51
|
Shao H, Wu X, Xiao Y, Yang Y, Ma J, Zhou Y, Chen W, Qin S, Yang J, Wang R, Li H. Recent research advances on polysaccharide-, peptide-, and protein-based hemostatic materials: A review. Int J Biol Macromol 2024; 261:129752. [PMID: 38280705 DOI: 10.1016/j.ijbiomac.2024.129752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/05/2023] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Hemorrhage is a potentially life-threatening emergency that can occur at any time or place. Whether traumatic, congenital, surgical, disease-related, or drug-induced, bleeding can lead to severe complications or death. Therefore, the development of efficient hemostatic materials is critical. However, the results and prognosis demonstrated by clinical means of hemostasis do not reach expectations. With the development of technology, novel hemostatic materials have been developed from polysaccharides (chitosan, hyaluronic acid, alginate, cellulose, cyclodextrins, starch, dextran, and carrageenan), peptides (self-assembling peptides), and proteins (silk fibroin, collagen, gelatin, keratin, and thrombin). These new materials exhibit high hemostatic efficacy due to the enhancement or interaction of various hemostatic mechanisms. The main forms include adhesives, sealants, bandages, hemostatic powders, and hemostatic sponges. This article introduces the clotting process and principles of hemostatic methods and reviews the research on polysaccharide-, peptide-, and protein-based hemostatic materials in the last five years. The design ideas and hemostatic principles of polysaccharide-, peptide-, and protein-based hemostatic materials are mainly introduced. Finally, we summarize material designs, advantages, disadvantages, and challenges regarding hemostatic materials.
Collapse
Affiliation(s)
- Hanjie Shao
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Xiang Wu
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Ying Xiao
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Yanyu Yang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Jingyun Ma
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Li Huili Hospital, Ningbo University, Ningbo 315100, PR China
| | - Yang Zhou
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Li Huili Hospital, Ningbo University, Ningbo 315100, PR China
| | - Wen Chen
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China
| | - Shaoxia Qin
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China
| | - Jiawei Yang
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China
| | - Rong Wang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China.
| | - Hong Li
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China.
| |
Collapse
|
52
|
Nawaz M, Shakoor RA, Al-Qahtani N, Bhadra J, Al-Thani NJ, Kahraman R. Polyolefin-Based Smart Self-Healing Composite Coatings Modified with Calcium Carbonate and Sodium Alginate. Polymers (Basel) 2024; 16:636. [PMID: 38475319 DOI: 10.3390/polym16050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 03/14/2024] Open
Abstract
Corrosion-related damage incurs significant capital costs in many industries. In this study, an anti-corrosive pigment was synthesized by modifying calcium carbonate with sodium alginate (SA), and smart self-healing coatings were synthesized by reinforcing the anti-corrosive pigments into a polyolefin matrix. Structural changes during the synthesis of the anti-corrosive pigment were examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. Moreover, thermal gravimetric analysis confirmed the loading of the corrosion inhibitor, and electrochemical impedance spectroscopic analysis revealed a stable impedance value, confirming the improved corrosion resistance of the modified polyolefin coatings. The incorporation of the anticorrosive pigment into a polyolefin matrix resulted in improved pore resistance properties and capacitive behavior, indicating a good barrier property of the modified coatings. The formation of a protective film on the steel substrate reflected the adsorption of the corrosion inhibitor (SA) on the steel substrate, which further contributed to enhancing the corrosion resistance of the modified coatings. Moreover, the formation of the protective film was also analyzed by profilometry and elemental mapping analysis.
Collapse
Affiliation(s)
- Muddasir Nawaz
- Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar
| | - Rana Abdul Shakoor
- Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
| | - Noora Al-Qahtani
- Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar
- Centeral Laboratories Unit, Qatar University, Doha 2713, Qatar
| | - Jolly Bhadra
- Qatar University Young Scientist Center, Qatar University, Doha 2713, Qatar
| | | | - Ramazan Kahraman
- Department of Chemical Engineering, Qatar University, Doha 2713, Qatar
| |
Collapse
|
53
|
Yun ET, Lee J, Lee SSS, Hong S, Fortner JD. Harnessing the potential of in-situ, electrically generated microbubbles via nickel foam for enhanced, low energy membrane fouling control. WATER RESEARCH 2024; 249:120886. [PMID: 38103442 DOI: 10.1016/j.watres.2023.120886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/25/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
For membrane-based, water treatment technologies, fouling remains a significant challenge for pressure-driven processes. While many antifouling strategies have been proposed, there remains significant room for improved efficiency. Direct application of microbubbles (MBs) at a membrane surface offers a promising approach for managing interfacial fouling through continuous physical interaction(s). Despite such potential, to date, integration and optimization of in-situ generated MBs at the membrane interface that are both highly antifouling with minimal energy inputs and unwanted side reactions remains mostly outstanding. Here we demonstrate the application of conductive, porous nickel foam for electrolysis-based generation of hydrogen microbubbles at an ultra-filtration (UF) membrane interface, which significantly mitigates membrane fouling for a range of model foulants. System characterization and optimization includes comparison of metal foams (Ni, Cu, Ti), faradic efficiencies, hydrogen evolution reaction (HER) curves, cyclic voltammetry, and quantification of hydrogen gas flux and bubble size, as a function of applied current. When optimized, we report rapid (<5 min) and near complete (∼99 %) flux recovery for three classes of foulants, including calcium alginate, humic acid (HA), and SiO2 particles. For all, the described MB-based approach is orders of magnitude more energy efficient when compared to conventional cleaning strategies. Finally, we demonstrate the MB-based regeneration/cleaning process is stable and repeatable for ten cycles and also highly effective for a challenge water (as a model oilfield brine). Taken together, this work presents a novel and efficient approach for the application of in-situ electrically generated MBs to support sustainable pressure-driven membrane processes.
Collapse
Affiliation(s)
- Eun-Tae Yun
- Department of Chemical and Environmental Engineering, Yale University, New Haven CT 06511, USA
| | - Junseok Lee
- Department of Chemical and Environmental Engineering, Yale University, New Haven CT 06511, USA
| | - Seung Soo S Lee
- Department of Chemical and Environmental Engineering, Yale University, New Haven CT 06511, USA
| | - Seungkwan Hong
- School of Civil, Environmental and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - John D Fortner
- Department of Chemical and Environmental Engineering, Yale University, New Haven CT 06511, USA.
| |
Collapse
|
54
|
Akshaya S, Nathanael AJ. A Review on Hydrophobically Associated Alginates: Approaches and Applications. ACS OMEGA 2024; 9:4246-4262. [PMID: 38313527 PMCID: PMC10831841 DOI: 10.1021/acsomega.3c08619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
Alginates are linear anionic polysaccharides, which are well-known for their biocompatible, nontoxic, and biodegradable nature. The polymer consists of alternating units of β-(1 → 4)-linked D-mannuronic acid (M) and α-(1 → 4)-linked L-guluronic acid (G) that have hydroxyl and carboxyl groups as the main functional groups. As a large number of free carboxyl and hydroxyl groups are present in the polymeric chain, the polymer is predominantly hydrophilic. The food and pharmaceutical industries have been the most extensive utilizers of alginates to produce gelling and thickening agents. However, by imparting hydrophobicity to alginates, the range of applications can be widened. Although there are reviews on alginate and its chemical modifications, reviews focusing on hydrophobically associated alginates have not been presented. The commonly used chemical modifications to incorporate hydrophobicity include esterification, Ugi reaction, reductive amination, and graft copolymerization. The hydrophobically modified alginates play an important role in delivery of hydrophobic drugs and pesticides as the modification increases the affinity toward hydrophobic components and helps in their sustained release. Due to their nontoxic and edible nature, they find use in the food industry as emulsion stabilizer to stabilize oil-in-water emulsions and to improve creaming ability. Further, alginate-based materials such as membranes, aerogels, and films are hydrophobically modified to improve their functionality and applicability to water treatment and food packaging. This Review aims to highlight the important chemical modifications and methods that are done to impart hydrophobicity to alginate, and the applications of hydrophobically modified alginates in different sectors ranging from drug delivery to food packaging are discussed.
Collapse
Affiliation(s)
- Shenbagaraman Akshaya
- Centre
for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- School
of Advanced Sciences (SAS), Vellore Institute
of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arputharaj Joseph Nathanael
- Centre
for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
55
|
Angaria N, Saini S, Hussain MS, Sharma S, Singh G, Khurana N, Kumar R. Natural polymer-based hydrogels: versatile biomaterials for biomedical applications. INT J POLYM MATER PO 2024:1-19. [DOI: 10.1080/00914037.2023.2301645] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/31/2023] [Indexed: 09/05/2024]
Affiliation(s)
- Neeti Angaria
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Sumant Saini
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Md. Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| | - Sakshi Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gurvinder Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
56
|
Alizadeh M, Peighambardoust SJ, Foroutan R. Efficacious adsorption of divalent nickel ions over sodium alginate-g-poly(acrylamide)/hydrolyzed Luffa cylindrica-CoFe 2O 4 bionanocomposite hydrogel. Int J Biol Macromol 2024; 254:127750. [PMID: 38287592 DOI: 10.1016/j.ijbiomac.2023.127750] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/05/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
Existing Ni2+ heavy metal ions in an aqueous medium are highly hazardous for living organisms and humans. Therefore, designing low-cost adsorbents with enhanced effectiveness is essential for removing nickel ions to safeguard public health. In this study, a novel green nanocomposite hydrogel was synthesized through the free radical solution and bulk polymerization method, and its capability to remove divalent nickel ions from aqueous media was examined. The bionanocomposite hydrogel named as SA-g-poly(AAm)/HL-CoFe2O4 was produced by grafting polyacrylamide (AAm) onto sodium alginate (SA) in the presence of a magnetic composite recognized as HL-CoFe2O4, where HL represents hydrolyzed Luffa Cylindrica. By employing FT-IR, XRD, VSM, SEM, EDX-Map, BET, DLS, HPLC, and TGA techniques, morphological evaluation and characterization of the adsorbents were carried out. The performance of the adsorption process was studied under varying operational conditions including pH, temperature, contact duration, initial concentration of pollutant ions, and adsorbent dosage. HPLC analysis proved the non-toxic structure of the bionanocomposite hydrogel. The number of unreacted acrylamide monomers within the hydrogel matrix was measured at 20.82 mg/kg. The optimum conditions was discovered to be pH = 6, room temperature, adsorbent dosage of 1 of g.L-1, initial Ni2+ concentration of 10 mg.L-1, and contact time of 100 min, and the maximum adsorption efficiency at optimal state was calculated as 70.09, 90.25, and 93.83 % for SA-g-poly (AAm), SA-g-poly(AAm)/HL, and SA-g-poly(AAm)/HL-CoFe2O4 samples, respectively. Langmuir isotherm model was in good agreement with the experimental data and the maximum adsorption capacity of SA-g-poly(AAm), SA-g-poly(AAm)/HL, and SA-g-poly(AAm)/HL-CoFe2O4 samples was calculated to be 31.37, 43.15, and 45.19 mg.g-1, respectively. The adsorption process, according to kinetic studies, follows a pseudo-second-order kinetic model. Investigations on thermodynamics also demonstrated that the process is exothermic and spontaneous. Exploring the interference effect of co-existing ions showed that the adsorption efficiency has decreased with concentration enhancement of Ca2+ and Na+ cations in aqueous medium. Furthermore, the adsorption/desorption assessments revealed that after 8 consecutive cycles, there had been no noticeable decline in the adsorption effectiveness. Finally, actual wastewater treatment outcomes demonstrated that the bionanocomposite hydrogel successfully removes heavy metal pollutants from shipbuilding industry effluent. Therefore, the findings revealed that the newly fabricated bionanocomposite hydrogel is an efficient, cost-effective, easy-separable, and green adsorbent that could be potentially utilized to remove divalent nickel ions from wastewater.
