51
|
Zhang Q, Tong S, Wang MX. Unraveling the Chemistry of High Valent Arylcopper Compounds and Their Roles in Copper-Catalyzed Arene C-H Bond Transformations Using Synthetic Macrocycles. Acc Chem Res 2022; 55:2796-2810. [PMID: 35994690 DOI: 10.1021/acs.accounts.2c00316] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent decades have witnessed a resurgence of the study of copper-catalyzed organic reactions. As the surrogate of noble metal catalysts, copper salts have been shown to exhibit remarkable versatility in activating various C-H bonds enabling the construction of diverse carbon-carbon and carbon-heteroatom bonds. Advantageously, copper salts are also naturally abundant, inexpensive, and less toxic in comparison to precious metals. Despite significant developments in synthesis, the mechanism of copper catalysis remains elusive. Hypothetical pathways such as the two-electron Cu(III)/Cu(I) and Cu(II)/Cu(0) catalytic cycles and the one-electron Cu(II)/Cu(I) catalytic cycle have been invoked to diagram C-H bond transformations because of the formidable challenges to isolate and characterize transient high valent organocopper intermediates. In fact, organocopper chemistry has been dominated for a long time by the acknowledged nucleophilic organocopper(I) compounds. Since the beginning of the new millennium, we have been systematically studying the supramolecular chemistry of heteracalix[n]aromatics. Owing to the ease of their synthesis and selective functionalizations, self-tunable conformation and cavity structures resulting from the interplay of heteroatoms with aromatic subunits, and outstanding properties in molecular recognition and self-assembly, heteracalix[n]aromatics have become a class of privileged synthetic macrocyclic hosts. Our journey to the chemistry of high valent organocopper compounds started with a serendipitous discovery of the facile formation of a stable organocopper compound, which contains astonishingly a Ph-Cu(III) σ-bond under very mild aerobic conditions. When we examined routinely the effect of the macrocyclic structures on noncovalent complexation properties, titration of tetraazacalix[1]arene[3]pyridine with Cu(ClO4)2·6H2O resulted in the precipitation of dark-purple crystals of phenylcopper(III) diperchlorate. Our curiosity about the transformation of an arene C-H bond into an Ar-Cu(III) bond prompted us to conduct an in-depth investigation of the reaction of macrocyclic arenes with copper(II) salts, leading to the isolation of arylcopper(II) compounds which are unprecedented and the missing link in organocopper chemistry. With structurally well-defined organometallics in hand, we have explored extensively the reactivities of both arylcopper(II) and arylcopper(III) compounds, demonstrating their versatility and uniqueness in chemical synthesis. Novel and fascinating arene C-H transformations under copper catalysis have been developed. Using acquired high valent arylcopper compounds as molecular probes, and employing the functionalizations of tetraazacalix[1]arene[3]pyridines as model reactions, we have revealed the diverse mechanisms of copper-promoted arene C-H bond reactions. Elusive reaction pathways of some copper-catalyzed C-X bond activations have also been unraveled. In the meantime, we have also witnessed pleasingly the rapid development of field with the advent of new high valent organocopper compounds. Without any doubt, studies of the synthesis, reactivity, and catalysis of high valent organocopper compounds have been reshaping the field of organocopper chemistry. This Account summarizes our endeavors to explore the chemistry of structurally well-defined arylcopper(II) and arylcopper(III) compounds and the mechanisms of copper-catalyzed arene C-H and C-X bond transformations. We hope this Account will inspire chemists to study thoroughly the fundamentals and the cutting-edge catalysis of high valent organocopper compounds advancing and redefining the discipline of organocopper chemistry.
Collapse
Affiliation(s)
- Qian Zhang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Qing Hua Yuan, Haidian District, Beijing 100084, China
| | - Shuo Tong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Qing Hua Yuan, Haidian District, Beijing 100084, China
| | - Mei-Xiang Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Qing Hua Yuan, Haidian District, Beijing 100084, China
| |
Collapse
|
52
|
Bao JH, Lu WC, Duan H, Ye YQ, Li JB, Liao WT, Li YC, Sun YP. Identification of a novel cuproptosis-related gene signature and integrative analyses in patients with lower-grade gliomas. Front Immunol 2022; 13:933973. [PMID: 36045691 PMCID: PMC9420977 DOI: 10.3389/fimmu.2022.933973] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/22/2022] [Indexed: 12/20/2022] Open
Abstract
Background Cuproptosis is a newly discovered unique non-apoptotic programmed cell death distinguished from known death mechanisms like ferroptosis, pyroptosis, and necroptosis. However, the prognostic value of cuproptosis and the correlation between cuproptosis and the tumor microenvironment (TME) in lower-grade gliomas (LGGs) remain unknown. Methods In this study, we systematically investigated the genetic and transcriptional variation, prognostic value, and expression patterns of cuproptosis-related genes (CRGs). The CRG score was applied to quantify the cuproptosis subtypes. We then evaluated their values in the TME, prognostic prediction, and therapeutic responses in LGG. Lastly, we collected five paired LGG and matched normal adjacent tissue samples from Sun Yat-sen University Cancer Center (SYSUCC) to verify the expression of signature genes by quantitative real-time PCR (qRT-PCR) and Western blotting (WB). Results Two distinct cuproptosis-related clusters were identified using consensus unsupervised clustering analysis. The correlation between multilayer CRG alterations with clinical characteristics, prognosis, and TME cell infiltration were observed. Then, a well-performed cuproptosis-related risk model (CRG score) was developed to predict LGG patients' prognosis, which was evaluated and validated in two external cohorts. We classified patients into high- and low-risk groups according to the CRG score and found that patients in the low-risk group showed significantly higher survival possibilities than those in the high-risk group (P<0.001). A high CRG score implies higher TME scores, more significant TME cell infiltration, and increased mutation burden. Meanwhile, the CRG score was significantly correlated with the cancer stem cell index, chemoradiotherapy sensitivity-related genes and immune checkpoint genes, and chemotherapeutic sensitivity, indicating the association with CRGs and treatment responses. Univariate and multivariate Cox regression analyses revealed that the CRG score was an independent prognostic predictor for LGG patients. Subsequently, a highly accurate predictive model was established for facilitating the clinical application of the CRG score, showing good predictive ability and calibration. Additionally, crucial CRGs were further validated by qRT-PCR and WB. Conclusion Collectively, we demonstrated a comprehensive overview of CRG profiles in LGG and established a novel risk model for LGG patients' therapy status and prognosis. Our findings highlight the potential clinical implications of CRGs, suggesting that cuproptosis may be the potential therapeutic target for patients with LGG.
