51
|
Pistritto VA, Liu S, Nicewicz DA. Mechanistic Investigations into Amination of Unactivated Arenes via Cation Radical Accelerated Nucleophilic Aromatic Substitution. J Am Chem Soc 2022; 144:15118-15131. [PMID: 35944280 PMCID: PMC10037305 DOI: 10.1021/jacs.2c04577] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A mechanistic investigation into the amination of electron-neutral and electron-rich arenes using organic photoredox catalysis is presented. Kinetic and computational data support rate-limiting nucleophilic addition into an arene cation radical using both azole and primary amine nucleophiles. This finding is consistent with both fluoride and alkoxide nucleofuges, supporting a unified mechanistic picture using cation radical accelerated nucleophilic aromatic substitution (CRA-SNAr). Electrochemistry and time-resolved fluorescence spectroscopy confirm the key role solvents play in enabling selective arene oxidation in the presence of amines. The synthetic limitations of xanthylium salts are elucidated via photophysical studies. An alternative catalyst scaffold with improved turnover numbers is presented.
Collapse
Affiliation(s)
- Vincent A Pistritto
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Shubin Liu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Research Computing Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3420, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
52
|
Matsuo B, Granados A, Majhi J, Sharique M, Levitre G, Molander GA. 1,2-Radical Shifts in Photoinduced Synthetic Organic Transformations: A Guide to the Reactivity of Useful Radical Synthons. ACS ORGANIC & INORGANIC AU 2022; 2:435-454. [PMID: 36510615 PMCID: PMC9732885 DOI: 10.1021/acsorginorgau.2c00032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 12/16/2022]
Abstract
The exploration of 1,2-radical shift (RS) mechanisms in photoinduced organic reactions has provided efficient routes for the generation of important radical synthons in many chemical transformations. In this Review, the basic concepts involved in the traditional 1,2-spin-center shift (SCS) mechanisms in recently reported studies are discussed. In addition, other useful 1,2-RSs are addressed, such as those proceeding through 1,2-group migrations in carbohydrate chemistry, via 1,2-boron shifts, and by the generation of α-amino radicals. The discussion begins with a general overview of the basic aspects of 1,2-RS mechanisms, followed by a demonstration of their applicability in photoinduced transformations. The sections that follow are organized according to the mechanisms operating in combination with the 1,2-radical migration event. This contribution is not a comprehensive review but rather aims to provide an understanding of the topic, focused on the more recent advances in the field, and establishes a definition for the nomenclature that has been used to describe such mechanisms.
Collapse
|
53
|
Li X, Cheng Z, Liu J, Zhang Z, Song S, Jiao N. Selective desaturation of amides: a direct approach to enamides. Chem Sci 2022; 13:9056-9061. [PMID: 36091215 PMCID: PMC9365091 DOI: 10.1039/d2sc02210a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/30/2022] [Indexed: 12/18/2022] Open
Abstract
C(sp3)-H bond desaturation has been an attractive strategy in organic synthesis. Enamides are important structural fragments in pharmaceuticals and versatile synthons in organic synthesis. However, the dehydrogenation of amides usually occurs on the acyl side benefitting from enolate chemistry like the desaturation of ketones and esters. Herein, we demonstrate an Fe-assisted regioselective oxidative desaturation of amides, which provides an efficient approach to enamides and β-halogenated enamides.
Collapse
Affiliation(s)
- Xinwei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Jianzhong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Ziyao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| |
Collapse
|
54
|
He FS, Zhang C, Jiang M, Lou L, Wu J, Ye S. Access to chiral β-sulfonyl carbonyl compounds via photoinduced organocatalytic asymmetric radical sulfonylation with sulfur dioxide. Chem Sci 2022; 13:8834-8839. [PMID: 35975150 PMCID: PMC9350669 DOI: 10.1039/d2sc02497g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/04/2022] [Indexed: 01/07/2023] Open
Abstract
An organocatalytic enantioselective radical reaction of potassium alkyltrifluoroborates, DABCO·(SO2)2 and α,β-unsaturated carbonyl compounds under photoinduced conditions is developed, which provides an efficient pathway for the synthesis of chiral β-sulfonyl carbonyl compounds in good yields with excellent enantioselectivity (up to 96% ee). Aside from α,β-unsaturated carbonyl compounds with auxiliary groups, common chalcone substrates are also well compatible with this organocatalytic system. This method proceeds through an organocatalytic enantioselective radical sulfonylation under photoinduced conditions, and represents a rare example of asymmetric transformation involving sulfur dioxide insertion.
Collapse
Affiliation(s)
- Fu-Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
| | - Chun Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
| | - Minghui Jiang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
| | - Lujun Lou
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| | - Shengqing Ye
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
| |
Collapse
|
55
|
Cho SM, Kim JY, Han S, Ryu DH. Visible Light-Mediated Enantioselective Addition of α-Aminoalkyl Radicals to Ketones Catalyzed by Chiral Oxazaborolidinium Ion. J Org Chem 2022; 87:11196-11203. [PMID: 35912586 DOI: 10.1021/acs.joc.2c01527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of a visible light-mediated synthetic method for chiral 1,2-amino tertiary alcohols is described. In the presence of a chiral oxazaborolidinium ion catalyst and photosensitizer, the enantioselective addition of an α-aminoalkyl radical to aryl methyl ketones under visible light provides chiral 1,2-amino tertiary alcohol derivatives in high yields (up to 88%) with excellent enantioselectivities (up to 98% ee). With mechanistic studies such as radical trapping analysis, radical clock analysis, and the measurement of quantum yield, a plausible catalytic cycle is proposed.