Collapse
Affiliation(s)
- Mehran Alizadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz 5166616471, Iran
| | | | - Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|
57
|
K R, S VK, Saravanan P, Rajeshkannan R, Rajasimman M, Kamyab H, Vasseghian Y. Exploring the diverse applications of Carbohydrate macromolecules in food, pharmaceutical, and environmental technologies. ENVIRONMENTAL RESEARCH 2024; 240:117521. [PMID: 37890825 DOI: 10.1016/j.envres.2023.117521] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/26/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023]
Abstract
Carbohydrates are a class of macromolecules that has significant potential across several domains, including the organisation of genetic material, provision of structural support, and facilitation of defence mechanisms against invasion. Their molecular diversity enables a vast array of essential functions, such as energy storage, immunological signalling, and the modification of food texture and consistency. Due to their rheological characteristics, solubility, sweetness, hygroscopicity, ability to prevent crystallization, flavour encapsulation, and coating capabilities, carbohydrates are useful in food products. Carbohydrates hold potential for the future of therapeutic development due to their important role in sustained drug release, drug targeting, immune antigens, and adjuvants. Bio-based packaging provides an emerging phase of materials that offer biodegradability and biocompatibility, serving as a substitute for traditional non-biodegradable polymers used as coatings on paper. Blending polyhydroxyalkanoates (PHA) with carbohydrate biopolymers, such as starch, cellulose, polylactic acid, etc., reduces the undesirable qualities of PHA, such as crystallinity and brittleness, and enhances the PHA's properties in addition to minimizing manufacturing costs. Carbohydrate-based biopolymeric nanoparticles are a viable and cost-effective way to boost agricultural yields, which is crucial for the increasing global population. The use of biopolymeric nanoparticles derived from carbohydrates is a potential and economically viable approach to enhance the quality and quantity of agricultural harvests, which is of utmost importance given the developing global population. The carbohydrate biopolymers may play in plant protection against pathogenic fungi by inhibiting spore germination and mycelial growth, may act as effective elicitors inducing the plant immune system to cope with pathogens. Furthermore, they can be utilised as carriers in controlled-release formulations of agrochemicals or other active ingredients, offering an alternative approach to conventional fungicides. It is expected that this review provides an extensive summary of the application of carbohydrates in the realms of food, pharmaceuticals, and environment.
Collapse
Affiliation(s)
- Ramaprabha K
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Venkat Kumar S
- Department of Petrochemical Technology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| | - Panchamoorthy Saravanan
- Department of Petrochemical Technology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - R Rajeshkannan
- Department of Chemical Engineering, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| |
Collapse
|
58
|
Liu H, Zhang X, Lv Z, Wei F, Liang Q, Qian L, Li Z, Chen X, Wu W. Ternary Heterostructure Membranes with Two-Dimensional Tunable Channels for Highly Selective Ion Separation. JACS AU 2023; 3:3089-3100. [PMID: 38034952 PMCID: PMC10685435 DOI: 10.1021/jacsau.3c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Selective ion separation from brines is pivotal for attaining high-purity lithium, a critical nonrenewable resource. Conventional methods encounter substantial challenges, driving the quest for streamlined, efficient, and swift approaches. Here, we present a graphene oxide (GO)-based ternary heterostructure membrane with a unique design. By utilizing Zn2+-induced confinement synthesis in a two-dimensional (2D) space, we incorporated two-dimensional zeolitic imidazolate framework-8 (ZIF-8) and zinc alginate (ZA) polymers precisely within layers of the GO membrane, creating tunable interlayer channels with a ternary heterostructure. The pivotal design lies in ion insertion into the two-dimensional (2D) membrane layers, achieving meticulous modulation of layer spacing based on ion hydration radius. Notably, the ensuing layer spacing within the hybrid ionic intercalation membrane occupies an intermediary realm, positioned astutely between small-sized hydrated ionic intercalation membrane spacing and their more extensive counterparts. This deliberate configuration accelerates the swift passage of diminutive hydrated ions while simultaneously impeding the movement of bulkier ions within the brine medium. The outcome is remarkable selectivity, demonstrated by the partitioning of K+/Li+ = 20.9, Na+/K+ = 31.2, and Li+/Mg2+ = 9.5 ion pairs. The ZIF-8/GO heterostructure significantly contributes to the selectivity, while the mechanical robustness and stability, improved by the ZA/GO heterostructure, further support its practical applicability. This report reports an advanced membrane design, offering promising prospects for lithium extraction and various ion separation processes.
Collapse
Affiliation(s)
- Huiling Liu
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- School
of Nuclear Science and Technology, Lanzhou
University, 222 Tianshui
South Road, Lanzhou 730000, China
| | - Xin Zhang
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- School
of Nuclear Science and Technology, Lanzhou
University, 222 Tianshui
South Road, Lanzhou 730000, China
| | - Zixiao Lv
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- School
of Nuclear Science and Technology, Lanzhou
University, 222 Tianshui
South Road, Lanzhou 730000, China
| | - Fang Wei
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Qing Liang
- CAS
Key Laboratory of Chemistry of Northwestern Plant Resources and Key
Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Road, Lanzhou 730000, China
| | - Lijuan Qian
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- School
of Nuclear Science and Technology, Lanzhou
University, 222 Tianshui
South Road, Lanzhou 730000, China
| | - Zhan Li
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- School
of Nuclear Science and Technology, Lanzhou
University, 222 Tianshui
South Road, Lanzhou 730000, China
| | - Ximeng Chen
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- School
of Nuclear Science and Technology, Lanzhou
University, 222 Tianshui
South Road, Lanzhou 730000, China
| | - Wangsuo Wu
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- School
of Nuclear Science and Technology, Lanzhou
University, 222 Tianshui
South Road, Lanzhou 730000, China
| |
Collapse
|
59
|
Zueva OS, Khair T, Kazantseva MA, Latypova L, Zuev YF. Ions-Induced Alginate Gelation According to Elemental Analysis and a Combinatorial Approach. Int J Mol Sci 2023; 24:16201. [PMID: 38003391 PMCID: PMC10671519 DOI: 10.3390/ijms242216201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
This study considers the potential of elemental analysis of polysaccharide ionotropic gels in elucidating the junction zones for different divalent cations. The developed algorithm ensures the correct separation of contributions from physically adsorbed and structure-forming ionic compounds, with the obtained results scaled to alginate C12 block. Possible versions of chain association into dimers and their subsequent integration into flat junction zones were analyzed within the framework of the "egg-box" model. The application of combinatorial analysis made it possible to derive theoretical relations to find the probability of various types of egg-box cell occurrences for alginate chains with arbitrary monomeric units ratio μ = M/G, which makes it possible to compare experimental data for alginates of different origins. Based on literature data and obtained chemical formulas, the possible correspondence of concrete biopolymer cells to those most preferable for filling by alkaline earth cations was established. The identified features of elemental composition suggest the formation of composite hydrated complexes with the participation of transition metal cations. The possibility of quantitatively assessing ordered secondary structures formed due to the physical sorption of ions and molecules from environment, correlating with the sorption capabilities of Me2+ alginate, was established.
Collapse
Affiliation(s)
- Olga S. Zueva
- Institute of Electric Power Engineering and Electronics, Kazan State Power Engineering University, 51 Krasnoselskaya Street, 420066 Kazan, Russia; (O.S.Z.); (T.K.)
| | - Tahar Khair
- Institute of Electric Power Engineering and Electronics, Kazan State Power Engineering University, 51 Krasnoselskaya Street, 420066 Kazan, Russia; (O.S.Z.); (T.K.)
| | - Mariia A. Kazantseva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia;
- School of Applied Mathematics, HSE University, 34 Tallinskaya Street, 123458 Moscow, Russia
| | - Larisa Latypova
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China;
| | - Yuriy F. Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia;
| |
Collapse
|
60
|
Chen X, Li L, Chen L, Shao W, Chen Y, Fan X, Liu Y, Tang C, Ding S, Xu X, Zhou G, Feng X. Tea polyphenols coated sodium alginate-gelatin 3D edible scaffold for cultured meat. Food Res Int 2023; 173:113267. [PMID: 37803580 DOI: 10.1016/j.foodres.2023.113267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
This study aimed to use edible scaffolds as a platform for animal stem cell expansion, thus constructing block-shaped cell culture meat. The tea polyphenols (TP)-coated 3D scaffolds were constructed of sodium alginate (SA) and gelatin (Gel) with good biocompatibility and mechanical support. Initially, the physicochemical properties and mechanical properties of SA-Gel-TP scaffolds were measured, and the biocompatibility of the scaffolds was evaluated by C2C12 cells. SEM results showed that the scaffold had a porous laminar structure with TP particles attached to the surface, while FT-IR results also demonstrated the encapsulation of TP coating on the scaffold. In addition, the porosity of all scaffolds was higher than 40% and the degradation rate during the incubation cycle was less than 40% and the S2-G1-TP0.1-3 h scaffold has excellent cell adhesion and extension. Subsequently, we inoculated rabbit skeletal muscle myoblasts (RbSkMC) on the scaffold and induced differentiation. The results showed good adhesion and extension behavior of RbSkMC on S2-G1-TP0.1-3 h scaffolds with high expression of myogenic differentiation proteins and genes, and SEM results confirmed the formation of myotubes. Additionally, the adhesion rate of cells on scaffolds with TP coating was 1.5 times higher than that on scaffolds without coating, which significantly improved the cell proliferation rate and the morphology of cells with extension on the scaffolds. Furthermore, rabbit-derived cultured meat had similar appearance and textural characteristics to fresh meat. These conclusions indicate the high potential of the scaffolds with TP coating as a platform for the production of cultured meat products.
Collapse
Affiliation(s)
- Xiaohong Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Linzi Li
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Lin Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| | - Wei Shao
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yan Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xiaojing Fan
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yaping Liu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Changbo Tang
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shijie Ding
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xinglian Xu
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guanghong Zhou
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
61
|
Zhang H, Zhang S, Li Y, Li L, Hou X. Biochar/sodium alginate mixed matrix membrane as adsorbent for in-syringe solid-phase extraction towards trace nitroimidazoles in water samples prior to ultra-high-performance liquid chromatography-tandem mass spectrometry analysis. J Sep Sci 2023; 46:e2300316. [PMID: 37688330 DOI: 10.1002/jssc.202300316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
In the present work, the herb (Poria cocos (Schw.) Wolf) residue, as an environmentally friendly and renewable biomass source, was converted into novel biochar. Biochar/sodium alginate mixed matrix membrane was fabricated. On this basis, a biochar/sodium alginate mixed matrix membrane-based in-syringe solid-phase extraction was developed combined with ultra-high performance liquid chromatography-tandem mass spectrometry to determine nitroimidazoles in water samples. The factors including times of exaction, type, and volume of elution solvent, and sample solution pH were thoroughly optimized. Then the correlation coefficient was 0.9995-0.9997. The limit of detection of four analytes was between 0.006 and 0.014 ng/mL, and the recovery was between 79.02% and 99.1%. Consequently, the established method would provide a new perspective on monitoring nitroimidazoles in water samples.
Collapse
Affiliation(s)
- Hongyu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Sijia Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Yingying Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Lin Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
| |
Collapse
|
62
|
Wei M, Zhu J, Gao H, Yao H, Zhai C, Nie Y. An efficient method for improving the stability of Monascus pigments using ionic gelation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6190-6197. [PMID: 37139630 DOI: 10.1002/jsfa.12685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Monascus pigments (Mps) are easily impacted by heating, pH and light, resulting in degradation. In this study, Mps were encapsulated by the ionic gelation method with sodium alginate (SA) and sodium caseinate (SC), as well as CaCl2 as a crosslinker. The encapsulated Mps SA/SC in four proportions (SA/SC: 1/4, 2/3, 3/2, 4/1, w/w). Then, the encapsulation efficiency and particle size of the SA/SC-Mps system were evaluated to obtain the optimal embedding conditions. Finally, the effects of heating, pH, light and storage on the stability of non-capsulated Mps and encapsulated Mps were assessed. RESULTS SA/SC = 2/3 (AC2) had higher encapsulation efficiency (74.30%) of Mps and relatively small particle size (2.02 mm). The AC2 gel beads were chosen for further investigating the stability of encapsulated Mps to heating, pH, light and storage. Heat stability experiments showed that the degradation of Mps followed first-order kinetics, and the encapsulated Mps had lower degradation rates than non-capsulated Mps. Encapsulation could reduce the effect of pH on Mps. The effects of ultraviolet light on the stability of Mps were considered, and showed that the retention efficiency of encapsulated Mps was 22.01% higher than that of non-capsulated Mps on the seventh day. Finally, storage stability was also evaluated under dark refrigerated conditions for 30 days, and the results indicated that encapsulation could reduce the degradation of Mps. CONCLUSION This study has proved that AC2 gel beads can improve the stability of Mps. Thus, the ionic gelation method is a promising encapsulation method to improve the stability of Mps. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengru Wei
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, China
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, China
| | - Jingjing Zhu
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, China
| | - Hongshuai Gao
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Huanhuan Yao
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, China
| | - Cuiping Zhai
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, China
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
63
|
Venkataraman S, Viswanathan V, Thangaiah SG, Omine K, Mylsamy P. Adsorptive exclusion of crystal violet dye using barium encapsulated alginate/carbon composites: characterization and adsorption modeling studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106718-106735. [PMID: 37735334 DOI: 10.1007/s11356-023-29894-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
The present study is devoted to the removal of crystal violet dye using the synthesized barium alginate/carbon composites abbreviated as BA (barium alginate), BAAC (barium alginate/activated carbon), BASC (barium alginate/starch carbon), and BASSC (barium alginate/starch carbon modified with CTAB). The adsorptive removal of crystal violet as a function of contact time, pH of solution, composite dose, initial dye concentration, and temperature was studied. The uptake of crystal violet (CV) dye for the composites was recorded in the range of 36 mg g-1 to 50 mg g-1 at pH 8.03 ± 0.03 for an equilibrium time of 120 min. The adsorption kinetics and isotherms in compliance with the CV sorption onto BA/carbon composites corroborated the utmost fit of pseudo-second-order and Freundlich isotherm models, respectively. The recycling process was achieved using the barium alginate-treated bead carbons for different initial CV dye concentrations of 10-30 mg L-1 with a scope of zero disposal. The practicability of BA/carbon composites in a groundwater sample spiked with 30 mg L-1 of CV was successfully achieved with a removal efficiency of about 65-74%. Characterization studies for the composites using FTIR, SEM (with EDS), XRD, TGA, and BET were carried out and discussed in the paper.