Collapse
Affiliation(s)
- Jia-hao Bao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wei-cheng Lu
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Collaborative Innovation for Cancer Medicine, Guangzhou, China
| | - Hao Duan
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ya-qi Ye
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Collaborative Innovation for Cancer Medicine, Guangzhou, China
| | - Jiang-bo Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wen-ting Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China,*Correspondence: Yang-peng Sun, ; Yong-chun Li, ; Wen-ting Liao,
| | - Yong-chun Li
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Collaborative Innovation for Cancer Medicine, Guangzhou, China,*Correspondence: Yang-peng Sun, ; Yong-chun Li, ; Wen-ting Liao,
| | - Yang-peng Sun
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China,*Correspondence: Yang-peng Sun, ; Yong-chun Li, ; Wen-ting Liao,
| |
Collapse
|
53
|
Li R, Khan FST, Tapia M, Hematian S. Oxygenation of copper(I) complexes containing fluorine tagged tripodal tetradentate chelates: significant ligand electronic effects. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2107429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Runzi Li
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Firoz Shah Tuglak Khan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Marcos Tapia
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Shabnam Hematian
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
54
|
Centrella B, Deplano G, Damin A, Signorile M, Tortora M, Barolo C, Bonomo M, Bordiga S. A multi-technique approach to unveil the redox behaviour and potentiality of homoleptic Cu I complexes based on substituted bipyridine ligands in oxygenation reactions. Dalton Trans 2022; 51:14439-14451. [PMID: 35904361 DOI: 10.1039/d2dt01234k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of differently substituted 2,2'-bipyridine ligands (i.e. 6,6'-dimethyl-2,2'-bipyridine, 5,5'-dimethyl-2,2'-bipyridine, 6,6'-dimethoxy-2,2'-bipyridine and 2,2'-bipyridine) on the reversible oxidation of the resulting CuI homoleptic complexes is investigated by means of a multi-technique approach (electronic and vibrational spectroscopies, DFT, electrochemistry). Among the four tested complexes, [CuI(6,6'-dimethyl-2,2'-bipyridine)2] (PF6) shows a peculiar behavior when oxidized with an organic peroxide (i.e. tert-butyl hydroperoxide, tBuOOH). The simultaneous use of UV-Vis-NIR and Raman spectroscopy methods and cyclovoltammetry, supported by DFT based calculations, allowed identifying (i) the change in the oxidation state of the copper ion and (ii) some peculiar modification in the local structure of the metal leading to the formation of a [CuIIOH]+ species. The latter, being able to oxidize a model molecule (i.e. cyclohexene) and showing the restoration of the original CuI complex and the formation of cyclohexanone, confirms the potential of these simple homoleptic CuI complexes as model catalysts for partial oxygenation reactions.
Collapse
Affiliation(s)
- Barbara Centrella
- Department of Chemistry and NIS Interdepartmental Center and INSTM reference center, University of Turin, via Pietro Giuria 7, I-10125 Turin, Italy.
| | - Gabriele Deplano
- Department of Chemistry and NIS Interdepartmental Center and INSTM reference center, University of Turin, via Pietro Giuria 7, I-10125 Turin, Italy.
| | - Alessandro Damin
- Department of Chemistry and NIS Interdepartmental Center and INSTM reference center, University of Turin, via Pietro Giuria 7, I-10125 Turin, Italy.
| | - Matteo Signorile
- Department of Chemistry and NIS Interdepartmental Center and INSTM reference center, University of Turin, via Pietro Giuria 7, I-10125 Turin, Italy.
| | - Mariagrazia Tortora
- AREA SCIENCE PARK, Padriciano, 99, 34149 Trieste, Italy.,Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149, Trieste, Italy
| | - Claudia Barolo
- Department of Chemistry and NIS Interdepartmental Center and INSTM reference center, University of Turin, via Pietro Giuria 7, I-10125 Turin, Italy. .,ICxT Interdepartmental Centre, Università degli Studi di Torino, Lungo Dora Siena 100, 10153 Torino, Italy
| | - Matteo Bonomo
- Department of Chemistry and NIS Interdepartmental Center and INSTM reference center, University of Turin, via Pietro Giuria 7, I-10125 Turin, Italy.
| | - Silvia Bordiga
- Department of Chemistry and NIS Interdepartmental Center and INSTM reference center, University of Turin, via Pietro Giuria 7, I-10125 Turin, Italy.
| |
Collapse
|
55
|
Borrego E, Tiessler-Sala L, Lázaro JJ, Caballero A, Pérez PJ, Lledós A. Direct Benzene Hydroxylation with Dioxygen Induced by Copper Complexes: Uncovering the Active Species by DFT Calculations. Organometallics 2022; 41:1892-1904. [PMID: 35936655 PMCID: PMC9344391 DOI: 10.1021/acs.organomet.2c00202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The direct oxidation of benzene into phenol using molecular
oxygen
at very mild temperatures can be promoted in the presence of the copper
complex TpBr3Cu(NCMe) in the homogeneous phase in the presence
of ascorbic acid as the source of protons and electrons. The stoichiometric
nature, relative to copper, of this transformation prompted a thorough
DFT study in order to understand the reaction pathway. As a result,
the dinuclear species TpBr3CuII(μ-O•)(μ-OH)CuIITpBr3 is proposed
as the relevant structure which is responsible for activating the
arene C–H bond leading to phenol formation.
Collapse
Affiliation(s)
- Elena Borrego
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, Huelva 21007, Spain
| | - Laura Tiessler-Sala
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del
Vallès, Barcelona 08193, Spain
| | - Jesus J. Lázaro
- Cepsa Research Center, Compañía Española de Petróleos S.A., Alcalá de Henares, Madrid 28850, Spain
| | - Ana Caballero
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, Huelva 21007, Spain
| | - Pedro J. Pérez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, Huelva 21007, Spain
| | - Agustí Lledós
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del
Vallès, Barcelona 08193, Spain
| |
Collapse
|
56
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
57
|
Upadhyay A, Meena H, Jha RK, Kanika, Kumar S. Isolation of monomeric copper(II) phenolate selenoether complexes using chelating ortho-bisphenylselenide-phenolate ligands and their electrocatalytic hydrogen gas evolution activity. Dalton Trans 2022; 51:7284-7293. [PMID: 35481842 DOI: 10.1039/d2dt00678b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A series of novel copper(II) phenolate selenoether complexes have been synthesized and structurally characterized for the first time from copper(I) phenanthroline and various substituted ortho-bisphenylselenide-phenol chelating ligands. The synthesized complexes exhibit Jahn-Teller distortion in their geometry and varied from distorted square planar to distorted octahedral by varying the substituent in the bis-selenophenolate ligand. The synthesized complexes electrocatalyze the hydrogen evolution reaction (HER) with a faradaic efficiency of up to 89%, and it was observed that the distorted square pyramidal geometry is the optimum geometry for the maximum efficiency of these copper complexes.
Collapse
Affiliation(s)
- Aditya Upadhyay
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
| | - Harshita Meena
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
| | - Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
| | - Kanika
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
| |
Collapse
|
58
|
Chen K, Zangiabadi M, Zhao Y. Oxidative Cleavage of Glycosidic Bonds by Synthetic Mimics of Lytic Polysaccharide Monooxygenases. Org Lett 2022; 24:3426-3430. [PMID: 35503979 PMCID: PMC10166272 DOI: 10.1021/acs.orglett.2c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) cleave polysaccharides through copper-bound oxyl radicals. We report a synthetic mimic of LPMO that uses micelle-stabilized hydrogen bonds to bind a glycan and two molecularly imprinted hydrophobic pockets to accommodate the alkyl tail of the glycoside and a copper cofactor, respectively. Cleavage of alkyl glycosides and oligosaccharides with hydrogen peroxide occurs at room temperature in aqueous solution, with selectivities for both the glycan and the alkyl aglycon.