Collapse
Affiliation(s)
- Soo Min Cho
- Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon, Jangan, Suwon 16419, Korea
| | - Jae Yeon Kim
- Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon, Jangan, Suwon 16419, Korea
| | - Shinyeong Han
- Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon, Jangan, Suwon 16419, Korea
| | - Do Hyun Ryu
- Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon, Jangan, Suwon 16419, Korea
| |
Collapse
|
56
|
Deepake SK, Kumar M, Kumar P, DAS UTPAL. α‐Angelica Lactone Catalysed Oxidation of Pyrrolidines to Lactams. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Siddharth K Deepake
- National Chemical Laboratory CSIR Division of Organic Chemistry 411008 Pune INDIA
| | - Manish Kumar
- National Chemical Laboratory CSIR Division of Organic Chemistry 411008 Pune INDIA
| | - Pawan Kumar
- National Chemical Laboratory CSIR Division of Organic Chemistry 411008 Pune INDIA
| | - UTPAL DAS
- National Chemical Laboratory CSIR Division of Organic Chemistry Pashan Road411008411008 411008 Pune INDIA
| |
Collapse
|
57
|
Chen Y, Yan H, Liao Q, Zhang D, Lin S, Hao E, Murtaza R, Li C, Wu C, Duan C, Shi L. Synthesis of Homoallylic Amines by Radical Allylation of Imines with Butadiene under Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202204516. [DOI: 10.1002/anie.202204516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yuqing Chen
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Huaipu Yan
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Qian Liao
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Dandan Zhang
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Shuangjie Lin
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Erjun Hao
- School of Chemistry and Chemical Engineering Henan Normal University 453007 Xinxiang China
| | - Rukhsana Murtaza
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Chenchen Li
- Frontier Institute of Science and Technology Xi'an Jiaotong University 710054 Xi'an China
| | - Chao Wu
- Frontier Institute of Science and Technology Xi'an Jiaotong University 710054 Xi'an China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
- School of Chemistry and Chemical Engineering Henan Normal University 453007 Xinxiang China
| |
Collapse
|
58
|
Zaborniak I, Sroka M, Chmielarz P. Lemonade as a rich source of antioxidants: Polymerization of 2-(dimethylamino)ethyl methacrylate in lemon extract. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
59
|
Zhang Y, Tanabe Y, Kuriyama S, Nishibayashi Y. Photoredox‐ and Nickel‐Catalyzed Hydroalkylation of Alkynes with 4‐Alkyl‐1,4‐dihydropyridines: Ligand‐Controlled Regioselectivity. Chemistry 2022; 28:e202200727. [DOI: 10.1002/chem.202200727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yulin Zhang
- Department of Applied Chemistry School of Engineering The University of Tokyo Hongo Bunkyo-ku Tokyo 113–8656 Japan
| | - Yoshiaki Tanabe
- Department of Applied Chemistry School of Engineering The University of Tokyo Hongo Bunkyo-ku Tokyo 113–8656 Japan
| | - Shogo Kuriyama
- Department of Applied Chemistry School of Engineering The University of Tokyo Hongo Bunkyo-ku Tokyo 113–8656 Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry School of Engineering The University of Tokyo Hongo Bunkyo-ku Tokyo 113–8656 Japan
| |
Collapse
|
60
|
Chen Y, Yan H, Liao Q, Zhang D, Lin S, Hao E, Murtaza R, Li C, Wu C, Duan C, Shi L. Synthesis of Homoallylic Amines by Radical Allylation of Imines with Butadiene under Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuqing Chen
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Huaipu Yan
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Qian Liao
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Dandan Zhang
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Shuangjie Lin
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Erjun Hao
- School of Chemistry and Chemical Engineering Henan Normal University 453007 Xinxiang China
| | - Rukhsana Murtaza
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Chenchen Li
- Frontier Institute of Science and Technology Xi'an Jiaotong University 710054 Xi'an China
| | - Chao Wu
- Frontier Institute of Science and Technology Xi'an Jiaotong University 710054 Xi'an China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
- School of Chemistry and Chemical Engineering Henan Normal University 453007 Xinxiang China
| |
Collapse
|
61
|
Zheng J, Tang N, Xie H, Breit B. Regio-, Diastereo-, and Enantioselective Decarboxylative Hydroaminoalkylation of Dienol Ethers Enabled by Dual Palladium/Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202200105. [PMID: 35170841 PMCID: PMC9314026 DOI: 10.1002/anie.202200105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 12/15/2022]
Abstract
Intermolecular photocatalytic hydroaminoalkylation (HAA) of alkenes have emerged as a powerful method for the construction of alkyl amines. Although there are some studies aiming at stereoselective photocatalytic HAA reactions, the alkenes are limited to electrophilic alkenes. Herein, we report a highly regio-, diastereo-, and enantioselective HAA of electron-rich dienol ethers and α-amino radicals derived from α-amino acids using a unified photoredox and palladium catalytic system. This decarboxylative 1,2-Markovnikov addition enables the construction of vicinal amino tertiary ethers with high levels of regio- (up to >19 : 1 rr), diastereo- (up to >19 : 1 dr), and enantioselectivity control (up to >99 % ee). Mechanistic studies support a reversible hydropalladation as a key step.
