of decapping regulation and identify a feedback loop that can compensate for decreases in activity of the decapping enzyme. Surprisingly, the decapping of the EDC1 mRNA is slowed by the loss of Not2p, Not4p, and Not5p, which interact with the Ccr4p/Pop2p deadenylase complex. This indicates that the Not proteins can affect decapping, which suggests a possible link between the mRNA deadenylation and decapping machinery.
Collapse
Affiliation(s)
- Denise Muhlrad
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of Arizona, Tucson, AZ, USA
| | - Roy Parker
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
87
|
Abstract
Gene expression occurs through a complex mRNA-protein (mRNP) system that stretches from transcription to translation. Gene expression processes are increasingly studied from global perspectives in order to understand their pathways, properties, and behaviors as a system. Here we review these beginnings of mRNP systems biology, as they have emerged from recent large-scale investigation of mRNP components, interactions, and dynamics. Such work has begun to lay the foundation for a broader, integrated view of mRNP organization in gene expression.
Collapse
Affiliation(s)
- Haley Hieronymus
- Department of Systems Biology, Harvard Medical School and the Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
88
|
Abstract
Eukaryotic mRNAs are primarily degraded by removal of the 3' poly(A) tail, followed either by cleavage of the 5' cap structure (decapping) and 5'->3' exonucleolytic digestion, or by 3' to 5' degradation. mRNA decapping represents a critical step in turnover because this permits the degradation of the mRNA and is a site of numerous control inputs. Recent analyses suggest decapping of an mRNA consists of four central and related events. These include removal, or inactivation, of the poly(A) tail as an inhibitor of decapping, exit from active translation, assembly of a decapping complex on the mRNA, and sequestration of the mRNA into discrete cytoplasmic foci where decapping can occur. Each of these steps is a demonstrated, or potential, site for the regulation of mRNA decay. We discuss the decapping process in the light of these central properties, which also suggest fundamental aspects of cytoplasmic mRNA physiology that connect decapping, translation, and storage of mRNA.
Collapse
Affiliation(s)
- Jeff Coller
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
89
|
Reverdatto SV, Dutko JA, Chekanova JA, Hamilton DA, Belostotsky DA. mRNA deadenylation by PARN is essential for embryogenesis in higher plants. RNA (NEW YORK, N.Y.) 2004; 10:1200-14. [PMID: 15247430 PMCID: PMC1370610 DOI: 10.1261/rna.7540204] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Deadenylation of mRNA is often the first and rate-limiting step in mRNA decay. PARN, a poly(A)-specific 3' --> 5' ribonuclease which is conserved in many eukaryotes, has been proposed to be primarily responsible for such a reaction, yet the importance of the PARN function at the whole-organism level has not been demonstrated in any species. Here, we show that mRNA deadenylation by PARN is essential for viability in higher plants (Arabidopsis thaliana). Yet, this essential requirement for the PARN function is not universal across the phylogenetic spectrum, because PARN is dispensable in Fungi (Schizosaccharomyces pombe), and can be at least severely downregulated without any obvious consequences in Metazoa (Caenorhabditis elegans). Development of the Arabidopsis embryos lacking PARN (AtPARN), as well as of those expressing an enzymatically inactive protein, was markedly retarded, and ultimately culminated in an arrest at the bent-cotyledon stage. Importantly, only some, rather than all, embryo-specific transcripts were hyperadenylated in the mutant embryos, suggesting that preferential deadenylation of a specific select subset of mRNAs, rather than a general deadenylation of the whole mRNA population, by AtPARN is indispensable for embryogenesis in Arabidopsis. These findings indicate a unique, nonredundant role of AtPARN among the multiple plant deadenylases.