Collapse
Affiliation(s)
- Kaiqian Chen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Milad Zangiabadi
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
59
|
Copper-Mediated Aromatic Fluorination Using N-Heterocycle-Carbene Ligand: Free Energy Profile of the Cu(I)/Cu(III) and Cu(II) radical Mechanisms. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
60
|
Shen MH, Guo B, Li C, Sun CL, Zhu YF, Zhu C, Xu HD, Xu D. Aerobic copper-catalyzed homo-coupling of azaallyl anions: a facile access to vicinal diamines. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
61
|
Nandi S, Mondal S, Jana R. Chemo- and regioselective benzylic C(sp3)–H oxidation bridging the gap between hetero- and homogeneous copper catalysis. iScience 2022; 25:104341. [PMID: 35602936 PMCID: PMC9118691 DOI: 10.1016/j.isci.2022.104341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/09/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
Selective C‒H functionalization in a pool of proximal C‒H bonds, predictably altering their innate reactivity is a daunting challenge. We disclose here, an expedient synthesis of privileged seven-membered lactones, dibenzo[c,e]oxepin-5(7H)-one through a highly chemoselective benzylic C(sp3)‒H activation. Remarkably, the formation of widely explored six-membered lactone via C(sp2)‒H activation is suppressed under the present conditions. The reaction proceeds smoothly on use of inexpensive metallic copper catalyst and di-tert-butyl peroxide (DTBP). Owing to the hazards of stoichiometric DTBP, further, we have developed a sustainable metallic copper/rose bengal dual catalytic system coupled with molecular oxygen replacing DTBP. A 1,5-aryl migration through Smiles rearrangement was realized from the corresponding diaryl ether substrates instead of expected eight-membered lactones. The present methodology is scalable, applied to the total synthesis of cytotoxic and neuroprotective natural product alterlactone. The catalyst is recyclable and the reaction can be performed in a copper bottle without any added catalyst. Catalytic strategy for chemo- and regioselective benzylic C–H activation Bulk copper catalysis merging with photocatalysis Reusable copper catalyst Reaction demonstrated in commercial copper bottle without external catalyst
Collapse
Affiliation(s)
- Shantanu Nandi
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shuvam Mondal
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Corresponding author
| |
Collapse
|
62
|
Zheng YN, Liu Y, Cai XE, Wu HL, Huang XJ, Liu Y, Wei WT. Ring‐opening/cyclization of cyclobutanone oxime esters with alkenes in biomass‐derived solvent using copper catalyst and inorganic oxidant. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yan-Nan Zheng
- Ningbo University School of Materials Science and Chemical Engineering 315211 Ningbo CHINA
| | - Yi Liu
- Ningbo University School of Materials Science and Chemical Engineering 315211 Ningbo CHINA
| | - Xue-Er Cai
- Ningbo University School of Materials Science and Chemical Engineering 315211 Ningbo CHINA
| | - Hong-Li Wu
- Ningbo University School of Materials Science and Chemical Engineering 315211 Ningbo CHINA
| | - Xun-Jie Huang
- Ningbo University School of Materials Science and Chemical Engineering 315211 Ningbo CHINA
| | - Yilin Liu
- Huaihua University College of Chemistry and Materials Engineering 418008 Huaihua CHINA
| | - Wen-Ting Wei
- Ningbo University Materials Science and Chemical Engineering 818, Fenghua Road, Jiangbei District 315211 Ningbo CHINA
| |
Collapse
|
63
|
Theoretical perspective on mononuclear copper-oxygen mediated C–H and O–H activations: A comparison between biological and synthetic systems. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63974-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
64
|
Zhao R, Zhang BB, Liu Z, Cheng GJ, Wang ZX. DFT Mechanistic Insights into Aldehyde Deformylations with Biomimetic Metal-Dioxygen Complexes: Distinct Mechanisms and Reaction Rules. JACS AU 2022; 2:745-761. [PMID: 35373207 PMCID: PMC8970012 DOI: 10.1021/jacsau.2c00014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 05/12/2023]
Abstract
Aldehyde deformylations occurring in organisms are catalyzed by metalloenzymes through metal-dioxygen active cores, attracting great interest to study small-molecule metal-dioxygen complexes for understanding relevant biological processes and developing biomimetic catalysts for aerobic transformations. As the known deformylation mechanisms, including nucleophilic attack, aldehyde α-H-atom abstraction, and aldehyde hydrogen atom abstraction, undergo outer-sphere pathways, we herein report a distinct inner-sphere mechanism based on density functional theory (DFT) mechanistic studies of aldehyde deformylations with a copper (II)-superoxo complex. The inner-sphere mechanism proceeds via a sequence mainly including aldehyde end-on coordination, homolytic aldehyde C-C bond cleavage, and dioxygen O-O bond cleavage, among which the C-C bond cleavage is the rate-determining step with a barrier substantially lower than those of outer-sphere pathways. The aldehyde C-C bond cleavage, enabled through the activation of the dioxygen ligand radical in a second-order nucleophilic substitution (SN2)-like fashion, leads to an alkyl radical and facilitates the subsequent dioxygen O-O bond cleavage. Furthermore, we deduced the rules for the reactions of metal-dioxygen complexes with aldehydes and nitriles via the inner-sphere mechanism. Expectedly, our proposed inner-sphere mechanisms and the reaction rules offer another perspective to understand relevant biological processes involving metal-dioxygen cores and to discover metal-dioxygen catalysts for aerobic transformations.
Collapse
Affiliation(s)
- Ruihua Zhao
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100039, China
- Warshel
Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Bei-Bei Zhang
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100039, China
| | - Zheyuan Liu
- College
of Materials Science and Engineering, Fuzhou
University, Fuzhou 350108, China
| | - Gui-Juan Cheng
- Warshel
Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Zhi-Xiang Wang
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100039, China
| |
Collapse
|
65
|
Tao W, Yerbulekova A, Moore CE, Shafaat HS, Zhang S. Controlling the Direction of S-Nitrosation versus Denitrosation: Reversible Cleavage and Formation of an S-N Bond within a Dicopper Center. J Am Chem Soc 2022; 144:2867-2872. [PMID: 35139302 DOI: 10.1021/jacs.1c12799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iron and copper enzymes are known to promote reversible S-nitrosation/denitrosation in biology. However, it is unclear how the direction of S-N bond formation/scission is controlled. Herein, we demonstrate the interconversion of metal-S-nitrosothiol adduct M(RSNO) and metal nitrosyl thiolate complex M(NO)(SR), which may regulate the direction of reversible S-(de)nitrosation. Treatment of a dicopper(I,I) complex with RSNO leads to a mixture of two structural isomers: dicopper(I,I) S-nitrosothiol [CuICuI(RSNO)]2+ and dicopper(II,II) nitrosyl thiolate [CuIICuII(NO)(SR)]2+. The Keq between these two structural isomers is sensitive to temperature, the solvent coordination ability, and counterions. Our study illustrates how copper centers can modulate the direction of RS-NO bond formation and cleavage through a minor perturbation of the local environment.