Collapse
Affiliation(s)
- Jun Zheng
- Institut für Organische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstraße 2179104Freiburg im BreisgauGermany
| | - Nana Tang
- Institut für Organische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstraße 2179104Freiburg im BreisgauGermany
| | - Hui Xie
- Institut für Organische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstraße 2179104Freiburg im BreisgauGermany
| | - Bernhard Breit
- Institut für Organische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstraße 2179104Freiburg im BreisgauGermany
| |
Collapse
|
62
|
Guo F, Wang H, Ye X, Tan CH. Advanced Synthesis Using Photocatalysis Involved Dual Catalytic System. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fenfen Guo
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Hong Wang
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Xinyi Ye
- Zhejiang University of Technology College of Pharmaceutical Science 18 Chaowang Road 310014 Hangzhou CHINA
| | - Choon-Hong Tan
- Nanyang Technological University School of Physical and Mathematical Sciences SINGAPORE
| |
Collapse
|
63
|
Bajya KR, Sermadurai S. Dual Photoredox and Cobalt Catalysis Enabled Transformations. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Selvakumar Sermadurai
- Indian Institute of Technology Indore Chemistry Khandwa road Simrol 453552 Indore INDIA
| |
Collapse
|
64
|
Peng X, Xu K, Zhang Q, Liu L, Tan J. Dehydroalanine modification sees the light: a photochemical conjugate addition strategy. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
65
|
Sakai K, Oisaki K, Kanai M. A Germanium Catalyst Accelerates the Photoredox α-C(sp 3)-H Alkylation of Primary Amines. Org Lett 2022; 24:3325-3330. [PMID: 35486160 DOI: 10.1021/acs.orglett.2c00871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site-selective C(sp3)-H functionalizations using photoredox catalysis (PC) and hydrogen atom transfer (HAT) catalysis have received increasing attention. Here, we report a Ph2GeCl2 cocatalyst that greatly improves the yield of α-C(sp3)-H alkylation of primary amines catalyzed by a PC-HAT hybrid system. The α-position of the amino group selectively reacted even when weaker C-H bonds existed in the substrates. This finding may help the design of a novel site-selective hybrid catalysis.
Collapse
Affiliation(s)
- Kentaro Sakai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kounosuke Oisaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
66
|
Tropane and related alkaloid skeletons via a radical [3+3]-annulation process. Commun Chem 2022; 5:57. [PMID: 36697883 PMCID: PMC9814087 DOI: 10.1038/s42004-022-00671-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/25/2022] [Indexed: 01/28/2023] Open
Abstract
Tropanes and related bicyclic alkaloids are highly attractive compounds possessing a broad biological activity. Here we report a mild and simple protocol for the synthesis of N-arylated 8-azabicyclo[3.2.1]octane and 9-azabicyclo[3.3.1]nonane derivatives. It provides these valuable bicyclic alkaloid skeletons in good yields and high levels of diastereoselectivity from simple and readily available starting materials using visible-light photoredox catalysis. These bicyclic aniline derivatives are hardly accessible via the classical Robinson tropane synthesis and represent a particularly attractive scaffold for medicinal chemistry. This unprecedented annulation process takes advantage of the unique reactivity of ethyl 2-(acetoxymethyl)acrylate as a 1,3-bis radical acceptor and of cyclic N,N-dialkylanilines as radical 1,3-bis radical donors. The success of this process relies on efficient electron transfer processes and highly selective deprotonation of aminium radical cations leading to the key α-amino radical intermediates.
Collapse
|
67
|
Li M, Chia XL, Zhu Y. Tethered photocatalyst-directed palladium-catalysed C-H allenylation of N-aryl tetrahydroisoquinolines. Chem Commun (Camb) 2022; 58:4719-4722. [PMID: 35297451 DOI: 10.1039/d2cc01064j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Harnessing radical intermediates in regioselective reactions presents a substantial challenge. Here, we report a novel control strategy through engineering covalently tethered transition metal-photocatalysts that conjoin Pd-phosphine and Ru/Ir photoredox units. This strategy allows us to override the innate regioselectivity of the Pd-catalysed C-H allenylation of N-aryl tetrahydroisoquinolines.
Collapse
Affiliation(s)
- Mingfeng Li
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| | - Xiu Li Chia
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| | - Ye Zhu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
68
|
Mitsunuma H, Kanai M, Katayama Y. Recent Progress in Chromium-Mediated Carbonyl Addition Reactions. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1696-6429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractOrganochromium(III) species are versatile nucleophiles in complex molecule synthesis due to their high functional group tolerance and chemoselectivity for aldehydes. Traditionally, carbonyl addition reactions of organochromium(III) species were performed through reduction of organohalides either using stoichiometric chromium(II) salts or catalytic chromium salts in the presence of stoichiometric reductants [such as Mn(0)]. Recently, alternative methods emerged involving organoradical formation from readily available starting materials (e.g., N-hydroxyphthalimide esters, alkenes, and alkanes), followed by trapping the radical with stoichiometric or catalytic chromium(II) salts. Such methods, especially using catalytic chromium(II) salts, will lead to the development of sustainable chemical processes minimizing salt wastes and number of synthetic steps. In this review, methods for generation of organochromium(III) species for addition reactions to carbonyl compounds, classified by nucleophiles are described.1 Introduction2 Alkylation2.1 Branch-Selective Reductive Alkylation of Aldehydes Using Unactivated Alkenes2.2 Linear-Selective Alkylation of Aldehydes2.2.1 Catalytic Decarboxylative Alkylation of Aldehydes Using NHPI Esters2.2.2 Catalytic Reductive Alkylation of Aldehydes Using Unactivated Alkenes2.2.3 Alkylation of Aldehydes via C(sp3)–H Bond Functionalization of Unactivated Alkanes2.3 Catalytic α-Aminoalkylation of Carbonyl Compounds3 Allylation3.1 Catalytic Allylation of Aldehydes via Three-Component Coupling3.2 Catalytic Allylation of Aldehydes via C(sp3)–H Bond Functionalization of Alkenes4 Propargylation: Catalytic Propargylation of Aldehydes via Three-Component Coupling5 Conclusion
Collapse