Collapse
Affiliation(s)
- Sivasankar Venkataraman
- Post Graduate and Research Department of Chemistry, Pachaiyappa's College Affiliated to University of Madras, Chennai, Tamil Nadu, 600 030, India
| | - Vinitha Viswanathan
- Post Graduate and Research Department of Chemistry, Pachaiyappa's College Affiliated to University of Madras, Chennai, Tamil Nadu, 600 030, India
| | - Sunitha Ganesan Thangaiah
- Post Graduate and Research Department of Chemistry, Pachaiyappa's College Affiliated to University of Madras, Chennai, Tamil Nadu, 600 030, India.
| | - Kiyoshi Omine
- Department of Civil Engineering, School of Engineering, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan
| | - Prabhakaran Mylsamy
- Post Graduate and Research Department of Botany, Pachaiyappa's College Affiliated to University of Madras, Chennai, Tamil Nadu, 600 030, India
| |
Collapse
|
64
|
Ma R, Feng Y, Yu J, Zhao X, Du Y, Zhang X. Ultralight sponge made from sodium alginate with processability and stability for efficient removal of microplastics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104135-104147. [PMID: 37698794 DOI: 10.1007/s11356-023-29740-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/02/2023] [Indexed: 09/13/2023]
Abstract
Due to natural agents and human activities, large quantities of microplastics enter the marine environment. As an emerging pollutant, MPs have attracted worldwide attention and become a great challenge in recent years. Sodium alginate is a kind of natural polysaccharide with non-toxic, stability, and low cost. In this study, sodium alginate sponge was prepared by secondary freeze-drying technology. Alginate sponge contains a large number of hydrophilic groups; thus, alginate sponge has super water-absorbed (the water absorption rate range from 1193-5232%). Meanwhile, the alginate sponge has high porosity of 81.93% and excellent mechanical properties. The removal efficiency of 100 mg·L-1 microplastics by alginate sponge reached up to 92.3%. The 1 mg·L-1 and 10 mg·L-1 microplastics can be completely absorbed in 27 h and 60 h, respectively. The adsorption mechanism of microplastics adsorbed onto alginate sponge included intra-particle diffusion, hydrogen bonds interactions, and π-π interactions. In addition, the adsorption of MPs loaded Cu2+/Na+ by sponge in complex aqueous environments is still significant. This study expands the development prospect of sodium alginate sponge materials in the field of water treatment and provides a new green approach for the removal of microplastics.
Collapse
Affiliation(s)
- Ruojun Ma
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yongkang Feng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Junlong Yu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xiaodong Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yi Du
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xiuxia Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
65
|
Wang L, Li Y, Jiang S, Zhang Z, Zhao S, Song Y, Liu J, Tan F. Alginate hydrogels containing different concentrations of magnesium-containing poly(lactic-co-glycolic acid) microspheres for bone tissue engineering. Biomed Mater 2023; 18:055022. [PMID: 37478839 DOI: 10.1088/1748-605x/ace9a5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/21/2023] [Indexed: 07/23/2023]
Abstract
The easy loss of crosslinking ions in alginate can result in structural collapse and loss of its characteristics as a bone scaffold. A novel injectable tissue engineering scaffold containing poly(lactic-co-glycolic acid) (PLGA) microspheres and alginate was fabricated to improve alginate's physiochemical and biological properties. MgCO3and MgO were loaded at a 1:1 ratio into PLGA microspheres to form biodegradable PLGA microspheres containing magnesium (PMg). Subsequently, different concentrations of PMg were mixed into a Ca2+suspension and employed as crosslinking agents for an alginate hydrogel. A pure Ca2+suspension was used as the alginate crosslinking agent in the control group. The influence of PMg on the physiochemical properties of the injectable scaffolds, including the surface morphology, degradation rate, Mg2+precipitation concentration, and the swelling rate, was investigated. MC3T3-E1 cells were seeded onto the hydrogels to evaluate the effect of the resultant alginate on osteoblastic attachment, proliferation, and differentiation. The physicochemical properties of the hydrogels, including morphology, degradation rate, and swelling ratio, were effectively tuned by PMg. Inductively coupled plasma-optical emission spectroscopy results showed that, in contrast to those in pure PMg, the magnesium ions (Mg2+) in alginate hydrogel containing PMg microspheres (Alg-PMg) were released in a dose-dependent and slow-releasing manner. Additionally, Alg-PMg with an appropriate concentration of PMg not only improved cell attachment and proliferation but also upregulated alkaline phosphatase activity, gene expression of osteogenic markers, and related growth factors. These findings indicate that PMg incorporation can regulate the physicochemical properties of alginate hydrogels. The resultant hydrogel promoted cell attachment, matrix mineralization, and bone regeneration. The hydrogel described in this study can be considered a promising injectable scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Lizhe Wang
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, People's Republic of China
- Qingdao Stomatological Hospital Affiliated to Qingdao University, 17 Dexian Road, Qingdao 266001, People's Republic of China
| | - Yaxin Li
- Qingdao Stomatological Hospital Affiliated to Qingdao University, 17 Dexian Road, Qingdao 266001, People's Republic of China
| | - Shuai Jiang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, 17 Dexian Road, Qingdao 266001, People's Republic of China
| | - Zhihao Zhang
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, People's Republic of China
| | - Sinan Zhao
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, People's Republic of China
| | - Yuru Song
- Huantai Country People Hospital, 2198 Huantai Road, Zibo 256400, People's Republic of China
| | - Jie Liu
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, People's Republic of China
| | - Fei Tan
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, People's Republic of China
| |
Collapse
|
66
|
Lin T, Chen D, Geng Y, Li J, Ou Y, Zeng Z, Yin C, Qian X, Qiu X, Li G, Zhang Y, Guan W, Li M, Cai X, Wu J, Chen WH, Guan YQ, Yao H. Carboxymethyl Chitosan/Sodium Alginate/Chitosan Quaternary Ammonium Salt Composite Hydrogel Supported 3J for the Treatment of Oral Ulcer. Gels 2023; 9:659. [PMID: 37623114 PMCID: PMC10454119 DOI: 10.3390/gels9080659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Oral ulcer is a common inflammatory disease of oral mucosa, causing severe burning pain and great inconvenience to daily life. In this study, compound 3J with anti-inflammatory activity was synthesized beforehand. Following that, an intelligent composite hydrogel supported 3J was designed with sodium alginate, carboxymethyl chitosan, and chitosan quaternary ammonium salt as the skeleton, and its therapeutic effect on the rat oral ulcer model was investigated. The results show that the composite hydrogel has a dense honeycomb structure, which is conducive to drug loading and wound ventilation, and has biodegradability. It has certain antibacterial effects and good anti-inflammatory activity. When loaded with 3J, it reduced levels of TNF-α and IL-6 in inflammatory cells by up to 50.0%. It has excellent swelling and water retention properties, with a swelling rate of up to 765.0% in a pH 8.5 environment. The existence of a large number of quaternary ammonium groups, carboxyl groups, and hydroxyl groups makes it show obvious differences in swelling in different pH environments, which proves that it has double pH sensitivity. It is beneficial to adapt to the highly dynamic changes of the oral environment. Compared with single hydrogel or drug treatment, the drug-loaded hydrogel has a better effect on the treatment of oral ulcers.
Collapse
Affiliation(s)
- Tao Lin
- School of Life Sciences, South China Normal University, Guangzhou 510631, China;
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (D.C.); (Y.G.); (J.L.); (Y.O.); (Z.Z.); (C.Y.); (X.Q.); (X.Q.); (G.L.); (Y.Z.); (W.G.); (M.L.)
| | - Dandan Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (D.C.); (Y.G.); (J.L.); (Y.O.); (Z.Z.); (C.Y.); (X.Q.); (X.Q.); (G.L.); (Y.Z.); (W.G.); (M.L.)
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (X.C.); (J.W.); (W.-H.C.)
| | - Yan Geng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (D.C.); (Y.G.); (J.L.); (Y.O.); (Z.Z.); (C.Y.); (X.Q.); (X.Q.); (G.L.); (Y.Z.); (W.G.); (M.L.)
| | - Jiayu Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (D.C.); (Y.G.); (J.L.); (Y.O.); (Z.Z.); (C.Y.); (X.Q.); (X.Q.); (G.L.); (Y.Z.); (W.G.); (M.L.)
| | - Yanghui Ou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (D.C.); (Y.G.); (J.L.); (Y.O.); (Z.Z.); (C.Y.); (X.Q.); (X.Q.); (G.L.); (Y.Z.); (W.G.); (M.L.)
| | - Zhijun Zeng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (D.C.); (Y.G.); (J.L.); (Y.O.); (Z.Z.); (C.Y.); (X.Q.); (X.Q.); (G.L.); (Y.Z.); (W.G.); (M.L.)
| | - Canqiang Yin
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (D.C.); (Y.G.); (J.L.); (Y.O.); (Z.Z.); (C.Y.); (X.Q.); (X.Q.); (G.L.); (Y.Z.); (W.G.); (M.L.)
| | - Xudong Qian
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (D.C.); (Y.G.); (J.L.); (Y.O.); (Z.Z.); (C.Y.); (X.Q.); (X.Q.); (G.L.); (Y.Z.); (W.G.); (M.L.)
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (X.C.); (J.W.); (W.-H.C.)
| | - Xiang Qiu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (D.C.); (Y.G.); (J.L.); (Y.O.); (Z.Z.); (C.Y.); (X.Q.); (X.Q.); (G.L.); (Y.Z.); (W.G.); (M.L.)
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (X.C.); (J.W.); (W.-H.C.)
| | - Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (D.C.); (Y.G.); (J.L.); (Y.O.); (Z.Z.); (C.Y.); (X.Q.); (X.Q.); (G.L.); (Y.Z.); (W.G.); (M.L.)
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (D.C.); (Y.G.); (J.L.); (Y.O.); (Z.Z.); (C.Y.); (X.Q.); (X.Q.); (G.L.); (Y.Z.); (W.G.); (M.L.)
| | - Wen Guan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (D.C.); (Y.G.); (J.L.); (Y.O.); (Z.Z.); (C.Y.); (X.Q.); (X.Q.); (G.L.); (Y.Z.); (W.G.); (M.L.)
| | - Mengjie Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (D.C.); (Y.G.); (J.L.); (Y.O.); (Z.Z.); (C.Y.); (X.Q.); (X.Q.); (G.L.); (Y.Z.); (W.G.); (M.L.)
| | - Xiaojia Cai
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (X.C.); (J.W.); (W.-H.C.)
| | - Jiaqiang Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (X.C.); (J.W.); (W.-H.C.)
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (X.C.); (J.W.); (W.-H.C.)
| | - Yan-Qing Guan
- School of Life Sciences, South China Normal University, Guangzhou 510631, China;
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (D.C.); (Y.G.); (J.L.); (Y.O.); (Z.Z.); (C.Y.); (X.Q.); (X.Q.); (G.L.); (Y.Z.); (W.G.); (M.L.)
| |
Collapse
|
67
|
Varela-Feijoo A, Djemia P, Narita T, Pignon F, Baeza-Squiban A, Sirri V, Ponton A. Multiscale investigation of viscoelastic properties of aqueous solutions of sodium alginate and evaluation of their biocompatibility. SOFT MATTER 2023; 19:5942-5955. [PMID: 37490024 DOI: 10.1039/d3sm00159h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
In order to get better knowledge of mechanical properties from microscopic to macroscopic scale of biopolymers, viscoelastic bulk properties of aqueous solutions of sodium alginate were studied at different scales by combining macroscopic shear rheology (Hz), diffusing-wave spectroscopy microrheology (kHz-MHz) and Brillouin spectroscopy (GHz). Structural properties were also directly probed by small-angle X-ray scattering (SAXS). The results demonstrate a change from polyelectrolyte behavior to neutral polymer behavior by increasing polymer concentration with the determination of characteristic sizes (persistence length, correlation length). The viscoelastic properties probed at the phonon wavelength much higher than the ones obtained at low frequency reflect the variation of microscopic viscosity. First experiments obtained by metabolic activity assays with mouse embryonic fibroblasts showed biocompatibility of sodium alginate aqueous solutions in the studied range of concentrations (2.5-10 g L-1) and consequently their potential biomedical applications.