Collapse
|
66
|
Elbadawy HA, El-Dissouky A, Attia AA, Khalil TE. The tendency of the charge transfer system, derived from chloranilic acid and 2-amino-2-(hydroxymethyl)-1,3-propanediol towards copper(II) complex-formation: characterization, anion impact, and biological studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
67
|
Davydov R, Herzog AE, Jodts RJ, Karlin KD, Hoffman BM. End-On Copper(I) Superoxo and Cu(II) Peroxo and Hydroperoxo Complexes Generated by Cryoreduction/Annealing and Characterized by EPR/ENDOR Spectroscopy. J Am Chem Soc 2022; 144:377-389. [PMID: 34981938 PMCID: PMC8785356 DOI: 10.1021/jacs.1c10252] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this report, we investigate the physical and chemical properties of monocopper Cu(I) superoxo and Cu(II) peroxo and hydroperoxo complexes. These are prepared by cryoreduction/annealing of the parent [LCuI(O2)]+ Cu(I) dioxygen adducts with the tripodal, N4-coordinating, tetradentate ligands L = PVtmpa, DMMtmpa, TMG3tren and are best described as [LCuII(O2•-)]+ Cu(II) complexes that possess end-on (η1-O2•-) superoxo coordination. Cryogenic γ-irradiation (77 K) of the EPR-silent parent complexes generates mobile electrons from the solvent that reduce the [LCuII(O2•-)]+ within the frozen matrix, trapping the reduced form fixed in the structure of the parent complex. Cryoannealing, namely progressively raising the temperature of a frozen sample in stages and then cooling back to low temperature at each stage for examination, tracks the reduced product as it relaxes its structure and undergoes chemical transformations. We employ EPR and ENDOR (electron-nuclear double resonance) as powerful spectroscopic tools for examining the properties of the states that form. Surprisingly, the primary products of reduction of the Cu(II) superoxo species are metastable cuprous superoxo [LCuI(O2•-)]+ complexes. During annealing to higher temperatures this state first undergoes internal electron transfer (IET) to form the end-on Cu(II) peroxo state, which is then protonated to form Cu(II)-OOH species. This is the first time these methods, which have been used to determine key details of metalloenzyme catalytic cycles and are a powerful tools for tracking PCET reactions, have been applied to copper coordination compounds.
Collapse
Affiliation(s)
- Roman Davydov
- Department of Chemistry, Northwestern University, Evanston, Illinois 60201, United States
| | - Austin E Herzog
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Richard J Jodts
- Department of Chemistry, Northwestern University, Evanston, Illinois 60201, United States
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60201, United States
| |
Collapse
|
68
|
Richezzi M, Ferreyra J, Puzzolo J, Milesi L, Palopoli CM, Moreno DM, Hureau C, Signorella SR. Versatile Activity of a Copper(II) Complex Bearing a N4‐Tetradentate Schiff Base Ligand with Reduced Oxygen Species. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Micaela Richezzi
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Química Física ARGENTINA
| | - Joaquín Ferreyra
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Química Física ARGENTINA
| | - Juan Puzzolo
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Química Física ARGENTINA
| | - Lisandro Milesi
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Química Física ARGENTINA
| | - Claudia M. Palopoli
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Química Física ARGENTINA
| | - Diego M. Moreno
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Química Física ARGENTINA
| | - Christelle Hureau
- CNRS: Centre National de la Recherche Scientifique LCC - Laboratoire de Chimie de Coordination FRANCE
| | | |
Collapse
|
69
|
Lee YJ, Kim H, Kim Y, Cho KH, Hong S, Nam KT, Kim SH, Choi CH, Seo J. Repurposing a peptide antibiotic as a catalyst: a multicopper–daptomycin complex as a cooperative O–O bond formation and activation catalyst. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01440h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A peptide antibiotic, daptomycin, was repurposed to a multicopper catalyst presenting cooperative rate enhancement in O–O bond formation and activation reactions.
Collapse
Affiliation(s)
- Yen Jea Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Haesol Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Yujeong Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Kang Hee Cho
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sugyeong Hong
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Hee Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chang Hyuck Choi
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
70
|
Chen CY, Tsai ML. Tris(Imidazolyl) Dicopper(I) Complex and its Reactivity to Exert Catalytic Oxidation of Sterically Hindered Phenol Substrates via a [Cu2O]2+ Core. Dalton Trans 2022; 51:2428-2443. [DOI: 10.1039/d1dt04084g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Cu ion ligated with histidine residues is a common active site motif of various Cu-containing metalloenzymes exerting versatile catalytic oxidation reactions. Due to the scarce of structurally characterized biomimetic...
Collapse
|
71
|
M. Honnanayakanavar J, Owk O, Suresh S. Recent Advances in the Tandem Copper-Catalyzed Ullmann-Goldberg N-Arylation–Cyclization Strategies. Org Biomol Chem 2022; 20:2993-3028. [DOI: 10.1039/d2ob00082b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N‒Aryl bond formation under copper catalysis has been playing a pivotal role and has been extensively used as a key step in the total syntheses of several therapeutic molecules. The...
Collapse
|
72
|
Liu B, Romine AM, Rubel CZ, Engle KM, Shi BF. Transition-Metal-Catalyzed, Coordination-Assisted Functionalization of Nonactivated C(sp 3)-H Bonds. Chem Rev 2021; 121:14957-15074. [PMID: 34714620 PMCID: PMC8968411 DOI: 10.1021/acs.chemrev.1c00519] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transition-metal-catalyzed, coordination-assisted C(sp3)-H functionalization has revolutionized synthetic planning over the past few decades as the use of these directing groups has allowed for increased access to many strategic positions in organic molecules. Nonetheless, several challenges remain preeminent, such as the requirement for high temperatures, the difficulty in removing or converting directing groups, and, although many metals provide some reactivity, the difficulty in employing metals outside of palladium. This review aims to give a comprehensive overview of coordination-assisted, transition-metal-catalyzed, direct functionalization of nonactivated C(sp3)-H bonds by covering the literature since 2004 in order to demonstrate the current state-of-the-art methods as well as the current limitations. For clarity, this review has been divided into nine sections by the transition metal catalyst with subdivisions by the type of bond formation. Synthetic applications and reaction mechanism are discussed where appropriate.
Collapse
Affiliation(s)
- Bin Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Andrew M. Romine
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Camille Z. Rubel
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Keary M. Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States.,Corresponding Author- (K. M. E.); (B.-F. S.)
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China,Corresponding Author- (K. M. E.); (B.-F. S.)
| |
Collapse
|
73
|
Cai A, Yan W, Wang C, Liu W. Copper-Catalyzed Difluoromethylation of Alkyl Iodides Enabled by Aryl Radical Activation of Carbon-Iodine Bonds. Angew Chem Int Ed Engl 2021; 60:27070-27077. [PMID: 34652873 DOI: 10.1002/anie.202111993] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 01/07/2023]
Abstract
The engagement of unactivated alkyl halides in copper-catalyzed cross-coupling reactions has been historically challenging, due to their low reduction potential and the slow oxidative addition of copper(I) catalysts. In this work, we report a novel strategy that leverages the halogen abstraction ability of aryl radicals, thereby engaging a diverse range of alkyl iodides in copper-catalyzed Negishi-type cross-coupling reactions at room temperature. Specifically, aryl radicals generated via copper catalysis efficiently initiate the cleavage of the carbon-iodide bonds of alkyl iodides. The alkyl radicals thus generated enter the copper catalytic cycles to couple with a difluoromethyl zinc reagent, thus furnishing the alkyl difluoromethane products. This unprecedented Negishi-type difluoromethylation approach has been applied to the late-stage modification of densely functionalized pharmaceutical agents and natural products.