|
69
|
Azetidine synthesis enabled by photo-induced copper-catalysis via [3+1] radical cascade cyclization. Innovation (N Y) 2022; 3:100244. [PMID: 35519513 PMCID: PMC9065902 DOI: 10.1016/j.xinn.2022.100244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/12/2022] [Indexed: 12/02/2022] Open
Abstract
Azetidines are an important type of saturated, highly strained, four-membered, nitrogen-containing heterocyclic compound. These compounds serve as important raw materials, intermediates, and catalysts in organic synthesis, as well as important active units in amino acids, alkaloids, and pharmaceutically active compounds. Thus, the development of an efficient and concise method to construct azetidines is of great significance in multiple disciplines. In this work, we reported on the photo-induced copper-catalyzed radical annulation of aliphatic amines with alkynes to produce azetidines. This reaction occurred in a two- or three-component manner. The alkynes efficiently captured photogenerated α-aminoalkyl radicals, forming vinyl radicals, which initiated tandem 1,5-hydrogen atom transfer and 4-exo-trig cyclization. Density functional theory calculations indicated that the tertiary radical intermediate was critical for the success of cyclization. In addition, the resulting saturated azetidine scaffolds possessed vicinal tertiary-quaternary and even quaternary-quaternary centers. Azetidines, four-membered N-heterocyclic compounds, are valuable targets for synthesis The first [3 + 1] cyclization approach is enabled by visible-light-induced copper catalysis This atom economic synthesis is characterized by double C-H activation This technology features operational simplicity, cheap catalyst, and broad substrate scope
Collapse
|
70
|
Castellanos-Soriano J, Álvarez-Gutiérrez D, Jiménez MC, Pérez-Ruiz R. Photoredox catalysis powered by triplet fusion upconversion: arylation of heteroarenes. Photochem Photobiol Sci 2022; 21:1175-1184. [PMID: 35303293 DOI: 10.1007/s43630-022-00203-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
In this work, the feasibility of triplet fusion upconversion (TFU, also named triplet-triplet annihilation upconversion) technology for the functionalization (arylation) of furans and thiophenes has been successfully proven. Activation of aryl halides by TFU leads to generation of aryl radical intermediates; trapping of the latter by the corresponding heteroarenes, which act as nucleophiles, affords the final coupling products. Advantages of this photoredox catalytic method include the use of very mild conditions (visible light, standard conditions), employment of commercially available reactants and low-loading metal-free photocatalysts, absence of any sacrificial agent (additive) in the medium and short irradiation times. The involvement of the high energetic delayed fluorescence in the reaction mechanism has been evidenced by quenching studies, whereas the two-photon nature of this photoredox arylation of furans and thiophenes has been manifested by the dependence on the energy source power. Finally, the scaling-up conditions have been gratifyingly afforded by a continuous-flow device.
Collapse
Affiliation(s)
- Jorge Castellanos-Soriano
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Daniel Álvarez-Gutiérrez
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - M Consuelo Jiménez
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Raúl Pérez-Ruiz
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| |
Collapse
|
71
|
Zheng J, Tang N, Xie H, Breit B. Regio‐, Diastereo‐, and Enantioselective Decarboxylative Hydro‐aminoalkylation of Dienol Ethers Enabled by Dual Palladium/Pho‐toredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jun Zheng
- Institut für Organische Chemie Albert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg im Breisgau Germany
| | - Nana Tang
- Institut für Organische Chemie Albert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg im Breisgau Germany
| | - Hui Xie
- Institut für Organische Chemie Albert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg im Breisgau Germany
| | - Bernhard Breit
- Institut für Organische Chemie Albert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg im Breisgau Germany
| |
Collapse
|
72
|
Mao B, Zhang XY, Wei Y, Shi M. Visible-light-mediated intramolecular radical cyclization of α-brominated amide-tethered alkylidenecyclopropanes. Chem Commun (Camb) 2022; 58:3653-3656. [PMID: 35213679 DOI: 10.1039/d1cc07136j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ring-opening/cyclization cascade reaction of α-brominated amide-tethered alkylidenecyclopropanes in the presence of photocatalyst 4CzIPN under visible-light irradiation was developed to afford polycyclic benzazepine derivatives in good yields with broad substrate scope and good functional tolerance. A plausible mechanism involving a halogen atom transfer (XAT) process and a radical chain process is proposed for this reaction. This study provides a concise and practical strategy for the synthesis of benzazepine derivatives.
Collapse
Affiliation(s)
- Ben Mao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Yu Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Lu, Shanghai, 200032, China.
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Lu, Shanghai, 200032, China.
| |
Collapse
|
73
|
Xue S, Cristòfol À, Limburg B, Zeng Q, Kleij AW. Dual Cobalt/Organophotoredox Catalysis for Diastereo- and Regioselective 1,2-Difunctionalization of 1,3-Diene Surrogates Creating Quaternary Carbon Centers. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sijing Xue
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Àlex Cristòfol
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Bart Limburg
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Qian Zeng
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
74
|
Abstract
The fields of C-H functionalization and photoredox catalysis have garnered enormous interest and utility in the past several decades. Many different scientific disciplines have relied on C-H functionalization and photoredox strategies including natural product synthesis, drug discovery, radiolabeling, bioconjugation, materials, and fine chemical synthesis. In this Review, we highlight the use of photoredox catalysis in C-H functionalization reactions. We separate the review into inorganic/organometallic photoredox catalysts and organic-based photoredox catalytic systems. Further subdivision by reaction class─either sp2 or sp3 C-H functionalization─lends perspective and tactical strategies for use of these methods in synthetic applications.