Collapse
Affiliation(s)
- Sergei V Reverdatto
- Department of Biological Sciences, State University of New York at Albany, 12222, USA
| | | | | | | | | |
Collapse
|
90
|
Grigull J, Mnaimneh S, Pootoolal J, Robinson MD, Hughes TR. Genome-wide analysis of mRNA stability using transcription inhibitors and microarrays reveals posttranscriptional control of ribosome biogenesis factors. Mol Cell Biol 2004; 24:5534-47. [PMID: 15169913 PMCID: PMC419893 DOI: 10.1128/mcb.24.12.5534-5547.2004] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Using DNA microarrays, we compared global transcript stability profiles following chemical inhibition of transcription to rpb1-1 (a temperature-sensitive allele of yeast RNA polymerase II). Among the five inhibitors tested, the effects of thiolutin and 1,10-phenanthroline were most similar to rpb1-1. A comparison to various microarray data already in the literature revealed similarity between mRNA stability profiles and the transcriptional response to stresses such as heat shock, consistent with the fact that the general stress response includes a transient shutoff of general mRNA transcription. Genes encoding factors involved in rRNA synthesis and ribosome assembly, which are often observed to be coordinately down-regulated in yeast microarray data, were among the least stable transcripts. We examined the effects of deletions of genes encoding deadenylase components Ccr4p and Pan2p and putative RNA-binding proteins Pub1p and Puf4p on the genome-wide pattern of mRNA stability after inhibition of transcription by chemicals and/or heat stress. This examination showed that Ccr4p, the major yeast mRNA deadenylase, contributes to the degradation of transcripts encoding both ribosomal proteins and rRNA synthesis and ribosome assembly factors and mediates a large part of the transcriptional response to heat stress. Pan2p and Puf4p also contributed to the degradation rate of these mRNAs following transcriptional shutoff, while Pub1p preferentially stabilized transcripts encoding ribosomal proteins. Our results indicate that the abundance of ribosome biogenesis factors is controlled at the level of mRNA stability.
Collapse
Affiliation(s)
- Jörg Grigull
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | |
Collapse
|
91
|
Viswanathan P, Ohn T, Chiang YC, Chen J, Denis CL. Mouse CAF1 can function as a processive deadenylase/3'-5'-exonuclease in vitro but in yeast the deadenylase function of CAF1 is not required for mRNA poly(A) removal. J Biol Chem 2004; 279:23988-95. [PMID: 15044470 DOI: 10.1074/jbc.m402803200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mouse CAF1 (mCAF1) is an ortholog of the yeast (y) CAF1 protein, which is a component of the CCR4-NOT complex, the major cytoplasmic deadenylase of Saccharomyces cerevisiae. Although CAF1 protein belongs to the DEDDh family of RNases, CCR4 appears to be the principle deadenylase of the CCR4-NOT complex. Here, we present evidence that mCAF1 is a processive, 3'-5'-RNase with a preference for poly(A) substrates. Like CCR4, increased length of RNA substrates converted mCAF1 into a processive enzyme. In contrast to two other DEDD family members, PAN2 and PARN, mCAF1 was not activated either by PAB1 or capped RNA substrates. The rate of deadenylation in vitro by yCCR4 and mCAF1 were both strongly influenced by secondary structures present in sequences adjacent to the poly(A) tail, suggesting that the ability of both enzymes to deadenylate might be affected by the context of the mRNA 3'-untranslated region sequences. The ability of mCAF1 to complement a ycaf1 deletion in yeast, however, did not require the RNase function of mCAF1. Importantly, yCAF1 mutations, which have been shown to block its RNase activity in vitro, did not inactivate yCAF1 in vivo, and mRNAs were deadenylated in vivo at nearly the same rate as found for wild type yCAF1. These results indicate that at least in yeast the CAF1 RNase activity is not required for its in vivo function.
Collapse
Affiliation(s)
- Palaniswamy Viswanathan
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824, USA
| | | | | | | | | |
Collapse
|
92
|
He F, Li X, Spatrick P, Casillo R, Dong S, Jacobson A. Genome-wide analysis of mRNAs regulated by the nonsense-mediated and 5' to 3' mRNA decay pathways in yeast. Mol Cell 2004; 12:1439-52. [PMID: 14690598 DOI: 10.1016/s1097-2765(03)00446-5] [Citation(s) in RCA: 330] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Transcripts regulated by the yeast nonsense-mediated and 5' to 3' mRNA decay pathways were identified by expression profiling of wild-type, upf1Delta, nmd2Delta, upf3Delta, dcp1Delta, and xrn1Delta cells. This analysis revealed that inactivation of Upf1p, Nmd2p, or Upf3p has identical effects on global RNA accumulation; inactivation of Dcp1p or Xrn1p exhibits both common and unique effects on global RNA accumulation but causes upregulation of only a small fraction of transcripts; and the majority of transcripts upregulated in upf/nmd strains are also upregulated to similar extents in dcp1Delta and xrn1Delta strains. Our results define the core transcripts regulated by NMD, identify several novel structural classes of NMD substrates, demonstrate that nonsense-containing mRNAs are primarily degraded by the 5' to 3' decay pathway even in the absence of functional NMD, and indicate that 3' to 5' decay, not 5' to 3' decay, may be the major mRNA decay activity in yeast cells.