Collapse
Affiliation(s)
- Aijie Cai
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Wenhao Yan
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Chao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|
74
|
Cai A, Yan W, Wang C, Liu W. Copper‐Catalyzed Difluoromethylation of Alkyl Iodides Enabled by Aryl Radical Activation of Carbon–Iodine Bonds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Aijie Cai
- Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA
| | - Wenhao Yan
- Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA
| | - Chao Wang
- Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA
| | - Wei Liu
- Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA
| |
Collapse
|
75
|
Zheng YN, Zheng H, Li T, Wei WT. Recent Advances in Copper-Catalyzed C-N Bond Formation Involving N-Centered Radicals. CHEMSUSCHEM 2021; 14:5340-5358. [PMID: 34750973 DOI: 10.1002/cssc.202102243] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Indexed: 06/13/2023]
Abstract
C-N bonds are pervasive throughout organic-based materials, natural products, pharmaceutical compounds, and agricultural chemicals. Considering the widespread importance of C-N bonds, the development of greener and more convenient ways to form C-N bonds, especially in late-stage synthesis, has become one of the hottest research goals in synthetic chemistry. Copper-catalyzed radical reactions involving N-centered radicals have emerged as a sustainable and promising approach to build C-N bonds. As a chemically popular and diverse radical species, N-centered radicals have been used for all kinds of reactions for C-N bond formation by taking advantage of their inherently incredible reactive flexibility. Copper is also the most abundant and economic catalyst with the most relevant activity for facilitating the synthesis of valuable compounds. Therefore, the aim of the present Review was to illustrate recent and significant advances in C-N bond formation methods and to understand the unique advantages of copper catalysis in the generation of N-centered radicals since 2016. To provide an ease of understanding for the readers, this Review was organized based on the types of nitrogen sources (amines, amides, sulfonamides, oximes, hydrazones, azides, and tert-butyl nitrite).
Collapse
Affiliation(s)
- Yan-Nan Zheng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, P. R. China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, P. R. China
| | - Wen-Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| |
Collapse
|
76
|
Devonport J, Sully L, Boudalis AK, Hassell-Hart S, Leech MC, Lam K, Abdul-Sada A, Tizzard GJ, Coles SJ, Spencer J, Vargas A, Kostakis GE. Room-Temperature Cu(II) Radical-Triggered Alkyne C-H Activation. JACS AU 2021; 1:1937-1948. [PMID: 34841411 PMCID: PMC8611675 DOI: 10.1021/jacsau.1c00310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Indexed: 06/13/2023]
Abstract
A dimeric Cu(II) complex [Cu(II)2L2(μ2-Cl)Cl] (1) built from an asymmetric tridentate ligand (2-(((2-aminocyclohexyl)imino)methyl)-4,6-di-tert-butylphenol) and weakly coordinating anions has been synthesized and structurally characterized. In dichloromethane solution, 1 exists in a monomeric [Cu(II)LCl] (1') (85%)-dimeric (1) (15%) equilibrium, and cyclic voltammetry (CV) and electron paramagnetic resonance (EPR) studies indicate structural stability and redox retention. Addition of phenylacetylene to the CH2Cl2 solution populates 1' and leads to the formation of a transient radical species. Theoretical studies support this notion and show that the radical initiates an alkyne C-H bond activation process via a four-membered ring (Cu(II)-O···H-Calkyne) intermediate. This unusual C-H activation method is applicable for the efficient synthesis of propargylamines, without additives, within 16 h, at low loadings and in noncoordinating solvents including late-stage functionalization of important bioactive molecules. Single-crystal X-ray diffraction studies, postcatalysis, confirmed the framework's stability and showed that the metal center preserves its oxidation state. The scope and limitations of this unconventional protocol are discussed.
Collapse
Affiliation(s)
- Jack Devonport
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Lauren Sully
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Athanassios K. Boudalis
- Institut
de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université
de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg, France
- Université
de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux
de Strasbourg (IPCMS), UMR 7504, F-67000 Strasbourg, France
| | - Storm Hassell-Hart
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Matthew C. Leech
- School
of Science, Department of Pharmaceutical Chemical and Environmental
Sciences, University of Greenwich, Central Avenue, Chatham Maritime ME4 4TB, U.K.
| | - Kevin Lam
- School
of Science, Department of Pharmaceutical Chemical and Environmental
Sciences, University of Greenwich, Central Avenue, Chatham Maritime ME4 4TB, U.K.
| | - Alaa Abdul-Sada
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Graham J. Tizzard
- UK
National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, U.K.
| | - Simon J. Coles
- UK
National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, U.K.
| | - John Spencer
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - Alfredo Vargas
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| | - George E. Kostakis
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, U.K.
| |
Collapse
|
77
|
Lu FD, Chen J, Jiang X, Chen JR, Lu LQ, Xiao WJ. Recent advances in transition-metal-catalysed asymmetric coupling reactions with light intervention. Chem Soc Rev 2021; 50:12808-12827. [PMID: 34652345 DOI: 10.1039/d1cs00210d] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transition metal-catalysed asymmetric coupling has been established as a robust tool for constructing complex organic molecules. Although this area has been extensively studied, the development of efficient protocols to construct stereogenic centres with excellent regio- and enantioselectivities is highly desirable and remains challenging. Asymmetric transition metal catalysis with light intervention provides a practical alternative strategy to current methods and considerably expands the synthetic utility as a result of abundant feedstocks and mild conditions. This tutorial review comprehensively summarizes the recent advances in transition-metal-catalysed asymmetric coupling reactions with light intervention; in particular, a concise analysis of substrate scope and the mechanistic scenarios governing stereocontrol is discussed.
Collapse
Affiliation(s)
- Fu-Dong Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Jun Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Xuan Jiang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
78
|
Ahmad Bhat I, Avinash I, Kumar Sachan S, Singh S, Anantharaman G. Efficient Synthesis of Cu(II)‐
N
‐Heterocyclic Carbene Complexes in Water and Their Activity Towards Aerobic Alcohol Oxidation. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Irshad Ahmad Bhat
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208016 India
| | - Iruthayaraj Avinash
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208016 India
| | - Sharad Kumar Sachan
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208016 India
| | - Sadhana Singh
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208016 India
| | | |
Collapse
|
79
|
Carsch KM, Iliescu A, McGillicuddy RD, Mason JA, Betley TA. Reversible Scavenging of Dioxygen from Air by a Copper Complex. J Am Chem Soc 2021; 143:18346-18352. [PMID: 34672573 DOI: 10.1021/jacs.1c10254] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report that exposing the dipyrrin complex (EMindL)Cu(N2) to air affords rapid, quantitative uptake of O2 in either solution or the solid-state to yield (EMindL)Cu(O2). The air and thermal stability of (EMindL)Cu(O2) is unparalleled in molecular copper-dioxygen coordination chemistry, attributable to the ligand flanking groups which preclude the [Cu(O2)]1+ core from degradation. Despite the apparent stability of (EMindL)Cu(O2), dioxygen binding is reversible over multiple cycles with competitive solvent exchange, thermal cycling, and redox manipulations. Additionally, rapid, catalytic oxidation of 1,2-diphenylhydrazine to azoarene with the generation of hydrogen peroxide is observed, through the intermittency of an observable (EMindL)Cu(H2O2) adduct. The design principles gleaned from this study can provide insight for the formation of new materials capable of reversible scavenging of O2 from air under ambient conditions with low-coordinate CuI sorbents.
Collapse
Affiliation(s)
- Kurtis M Carsch
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Andrei Iliescu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Ryan D McGillicuddy
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jarad A Mason
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Theodore A Betley
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
80
|
Honnanayakanavar JM, Nanubolu JB, Suresh S. Tandem copper catalyzed regioselective N-arylation-amidation: synthesis of angularly fused dihydroimidazoquinazolinones and the anticancer agent TIC10/ONC201. Org Biomol Chem 2021; 19:8497-8501. [PMID: 34546282 DOI: 10.1039/d1ob01561c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Herein, we present a copper-catalyzed tandem reaction of 2-aminoimidazolines and ortho-halo(hetero)aryl carboxylic acids that causes the regioselective formation of angularly fused tricyclic 1,2-dihydroimidazo[1,2-a]quinazolin-5(4H)-one derivatives. The reaction involved in the construction of the core six-membered pyrimidone moiety proceeded via regioselective N-arylation-condensation. The presented protocol been successfully applied to accomplish the total synthesis of TIC10/ONC201, which is an active angular isomer acting as a tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL): a sought after anticancer clinical agent.