Collapse
Affiliation(s)
- Natalie Holmberg-Douglas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
75
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
76
|
Kinsella AG, Tibbetts JD, Stead D, Cresswell AJ. N-tosylhydrazones as acceptors for nucleophilic alkyl radicals in photoredox catalysis: A short case study on possible side reactions. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2028844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Darren Stead
- AstraZeneca, Oncology R&D, Research & Early Development, Cambridge, UK
| | | |
Collapse
|
77
|
Quintavalla A, Veronesi R, Speziali L, Martinelli A, Zaccheroni N, Mummolo L, Lombardo M. Allenamides Playing Domino: A Redox‐Neutral Photocatalytic Synthesis of Functionalized 2‐Aminofurans. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Arianna Quintavalla
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Ruben Veronesi
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Laura Speziali
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Ada Martinelli
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Nelsi Zaccheroni
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Liviana Mummolo
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Marco Lombardo
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
78
|
Li J, Siang Tan S, Kyne SH, Wai Hong Chan P. Minisci‐Type Alkylation of
N
‐Heteroarenes by
N
‐(Acyloxy)phthalimide Esters Mediated by a Hantzsch Ester and Blue LED Light. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jiacheng Li
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Suan Siang Tan
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Sara Helen Kyne
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Philip Wai Hong Chan
- Department of Biological Environment Jiyang College of Zhejiang A&F University Hang Zhou Shi, Zhuji 311800, People's Republic of China
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
79
|
Zhou P, Liu Y, Xu Y, Wang D. Electrochemical synthesis for α-arylation of ketones using enol acetates and aryl diazonium salts. Org Chem Front 2022. [DOI: 10.1039/d1qo01765a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, an electrochemical method has been developed to achieve the α-arylation of ketones by reacting aryl diazonium salts with enol acetates. The broad scope of the reaction toward...
Collapse
|
80
|
Ramani A, Desai B, Dholakiya BZ, Naveen T. Recent advances in visible-light mediated functionalization of olefins and alkynes using copper catalysts. Chem Commun (Camb) 2022; 58:7850-7873. [DOI: 10.1039/d2cc01611g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past decade, visible-light photoredox catalysis has blossomed as a powerful strategy and offers a discrete activation mode complementary to thermal controlled reactions. Visible-light-mediated photoredox catalysis also offers exciting...
Collapse
|
81
|
del Río-Rodríguez R, Westwood M, SICIGNANO MARINA, Juhl M, Fernandez-Salas JAA, Aleman J, Smith AD. Isothiourea-Catalysed Enantioselective Radical Conjugate Addition under Batch and Flow Conditions. Chem Commun (Camb) 2022; 58:7277-7280. [DOI: 10.1039/d2cc02432b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photocatalytic generation of α-amino radicals is combined with chiral isothiourea derived α,β-unsaturated acyl ammonium intermediates. The reaction proceeds via a [3+2] radical-polar crossover mechanism to generate γ-lactams in good...
Collapse
|
82
|
Xu QH, Wei LP, Xiao B. Alkyl-GeMe3: Neutral Metalloid Radical Precursors upon Visible-Light Photocatalysis. Angew Chem Int Ed Engl 2021; 61:e202115592. [PMID: 34967484 DOI: 10.1002/anie.202115592] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 11/07/2022]
Abstract
Single-electron transfer (SET) oxidation of ionic hypervalent complexes, representatively alkyltrifluoroborates (Alkyl-BF3-) and alkylbis(catecholato)silicates (Alkyl-Si(cat)2-), have contributed substantially to alkyl radical generation compared to alkali or alkaline earth organometallics because of their excellent activity-stability balance. Herein, we report another proposal using neutral metalloid compounds, Alkyl-GeMe3, as radical precursors. Compared to Alkyl-BF3- and Alkyl-Si(cat)2-, Alkyl-GeMe3 show comparable activity in radical addition reactions. Moreover, Alkyl-GeMe3 gives the first success of group 14 tetraalkyl nucleophiles in nickel catalyzed cross-coupling. Meanwhile, the neutral nature of these organogermanes supplemented the limination of ionic precursors in purification and derivatization. A preliminary mechanism study corresponds to the procedure that alkyl radical generates from tetraalkylgermane radical cation with the assistance of a nucleophile, which may also enlighten the development of more non-ionic alkyl radical precursors with metalloid center.
Collapse
Affiliation(s)
- Qing-Hao Xu
- USTC: University of Science and Technology of China, Department of Chemistry, CHINA
| | - Li-Pu Wei
- USTC: University of Science and Technology of China, Department of Chemistry, CHINA
| | - Bin Xiao
- University of Science and Technology of China, Department of Chemistry, Jinzhai Road 96#, 230026, Hefei, CHINA
| |
Collapse
|
83
|
Xu QH, Wei LP, Xiao B. Alkyl‒GeMe3: Neutral Metalloid Radical Precursors upon Visible‐Light Photocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202115592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qing-Hao Xu
- USTC: University of Science and Technology of China Department of Chemistry CHINA
| | - Li-Pu Wei
- USTC: University of Science and Technology of China Department of Chemistry CHINA
| | - Bin Xiao
- University of Science and Technology of China Department of Chemistry Jinzhai Road 96# 230026 Hefei CHINA
| |
Collapse
|
84
|
Kaper T, Geik D, Fornfeist F, Schmidtmann M, Doye S. Stereoselective Synthesis of Tertiary Allylic Amines by Titanium-Catalyzed Hydroaminoalkylation of Alkynes with Tertiary Amines. Chemistry 2021; 28:e202103931. [PMID: 34936144 PMCID: PMC9303398 DOI: 10.1002/chem.202103931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 12/01/2022]
Abstract
Intermolecular hydroaminoalkylation reactions of symmetrical and unsymmetrical alkynes with tertiary amines take place in the presence of catalytic amounts of TiBn4, Ph3C[B(C6F5)4], and a sterically demanding aminopyridinato ligand precursor. The resulting products, synthetically and pharmaceutically useful tertiary β,γ‐disubstituted allylic amines, are formed in convincing yields and with excellent stereoselectivity. Particularly promising for future applications is the fact that even the industrial side product trimethylamine can be used as a substrate.