Collapse
Affiliation(s)
- Alberto Varela-Feijoo
- Laboratoire Matière et systèmes complexes (MSC), Université Paris Cité et CNRS, UMR 7057, 10 rue A. Domon et L. Duquet, 75013 Paris, France.
- Université Paris Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France
| | - Philippe Djemia
- Laboratoire des Sciences des procédés et des matériaux (LSPM), UPR-CNRS 3407, 99 Avenue Jean-Baptiste Clément, 93530 Villetaneuse, France
| | - Tetsuharu Narita
- École supérieure de physique et de chimie industrielles de la ville de Paris (ESPCI), 10 Rue Vauquelin, 75005 Paris, France
| | - Frédéric Pignon
- Laboratoire rhéologie et procédés (LPG) Université Grenoble Alpes, CNRS, UMR 5520, Domaine Universitaire, BP 53, 38041 Grenoble Cedex 9, France
| | - Armelle Baeza-Squiban
- Unité de Biologie fonctionnelle et adaptative (BFA), Université Paris Cité et CNRS, UMR 8251, 4 rue Marie-Andrée Lagroua Weill-Hallé, 75013 Paris, France
| | - Valentina Sirri
- Unité de Biologie fonctionnelle et adaptative (BFA), Université Paris Cité et CNRS, UMR 8251, 4 rue Marie-Andrée Lagroua Weill-Hallé, 75013 Paris, France
| | - Alain Ponton
- Laboratoire Matière et systèmes complexes (MSC), Université Paris Cité et CNRS, UMR 7057, 10 rue A. Domon et L. Duquet, 75013 Paris, France.
| |
Collapse
|
68
|
Yáñez O, Alegría-Arcos M, Suardiaz R, Morales-Quintana L, Castro RI, Palma-Olate J, Galarza C, Catagua-González Á, Rojas-Pérez V, Urra G, Hernández-Rodríguez EW, Bustos D. Calcium-Alginate-Chitosan Nanoparticle as a Potential Solution for Pesticide Removal, a Computational Approach. Polymers (Basel) 2023; 15:3020. [PMID: 37514411 PMCID: PMC10383139 DOI: 10.3390/polym15143020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Pesticides have a significant negative impact on the environment, non-target organisms, and human health. To address these issues, sustainable pest management practices and government regulations are necessary. However, biotechnology can provide additional solutions, such as the use of polyelectrolyte complexes to encapsulate and remove pesticides from water sources. We introduce a computational methodology to evaluate the capture capabilities of Calcium-Alginate-Chitosan (CAC) nanoparticles for a broad range of pesticides. By employing ensemble-docking and molecular dynamics simulations, we investigate the intermolecular interactions and absorption/adsorption characteristics between the CAC nanoparticles and selected pesticides. Our findings reveal that charged pesticide molecules exhibit more than double capture rates compared to neutral counterparts, owing to their stronger affinity for the CAC nanoparticles. Non-covalent interactions, such as van der Waals forces, π-π stacking, and hydrogen bonds, are identified as key factors which stabilized the capture and physisorption of pesticides. Density profile analysis confirms the localization of pesticides adsorbed onto the surface or absorbed into the polymer matrix, depending on their chemical nature. The mobility and diffusion behavior of captured compounds within the nanoparticle matrix is assessed using mean square displacement and diffusion coefficients. Compounds with high capture levels exhibit limited mobility, indicative of effective absorption and adsorption. Intermolecular interaction analysis highlights the significance of hydrogen bonds and electrostatic interactions in the pesticide-polymer association. Notably, two promising candidates, an antibiotic derived from tetracycline and a rodenticide, demonstrate a strong affinity for CAC nanoparticles. This computational methodology offers a reliable and efficient screening approach for identifying effective pesticide capture agents, contributing to the development of eco-friendly strategies for pesticide removal.
Collapse
Affiliation(s)
- Osvaldo Yáñez
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago 7500000, Chile
| | - Melissa Alegría-Arcos
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago 7500000, Chile
| | - Reynier Suardiaz
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3400000, Chile
| | - Ricardo I Castro
- Multidisciplinary Agroindustry Research Laboratory, Carrera de Ingeniería en Construcción, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Talca 3400000, Chile
| | | | - Christian Galarza
- Escuela Superior Politécnica del Litoral, Guayaquil EC090903, Ecuador
| | | | - Víctor Rojas-Pérez
- Doctorado en Biotecnología Traslacional, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3480094, Chile
| | - Gabriela Urra
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile
| | - Erix W Hernández-Rodríguez
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile
- Unidad de Bioinformática Clínica, Centro Oncológico, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile
| | - Daniel Bustos
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado Universidad Católica del Maule, Talca 3460000, Chile
| |
Collapse
|
69
|
Martinović J, Lukinac J, Jukić M, Ambrus R, Planinić M, Šelo G, Klarić AM, Perković G, Bucić-Kojić A. In Vitro Bioaccessibility Assessment of Phenolic Compounds from Encapsulated Grape Pomace Extract by Ionic Gelation. Molecules 2023; 28:5285. [PMID: 37446946 DOI: 10.3390/molecules28135285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Grape pomace is a by-product of winemaking characterized by a rich chemical composition from which phenolics stand out. Phenolics are health-promoting agents, and their beneficial effects depend on their bioaccessibility, which is influenced by gastrointestinal digestion. The effect of encapsulating phenol-rich grape pomace extract (PRE) with sodium alginate (SA), a mixture of SA with gelatin (SA-GEL), and SA with chitosan (SA-CHIT) on the bioaccessibility index (BI) of phenolics during simulated digestion in vitro was studied. A total of 27 individual phenolic compounds (IPCs) were quantified by UHPLC. The addition of a second coating to SA improved the encapsulation efficiency (EE), and the highest EE was obtained for SA-CHIT microbeads (56.25%). Encapsulation affected the physicochemical properties (size, shape and texture, morphology, crystallinity) of the produced microbeads, which influenced the delivery of phenolics to the intestine and their BI. Thus, SA-GEL microbeads had the largest size parameters, as confirmed by scanning electron microscopy (SEM), and the highest BI for total phenolic compounds and IPCs (gallic acid, 3,4-dihydroxybenzoic acid and o-coumaric acid, epicatechin, and gallocatechin gallate) ranged from 96.20 to 1011.3%. The results suggest that encapsulated PRE has great potential to be used as a functional ingredient in products for oral administration.
Collapse
Affiliation(s)
- Josipa Martinović
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Jasmina Lukinac
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Marko Jukić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary
| | - Mirela Planinić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Gordana Šelo
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Ana-Marija Klarić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Gabriela Perković
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Ana Bucić-Kojić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| |
Collapse
|
70
|
Hoan NX, Anh LTH, Ha HT, Cuong DX. Antioxidant Activities, Anticancer Activity, Physico-Chemistry Characteristics, and Acute Toxicity of Alginate/Lignin Polymer. Molecules 2023; 28:5181. [PMID: 37446843 DOI: 10.3390/molecules28135181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Alginate/lignin is a synthetic polymer rich in biological activity and is of great interest. Alginate is extracted from seaweed and lignin is extracted from corn stalks and leaves. In this paper, antioxidant activities of alginate/lignin were evaluated, such as total antioxidant activity, reducing power activity, DPPH free radical scavenging activity, and α-glucosidase inhibition activity. Anticancer activity was evaluated in three cell lines (Hep G2, MCF-7, and NCI H460) and fibroblast. Physico-chemistry characteristics of alginate/lignin were determined through FTIR, DSC, SEM_EDS, SEM_EDS mapping, XRD, XRF, and 1H-NMR. The acute toxicity of alginate/lignin was studied on Swiss albino mice. The results demonstrated that alginate/lignin possessed antioxidant activity, such as the total antioxidant activity, and reducing power activity, especially the α-glucosidase inhibition activity, and had no free radical scavenging activity. Alginate/lignin was not typical in cancer cell lines. Alginate/lignin existed in a thermally stable and regular spherical shape in the investigated thermal region. Six metals, three non-metals, and nineteen oxides were detected in alginate/lignin. Some specific functional groups of alginate and lignin did not exist in alginate/lignin crystal. Elements, such as C, O, Na, and S were popular in the alginate/lignin structure. LD0 and LD100 of alginate/lignin in mice were 3.91 g/kg and 9.77 g/kg, respectively. Alginate/lignin has potential for applications in pharmaceutical materials, functional foods, and supporting diabetes treatment.
Collapse
Affiliation(s)
- Nguyen Xuan Hoan
- Faculty of Biology and Environment, Ho Chi Minh City University of Industry and Trade, 140 Le Trong Tan, Tan Phu District, Ho Chi Minh 70000, Vietnam
| | - Le Thi Hong Anh
- Faculty of Food Technology, Ho Chi Minh City University of Industry and Trade, 140 Le Trong Tan, Tan Phu District, Ho Chi Minh 70000, Vietnam
| | - Hoang Thai Ha
- Faculty of Food Technology, Ho Chi Minh City University of Industry and Trade, 140 Le Trong Tan, Tan Phu District, Ho Chi Minh 70000, Vietnam
| | - Dang Xuan Cuong
- Innovation and Entrepreneurship Center, Ho Chi Minh City University of Industry and Trade, 140 Le Trong Tan, Tan Phu District, Ho Chi Minh 70000, Vietnam
| |
Collapse
|
71
|
Besiri IN, Goudoulas TB, Fattahi E, Becker T. Experimental Advances in the Real-Time Recording of Cross-Linking Alginate In Situ Gelation: A Review. Polymers (Basel) 2023; 15:2875. [PMID: 37447520 DOI: 10.3390/polym15132875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Alginate-based hydrogels are promising smart materials widely employed in the food, bioengineering, and energy sectors. The development and optimization of their production require a thorough knowledge of gelation. In recent years, advanced experimental procedures have been developed for real-time cross-linking alginate reaction monitoring. Novel methods, such as customized rheometric setups, enable the recording of mechanical properties and morphological changes during hydrogel formation. These innovative techniques provide important insights into the gelation stages, the reaction rate, the diffusion of cross-linker to polymer chains, and the homogeneity of the gelling structures. Based on real-time experimental data, kinetic models are developed to enhance comprehension of the reaction mechanism and, eventually, to predict the gelation progress. The aim is to enable better control of the characterization of both the complex gelation and the propagated structures. This review aspires to present a comprehensive overview and evaluation of the breakthrough innovations of the real-time in situ recording of cross-linking alginate hydrogels and bead formation. A detailed analysis of the pioneering experimental developments provides a deep comprehension of the alginate gelation, including the parameters controlling the reaction.
Collapse
Affiliation(s)
- Ioanna N Besiri
- Research Group of Fluid Dynamics, Chair of Brewing and Beverage Technology, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Steig 20, 85354 Freising, Germany
| | - Thomas B Goudoulas
- Research Group of Fluid Dynamics, Chair of Brewing and Beverage Technology, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Steig 20, 85354 Freising, Germany
| | - Ehsan Fattahi
- Research Group of Fluid Dynamics, Chair of Brewing and Beverage Technology, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Steig 20, 85354 Freising, Germany
| | - Thomas Becker
- Research Group of Fluid Dynamics, Chair of Brewing and Beverage Technology, TUM School of Life Sciences, Technical University of Munich, Weihenstephaner Steig 20, 85354 Freising, Germany
| |
Collapse
|
72
|
Dhruv L, Kori DKK, Das AK. Sodium Alginate-CuS Nanostructures Synthesized at the Gel-Liquid Interface: An Efficient Photocatalyst for Redox Reaction and Water Remediation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37377166 DOI: 10.1021/acs.langmuir.3c00980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The use of visible light to propel chemical reactions is an exciting area of study that is crucial in the current socioeconomic environment. However, various photocatalysts have been developed to harness visible light, which consume high energy during synthesis. Thus, synthesizing photocatalysts at gel-liquid interfaces in ambient conditions is of scientific importance. Herein, we report an environmentally benign sodium alginate gel being used as a biopolymer template to synthesize copper sulfide (CuS) nanostructures at the gel-liquid interface. The driving force for the synthesis of CuS nanostructures is varied by changing the pH of the reaction medium (i.e., pH 7.4, 10, and 13) to tailor the morphology of CuS nanostructures. The CuS nanoflakes obtained at pH 7.4 transform into nanocubes when the pH is raised to 10, and the nanostructures deform at the pH of 13. Fourier transform infrared spectroscopy (FTIR) confirms all the characteristic stretching of sodium alginate, whereas the CuS nanostructures are crystallized in a hexagonal crystal system, as revealed by the powder X-ray diffraction analysis. The high-resolution X-ray photoelectron spectroscopy (XPS) spectra show the +2 and -2 oxidation states of copper (Cu) and sulfur (S) ions, respectively. The CuS nanoflakes physisorbed a higher concentration of greenhouse CO2 gas. Owing to a lower band gap of CuS nanoflakes synthesized at a pH of 7.4, compared to other CuS nanostructures prepared at pH 10 and 13, CuS photocatalytically degrades 95% of crystal violet and 98% of methylene blue aqueous dye solutions in 60 and 90 min, respectively, under blue light illumination. Additionally, sodium alginate-copper sulfide (SA-CuS) nanostructures synthesized at a pH of 7.4 demonstrate excellent performance in photoredox reactions to convert ferricyanide to ferrocyanide. The current research opens the door to developing new photocatalytic pathways for a wide range of photochemical reactions involving nanoparticle-impregnated alginate composites prepared on gel interfaces.