Collapse
Affiliation(s)
- Jyoti M Honnanayakanavar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jagadeesh Babu Nanubolu
- Laboratory of X-Ray Crystallography, Department of Analytical Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - Surisetti Suresh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
81
|
Warm K, Tripodi G, Andris E, Mebs S, Kuhlmann U, Dau H, Hildebrandt P, Roithová J, Ray K. Spektroskopische Charakterisierung eines reaktiven [Cu
2
(μ‐OH)
2
]
2+
Intermediates in Cu/TEMPO‐katalysierten aeroben Alkoholoxidationen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katrin Warm
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | | | - Erik Andris
- Radboud University Heyendaalseweg 135 6525 AJ Nijmegen Niederlande
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Stefan Mebs
- Institut für Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Deutschland
| | - Uwe Kuhlmann
- Institut für Chemie, Fakultät II Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Holger Dau
- Institut für Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Deutschland
| | - Peter Hildebrandt
- Institut für Chemie, Fakultät II Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Jana Roithová
- Radboud University Heyendaalseweg 135 6525 AJ Nijmegen Niederlande
| | - Kallol Ray
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
82
|
Warm K, Tripodi G, Andris E, Mebs S, Kuhlmann U, Dau H, Hildebrandt P, Roithová J, Ray K. Spectroscopic Characterization of a Reactive [Cu 2 (μ-OH) 2 ] 2+ Intermediate in Cu/TEMPO Catalyzed Aerobic Alcohol Oxidation Reaction. Angew Chem Int Ed Engl 2021; 60:23018-23024. [PMID: 34309168 PMCID: PMC8518518 DOI: 10.1002/anie.202108442] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/16/2021] [Indexed: 12/23/2022]
Abstract
CuI/TEMPO (TEMPO=2,2,6,6‐tetramethylpiperidinyloxyl) catalyst systems are versatile catalysts for aerobic alcohol oxidation reactions to selectively yield aldehydes. However, several aspects of the mechanism are yet unresolved, mainly because of the lack of identification of any reactive intermediates. Herein, we report the synthesis and characterization of a dinuclear [L12Cu2]2+ complex 1, which in presence of TEMPO can couple the catalytic 4 H+/4 e− reduction of O2 to water to the oxidation of benzylic and aliphatic alcohols. The mechanisms of the O2‐reduction and alcohol oxidation reactions have been clarified by the spectroscopic detection of the reactive intermediates in the gas and condensed phases, as well as by kinetic studies on each step in the catalytic cycles. Bis(μ‐oxo)dicopper(III) (2) and bis(μ‐hydroxo)dicopper(II) species 3 are shown as viable reactants in oxidation catalysis. The present study provides deep mechanistic insight into the aerobic oxidation of alcohols that should serve as a valuable foundation for ongoing efforts dedicated towards the understanding of transition‐metal catalysts involving redox‐active organic cocatalysts.
Collapse
Affiliation(s)
- Katrin Warm
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Guilherme Tripodi
- Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, Netherlands
| | - Erik Andris
- Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, Netherlands.,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Stefan Mebs
- Institut für Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Uwe Kuhlmann
- Institut für Chemie, Fakultät II, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Holger Dau
- Institut für Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Peter Hildebrandt
- Institut für Chemie, Fakultät II, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Jana Roithová
- Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, Netherlands
| | - Kallol Ray
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
83
|
Xu LP, Haines BE, Ajitha MJ, Yu JQ, Musaev DG. Unified Mechanistic Concept of the Copper-Catalyzed and Amide-Oxazoline-Directed C(sp 2)–H Bond Functionalization. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Li-Ping Xu
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Brandon E. Haines
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Manjaly J. Ajitha
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Djamaladdin G. Musaev
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
84
|
Feng C, Cheng L, Ma H, Ma L, Wu Q, Yang J. Unraveling the Mechanism of Aerobic Alcohol Oxidation by a Cu/pytl-β-Cyclodextrin/TEMPO Catalytic System under Air in Neat Water. Inorg Chem 2021; 60:14132-14141. [PMID: 34459198 DOI: 10.1021/acs.inorgchem.1c01504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism for the oxidation of p-tolylmethanol to p-tolualdehyde catalyzed by a Cu/pytl-β-cyclodextrin/TEMPO (TEMPO = 2,2,6,6-tetramethylpiperidinyl-1-oxy) catalytic system under air in neat water is fully investigated by density functional theory (DFT). Four possible pathways (paths A → D) are presented. The calculated TOF = 0.67 h-1 for path A is consistent with the experimental TOF = 1.9 h-1 but much lower than that for path D (TOF = 1.1 × 105 h-1). The results demonstrate that path A is the dominant pathway under the optimal experimental conditions, even though path D is more kinetically favorable. This is because the concentration of precatalyst 11 [(pytl-β-CD)CuII(OH)] in path D is too low to start path D, so p-tolylmethanol oxidation can only proceed via path A. This finding implies that the relative concentration of precatalysts in a one-pot synthesis experiment plays a vital role in the aerobic alcohol oxidation reaction. Based on this finding, we speculate that the direct use of the presynthesized precatalyst 11 or addition of an appropriate amount of NaOH to the reaction solution, but with the total amount of the base added unchanged, is a good way to improve its catalytic activity. Meanwhile, the solvent water was not found to directly participate in the catalytic active sites for the oxidation of alcohols but rather inhibited it by forming the hydrogen-bonded network.
Collapse
Affiliation(s)
- Chunmei Feng
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, China
| | - Lin Cheng
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, China
| | - Huiyan Ma
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, China
| | - Lisha Ma
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, China
| | - Qi Wu
- High Performance Computing Center of Jilin University, Changchun 130022, China
| | - Jucai Yang
- College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, China
| |
Collapse
|
85
|
Liu H, Shen Q. Well-defined organometallic Copper(III) complexes: Preparation, characterization and reactivity. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
86
|
Barcellos AM, Sacramento M, da Costa GP, Perin G, João Lenardão E, Alves D. Organoboron compounds as versatile reagents in the transition metal-catalyzed C–S, C–Se and C–Te bond formation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
87
|
Trammell R, Cordova A, Zhang S, Goswami S, Murata R, Siegler MA, Garcia-Bosch I. Practical One-Pot Multistep Synthesis of 2H-1,3-Benzoxazines Using Copper, Hydrogen Peroxide and Triethylamine. European J Org Chem 2021; 2021:4536-4540. [PMID: 34539234 DOI: 10.1002/ejoc.202100783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this article, we describe simple one-pot syntheses of 2H-1,3-benzoxazines from ketones utilizing an imino-pyridine directing group (R1R2-C=N-CH2-Pyr), which promotes a Cu-directed sp2 hydroxylation using H2O2 as oxidant and followed by an oxidative intramolecular C-O bond formation upon addition of NEt3. This synthetic protocol is utilized in the gram scale synthesis of the 2H-1,3-benzoxazine derived from benzophenone. Mechanistic studies reveal that the cyclization occurs via deprotonation of the benzylic position of the directing group to produce a 2-azallyl anion intermediate, which is oxidized to the corresponding 2-azaallyl radical before the C-O bond formation event. Understanding of the cyclization mechanism also allowed us to develop reaction conditions that utilize catalytic amounts of Cu.
