51
|
Pourchet M, Debrauwer L, Klanova J, Price EJ, Covaci A, Caballero-Casero N, Oberacher H, Lamoree M, Damont A, Fenaille F, Vlaanderen J, Meijer J, Krauss M, Sarigiannis D, Barouki R, Le Bizec B, Antignac JP. Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: From promises to challenges and harmonisation issues. ENVIRONMENT INTERNATIONAL 2020; 139:105545. [PMID: 32361063 DOI: 10.1016/j.envint.2020.105545] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/02/2020] [Accepted: 02/02/2020] [Indexed: 05/07/2023]
Abstract
Large-scale suspect and non-targeted screening approaches based on high-resolution mass spectrometry (HRMS) are today available for chemical profiling and holistic characterisation of biological samples. These advanced techniques allow the simultaneous detection of a large number of chemical features, including markers of human chemical exposure. Such markers are of interest for biomonitoring, environmental health studies and support to risk assessment. Furthermore, these screening approaches have the promising capability to detect chemicals of emerging concern (CECs), document the extent of human chemical exposure, generate new research hypotheses and provide early warning support to policy. Whilst of growing importance in the environment and food safety areas, respectively, CECs remain poorly addressed in the field of human biomonitoring. This shortfall is due to several scientific and methodological reasons, including a global lack of harmonisation. In this context, the main aim of this paper is to present an overview of the basic principles, promises and challenges of suspect and non-targeted screening approaches applied to human samples as this specific field introduce major specificities compared to other fields. Focused on liquid chromatography coupled to HRMS-based data acquisition methods, this overview addresses all steps of these new analytical workflows. Beyond this general picture, the main activities carried out on this topic within the particular framework of the European Human Biomonitoring initiative (project HBM4EU, 2017-2021) are described, with an emphasis on harmonisation measures.
Collapse
Affiliation(s)
| | - Laurent Debrauwer
- TOXALIM (Research Centre in Food Toxicology), Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University, 31027 Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, F-31027 Toulouse, France
| | - Jana Klanova
- RECETOX Centre, Masaryk University, Brno, Czech Republic
| | - Elliott J Price
- RECETOX Centre, Masaryk University, Brno, Czech Republic; Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Belgium
| | | | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Austria
| | - Marja Lamoree
- Vrije Universiteit, Department Environment & Health, Amsterdam, the Netherlands
| | - Annelaure Damont
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, Gif-sur-Yvette, France
| | - François Fenaille
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, Gif-sur-Yvette, France
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Jeroen Meijer
- Vrije Universiteit, Department Environment & Health, Amsterdam, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Martin Krauss
- UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Denis Sarigiannis
- HERACLES Research Center on the Exposome and Health, Aristotle University of Thessaloniki, Greece
| | - Robert Barouki
- Unité UMR-S 1124 Inserm-Université Paris Descartes "Toxicologie Pharmacologie et Signalisation Cellulaire", Paris, France
| | | | | |
Collapse
|
52
|
Newton SR, Sobus JR, Ulrich EM, Singh RR, Chao A, McCord J, Laughlin-Toth S, Strynar M. Examining NTA performance and potential using fortified and reference house dust as part of EPA's Non-Targeted Analysis Collaborative Trial (ENTACT). Anal Bioanal Chem 2020; 412:4221-4233. [PMID: 32335688 DOI: 10.1007/s00216-020-02658-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 11/29/2022]
Abstract
Non-targeted analysis (NTA) methods are being increasingly used to aid in the identification of unknown compounds in the environment, a problem that has challenged environmental chemists for decades. Despite its increased use, quality assurance practices for NTA have not been well established. Furthermore, capabilities and limitations of certain NTA methods have not been thoroughly evaluated. Standard reference material dust (SRM 2585) was used here to evaluate the ability of NTA to identify previously reported compounds, as well as a suite of 365 chemicals that were spiked at various stages of the analytical procedure. Analysis of the unaltered SRM 2585 extracts revealed that several previously reported compounds can be identified by NTA, and that correct identification was dependent on concentration. A manual inspection of unknown features in SRM 2585 revealed the presence of two chlorinated and fluorinated compounds in high abundance, likely precursors to perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS). A retrospective analysis of data from the American Healthy Homes Survey revealed that these compounds were present in 42% of sampled homes. Spiking the dust at various stages of sample preparation revealed losses from extraction, cleanup, and instrumental analysis; the log Kow for individual compounds influenced the overall recovery levels but no pattern could be discerned from the various degrees of interference that the matrix had on the ionization efficiency of the spiked chemicals. Analysis of the matrix-free chemical mixture at low, medium, and high concentrations led to more correct identifications than analysis at one, very high concentration. Varying the spiked amount and identifying reported compounds at known concentrations allowed an estimation of the lower limits of identification (LOIs) for NTA, analogous to limits of detection in targeted analysis. The LOIs were much lower than levels in dust that would be likely to cause bioactivity in humans, indicating that NTA is useful for identifying and monitoring compounds that may be of toxicological concern. Graphical abstract.