Collapse
Affiliation(s)
- Feng He
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | |
Collapse
|
93
|
Louis M, Holm L, Sánchez L, Kaufman M. A Theoretical Model for the Regulation of Sex-lethal, a Gene That Controls Sex Determination and Dosage Compensation in Drosophila melanogaster. Genetics 2003; 165:1355-84. [PMID: 14668388 PMCID: PMC1462829 DOI: 10.1093/genetics/165.3.1355] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Cell fate commitment relies upon making a choice between different developmental pathways and subsequently remembering that choice. Experimental studies have thoroughly investigated this central theme in biology for sex determination. In the somatic cells of Drosophila melanogaster, Sex-lethal (Sxl) is the master regulatory gene that specifies sexual identity. We have developed a theoretical model for the initial sex-specific regulation of Sxl expression. The model is based on the well-documented molecular details of the system and uses a stochastic formulation of transcription. Numerical simulations allow quantitative assessment of the role of different regulatory mechanisms in achieving a robust switch. We establish on a formal basis that the autoregulatory loop involved in the alternative splicing of Sxl primary transcripts generates an all-or-none bistable behavior and constitutes an efficient stabilization and memorization device. The model indicates that production of a small amount of early Sxl proteins leaves the autoregulatory loop in its off state. Numerical simulations of mutant genotypes enable us to reproduce and explain the phenotypic effects of perturbations induced in the dosage of genes whose products participate in the early Sxl promoter activation.
Collapse
Affiliation(s)
- Matthieu Louis
- The European Bioinformatics Institute, EMBL Outstation, Cambridge CB10 1SD, United Kingdom.
| | | | | | | |
Collapse
|
94
|
Abstract
A conserved mRNA surveillance system, referred to as nonsense-mediated decay (NMD), exists in eukaryotic cells to degrade mRNAs containing nonsense codons. This process is important in checking that mRNAs have been properly synthesized and functions, at least in part, to increase the fidelity of gene expression by degrading aberrant mRNAs that, if translated, would produce truncated proteins. Using computational modeling and experimental analysis, we define the alterations in mRNA turnover triggered by NMD in yeast. We demonstrate that the nonsense-containing transcripts are efficiently recognized, targeted for deadenylation-independent decapping, and show NMD triggered accelerated deadenylation regardless of the position of the nonsense codon. We also show that 5' nonsense codons trigger faster rates of decapping than 3' nonsense codons, thereby providing a mechanistic basis for the polar effect of NMD. Finally, we construct a computational model that accurately describes the process of NMD and serves as an explanatory and predictive tool.
Collapse
Affiliation(s)
- Dan Cao
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
95
|
Viswanathan P, Chen J, Chiang YC, Denis CL. Identification of multiple RNA features that influence CCR4 deadenylation activity. J Biol Chem 2003; 278:14949-55. [PMID: 12590136 DOI: 10.1074/jbc.m211794200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CCR4 family proteins are 3'-5'-deadenylases that function in the first step of the degradation of poly(A) mRNA. Here we report the purification to homogeneity of the yeast CCR4 protein and the analysis of its substrate specificities. CCR4 deadenylated a 7N+23A substrate (seven nucleotides followed by 23 A residues) in a distributive manner. Only small differences in CCR4 activity for different A length substrates were observed until only 1 A residue remained. Correspondingly, the K(m) for a 25N+2A substrate was found to be at least 20-fold lower than that for a 26N+1A substrate, although their V(max) values differed by only 2-fold. In addition, the total length of the RNA was found to contribute to CCR4 activity: up to 17 nucleotides (not necessarily poly(A)) could be recognized by CCR4. Poly(U), poly(C), and poly(G) were also found to be 12-30-fold better inhibitors of CCR4 compared with poly(A), supporting the observation that CCR4 contains a non-poly(A)-specific binding site. Surprisingly, even longer substrates (>/=45 nucleotides) stimulated CCR4 to become a processive enzyme, suggesting that CCR4 undergoes an additional transition in the presence of such substrates. CCR4 also displayed no difference in its activity with capped or uncapped RNA substrates. These results indicate that CCR4 recognition of its RNA substrates involves several features of the RNA that could be sites in vivo for controlling the rate of specific mRNA deadenylation.