Collapse
Affiliation(s)
- Rachel Trammell
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Alexandra Cordova
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Shuming Zhang
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Sunipa Goswami
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Richel Murata
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Isaac Garcia-Bosch
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| |
Collapse
|
88
|
Huang B, Tan Z. Host-Guest Interactions Between Metal-Organic Frameworks and Air-Sensitive Complexes at High Temperature. Front Chem 2021; 9:706942. [PMID: 34414161 PMCID: PMC8369409 DOI: 10.3389/fchem.2021.706942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/16/2021] [Indexed: 11/29/2022] Open
Abstract
The host-guest chemistry of metal–organic frameworks (MOFs) has been attracting increasing attention owing to the outstanding properties derived from MOFs-guests combinations. However, there are large difficulties involved in the syntheses of the host-guest MOF systems with air-sensitive metal complexes. In addition, the behaviors on host-guest interactions in the above systems at high temperature are not clear. This study reported the synthetic methods for host-guest systems of metal–organic framework and air-sensitive metal complexes via a developed chemical vapor infiltration process. With the synchrotron X-ray powder diffraction (XRPD) measurements and Fourier Transform infrared spectroscopy (FTIR), the successful loadings of Fe(CO)5 in HKUST-1 and NH2-MIL-101(Al) have been confirmed. At high temperatures, the structural and chemical componential changes were investigated in detail by XRPD and FTIR measurements. HKUST-1 was proven to have strong interaction with Fe(CO)5 and resulted in a heavy loading amount of 63.1 wt%, but too strong an interaction led to deformation of HKUST-1 sub-unit under heating conditions. NH2-MIL-101(Al), meanwhile, has a weaker interaction and is chemically inert to Fe(CO)5 at high temperatures.
Collapse
Affiliation(s)
- Bo Huang
- Institute of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Zhe Tan
- Institute of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
89
|
Paul M, Teubner M, Grimm-Lebsanft B, Buchenau S, Hoffmann A, Rübhausen M, Herres-Pawlis S. Influence of the amine donor on hybrid guanidine-stabilized Bis(μ-oxido) dicopper(III) complexes and their tyrosinase-like oxygenation activity towards polycyclic aromatic alcohols. J Inorg Biochem 2021; 224:111541. [PMID: 34416481 DOI: 10.1016/j.jinorgbio.2021.111541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/30/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
The tyrosinase-like activity of hybrid guanidine-stabilized bis(μ-oxido) dicopper(III) complexes [Cu2(μ-O)2(L)2](X)2 (L = 2-{2-((Diethylamino)methyl)phenyl}-1,1,3,3-tetramethylguanidine (TMGbenzNEt2, L2) and 2-{2-((Di-isopropylamino)methyl)phenyl}-1,1,3,3-tetramethylguanidine (TMGbenzNiPr2, L3); X = PF6-, BF4-, CF3SO3-) is described. New aromatic hybrid guanidine amine ligands were developed with varying amine donor function. Their copper(I) complexes were analyzed towards their ability to activate dioxygen in the presence of different weakly coordinating anions. The resulting bis(μ-oxido) species were characterized at low temperatures by UV/Vis and resonance Raman spectroscopy, cryo-ESI mass spectrometry and density functional theory calculations. Small structural changes in the ligand sphere were found to influence the characteristic ligand-to-metal charge transfer (LMCT) features of the bis(μ-oxido) species, correlating a redshift in the UV/Vis spectrum with weaker N-donor function of the ligand. DFT calculations elucidated the influence of the steric and electronic properties of the bis(μ-oxido) species leading to a higher twist of the Cu2O2 plane against the CuN2 plane and a stretching of the Cu2O2 core. Despite their moderate stability at -100 °C, the bis(μ-oxido) complexes exhibited a remarkable activity in catalytic oxygenation reactions of polycyclic aromatic alcohols. Further the selectivity of the catalyst in the hydroxylation reactions of challenging phenolic substrates is not changed despite an increasing shield of the reactive bis(μ-oxido) core. The generated quinones were found to form exclusively bent phenazines, providing a promising strategy to access tailored phenazine derivatives.
Collapse
Affiliation(s)
- Melanie Paul
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| | - Melissa Teubner
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany; Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Sören Buchenau
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Alexander Hoffmann
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany.
| | - Michael Rübhausen
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Sonja Herres-Pawlis
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany.
| |
Collapse
|
90
|
Peralta RA, Huxley MT, Albalad J, Sumby CJ, Doonan CJ. Single-Crystal-to-Single-Crystal Transformations of Metal-Organic-Framework-Supported, Site-Isolated Trigonal-Planar Cu(I) Complexes with Labile Ligands. Inorg Chem 2021; 60:11775-11783. [PMID: 34160208 DOI: 10.1021/acs.inorgchem.1c00849] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transition-metal complexes bearing labile ligands can be difficult to isolate and study in solution because of unwanted dinucleation or ligand substitution reactions. Metal-organic frameworks (MOFs) provide a unique matrix that allows site isolation and stabilization of well-defined transition-metal complexes that may be of importance as moieties for gas adsorption or catalysis. Herein we report the development of an in situ anion metathesis strategy that facilitates the postsynthetic modification of Cu(I) complexes appended to a porous, crystalline MOF. By exchange of coordinated chloride for weakly coordinating anions in the presence of carbon monoxide (CO) or ethylene, a series of labile MOF-appended Cu(I) complexes featuring CO or ethylene ligands are prepared and structurally characterized using X-ray crystallography. These complexes have an uncommon trigonal planar geometry because of the absence of coordinating solvents. The porous host framework allows small and moderately sized molecules to access the isolated Cu(I) sites and displace the "place-holder" CO ligand, mirroring the ligand-exchange processes involved in Cu-centered catalysis.
Collapse
Affiliation(s)
- Ricardo A Peralta
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Michael T Huxley
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Jorge Albalad
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Christopher J Sumby
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Christian J Doonan
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| |
Collapse
|
91
|
Zhu Z, Gao Q, Long Z, Huo Q, Ge Y, Vianney N, Daliko NA, Meng Y, Qu J, Chen H, Wang B. Polydopamine/poly(sulfobetaine methacrylate) Co-deposition coatings triggered by CuSO 4/H 2O 2 on implants for improved surface hemocompatibility and antibacterial activity. Bioact Mater 2021; 6:2546-2556. [PMID: 33665495 PMCID: PMC7887402 DOI: 10.1016/j.bioactmat.2021.01.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Implanted biomaterials such as medical catheters are prone to be adhered by proteins, platelets and bacteria due to their surface hydrophobicity characteristics, and then induce related infections and thrombosis. Hence, the development of a versatile strategy to endow surfaces with antibacterial and antifouling functions is particularly significant for blood-contacting materials. In this work, CuSO4/H2O2 was used to trigger polydopamine (PDA) and poly-(sulfobetaine methacrylate) (PSBMA) co-deposition process to endow polyurethane (PU) antibacterial and antifouling surface (PU/PDA(Cu)/PSBMA). The zwitterions contained in the PU/PDA(Cu)/PSBMA coating can significantly improve surface wettability to reduce protein adsorption, thereby improving its blood compatibility. In addition, the copper ions released from the metal-phenolic networks (MPNs) imparted them more than 90% antibacterial activity against E. coli and S. aureus. Notably, PU/PDA(Cu)/PSBMA also exhibits excellent performance in vivo mouse catheter-related infections models. Thus, the PU/PDA(Cu)/PSBMA has great application potential for developing multifunctional surface coatings for blood-contacting materials so as to improve antibacterial and anticoagulant properties.