Collapse
Affiliation(s)
- Likhi Dhruv
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Deepak K K Kori
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
- Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| |
Collapse
|
73
|
Liu S, Liu W, Yin H, Yang C, Chen J. Improving rhamnolipids production using fermentation-foam fractionation coupling system: cell immobilization and waste frying oil emulsion. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02890-5. [PMID: 37338581 DOI: 10.1007/s00449-023-02890-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
This work focused on the development of an inexpensive carbon source and the improvement of the fermentation-foam fractionation coupling system. The rhamnolipids production capacity of waste frying oil (WFO) was evaluated. The suitable bacterial cultivation of seed liquid and the addition amount of WFO was 16 h and 2% (v/v), respectively. A combined strategy of cell immobilization and oil emulsion avoid cell entrainment inside foam and improves the oil mass transfer rate. The immobilization conditions of bacterial cells into alginate-chitosan-alginate (ACA) microcapsules were optimized using the response surface method (RSM). Under the optimal conditions, rhamnolipids production using batch fermentation with immobilized strain reached 7.18 ± 0.23% g/L. WFO was emulsified into a fermentation medium using rhamnolipids as emulsifier (0.5 g/L). By monitoring dissolved oxygen, 30 mL/min was selected as a suitable air volumetric flow rate for fermentation-foam fractionation coupling operation. The total production and recovery percentage of rhamnolipids were 11.29 ± 0.36 g/L and 95.62 ± 0.38%, respectively.
Collapse
Affiliation(s)
- Siyuan Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, DingziGu, Hongqiao District, Tianjin, 300130, China
| | - Wei Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, DingziGu, Hongqiao District, Tianjin, 300130, China.
| | - Hao Yin
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, DingziGu, Hongqiao District, Tianjin, 300130, China
| | - Chunyan Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, DingziGu, Hongqiao District, Tianjin, 300130, China
| | - Jianxin Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8 Guangrong Road, DingziGu, Hongqiao District, Tianjin, 300130, China
| |
Collapse
|
74
|
Sereshti H, Mohammadi Z, Soltani S, Taghizadeh M. Synthesis of a magnetic micro-eutectogel based on a deep eutectic solvent gel immobilized in calcium alginate: Application for green analysis of melamine in milk and dairy products. Talanta 2023; 265:124801. [PMID: 37385193 DOI: 10.1016/j.talanta.2023.124801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/26/2023] [Accepted: 06/09/2023] [Indexed: 07/01/2023]
Abstract
A new three-component magnetic eutectogel composed of a crosslinked copolymeric deep eutectic solvent (DES) and polyvinylpyrrolidone-coated Fe3O4 nano-powder impregnated in calcium alginate gel was synthesized and applied as a sorbent material in a green alternative micro solid-phase extraction of melamine in milk and dairy products. The analyses were performed using the HPLC-UV technique. The copolymeric DES was prepared through thermally-induced free-radical polymerization of [2-hydroxyethyl methacrylate]:[thymol] DES (1:1 mol ratio) as functional monomer, azobisisobutyronitrile (as initiator), and ethylene glycol dimethacrylate (as crosslinker). The sorbent was characterized using ATR-FTIR, 1H & 13C FT-NMR, SEM, VSM, and BET techniques. The stability of the eutectogel in water and its effect on the pH of the aqueous solution was studied. A one-at-a-time approach was applied to optimize the impact of significant factors influencing sample preparation efficiency (sorbent mass, desorption conditions, adsorption time, pH, and ionic strength). The method validation was performed by evaluating matrix-matched calibration linearity (2-300 μg kg-1, r2 = 0.9902), precision, system suitability, specificity, enrichment factor, and matrix effect. The obtained limit of quantification (0.38 μg kg-1) was lower than the established maximum level for melamine by Food and Drug Administration (FDA) (0.25 mg kg-1), Food and Agriculture Organization (FAO) (0.5 & 2.5 mg kg-1), and The European Union (EU) (2.5 mg kg-1) in milk and dairy products. The optimized procedure was applied for the analysis of melamine in bovine milk, yogurt, cream, cheese, and ice cream. The obtained normalized recoveries of 77.4-105.3% (RSD% <7.0%) were acceptable regarding the practical default range set by the European Commission (70-120%, RSD≤20%). The sustainability and green aspects of the procedure were evaluated by the Analytical Greenness Metric Approach (0.6/1.0) and the Analytical Eco-Scale tool (73/100). This paper presents the first-time synthesis and application of this micro-eutectogel for the analysis of melamine in milk and milk-based dairy products.
Collapse
Affiliation(s)
- Hassan Sereshti
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Zahra Mohammadi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Sara Soltani
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Massoud Taghizadeh
- Department of Biology, Faculty of Science, Shahed University, Tehran, Iran
| |
Collapse
|
75
|
Lee S, Kim S, Kim D, You J, Kim JS, Kim H, Park J, Song J, Choi I. Spatiotemporally controlled drug delivery via photothermally driven conformational change of self-integrated plasmonic hybrid nanogels. J Nanobiotechnology 2023; 21:191. [PMID: 37316900 DOI: 10.1186/s12951-023-01935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/18/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Spatiotemporal regulation is one of the major considerations for developing a controlled and targeted drug delivery system to treat diseases efficiently. Light-responsive plasmonic nanostructures take advantage due to their tunable optical and photothermal properties by changing size, shape, and spatial arrangement. RESULTS In this study, self-integrated plasmonic hybrid nanogels (PHNs) are developed for spatiotemporally controllable drug delivery through light-driven conformational change and photothermally-boosted endosomal escape. PHNs are easily synthesized through the simultaneous integration of gold nanoparticles (GNPs), thermo-responsive poly (N-isopropyl acrylamide), and linker molecules during polymerization. Wave-optic simulations reveal that the size of the PHNs and the density of the integrated GNPs are crucial factors in modulating photothermal conversion. Several linkers with varying molecular weights are inserted for the optimal PHNs, and the alginate-linked PHN (A-PHN) achieves more than twofold enhanced heat conversion compared with others. Since light-mediated conformational changes occur transiently, drug delivery is achieved in a spatiotemporally controlled manner. Furthermore, light-induced heat generation from cellular internalized A-PHNs enables pinpoint cytosolic delivery through the endosomal rupture. Finally, the deeper penetration for the enhanced delivery efficiency by A-PHNs is validated using multicellular spheroid. CONCLUSION This study offers a strategy for synthesizing light-responsive nanocarriers and an in-depth understanding of light-modulated site-specific drug delivery.
Collapse
Affiliation(s)
- Seungki Lee
- Department of Life Science, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-Gu, Seoul, 02504, Republic of Korea
| | - Subeen Kim
- Department of Mechanical Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-Gu, Daejeon, 34158, Republic of Korea
| | - Doyun Kim
- Department of Life Science, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-Gu, Seoul, 02504, Republic of Korea
| | - Jieun You
- Department of Life Science, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-Gu, Seoul, 02504, Republic of Korea
| | - Ji Soo Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1 Gwanakro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Hakchun Kim
- Department of Life Science, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-Gu, Seoul, 02504, Republic of Korea
| | - Jungwon Park
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1 Gwanakro, Gwanak-Gu, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Jihwan Song
- Department of Mechanical Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-Gu, Daejeon, 34158, Republic of Korea.
| | - Inhee Choi
- Department of Life Science, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-Gu, Seoul, 02504, Republic of Korea.
- Department of Applied Chemistry, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-Gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
76
|
Abdul Rahman AS, Fizal ANS, Khalil NA, Ahmad Yahaya AN, Hossain MS, Zulkifli M. Fabrication and Characterization of Magnetic Cellulose-Chitosan-Alginate Composite Hydrogel Bead Bio-Sorbent. Polymers (Basel) 2023; 15:polym15112494. [PMID: 37299293 DOI: 10.3390/polym15112494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The implementation of inorganic adsorbents for the removal of heavy metals from industrial effluents generates secondary waste. Therefore, scientists and environmentalists are looking for environmentally friendly adsorbents isolated from biobased materials for the efficient removal of heavy metals from industrial effluents. This study aimed to fabricate and characterize an environmentally friendly composite bio-sorbent as an initiative toward greener environmental remediation technology. The properties of cellulose, chitosan, magnetite, and alginate were exploited to fabricate a composite hydrogel bead. The cross linking and encapsulation of cellulose, chitosan, alginate, and magnetite in hydrogel beads were successfully conducted through a facile method without any chemicals used during the synthesis. Energy-dispersive X-ray analysis verified the presence of element signals of N, Ca, and Fe on the surface of the composite bio-sorbents. The appearance and peak's shifting at 3330-3060 cm-1 in the Fourier transform infrared spectroscopy analysis of the composite cellulose-magnetite-alginate, chitosan-magnetite-alginate, and cellulose-chitosan-magnetite-alginate suggested that there are overlaps of O-H and N-H and weak interaction of hydrogen bonding with the Fe3O4 particles. Material degradation, % mass loss, and thermal stability of the material and synthesized composite hydrogel beads were determined through thermogravimetric analysis. The onset temperature of the composite cellulose-magnetite-alginate, chitosan-magnetite-alginate, and cellulose-chitosan-magnetite-alginate hydrogel beads were observed to be lower compared to raw-material cellulose and chitosan, which could be due to the formation of weak hydrogen bonding resulting from the addition of magnetite Fe3O4. The higher mass residual of cellulose-magnetite-alginate (33.46%), chitosan-magnetite-alginate (37.09%), and cellulose-chitosan-magnetite-alginate (34.40%) compared to cellulose (10.94%) and chitosan (30.82%) after degradation at a temperature of 700 °C shows that the synthesized composite hydrogel beads possess better thermal stability, owing to the addition of magnetite and the encapsulation in the alginate hydrogel beads.
Collapse
Affiliation(s)
- Aida Syafiqah Abdul Rahman
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and BioEngineering Technology, 78000 Alor Gajah, Melaka, Malaysia
| | - Ahmad Noor Syimir Fizal
- Centre for Sustainability of Ecosystem & Earth Resources (Pusat ALAM) Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, 26300 Gambang, Pahang, Malaysia
| | - Nor Afifah Khalil
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and BioEngineering Technology, 78000 Alor Gajah, Melaka, Malaysia
| | - Ahmad Naim Ahmad Yahaya
- Green Chemistry and Sustainability Cluster, Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and BioEngineering Technology, 78000 Alor Gajah, Melaka, Malaysia
| | - Md Sohrab Hossain
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS (UTP), 32610 Seri Iskandar, Perak, Malaysia
| | - Muzafar Zulkifli
- Green Chemistry and Sustainability Cluster, Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and BioEngineering Technology, 78000 Alor Gajah, Melaka, Malaysia
| |
Collapse
|
77
|
Murphy EJ, Fehrenbach GW, Abidin IZ, Buckley C, Montgomery T, Pogue R, Murray P, Major I, Rezoagli E. Polysaccharides-Naturally Occurring Immune Modulators. Polymers (Basel) 2023; 15:polym15102373. [PMID: 37242947 DOI: 10.3390/polym15102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The prevention of disease and infection requires immune systems that operate effectively. This is accomplished by the elimination of infections and abnormal cells. Immune or biological therapy treats disease by either stimulating or inhibiting the immune system, dependent upon the circumstances. In plants, animals, and microbes, polysaccharides are abundant biomacromolecules. Due to the intricacy of their structure, polysaccharides may interact with and impact the immune response; hence, they play a crucial role in the treatment of several human illnesses. There is an urgent need for the identification of natural biomolecules that may prevent infection and treat chronic disease. This article addresses some of the naturally occurring polysaccharides of known therapeutic potential that have already been identified. This article also discusses extraction methods and immunological modulatory capabilities.