Collapse
Affiliation(s)
- Palaniswamy Viswanathan
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, New Hampshire 03824, USA
| | | | | | | |
Collapse
|
96
|
Abstract
Vertebrate retinas contain endogenous circadian clocks that control many aspects of retinal physiology. Our work has focused on studying the molecular mechanism of this clock and the way in which it controls the many cellular rhythms within the retina. These studies focus on the retina of Xenopus laevis, a well-established model system extensively used for the study of both retinal physiology and circadian function. We have cloned Xenopus homologues of the genes thought to be critical for vertebrate clock function, including Clock, Bmal1, cryptochromes and period, as well as other rhythmic genes such as nocturnin. We have used these genes to manipulate the clock within different subsets of retinal photoreceptors via cell-specific promoters, in order to study the location of the clock within the retina. These in vivo experiments have shown that photoreceptor cells contain clocks that are necessary for the rhythmic production of melatonin. We have also used biochemical approaches to further investigate the molecular events that drive specific rhythmic outputs, such as circadian regulation of nocturnin gene transcription and control of post-transcriptional events within these clock-containing cells.
Collapse
Affiliation(s)
- C B Green
- Department of Biology, 375 Gilmer Hall, University of Virginia, PO Box 400328, Charlottesville, VA 22904-4328, USA.
| |
Collapse
|
97
|
Baggs JE, Green CB. Nocturnin, a deadenylase in Xenopus laevis retina: a mechanism for posttranscriptional control of circadian-related mRNA. Curr Biol 2003; 13:189-98. [PMID: 12573214 DOI: 10.1016/s0960-9822(03)00014-9] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Different types of regulation are utilized to produce a robust circadian clock, including regulation at the transcriptional, posttranscriptional, and translational levels. A screen for rhythmic messages that may be involved in such circadian control identified nocturnin, a novel gene that displays high-amplitude circadian expression in the Xenopus laevis retina, with peak mRNA levels in the early night. Expression of nocturnin mRNA is confined to the clock-containing photoreceptor cell layer within the retina. RESULTS In these studies, we show that nocturnin removes the poly(A) tail from a synthetic RNA substrate in a process known as deadenylation. Nocturnin nuclease activity is magnesium dependent, as the addition of EDTA or mutation of the residue predicted to bind magnesium disrupts deadenylation. Substrate preference studies show that nocturnin is an exonuclease that specifically degrades the 3' poly(A) tail. While nocturnin is rhythmically expressed in the cytoplasm of the retinal photoreceptor cells, the only other described vertebrate deadenylase, PARN, is constitutively present in most retinal cells, including the photoreceptors. CONCLUSIONS The distinct spatial and temporal expression of nocturnin and PARN suggests that there may be specific mRNA targets of each deadenylase. Since deadenylation regulates mRNA decay and/or translational silencing, we propose that nocturnin deadenylates clock-related transcripts in a novel mechanism for posttranscriptional regulation in the circadian clock or its outputs.