Collapse
Affiliation(s)
- Zhongqiang Zhu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiang Gao
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ziyue Long
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiuyi Huo
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yifan Ge
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ntakirutimana Vianney
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Nishimwe Anodine Daliko
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yongchun Meng
- Central Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Street, Yantai, Shandong, 264100, China
| | - Jia Qu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hao Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bailiang Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
92
|
|
93
|
Kwon Y, Zhang W, Wang Q. Copper-Catalyzed Aminoheteroarylation of Unactivated Alkenes through Distal Heteroaryl Migration. ACS Catal 2021; 11:8807-8817. [PMID: 36381639 PMCID: PMC9648721 DOI: 10.1021/acscatal.1c01001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a copper-catalyzed aminoheteroarylation of unactivated alkenes to access valuable heteroarylethylamine motif. The developed reaction features a copper-catalyzed intermolecular electrophilic amination of the alkenes followed by a migratory heteroarylation. The method applies on alcohol-, amide-, and ether-containing alkenes, overcoming the common requirement of a hydroxyl motif in previous migratory difunctionalization reactions. This reaction is effective for the introduction of diverse aliphatic amines and has good functional group tolerance, which is particularly useful for richly functionalized heteroarenes. This migration-involved reaction was found well suited as a powerful ring expansion approach for the construction of medium-sized rings that are in great demand in medicinal chemistry.
Collapse
Affiliation(s)
- Yungeun Kwon
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Wei Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
94
|
Le HM, Guagliardo M, Gorden AEV, Clark AE. Ensemble effects on allylic oxidation within explicit solvation environments. Dalton Trans 2021; 50:9259-9268. [PMID: 34128517 DOI: 10.1039/d1dt00785h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Umbrella-sampling density functional theory molecular dynamics (DFT-MD) has been employed to study the full catalytic cycle of the allylic oxidation of cyclohexene using a Cu(ii) 7-amino-6-((2-hydroxybenzylidene)amino)quinoxalin-2-ol complex in acetonitrile to create cyclohexenone and H2O as products. After the initial H-atom abstraction step, two different reaction pathways have been identified that are distinguished by the participation of alkyl hydroperoxide (referred to as the "open" cycle) versus the methanol side-product (referred to as the "closed" cycle) within the catalyst recovery process. Importantly, both pathways involve dehydrogenation and re-hydrogenation of the -NH2 group bound to the Cu-site - a feature that is revealed from the ensemble sampling of configurations of the reactive species that are stabilized within the explicit solvent environment of the simulation. Estimation of the energy span from the experimental turnover frequency yields an approximate value of 22.7 kcal mol-1 at 350 K. Whereas the closed cycle value is predicted to be 26.2 kcal mol-1, the open cycle value at 16.5 kcal mol-1. Both pathways are further consistent with the equilibrium between Cu(ii) and Cu(iii) that has previously been observed. In comparison to prior static DFT calculations, the ensemble of both solute and solvent configurations has helped to reveal a breadth of processes that underpin the full catalytic cycle yielding a more comprehensive understanding of the importance of radical reactions and catalysis recovery.
Collapse
Affiliation(s)
- Hung M Le
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA.
| | - Mariano Guagliardo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79430, USA
| | - Anne E V Gorden
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79430, USA
| | - Aurora E Clark
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA. and Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| |
Collapse
|
95
|
Fathalla SK, El-Ghamry HA, Gaber M. Ru(III) complexes of triazole based Schiff base and azo dye ligands: An insight into the molecular structure and catalytic role in oxidative dimerization of 2-aminophenol. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
96
|
Xiao S, Liu C, Song B, Wang L, Qi Y, Liu Y. Samarium-based Grignard-type addition of organohalides to carbonyl compounds under catalysis of CuI. Chem Commun (Camb) 2021; 57:6169-6172. [PMID: 34047318 DOI: 10.1039/d1cc00965f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Grignard-type additions were readily achieved under the mediation of CuI (10 mol%) and samarium (2 equiv.) by employing various organohalides, e.g. benzyl, aryl, heterocyclic and aliphatic halides (Cl, Br or I), and diverse carbonyl compounds (e.g. carbonic esters, carboxylic esters, acid anhydrides, acyl chlorides, ketones, aldehydes, propylene epoxides and formamides) to afford alcohols, ketones and aldehydes, respectively, with high efficiency and chemoselectivity, in which the organosamarium intermediate might be involved.
Collapse
Affiliation(s)
- Shuhuan Xiao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chen Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bin Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Rd. #700, Qingdao 266109, P. R. China
| | - Yan Qi
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yongjun Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
97
|
Zhang M, Liang G, Xing M. Theoretical Investigation of Hydrogen‐Bond‐Assisted Tetradentate N4 Copper(I) Chloride and
trans
‐1,2‐Peroxodicopper Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Min Zhang
- Department of Chemistry Mississippi State University Mississippi State Mississippi 39762 United States
| | - Guangchao Liang
- Department of Chemistry University of Michigan Ann Arbor Michigan 48109 United States
| | - Mengjiang Xing
- State Key Laboratory of Electronic Thin Films and Integrated Devices University of Electronic Science and Technology of China Chengdu 610054 P. R. China
- Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 P. R. China
| |
Collapse
|
98
|
Zhou H, Li ZL, Gu QS, Liu XY. Ligand-Enabled Copper(I)-Catalyzed Asymmetric Radical C(sp 3)–C Cross-Coupling Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01970] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Huan Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| |
Collapse
|
99
|
Wu T, Musgrove J, Siegler MA, Garcia-Bosch I. Mononuclear and Dinuclear Copper Complexes of Tridentate Redox-active Ligands with Tunable H-bonding Donors: Structure, Spectroscopy and H + /e - Reactivity. Chem Asian J 2021; 16:1608-1618. [PMID: 33929787 DOI: 10.1002/asia.202100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/29/2021] [Indexed: 11/06/2022]
Abstract
In this research article, we describe the synthesis and characterization of mononuclear and dinuclear Cu complexes bound by a family of tridentate redox-active ligands with tunable H-bonding donors. The mononuclear Cu-anion complexes were oxidized to the corresponding "high-valent" intermediates by oxidation of the redox-active ligand. These species were capable of oxidizing phenols with weak O-H bonds via H-atom abstraction. Thermodynamic analysis of the H-atom abstractions, which included reduction potential measurements, pKa determination and kinetic studies, revealed that modification of the anion coordinated to the Cu and changes in the H-bonding donor did not lead to major differences in the reactivity of the "high-valent" CuY complexes (Y: hydroxide, phenolate and acetate), which indicated that the tridentate ligand scaffold acts as the H+ and e- acceptor.
Collapse
Affiliation(s)
- Tong Wu
- Department of Chemistry, Southern Methodist University, Dallas, Texas, 75275, United States
| | - Justin Musgrove
- Department of Chemistry, Southern Methodist University, Dallas, Texas, 75275, United States
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, 21218, United States
| | - Isaac Garcia-Bosch
- Department of Chemistry, Southern Methodist University, Dallas, Texas, 75275, United States
| |
Collapse
|
100
|
Su XL, Jiang SP, Ye L, Xu GX, Chen JJ, Gu QS, Li ZL, Liu XY. A general copper-catalyzed radical C(sp3)−C(sp2) cross-coupling to access 1,1-diarylalkanes under ambient conditions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|