Collapse
Affiliation(s)
- Emma J Murphy
- Shannon Applied Biotechnology Centre, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- LIFE-Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Gustavo Waltzer Fehrenbach
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Ismin Zainol Abidin
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Ciara Buckley
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Therese Montgomery
- School of Science and Computing, Atlantic Technological University, H91 T8NW Galway, Ireland
| | - Robert Pogue
- Universidade Católica de Brasilia, QS 7 LOTE 1-Taguatinga, Brasília 71680-613, DF, Brazil
| | - Patrick Murray
- Shannon Applied Biotechnology Centre, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
- LIFE-Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, V94EC5T Limerick, Ireland
| | - Ian Major
- PRISM, Research Institute, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Applied Polymer Technologies, Midlands Campus, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Emanuele Rezoagli
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
78
|
Cao Y, Zhang G, Zou J, Dai H, Wang C. Natural Pyranosyl Materials: Potential Applications in Solid-State Batteries. CHEMSUSCHEM 2023; 16:e202202216. [PMID: 36797983 DOI: 10.1002/cssc.202202216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 05/06/2023]
Abstract
Solid-state batteries have become one of the hottest research areas today, due to the use of solid-state electrolytes enabling the high safety and energy density. Because of the interaction with electrolyte salts and the abundant ion transport sites, natural polysaccharide polymers with rich functional groups such as -OH, -OR or -COO- etc. have been applied in solid-state electrolytes and have the merits of possibly high ionic conductivity and sustainability. This review summarizes the recent progress of natural polysaccharides and derivatives for polymer electrolytes, which will stimulate further interest in the application of polysaccharides for solid-state batteries.
Collapse
Affiliation(s)
- Yueyue Cao
- School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guoqun Zhang
- School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jincheng Zou
- School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huichao Dai
- School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chengliang Wang
- School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou, 325035, China
| |
Collapse
|
79
|
Zheng W, Sun Y, Shu D, Fan L, Xu W, Xu J. Compressible polyaniline-coated sodium alginate-cattail fiber foam for efficient and salt-resistant solar steam generation. J Colloid Interface Sci 2023; 645:551-559. [PMID: 37163801 DOI: 10.1016/j.jcis.2023.04.182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
Solar steam generation has attracted widespread attention because of its ability to produce clean water through desalination and wastewater treatment without conventional energy consumption. In this work, a polyaniline (PANI)-coated sodium alginate (SA)/cattail fiber (CF) foam for photothermal evaporator is prepared via directional freezing and oxidative polymerization. The SA/CF foam displays desirable water pumping capability because of the lamellar sandwich structure interconnected by porous networks. More importantly, the directional porous network architecture ameliorates the mechanical and salt-resistant performances of the SA/CF foam. The as-prepared PANI@SA/CF foam shows inferior heat conductivity of 0.047 W m-1 K-1 and outstanding light absorption over 96% in solar window. A vapor evaporation rate of 2.04 kg m-2 h-1 under 1 sun illumination is achieved for the PANI@SA/CF evaporator. Furthermore, the PANI@SA/CF foam could be employed in solar-driven freshwater generation from seawater and wastewater with high ion and dye removal rates. The combination of water evaporation and cleaning capabilities of the PANI@SA/CF foam as photothermal materials provide a framework for the exploration of next-generation evaporators in seawater desalination and wastewater treatment applications.
Collapse
Affiliation(s)
- Wenfeng Zheng
- State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China
| | - Yan Sun
- State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China
| | - Dong Shu
- State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China
| | - Lingling Fan
- State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China.
| | - Weilin Xu
- State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China
| | - Jie Xu
- State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China.
| |
Collapse
|
80
|
Lupu A, Gradinaru LM, Gradinaru VR, Bercea M. Diversity of Bioinspired Hydrogels: From Structure to Applications. Gels 2023; 9:gels9050376. [PMID: 37232968 DOI: 10.3390/gels9050376] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels are three-dimensional networks with a variety of structures and functions that have a remarkable ability to absorb huge amounts of water or biological fluids. They can incorporate active compounds and release them in a controlled manner. Hydrogels can also be designed to be sensitive to external stimuli: temperature, pH, ionic strength, electrical or magnetic stimuli, specific molecules, etc. Alternative methods for the development of various hydrogels have been outlined in the literature over time. Some hydrogels are toxic and therefore are avoided when obtaining biomaterials, pharmaceuticals, or therapeutic products. Nature is a permanent source of inspiration for new structures and new functionalities of more and more competitive materials. Natural compounds present a series of physico-chemical and biological characteristics suitable for biomaterials, such as biocompatibility, antimicrobial properties, biodegradability, and nontoxicity. Thus, they can generate microenvironments comparable to the intracellular or extracellular matrices in the human body. This paper discusses the main advantages of the presence of biomolecules (polysaccharides, proteins, and polypeptides) in hydrogels. Structural aspects induced by natural compounds and their specific properties are emphasized. The most suitable applications will be highlighted, including drug delivery, self-healing materials for regenerative medicine, cell culture, wound dressings, 3D bioprinting, foods, etc.
Collapse
Affiliation(s)
- Alexandra Lupu
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Luiza Madalina Gradinaru
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Vasile Robert Gradinaru
- Faculty of Chemistry, "Alexandru Ioan Cuza" University, 11 Carol I Bd., 700506 Iasi, Romania
| | - Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
81
|
Hu Q, Nie Y, Xiang J, Xie J, Si H, Li D, Zhang S, Li M, Huang S. Injectable sodium alginate hydrogel loaded with plant polyphenol-functionalized silver nanoparticles for bacteria-infected wound healing. Int J Biol Macromol 2023; 234:123691. [PMID: 36806769 DOI: 10.1016/j.ijbiomac.2023.123691] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/04/2023] [Accepted: 02/11/2023] [Indexed: 02/21/2023]
Abstract
A novel injectable hydrogel dressing (GA@AgNPs-SA) with long-term antimicrobial effect is developed that can accelerate the closure of bacteria-infected wounds. The hydrogel dressing was prepared by cross-linking sodium alginate molecular chains and gallic acid functionalized silver nanoparticles (GA@AgNPs) via calcium ions to form a three-dimensional network. The hydrogel dressing demonstrates excellent biocompatibility and can achieve a sustainable release of silver ions, ensuring a long-term antibacterial activity and inhibiting biofilm formation. Moreover, an in vivo study demonstrates that the GA@AgNPs-SA hydrogel can effectively decrease the expression of IL-6 and TNF-α to alleviate the inflammatory response, and promote angiogenesis by upregulating CD31, α-SMA and VEGF expression, thus significantly accelerating the repair of infected wounds. Given these interesting properties, this antibacterial hydrogel has great potential for application in the clinical care of bacteria-infected wounds.
Collapse
Affiliation(s)
- Qinsheng Hu
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Nie
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jun Xiang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinwei Xie
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haibo Si
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Donghai Li
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shaoyun Zhang
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mei Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Shishu Huang
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
82
|
Forysenkova AA, Ivanova VA, Fadeeva IV, Mamin GV, Rau JV. 1H NMR and EPR Spectroscopies Investigation of Alginate Cross-Linking by Divalent Ions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2832. [PMID: 37049124 PMCID: PMC10095611 DOI: 10.3390/ma16072832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Alginate is a natural polymer widely applied in materials science, medicine, and biotechnology. Its ability to bind metal ions in order to form insoluble gels has been comprehensively used to create capsules for cell technology, drug delivery, biomedical materials, etc. To modify and predict the properties of cross-linked alginate, knowledge about the mechanism of alginate binding with metal ions and the properties of its gels is necessary. This article presents the results obtained by proton Nuclear Magnetic Resonance Spectroscopy for alginate containing calcium and strontium (alkaline earth metal diamagnetic) ions and by Electron Paramagnetic Resonance Spectroscopy for alginate with copper (Cu) and manganese (Mn) (transition metal paramagnetic) ions. It was found that in the case of calcium (Ca) and Mn ions, their concentration does not affect their distribution in the alginate structure and the cross-linking density. In the case of strontium (Sr) and Cu ions, their number affects the number of binding sites and, accordingly, the cross-linking density. Thus, the cross-linking of alginate depends mainly on the characteristics of specific cations, while the nature of the bond (ionic or coordination type) is less important.
Collapse
Affiliation(s)
- Anna A. Forysenkova
- A.A. Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Leninsky Avenue 49, 119334 Moscow, Russia
| | - Valeria A. Ivanova
- Phystech-School of Electronics, Photonics and Molecular Physics, Moscow Institute of Physics and Technology, Institutsky Lane 9, 141701 Dolgoprudny, Russia
| | - Inna V. Fadeeva
- A.A. Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Leninsky Avenue 49, 119334 Moscow, Russia
| | - Georgy V. Mamin
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
83
|
Tan J, Luo Y, Guo Y, Zhou Y, Liao X, Li D, Lai X, Liu Y. Development of alginate-based hydrogels: Crosslinking strategies and biomedical applications. Int J Biol Macromol 2023; 239:124275. [PMID: 37011751 DOI: 10.1016/j.ijbiomac.2023.124275] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/10/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Natural polysaccharide-based hydrogels have drawn much concern in the biomedical fields. Among them, alginate, a natural polyanionic polysaccharide, has become one of the research hotspots, because of its abundant source, biodegradability, biocompatibility, solubility, modification flexibility, and other characteristics or physiological functions. Recently, through adopting various physical or chemical crosslinking strategies, selecting suitable crosslinking or modification reagents, precisely controlling the reaction conditions, or introducing organic or inorganic functional materials, a variety of alginate-based hydrogels with excellent performance have been continuously developed, considerably expanding the breadth and depth of their applications. Here, various crosslinking strategies in the preparation of alginate-based hydrogels are comprehensively introduced. The representative application progress of alginate-based hydrogels in drug carrier, wound dressing and tissue engineering is also summarized. Meanwhile, the application prospects, challenges and development trends of alginate-based hydrogels are discussed. It is expected to provide guidance and reference for the further development of alginate-based hydrogels.
Collapse
|
84
|
Bolanos-Barbosa AD, Rodríguez CF, Acuña OL, Cruz JC, Reyes LH. The Impact of Yeast Encapsulation in Wort Fermentation and Beer Flavor Profile. Polymers (Basel) 2023; 15:polym15071742. [PMID: 37050356 PMCID: PMC10096922 DOI: 10.3390/polym15071742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The food and beverage industry is constantly evolving, and consumers are increasingly searching for premium products that not only offer health benefits but a pleasant taste. A viable strategy to accomplish this is through the altering of sensory profiles through encapsulation of compounds with unique flavors. We used this approach here to examine how brewing in the presence of yeast cells encapsulated in alginate affected the sensory profile of beer wort. Initial tests were conducted for various combinations of sodium alginate and calcium chloride concentrations. Mechanical properties (i.e., breaking force and elasticity) and stability of the encapsulates were then considered to select the most reliable encapsulating formulation to conduct the corresponding alcoholic fermentations. Yeast cells were then encapsulated using 3% (w/v) alginate and 0.1 M calcium chloride as a reticulating agent. Fourteen-day fermentations with this encapsulating formulation involved a Pilsen malt-based wort and four S. cerevisiae strains, three commercially available and one locally isolated. The obtained beer was aged in an amber glass container for two weeks at 4 °C. The color, turbidity, taste, and flavor profile were measured and compared to similar commercially available products. Cell growth was monitored concurrently with fermentation, and the concentrations of ethanol, sugars, and organic acids in the samples were determined via high-performance liquid chromatography (HPLC). It was observed that encapsulation caused significant differences in the sensory profile between strains, as evidenced by marked changes in the astringency, geraniol, and capric acid aroma production. Three repeated batch experiments under the same conditions revealed that cell viability and mechanical properties decreased substantially, which might limit the reusability of encapsulates. In terms of ethanol production and substrate consumption, it was also observed that encapsulation improved the performance of the locally isolated strain.
Collapse
Affiliation(s)
- Angie D. Bolanos-Barbosa
- Product and Process Design Group (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 111711, Colombia
| | - Cristian F. Rodríguez
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá 111711, Colombia
| | - Olga L. Acuña
- Product and Process Design Group (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 111711, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá 111711, Colombia
- Correspondence: (J.C.C.); (L.H.R.); Tel.: +57-1-339-4949 (ext. 1789) (J.C.C.); +57-1-339-4949 (ext. 1702) (L.H.R.)
| | - Luis H. Reyes
- Product and Process Design Group (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 111711, Colombia
- Correspondence: (J.C.C.); (L.H.R.); Tel.: +57-1-339-4949 (ext. 1789) (J.C.C.); +57-1-339-4949 (ext. 1702) (L.H.R.)
| |
Collapse
|
85
|
Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review. Int J Biol Macromol 2023; 232:123450. [PMID: 36709808 DOI: 10.1016/j.ijbiomac.2023.123450] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/26/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Sodium alginate (SA) is an inexpensive and biocompatible biomaterial with fast and gentle crosslinking that has been widely used in biological soft tissue repair/regeneration. Especially with the advent of 3D bioprinting technology, SA hydrogels have been applied more deeply in tissue engineering due to their excellent printability. Currently, the research on material modification, molding process and application of SA-based composite hydrogels has become a hot topic in tissue engineering, and a lot of fruitful results have been achieved. To better help readers have a comprehensive understanding of the development status of SA based hydrogels and their molding process in tissue engineering, in this review, we summarized SA modification methods, and provided a comparative analysis of the characteristics of various SA based hydrogels. Secondly, various molding methods of SA based hydrogels were introduced, the processing characteristics and the applications of different molding methods were analyzed and compared. Finally, the applications of SA based hydrogels in tissue engineering were reviewed, the challenges in their applications were also analyzed, and the future research directions were prospected. We believe this review is of great helpful for the researchers working in biomedical and tissue engineering.