Collapse
Affiliation(s)
- Tobias Kaper
- Carl-von-Ossietzky-Universitat Oldenburg: Carl von Ossietzky Universitat Oldenburg, Institut für Chemie, GERMANY
| | - Dennis Geik
- Carl-von-Ossietzky-Universitat Oldenburg: Carl von Ossietzky Universitat Oldenburg, Institut für Chemie, GERMANY
| | - Felix Fornfeist
- Carl-von-Ossietzky-Universitat Oldenburg: Carl von Ossietzky Universitat Oldenburg, Institut für Chemie, GERMANY
| | - Marc Schmidtmann
- Carl-von-Ossietzky-Universitat Oldenburg: Carl von Ossietzky Universitat Oldenburg, Institut für Chemie, GERMANY
| | - Sven Doye
- Universitaet Oldenburg, Institut fuer Chemie, Carl-von-Ossietzky-Strasse 9-11, 26129, Oldenburg, GERMANY
| |
Collapse
|
85
|
Kron K, Rodriguez-Katakura A, Elhessen R, Mallikarjun Sharada S. Photoredox Chemistry with Organic Catalysts: Role of Computational Methods. ACS OMEGA 2021; 6:33253-33264. [PMID: 34926877 PMCID: PMC8674904 DOI: 10.1021/acsomega.1c05787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/24/2021] [Indexed: 05/09/2023]
Abstract
Organic catalysts have the potential to carry out a wide range of otherwise thermally inaccessible reactions via photoredox routes. Early demonstrated successes of organic photoredox catalysts include one-electron CO2 reduction and H2 generation via water splitting. Photoredox systems are challenging to study and design owing to the sheer number and diversity of phenomena involved, including light absorption, emission, intersystem crossing, partial or complete charge transfer, and bond breaking or formation. Designing a viable photoredox route therefore requires consideration of a host of factors such as absorption wavelength, solvent, choice of electron donor or acceptor, and so on. Quantum chemistry methods can play a critical role in demystifying photoredox phenomena. Using one-electron CO2 reduction with phenylene-based chromophores as an illustrative example, this perspective highlights recent developments in quantum chemistry that can advance our understanding of photoredox processes and proposes a way forward for driving the design and discovery of organic catalysts.
Collapse
Affiliation(s)
- Kareesa
J. Kron
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Andres Rodriguez-Katakura
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Rachelle Elhessen
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Shaama Mallikarjun Sharada
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
86
|
Juliá F, Constantin T, Leonori D. Applications of Halogen-Atom Transfer (XAT) for the Generation of Carbon Radicals in Synthetic Photochemistry and Photocatalysis. Chem Rev 2021; 122:2292-2352. [PMID: 34882396 DOI: 10.1021/acs.chemrev.1c00558] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The halogen-atom transfer (XAT) is one of the most important and applied processes for the generation of carbon radicals in synthetic chemistry. In this review, we summarize and highlight the most important aspects associated with XAT and the impact it has had on photochemistry and photocatalysis. The organization of the material starts with the analysis of the most important mechanistic aspects and then follows a subdivision based on the nature of the reagents used in the halogen abstraction. This review aims to provide a general overview of the fundamental concepts and main agents involved in XAT processes with the objective of offering a tool to understand and facilitate the development of new synthetic radical strategies.
Collapse
Affiliation(s)
- Fabio Juliá
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Timothée Constantin
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Daniele Leonori
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
87
|
Kim JY, Lee YS, Ryu DH. Ternary Electron Donor–Acceptor Complex Enabled Enantioselective Radical Additions to α, β-Unsaturated Carbonyl Compounds. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jae Yeon Kim
- Department of Chemistry, Sungkyunkwan University, Cheoncheon, Jangan, Suwon 16419, Korea
| | - Yea Suel Lee
- Department of Chemistry, Sungkyunkwan University, Cheoncheon, Jangan, Suwon 16419, Korea
| | - Do Hyun Ryu
- Department of Chemistry, Sungkyunkwan University, Cheoncheon, Jangan, Suwon 16419, Korea
| |
Collapse
|
88
|
Kohara K, Trowbridge A, Smith MA, Gaunt MJ. Thiol-Mediated α-Amino Radical Formation via Visible-Light-Activated Ion-Pair Charge-Transfer Complexes. J Am Chem Soc 2021; 143:19268-19274. [PMID: 34762420 DOI: 10.1021/jacs.1c09445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Visible-light-activated electron donor-acceptor complexes offer distinct reaction pathways for the synthesis of complex molecules under mild conditions. Herein, we report a method for the reductive generation of α-amino radicals via the reaction of a visible-light-activated ion-pair charge-transfer complex formed between an in situ-generated alkyl-iminium ion and a thiophenolate. This distinct activation mode is demonstrated through the development of a multicomponent coupling reaction to form substituted aminomethyl-cyclopentanes from secondary amines, cyclopropyl aldehydes, and alkenes. The operationally straightforward transformation displays broad scope and provides a means to generate cyclic amine-containing scaffolds from readily available feedstocks.