Collapse
Affiliation(s)
- Seth R Newton
- Center for Computational Toxicology and Exposure, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | - Jon R Sobus
- Center for Computational Toxicology and Exposure, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Elin M Ulrich
- Center for Computational Toxicology and Exposure, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Randolph R Singh
- Oak Ridge Institute for Science and Education, Post-Doctoral Participant, National Exposure Research Laboratory, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4365, Esch-sur-Alzette, Luxembourg
| | - Alex Chao
- Oak Ridge Institute for Science and Education, Post-Doctoral Participant, National Exposure Research Laboratory, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - James McCord
- Center for Environmental Measurement and Modeling, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Sarah Laughlin-Toth
- Oak Ridge Institute for Science and Education, Post-Doctoral Participant, National Exposure Research Laboratory, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.,Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Mark Strynar
- Center for Environmental Measurement and Modeling, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
53
|
Rager JE, Bangma J, Carberry C, Chao A, Grossman J, Lu K, Manuck TA, Sobus JR, Szilagyi J, Fry RC. Review of the environmental prenatal exposome and its relationship to maternal and fetal health. Reprod Toxicol 2020; 98:1-12. [PMID: 32061676 DOI: 10.1016/j.reprotox.2020.02.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/05/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
Abstract
Environmental chemicals comprise a major portion of the human exposome, with some shown to impact the health of susceptible populations, including pregnant women and developing fetuses. The placenta and cord blood serve as important biological windows into the maternal and fetal environments. In this article we review how environmental chemicals (defined here to include man-made chemicals [e.g., flame retardants, pesticides/herbicides, per- and polyfluoroalkyl substances], toxins, metals, and other xenobiotic compounds) contribute to the prenatal exposome and highlight future directions to advance this research field. Our findings from a survey of recent literature indicate the need to better understand the breadth of environmental chemicals that reach the placenta and cord blood, as well as the linkages between prenatal exposures, mechanisms of toxicity, and subsequent health outcomes. Research efforts tailored towards addressing these needs will provide a more comprehensive understanding of how environmental chemicals impact maternal and fetal health.
Collapse
Affiliation(s)
- Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jacqueline Bangma
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Celeste Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alex Chao
- Oak Ridge Institute for Science and Education (ORISE) Participant, Research Triangle Park, NC, USA
| | | | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tracy A Manuck
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jon R Sobus
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Research Triangle Park, NC, USA
| | - John Szilagyi
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
54
|
Weggler BA, Gruber B, Teehan P, Jaramillo R, Dorman FL. Inlets and sampling. SEP SCI TECHNOL 2020. [DOI: 10.1016/b978-0-12-813745-1.00005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
55
|
Dhenadhayalan N, Lin KC, Saleh TA. Recent Advances in Functionalized Carbon Dots toward the Design of Efficient Materials for Sensing and Catalysis Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905767. [PMID: 31769599 DOI: 10.1002/smll.201905767] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/01/2019] [Indexed: 05/23/2023]
Abstract
Since the past decade, enormous research efforts have been devoted to the detection/degradation and quantification of environmental toxic pollutants and biologically important molecules due to their ubiquitous necessity in the fields of environmental protection and human health. These fields of sensor and catalysis are advanced to a new era after emerging of nanomaterials, especially, carbon nanomaterials including graphene, carbon nanotube, carbon dots (C-dots), etc. Among them, the C-dots in the carbon family are rapidly boosted in the aspect of synthesis and application due to their superior properties of chemical and photostability, highly fluorescent with tunable, non/low-toxicity, and biocompatibility. The C-dot-based functional materials have shown great potential in sensor and catalysis fields for the detection/degradation of environmental pollutants. The major advantage of C-dots is that they can be easily prepared from numerous biomass/waste materials which are inexpensive and environment-friendly and are suitable for a developing trend of sustainable materials. This review is devoted to the recent development (since 2017) in the synthesis of biomass- and chemical-derived C-dots as well as diverse functionalization of C-dots. Their capability as a sensor and catalyst and respective mechanism are summarized. The future perspectives of C-dots are also discussed.