Collapse
Affiliation(s)
- Julie E Baggs
- Department of Biology, NSF Center for Biological Timing, University of Virginia, Charlottesville, VA 22904-4328, USA
| | | |
Collapse
|
98
|
Steiger M, Carr-Schmid A, Schwartz DC, Kiledjian M, Parker R. Analysis of recombinant yeast decapping enzyme. RNA (NEW YORK, N.Y.) 2003; 9:231-8. [PMID: 12554866 PMCID: PMC1370389 DOI: 10.1261/rna.2151403] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2002] [Accepted: 11/04/2002] [Indexed: 05/20/2023]
Abstract
A critical step in the turnover of yeast mRNAs is decapping. Two yeast proteins, Dcp1p and Dcp2p, are absolutely required for decapping, although their precise roles in the decapping reaction have not been established. To determine the function of both Dcp1p and Dcp2p in decapping, we purified recombinant versions of these proteins from Escherichia coli and examined their properties. These experiments demonstrate that copurification of Dcp1p and Dcp2p yields active decapping enzyme under a variety of conditions. Moreover, Dcp2p alone can have decapping activity under some biochemical conditions. This suggests that Dcp2p can be a catalytic subunit of the decapping complex, and Dcp1p may function to enhance Dcp2p activity, or as an additional active subunit. In addition, recombinant Dcp1p/Dcp2p prefers long mRNA substrates and is sensitive to inhibition by sequestration of the 5' end but not the 3' end of the substrate. This suggests that Dcp1p/Dcp2p contains an additional RNA-binding site spatially distinct from the active site. Finally, using two RNA-binding proteins that enhance decapping in vivo (Edc1p and Edc2p), we can reconstitute the activation of decapping with recombinant proteins. This indicates that the Edc1 and Edc2 proteins act directly on the decapping enzyme.
Collapse
Affiliation(s)
- Michelle Steiger
- Department of Molecular and Cellular Biology & Howard Hughes Medical Institute, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85704, USA
| | | | | | | | | |
Collapse
|
99
|
Schwartz D, Decker CJ, Parker R. The enhancer of decapping proteins, Edc1p and Edc2p, bind RNA and stimulate the activity of the decapping enzyme. RNA (NEW YORK, N.Y.) 2003; 9:239-51. [PMID: 12554867 PMCID: PMC1370390 DOI: 10.1261/rna.2171203] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Accepted: 11/04/2002] [Indexed: 05/24/2023]
Abstract
A major pathway of eukaryotic mRNA turnover initiates with deadenylation, which allows a decapping reaction leading to 5'-3' exonucleolytic degradation. A key control point in this pathway is the decapping of the mRNA. Two proteins, Edc1 and Edc2, were genetically identified previously as enhancers of the decapping reaction. In this work, we demonstrate that Edc1p and Edc2p are RNA-binding proteins. In addition, recombinant Edc1p or Edc2p stimulates mRNA decapping in cell-free extracts or with purified decapping enzyme. These results suggest that Edc1p and Edc2p activate decapping directly by binding to the mRNA substrate and enhancing the activity of the decapping enzyme. Interestingly, edc1Delta strains show defects in utilization of glycerol as a carbon source and misregulation of several mRNAs in response to carbon-source changes. This identifies a critical role for decapping and Edc1p in alterations of gene expression in response to carbon-source changes.
Collapse
Affiliation(s)
- David Schwartz
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85704, USA
| | | | | |
Collapse
|
100
|
Allen TE, Palsson BØ. Sequence-based analysis of metabolic demands for protein synthesis in prokaryotes. J Theor Biol 2003; 220:1-18. [PMID: 12453446 DOI: 10.1006/jtbi.2003.3087] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Constraints-based models for microbial metabolism can currently be constructed on a genome-scale. These models do not account for RNA and protein synthesis. A scalable formalism to describe translation and transcription that can be integrated with the existing metabolic models is thus needed. Here, we developed such a formalism. The fundamental protein synthesis network described by this formalism was analysed via extreme pathway and flux balance analyses. The protein synthesis network exhibited one extreme pathway per messenger RNA synthesized and one extreme pathway per protein synthesized. The key parameters in this network included promoter strengths, messenger RNA half-lives, and the availability of nucleotide triphosphates, amino acids, RNA polymerase, and active ribosomes. Given these parameters, we were able to calculate a cell's material and energy expenditures for protein synthesis using a flux balance approach. The framework provided herein can subsequently be integrated with genome-scale metabolic models, providing a sequence-based accounting of the metabolic demands resulting from RNA and protein polymerization.
Collapse
Affiliation(s)
- Timothy E Allen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA
| | | |
Collapse
|