Collapse
|
86
|
Fatehi H, Ong DEL, Yu J, Chang I. The Effects of Particle Size Distribution and Moisture Variation on Mechanical Strength of Biopolymer-Treated Soil. Polymers (Basel) 2023; 15:polym15061549. [PMID: 36987329 PMCID: PMC10051739 DOI: 10.3390/polym15061549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Biopolymers have recently shown great potential to replace traditional binding materials in geotechnical engineering; however, more research is required to reach a deeper understanding of biopolymer-treated soil behavior. The objective of this study was to investigate the most important parameters that affect the behavior of biopolymer-treated soil, including biopolymer content, dehydration time, soil type effect, and durability. Sodium alginate and agar biopolymers were used due to their stability under severe conditions and the reasonable costs to study these parameters. A broad range of soil particle sizes was used to optimize the kaolinite-sand combination. As one of the main concerns in the behavior of biotreated soils, durability was investigated under five cycles of wetting and drying. In addition, a comprehensive microstructural study was performed by FTIR analysis and SEM images, as well as chemical interaction analysis. The results indicated that the optimized biopolymer content was in the range of 0.5-1% (to soil weight) and the dehydration time was 14 days. A soil combination of 25% kaolinite and 75% sand provided the highest compressive strength. Under wetting and drying conditions, biopolymers significantly increased soil resistance against strength reduction and soil mass loss. This study provides an understanding how agar and sodium alginate changes the behavior of the soil and can be used as a reference for further studies in the future.
Collapse
Affiliation(s)
- Hadi Fatehi
- School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia
- Cities Research Institute, Griffith University, Nathan, QLD 4111, Australia
| | - Dominic E L Ong
- School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia
- Cities Research Institute, Griffith University, Nathan, QLD 4111, Australia
| | - Jimmy Yu
- School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia
| | - Ilhan Chang
- Department of Civil System Engineering, Ajou University, Suwon-si 16499, Republic of Korea
| |
Collapse
|
87
|
Nabi M, Liang H, Zhou Q, Cao J, Gao D. In-situ membrane fouling control and performance improvement by adding materials in anaerobic membrane bioreactor: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161262. [PMID: 36586290 DOI: 10.1016/j.scitotenv.2022.161262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic membrane bioreactor (AnMBR) is a promising treatment technique for various types of wastewaters, and is preferred over other conventional aerobic and anaerobic methods. However, membrane fouling is considered a bottleneck in AnMBR system, which technically blocks membrane pores by numerous inorganics, organics, and other microbial substances. Various materials can be added in AnMBR to control membrane fouling and improve anaerobic digestion, and studies reporting the materials addition for this purpose are hereby systematically reviewed. The mechanism of membrane fouling control including compositional changes in extracellular polymeric substances (EPSs) and soluble microbial products (SMPs), materials properties, stimulation of antifouling microbes and alteration in substrate properties by material addition are thoroughly discussed. Nonetheless, this study opens up new research prospects to control membrane fouling of AnMBR, engineered by material, including compositional changes of microbial products (EPS and SMP), replacement of quorum quenching (QQ) by materials, and overall improvement of reactor performance. Regardless of the great research progress achieved previously in membrane fouling control, there is still a long way to go for material-mediated AnMBR applications to be undertaken, particularly for materials coupling, real scale application and molecular based studies on EPSs and SMPs, which were proposed for future researches.
Collapse
Affiliation(s)
- Mohammad Nabi
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Qixiang Zhou
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jiashuo Cao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
88
|
Cao Y, Cong H, Yu B, Shen Y. A review on the synthesis and development of alginate hydrogels for wound therapy. J Mater Chem B 2023; 11:2801-2829. [PMID: 36916313 DOI: 10.1039/d2tb02808e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Convenient and low-cost dressings can reduce the difficulty of wound treatment. Alginate gel dressings have the advantages of low cost and safe usage, and they have obvious potential for development in biomedical materials. Alginate gel dressings are currently a research area of great interest owing to their versatility, intelligent, and their application attempts in treating complex wounds. We present a detailed summary of the preparation of alginate hydrogels and a study of their performance improvement. Herein, we summarize the various applications of alginate hydrogels. The research focuses in this area mainly include designing multifunctional dressings for the treatment of various wounds and fabricating specialized dressings to assist physicians in the treatment of complex wounds (TOC). This review gives an outlook for future directions in the field of alginate hydrogel dressings. We hope to attract more research interest and studies in alginate hydrogel dressings, thus contributing to the creation of low-cost and highly effective wound treatment materials.
Collapse
Affiliation(s)
- Yang Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.,School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
89
|
Yi N, Wang M, Song L, Feng F, Li J, Xie R, Zhao Z, Chen W. Highly hygroscopicity and antioxidant nanofibrous dressing base on alginate for accelerating wound healing. Colloids Surf B Biointerfaces 2023; 225:113240. [PMID: 36889107 DOI: 10.1016/j.colsurfb.2023.113240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
The removal of bacterium and free radicals is important for wound healing. Therefore, it is necessary to prepare biological dressings with antibacterial and antioxidant properties. In this study, high-performance calcium alginate/carbon polymer dots/forsythin composite nanofibrous membrane (CA/CPDs/FT) was explored under the influence of carbon polymer dots and forsythin. The addition of carbon polymer dots improved the nanofiber morphology and therefore enhanced the mechanical strength of the composite membrane. Moreover, CA/CPDs/FT membranes displayed satisfactory antibacterial and antioxidant properties because of the natural properties of forsythin. Meanwhile, outstanding hygroscopicity over 700% was also obtained for the composite membrane. In vitro and in vivo experiments showed that the CA/CPDs/FT nanofibrous membrane could prevent the invasion of bacteria, scavenge free radicals, and promote wound healing. Moreover, its good hygroscopicity and antioxidation characteristics were friendly for the clinical application of high-exudate wounds.
Collapse
Affiliation(s)
- Na Yi
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Mengyue Wang
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Li Song
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Fan Feng
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jiwei Li
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Ruyi Xie
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zhihui Zhao
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Weichao Chen
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
90
|
Agles AA, Bourg IC. Structure-Thermodynamic Relationship of a Polysaccharide Gel (Alginate) as a Function of Water Content and Counterion Type (Na vs Ca). J Phys Chem B 2023; 127:1828-1841. [PMID: 36791328 PMCID: PMC10159261 DOI: 10.1021/acs.jpcb.2c07129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/31/2023] [Indexed: 02/17/2023]
Abstract
Biofilms are the predominant mode of microbial life on Earth, and so a deep understanding of microbial communities─and their impacts on environmental processes─requires a firm understanding of biofilm properties. Because of the importance of biofilms to their microbial inhabitants, microbes have evolved different ways of engineering and reconfiguring the matrix of extracellular polymeric substances (EPS) that constitute the main non-living component of biofilms. This ability makes it difficult to distinguish between the biotic and abiotic origins of biofilm properties. An important route toward establishing this distinction has been the study of simplified models of the EPS matrix. This study builds on such efforts by using atomistic simulations to predict the nanoscale (≤10 nm scale) structure of a model EPS matrix and the sensitivity of this structure to interpolymer interactions and water content. To accomplish this, we use replica exchange molecular dynamics (REMD) simulations to generate all-atom configurations of ten 3.4 kDa alginate polymers at a range of water contents and Ca-Na ratios. Simulated systems are solvated with explicitly modeled water molecules, which allows us to capture the discrete structure of the hydrating water and to examine the thermodynamic stability of water in the gels as they are progressively dehydrated. Our primary findings are that (i) the structure of the hydrogels is highly sensitive to the identity of the charge-compensating cations, (ii) the thermodynamics of water within the gels (specific enthalpy and free energy) are, surprisingly, only weakly sensitive to cation identity, and (iii) predictions of the differential enthalpy and free energy of hydration include a short-ranged enthalpic term that promotes hydration and a longer-ranged (presumably entropic) term that promotes dehydration, where short and long ranges refer to distances shorter or longer than ∼0.6 nm between alginate strands.
Collapse
Affiliation(s)
- Avery A. Agles
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ian C. Bourg
- Department
of Civil and Environmental Engineering and High Meadows Environmental
Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
91
|
Li Y, Xu Z, Wang J, Pei X, Chen J, Wan Q. Alginate-based biomaterial-mediated regulation of macrophages in bone tissue engineering. Int J Biol Macromol 2023; 230:123246. [PMID: 36649862 DOI: 10.1016/j.ijbiomac.2023.123246] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/06/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Many studies in the bone tissue engineering field have focused on the interactions between materials and bone marrow stem cells. With the development of osteoimmunology, the immune cells' essential role in biomaterial-mediated osteogenesis has increasingly been recognized. As a promising therapeutic candidate for bone defects due to their prominent biocompatibility, tuneability, and versatility, it is necessary to develop alginate-based biomaterials that can regulate immune cells, especially macrophages. Moreover, modified alginate-based biomaterials may facilitate better regulation of macrophage phenotypes by the newly endowed physicochemical properties, including stiffness, porosity, hydrophilicity, and electrical properties. This review summarizes the role of macrophages in bone regeneration and the recent research progress related to the effects of alginate-based biomaterials on macrophages applied in bone tissue engineering. This review also emphasizes the strategies adopted by material design to regulate macrophage phenotypes, the corresponding macrophage responses, and their contribution to osteogenesis.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhengyi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
92
|
Beheshtizadeh N, Farzin A, Rezvantalab S, Pazhouhnia Z, Lotfibakhshaiesh N, Ai J, Noori A, Azami M. 3D printing of complicated GelMA-coated Alginate/Tri-calcium silicate scaffold for accelerated bone regeneration. Int J Biol Macromol 2023; 229:636-653. [PMID: 36586652 DOI: 10.1016/j.ijbiomac.2022.12.267] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Polymer-based composite scaffolds are an attractive class of biomaterials due to their suitable physical and mechanical performance as well as appropriate biological properties. When such composites contain osteoinductive ceramic nanopowders, it is possible, in principle, to stimulate the seeded cells to differentiate into osteoblasts. However, reproducibly fabricating and developing an appropriate niche for cells' activities in three-dimensional (3D) scaffolds remains a challenge using conventional fabrication techniques. Additive manufacturing provides a new strategy for the fabrication of complex 3D structures. Here, an extrusion-based 3D printing method was used to fabricate the Alginate (Alg)/Tri-calcium silicate (C3S) bone scaffolds. To improve physical and biological attributes, scaffolds were coated with gelatin methacryloyl (GelMA), a biocompatible viscose hydrogel. Conducting a combination of experimental techniques and molecular dynamics simulations, it is found that the composition ratio of Alg/C3S governs intermolecular interactions among the polymer and ceramic, affecting the product performance. Investigating the effects of various C3S amounts in the bioinks, the 90/10 composition ratio of Alg/C3S is known as the optimum content in developed bioinks. Accordingly, the printability of high-viscosity inks is boosted by improved hierarchical interactions among assemblies, which in turn leads to better nanoscale alignment in extruded macroscopic filaments. Conducting multiple tests on specimens, the GelMA-coated Alg/C3S scaffolds (with a composition ratio of 90/10) were shown to have improved mechanical qualities and cell adhesion, spreading, proliferation, and osteogenic differentiation, compared to the bare scaffolds, making them better candidates for further future research. Overall, the in-silico and in vitro studies of GelMA-coated 3D-printed Alg/C3S scaffolds open new aspects for biomaterials aimed at the regeneration of large- and complicated-bone defects through modifying the extrusion-based 3D-printed constructs.