Collapse
Affiliation(s)
- Keishi Kohara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
| | - Aaron Trowbridge
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
| | - Milo A Smith
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
| |
Collapse
|
89
|
Shen Y, Funez-Ardoiz I, Schoenebeck F, Rovis T. Site-Selective α-C-H Functionalization of Trialkylamines via Reversible Hydrogen Atom Transfer Catalysis. J Am Chem Soc 2021; 143:18952-18959. [PMID: 34738467 DOI: 10.1021/jacs.1c07144] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trialkylamines are widely found in naturally occurring alkaloids, synthetic agrochemicals, biological probes, and especially pharmaceuticals agents and preclinical candidates. Despite the recent breakthrough of catalytic alkylation of dialkylamines, the selective α-C(sp3)-H bond functionalization of widely available trialkylamine scaffolds holds promise to streamline complex trialkylamine synthesis, accelerate drug discovery, and execute late-stage pharmaceutical modification with complementary reactivity. However, the canonical methods always result in functionalization at the less-crowded site. Herein, we describe a solution to switch the reaction site through fundamentally overcoming the steric control that dominates such processes. By rapidly establishing an equilibrium between α-amino C(sp3)-H bonds and a highly electrophilic thiol radical via reversible hydrogen atom transfer, we leverage a slower radical-trapping step with electron-deficient olefins to selectively forge a C(sp3)-C(sp3) bond with the more-crowded α-amino radical, with the overall selectivity guided by the Curtin-Hammett principle. This subtle reaction profile has unlocked a new strategic concept in direct C-H functionalization arena for forging C-C bonds from a diverse set of trialkylamines with high levels of site selectivity and preparative utility. Simple correlation of site selectivity and 13C NMR shift serves as a qualitative predictive guide. The broad consequences of this dynamic system, together with the ability to forge N-substituted quaternary carbon centers and implement late-stage functionalization techniques, hold potential to streamline complex trialkylamine synthesis and accelerate small-molecule drug discovery.
Collapse
Affiliation(s)
- Yangyang Shen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | | | | | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
90
|
Lyu J, Leone M, Claraz A, Allain C, Neuville L, Masson G. Syntheses of new chiral chimeric photo-organocatalysts. RSC Adv 2021; 11:36663-36669. [PMID: 35494356 PMCID: PMC9043406 DOI: 10.1039/d1ra06885g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
A new family of chiral chimeric photo-organocatalysts derived from phosphoric acid were synthesized and their spectroscopic and electrochemical properties were investigated. Then, the ability of these photo-activable molecules to catalyse an asymmetric tandem electrophilic β-amination of enecarbamates was evaluated.
Collapse
Affiliation(s)
- Jiyaun Lyu
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Matteo Leone
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Aurélie Claraz
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Clémence Allain
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM 91190 Gif-sur-Yvette France
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| |
Collapse
|
91
|
Maitland JAP, Leitch JA, Yamazaki K, Christensen KE, Cassar DJ, Hamlin TA, Dixon DJ. Switchable, Reagent‐Controlled Diastereodivergent Photocatalytic Carbocyclisation of Imine‐Derived α‐Amino Radicals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- J. Andrew P. Maitland
- Department of Chemistry Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Jamie A. Leitch
- Department of Chemistry Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
- Current address: Department of Pharmaceutical and Biological Chemistry UCL (University College London) School of Pharmacy 29–39 Brunswick Square London WC1N 1AX UK
| | - Ken Yamazaki
- Department of Chemistry Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - Kirsten E. Christensen
- Department of Chemistry Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | | | - Trevor A. Hamlin
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - Darren J. Dixon
- Department of Chemistry Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
92
|
Maitland JAP, Leitch JA, Yamazaki K, Christensen KE, Cassar DJ, Hamlin TA, Dixon DJ. Switchable, Reagent-Controlled Diastereodivergent Photocatalytic Carbocyclisation of Imine-Derived α-Amino Radicals. Angew Chem Int Ed Engl 2021; 60:24116-24123. [PMID: 34449968 PMCID: PMC8597041 DOI: 10.1002/anie.202107253] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/13/2021] [Indexed: 12/15/2022]
Abstract
A reagent-controlled stereodivergent carbocyclisation of aryl aldimine-derived, photocatalytically generated, α-amino radicals possessing adjacent conjugated alkenes, affording either bicyclic or tetracyclic products, is described. Under net reductive conditions using commercial Hantzsch ester, the α-amino radical species underwent a single stereoselective cyclisation to give trans-configured amino-indane structures in good yield, whereas using a substituted Hantzsch ester as a milder reductant afforded cis-fused tetracyclic tetrahydroquinoline frameworks, resulting from two consecutive radical cyclisations. Judicious choice of the reaction conditions allowed libraries of both single and dual cyclisation products to be synthesised with high selectivity, notable predictability, and good-to-excellent yields. Computational analysis employing DFT revealed the reaction pathway and mechanistic rationale behind this finely balanced yet readily controlled photocatalytic system.
Collapse
Affiliation(s)
- J. Andrew P. Maitland
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Jamie A. Leitch
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
- Current address: Department of Pharmaceutical and Biological ChemistryUCL (University College London)School of Pharmacy29–39 Brunswick SquareLondonWC1N 1AXUK
| | - Ken Yamazaki
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Kirsten E. Christensen
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | | | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Darren J. Dixon
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
93
|
Wu W, Wang H, Chen J, Bao X, Tan C, Ye X. Dicyanopyrazine‐derived Chromophore as An Efficient Photocatalyst for α‐amino C‐H Bond Functionalization. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wentao Wu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 P. R. China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 P. R. China
| | - Jun Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 P. R. China
| | - Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 P. R. China
| | - Choon‐Hong Tan
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 P. R. China
| |
Collapse
|
94
|
Thierry T, Pfund E, Lequeux T. Metal-Free Aminomethylation of Aromatic Sulfones Promoted by Eosin Y. Chemistry 2021; 27:14826-14830. [PMID: 34464004 DOI: 10.1002/chem.202102124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 11/11/2022]
Abstract
A metal-free α-aminomethylation of heteroaryls promoted by eosin Y under green light irradiation is reported. A large variety of α-trimethylsilylamines as precursor of α-aminomethyl radical species were engaged to functionalize sulfonyl-heteroaryls following a Homolytic Aromatic Substitution (HAS) pathway. This method has provided a range of α-aminoheteroaryl compounds including a functionalized natural product. The mechanism of this late-stage functionalization of aryls was investigated and suggests the formation of a sulfonyl radical intermediate over a reductive quenching cycle.