Collapse
Affiliation(s)
- Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ali Farzin
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sima Rezvantalab
- Renewable Energies Department, Faculty of Chemical Engineering, Urmia University of Technology, 57166-419 Urmia, Iran
| | - Zahra Pazhouhnia
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nasrin Lotfibakhshaiesh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Noori
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Joint Reconstruction Research Center (JRRC), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
93
|
Ion-Induced Polysaccharide Gelation: Peculiarities of Alginate Egg-Box Association with Different Divalent Cations. Polymers (Basel) 2023; 15:polym15051243. [PMID: 36904484 PMCID: PMC10007407 DOI: 10.3390/polym15051243] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Structural aspects of polysaccharide hydrogels based on sodium alginate and divalent cations Ba2+, Ca2+, Sr2+, Cu2+, Zn2+, Ni2+ and Mn2+ was studied using data on hydrogel elemental composition and combinatorial analysis of the primary structure of alginate chains. It was shown that the elemental composition of hydrogels in the form of freezing dried microspheres gives information on the structure of junction zones in the polysaccharide hydrogel network, the degree of filling of egg-box cells by cations, the type and magnitude of the interaction of cations with alginate chains, the most preferred types of alginate egg-box cells for cation binding and the nature of alginate dimers binding in junction zones. It was ascertained that metal-alginate complexes have more complicated organization than was previously desired. It was revealed that in metal-alginate hydrogels, the number of cations of various metals per C12 block may be less than the limiting theoretical value equal to 1 for completely filled cells. In the case of alkaline earth metals and zinc, this number is equal to 0.3 for calcium, 0.6 for barium and zinc and 0.65-0.7 for strontium. We have determined that in the presence of transition metals copper, nickel and manganese, a structure similar to an egg-box is formed with completely filled cells. It was determined that in nickel-alginate and copper-alginate microspheres, the cross-linking of alginate chains and formation of ordered egg-box structures with completely filled cells are carried out by hydrated metal complexes with complicated composition. It was found that an additional characteristic of complex formation with manganese cations is the partial destruction of alginate chains. It has been established that the existence of unequal binding sites of metal ions with alginate chains can lead to the appearance of ordered secondary structures due to the physical sorption of metal ions and their compounds from the environment. It was shown that hydrogels based on calcium alginate are most promising for absorbent engineering in environmental and other modern technologies.
Collapse
|
94
|
Amrabadi T, Jalilnejad E, Ojagh SMA, Vahabzadeh F. Application of TOPSIS algorithm in describing bacterial cellulose-based composite hydrogel performance in incorporating methylene blue as a model drug. Sci Rep 2023; 13:2755. [PMID: 36797363 PMCID: PMC9935555 DOI: 10.1038/s41598-023-29865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
A multi-component hydrogel was developed using bacterial cellulose, alginate, and gelatin with the aid of glycerol as trihydric alcohol which participates in re-distribution of hydrogen bonds in the test system. FTIR, XRD, SEM, and TGA as instrumental techniques were used to structurally characterize the physical/chemical properties of the formed composite hydrogel. By using an exponential equation, swelling behavior of the hydrogel was evaluated. By incorporating a model drug (methylene blue-MB) in the formed hydrogel, experiments were directed to study release characteristics of the MB where the medium solution for the release was prepared at four different pHs. The maximum cumulative drug release at pH 2.8, 6, 7.4, and 9 were 42.8, 63, 80, and 84.5%, respectively. Data fitting process was carried out using five kinetic models (Korsmeyer-Peppas, Higuchi, Hopfenberg, zero-order, and first-order equations) and the preferred kinetic model at each pH was estimated by applying TOPSIS algorithmic technique. The adsorption capacity of the hydrogel in relation to MB was determined while thermodynamic properties of this relationship were quantified ([Formula: see text] and [Formula: see text]). The results of the present study were in favor of the potential usage of the developed composite hydrogel in drug delivery systems.
Collapse
Affiliation(s)
- Touraj Amrabadi
- grid.411368.90000 0004 0611 6995Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Elham Jalilnejad
- Department of Chemical Engineering, Urmia University of Technology, Urmia, West Azerbaijan, Iran.
| | - Seyed Mohammad Amin Ojagh
- grid.411368.90000 0004 0611 6995Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran ,grid.14709.3b0000 0004 1936 8649Department of Chemistry, McGill University, Montreal, QC Canada
| | - Farzaneh Vahabzadeh
- grid.411368.90000 0004 0611 6995Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
95
|
Cho B, Charoensri K, Doh H, Park HJ. Preparation of Colorimetric Sensor Array System to Evaluate the Effects of Alginate Edible Coating on Boiled-Dried Anchovy. Foods 2023; 12:foods12030638. [PMID: 36766165 PMCID: PMC9913907 DOI: 10.3390/foods12030638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023] Open
Abstract
The colorimetric sensor array (CSA) is a simple, rapid, and cost-effective system widely used in food science to assess food quality by identifying undesirable volatile organic compounds. As a prospective alternative to conventional techniques such as total volatile basic nitrogen, peroxide value, and thiobarbituric acid reactive substance analysis, the CSA system has garnered significant attention. This study evaluated the quality of edible-coated food products using both conventional and CSA methods in order to demonstrate that the CSA approach is a feasible alternative to conventional methods. Boiled-dried anchovies (BDA) were selected as the model food product, and the sample's quality was assessed as a function of storage temperature and incubation period using conventional techniques and the CSA system. The surface of BDA was coated with an edible alginate film to form the surface-modified food product. The conventional methods revealed that an increase in storage temperature and incubation time accelerated the lipid oxidation process, with the uncoated BDA undergoing lipid oxidation at a faster rate than the coated BDA. Utilizing multivariate statistical analysis, the CSA approach essentially yielded the same results. In addition, the partial least square regression technique revealed a strong correlation between the CSA system and conventional methods, indicating that the CSA system may be a feasible alternative to existing methods for evaluating the quality of food products with surface modifications.
Collapse
Affiliation(s)
- Byungchan Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Korakot Charoensri
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hansol Doh
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
- Correspondence: (H.D.); (H.j.P.); Tel.: +82-2-3277-3104 (H.D.); +82-2-3290-3450 (H.j.P.)
| | - Hyun jin Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Correspondence: (H.D.); (H.j.P.); Tel.: +82-2-3277-3104 (H.D.); +82-2-3290-3450 (H.j.P.)
| |
Collapse
|
96
|
Shanto PC, Park S, Park M, Lee BT. Physico-biological evaluation of 3D printed dECM/TOCN/alginate hydrogel based scaffolds for cartilage tissue regeneration. BIOMATERIALS ADVANCES 2023; 145:213239. [PMID: 36542879 DOI: 10.1016/j.bioadv.2022.213239] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Cartilage damage is the leading cause of osteoarthritis (OA), especially in an aging society. Mimicking the native cartilage microenvironment for chondrogenic differentiation along with constructing a stable and controlled architectural scaffold is considerably challenging. In this study, three-dimensional (3D) printed scaffolds using tempo-oxidized cellulose nanofiber (TOCN), decellularized extracellular matrix (dECM), and sodium alginate (SA) were fabricated for cartilage tissue regeneration. We prepared three groups (dECM80, dECM50, dECM20) of 3D printable hydrogels with different ratios of TOCN and dECM where SA concentration remained the same. Two-step crosslinking was performed with CaCl2 solution to achieve the highly stable 3D printed scaffolds. Finally, the fundamental physical characterizations showed that increasing the ratio of TOCN with dECM significantly improved the viscoelastic behaviour, stability, mechanical properties, and printability of the scaffolds. Based on the results, the 3D printed dECM50 scaffolds with controlled and identical pore sizes increased the whole-layer integrity and nutrient supply in each layer of the scaffold. Furthermore, evaluation of in vitro and in vivo biocompatibility of the scaffolds with rBMSCs indicated that dECM50 scaffolds provided a suitable microenvironment for cell proliferation and promoted chondrogenesis by remarkably expressing the cartilage-specific markers. This study demonstrates that 3D printed dECM50 scaffolds provide a favourable and promising microenvironment for cartilage tissue regeneration.
Collapse
Affiliation(s)
- Prayas Chakma Shanto
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Seongsu Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan 31151, Republic of Korea.
| |
Collapse
|
97
|
Adjuik TA, Nokes SE, Montross MD. Biodegradability of bio‐based and synthetic hydrogels as sustainable soil amendments: A review. J Appl Polym Sci 2023. [DOI: 10.1002/app.53655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Toby A. Adjuik
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
- Department of Agronomy Iowa State University Ames Iowa USA
| | - Sue E. Nokes
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
| | - Michael D. Montross
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
| |
Collapse
|
98
|
Wang Y, Zhang W, Gong X, Zhao C, Liu Y, Zhang C. Construction of Carboxymethyl Chitosan Hydrogel with Multiple Cross-linking Networks for Electronic Devices at Low Temperature. ACS Biomater Sci Eng 2023; 9:508-519. [PMID: 36502379 DOI: 10.1021/acsbiomaterials.2c01243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
On the basis of the original hydrogen bonding interaction and physical entanglement, covalent cross-linking and ionic cross-linking were additionally introduced to construct a carboxymethyl chitosan/allyl glycidyl ether conductive hydrogel (CCH) through a one pot method by a graft reaction, an addition reaction, and simple immersion, successively. The multiple cross-linking networks significantly increased the strength of CCHs and endowed them with ionic conductivity and an antifreezing property at -40 °C, which showed stable, durable, and reversible sensitivity to finger bending activity at subzero temperature. The CCHs could even be assembled into a triboelectric nanogenerator (TENG) to provide electric energy, which demonstrated stability against temperature variation, multiple drawing, long-term storage, or large quantities of contact-separation motion cycles. CCH-TENG can also be used as a tactile sensor within the pressure range from 0.4 kPa to higher than 8000 kPa. This work provided a simple route to fabricate antifreezing conductive hydrogels based on carboxymethyl chitosan and to find potential applications in soft sensor devices under a low temperature environment.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, 483 Wushan Road, Guangzhou510642, China
| | - Wenbo Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, 483 Wushan Road, Guangzhou510642, China
| | - Xinhu Gong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, 483 Wushan Road, Guangzhou510642, China
| | - Caimei Zhao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, 483 Wushan Road, Guangzhou510642, China
| | - Yiying Liu
- School of Health and Medicine, 1 Huashang Road, Guangzhou Huashang Vocational College, Guangzhou511300, China
| | - Chaoqun Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, 483 Wushan Road, Guangzhou510642, China
| |
Collapse
|
99
|
Aburabie J, Nassrullah H, Hashaikeh R. Fine-tuning of carbon nanostructures/alginate nanofiltration performance: Towards electrically-conductive and self-cleaning properties. CHEMOSPHERE 2023; 310:136907. [PMID: 36265705 DOI: 10.1016/j.chemosphere.2022.136907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/30/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Electrically-conductive membranes became the center of attention owing to their enhanced ion selectivity and self-cleaning properties. Carbon nanostructures (CNS) attain high electrical conductivity, and fast water transport. Herein, we adopt a water-based, simple method to entrap CNS within Alginate network to fabricate self-cleaning nanofiltration membranes. CNS are embedded into membranes to improve the swelling/shrinkage resistivity, and to achieve electrical-conductivity. The CaAlg PEG-formed pores are tuned by organic-inorganic network via silane crosslinking. Flux/rejection profiles of Na2SO4 are studied/optimized in reference to fabrication parameters. 90% Na2SO4 rejection (7 LMH) is achieved for silane-CaAlg200-10% CNS membranes. Membranes exhibit outstanding electrical conductivity (∼2858 S m-1), which is attractive for fouling control. CaAlg/CNS membranes are tested to treat dye/saline water via two-stage filtration, namely, dye/salt separation and desalination. A successful dye/salt separation is achieved at the first stage with a rejection of 100%-RB and only 3.1% Na2SO4, and 54% Na2SO4 rejection in the second stage.
Collapse
Affiliation(s)
- Jamaliah Aburabie
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates
| | - Haya Nassrullah
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates; Chemical and Biomolecular Engineering Division, New York University, Tandon School of Engineering, NY, 11201, USA
| | - Raed Hashaikeh
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates.
| |
Collapse
|
100
|
Gong W, Liu L, Luo L, Ji L. Preparation and characterization of a self-crosslinking sodium alginate-bioactive glass sponge. J Biomed Mater Res B Appl Biomater 2023; 111:173-183. [PMID: 35938837 DOI: 10.1002/jbm.b.35143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/30/2022] [Accepted: 07/17/2022] [Indexed: 11/06/2022]
Abstract
In this research, bioactive glass particles prepared by the reactive flash nanoprecipitation method (RFNP-BG particles) are used to crosslink sodium alginate to prepare biological sponges (SA-BG sponges) by freeze-drying. An experiment for the cross-linking mechanism confirms that the continuous release of Ca2+ from RFNP-BG is promoted by the crosslinking reaction and in turn leads to the gelation process of SA. Bioactive glass particles not only provide Ca2+ for the crosslinking of sodium alginate, but also enhance the mechanical properties of the SA-BG sponges. The results show that the elastic modulus of the SA-BG sponges increases from 0.026 MPa to 0.641 MPa, and the resistance to external force deformation is greatly improved; the thermal decomposition temperature increases from 105°C to 166°C; compared with a pure SA sponge, the water resistance is significantly improved. In vitro cell experiments show that the SA-BG sponges have a certain adverse effect on cell proliferation, but it is in an acceptable range. qPCR results show that the SA-BG sponges have a certain beneficial effect on promoting osteogenic gene expression. The SA-BG sponges have great application potential in the fields of medicine, hemostasis, and wound closure.
Collapse
Affiliation(s)
- Wensheng Gong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Lingling Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Liping Luo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Lijun Ji
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|