Collapse
Affiliation(s)
- Thibault Thierry
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique LCMT UMR 6507 ENSICAEN, UNICAEN, CNRS, 6 Bd. du Maréchal Juin, 14050, Caen, France
| | - Emmanuel Pfund
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique LCMT UMR 6507 ENSICAEN, UNICAEN, CNRS, 6 Bd. du Maréchal Juin, 14050, Caen, France
| | - Thierry Lequeux
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique LCMT UMR 6507 ENSICAEN, UNICAEN, CNRS, 6 Bd. du Maréchal Juin, 14050, Caen, France
| |
Collapse
|
95
|
Wu Z, Gockel SN, Hull KL. Anti-Markovnikov hydro(amino)alkylation of vinylarenes via photoredox catalysis. Nat Commun 2021; 12:5956. [PMID: 34642311 PMCID: PMC8511241 DOI: 10.1038/s41467-021-26170-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
Photoredox catalysis is a powerful means to generate odd-electron species under mild reaction conditions from a wide array of radical precursors. Herein, we present the application of this powerful catalytic manifold to address the hydroalkylation and hydroaminoalkylation of electronically diverse vinylarenes. This reaction allows for generalized alkene hydroalkylation leveraging common alkyl radical precursors, such as organotrifluoroborate salts and carboxylic acids. Furthermore, utilizing easily accessible α-silyl amine reagents or tertiary amines directly, secondary and tertiary amine moieties can be installed onto monoaryl and diaryl alkenes to access valuable products, including γ,γ-diarylamines pharmacophores. Thus, under a unified system, both hydroalkylation and hydroaminoalkylation of alkenes are achieved. The substrate scope is evaluated through 57 examples, the synthetic utility of the method is demonstrated, and preliminary mechanistic insights are presented. Many useful chemical scaffolds include carbon or nitrogen substitutions at two or three atoms away from benzene. Here, the authors show a unified hydroalkylation and hydroaminoalkylation protocol to access these structures via a regioselective photocatalytic addition to simple styrenes.
Collapse
Affiliation(s)
- Zhao Wu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Samuel N Gockel
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA.,Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, TX, 78712, USA
| | - Kami L Hull
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, TX, 78712, USA.
| |
Collapse
|
96
|
Zhang Y, Tanabe Y, Kuriyama S, Nishibayashi Y. Cooperative Photoredox- and Nickel-Catalyzed Alkylative Cyclization Reactions of Alkynes with 4-Alkyl-1,4-dihydropyridines. J Org Chem 2021; 86:12577-12590. [PMID: 34319104 DOI: 10.1021/acs.joc.1c01018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cooperative photoredox- and nickel-catalyzed alkylative cyclization reactions of iodoalkynes with 4-alkyl-1,4-dihydropyridines as alkylation reagents under visible light irradiation have been achieved to afford the corresponding alkylated cyclopentylidenes in good to high yields. Introduction of substituents at the propargylic position of iodoalkynes has led to the stereoselective formation of E-isomers. The present reaction system provides a novel synthetic method for alkylative cyclization reactions of both terminal and internal alkynes with cooperative photoredox and nickel catalysis.
Collapse
Affiliation(s)
- Yulin Zhang
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshiaki Tanabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shogo Kuriyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
97
|
Visible-light photoredox-promoted desilylative allylation of α-silylamines: An efficient route to synthesis of homoallylic amines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153357] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
98
|
Ghosh KG, Das D, Chandu P, Sureshkumar D. Visible‐Light Driven Organo‐photocatalyzed Multicomponent Reaction for C(
sp
3
)−H Alkylation of Phosphoramides with
in situ
Generated Michael Acceptors. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Krishna Gopal Ghosh
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Debabrata Das
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Palasetty Chandu
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| |
Collapse
|
99
|
Wang F, Zhou Q, Zhang X, Fan X. Direct α-Alkenylation of Cyclic Amines with Maleimides through Fe(III)-Catalyzed C(sp 3)-H/C(sp 2)-H Cross Dehydrogenative Coupling. J Org Chem 2021; 86:11708-11722. [PMID: 34355565 DOI: 10.1021/acs.joc.1c01198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Presented herein is a novel and efficient α-C(sp3)-H alkenylation of cyclic amines with maleimides. Mechanistically, this C(sp3)-H/C(sp2)-H cross dehydrogenative coupling (CDC) reaction involves a cascade procedure including oxidative α-amino radical formation from the cyclic amine substrate and nucleophilic addition of the in situ formed α-amino radical onto the electron-deficient carbon-carbon double bond of maleimide followed by oxidation and β-elimination. Notably, this direct α-functionalization provides an effective alternative to the conventional ionic reaction mode, in which an imine or iminium intermediate is formed to react with electron-rich coupling partners other than electron-deficient ones. In general, this method features readily available and structurally diverse substrates, a green and economical catalyst, a unique reaction pathway, mild reaction conditions, high efficiency, and excellent atom economy. This new reaction enriches the application of Fe(III)-catalyzed C(sp3)-H activation and functionalization.
Collapse
Affiliation(s)
- Fang Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.,Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Qianting Zhou
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
100
|
Li Y, Dai C, Xie S, Liu P, Sun P. Visible-Light-Induced C-H Bond Aminoalkylation of Heterocycles by the Decarboxylation Coupling of Amino Acids. Org Lett 2021; 23:5906-5910. [PMID: 34291642 DOI: 10.1021/acs.orglett.1c02014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient visible-light-induced decarboxylative coupling reaction of N-protecting α-amino acids with heterocycles for the generation of aminoalkylated heterocycles is presented. A series of aminoalkylated heterocycles were obtained in moderate to good yields. Attractive features of this process include the generation of aminomethyl radical by an inexpensive organic photocatalyst under transition-metal-free conditions.
Collapse
Affiliation(s)
- Yifan Li
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Changhui Dai
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Shentong Xie
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|