Collapse
Affiliation(s)
- Namasivayam Dhenadhayalan
- Department of Chemistry, National Taiwan University, Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Tawfik A Saleh
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
56
|
Amaral MSS, Nolvachai Y, Marriott PJ. Comprehensive Two-Dimensional Gas Chromatography Advances in Technology and Applications: Biennial Update. Anal Chem 2019; 92:85-104. [DOI: 10.1021/acs.analchem.9b05412] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michelle S. S. Amaral
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Yada Nolvachai
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Philip J. Marriott
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
57
|
Occurrence and Concentration of Chemical Additives in Consumer Products in Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16245075. [PMID: 31842379 PMCID: PMC6950561 DOI: 10.3390/ijerph16245075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022]
Abstract
As the variety of chemicals used in consumer products (CPs) has increased, concerns about human health risk have grown accordingly. Even though restrictive guidelines and regulations have taken place to minimize the risks, human exposure to these chemicals and their eco-compatibility has remained a matter of greater scientific concern over the years. A major challenge in understanding the reality of the exposure is the lack of available information on the increasing number of ingredients and additives in the products. Even when ingredients of CPs formulations are identified on the product containers, the concentrations of the chemicals are rarely known to consumers. In the present study, an integrated target/suspect/non-target screening procedure using liquid chromatography-high resolution mass spectrometry (LC-HRMS) with stepwise identification workflow was used for the identification of known, suspect, and unknown chemicals in CPs including cosmetics, personal care products, and washing agents. The target screening was applied to identify and quantify isothiazolinones and phthalates. Among analyzed CPs, isothiazolinones and phthalates were found in 47% and in 24% of the samples, respectively. The highest concentrations were 518 mg/kg for benzisothiazolone, 7.1 mg/kg for methylisothiazolinone, 2.0 mg/kg for diethyl phthalate, and 21 mg/kg for dimethyl phthalate. Suspect and non-target analyses yielded six tentatively identified chemicals across the products including benzophenone, ricinine, iodocarb (IPBC), galaxolidone, triethanolamine, and 2-(2H-Benzotriazol-2-yl)-4, 6-bis (1-methyl-1-phenylethyl) phenol. Our results revealed that selected CPs consistently contain chemicals from multiple classes. Excessive use of these chemicals in daily life can increase the risk for human health and the environment.
Collapse
|
58
|
Tang C, Tan J, Fan Y, Zheng K, Yu Z, Peng X. Quantitative and semiquantitative analyses of hexa-mix-chlorinated/brominated benzenes in fly ash, soil and air using gas chromatography-high resolution mass spectrometry assisted with isotopologue distribution computation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113162. [PMID: 31546079 DOI: 10.1016/j.envpol.2019.113162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/05/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Hexa-mix-chlorinated/brominated benzenes (HXBs), a group of newly found analogues of hexachlorobenzene (HCB) and hexabromobenzene (HBB), may exhibit similar environmental risks and toxicities as HCB and HBB, and therefore possess high interests in environmental and toxicological research. Yet information regarding HXBs in the environment remains scarce. In this study, we developed an isotope dilution method for quantitative and semiquantitative determination of five HXBs in fly ash, soil and air using gas chromatography high resolution mass spectrometry (GC-HRMS) in multiple ion detection mode. The samples were Soxhlet-extracted and purified with multilayer composite silica gel-alumina columns, followed by GC-HRMS detection. Identification of HXBs was conducted by the comparison between theoretical and detected mass spectra using paired-samples T test and cosine similarity analysis. Two HXBs (C6BrCl5 and C6Br4Cl2) with reference standards were quantitatively determined while the rest three (C6Br2Cl4, C6Br3Cl3 and C6Br5Cl) without reference standards were semiquantitatively analyzed by sharing the calibration curves of C6BrCl5 and C6Br4Cl2 in cooperation with isotopologue distribution computation. The accuracies for C6BrCl5 and C6Br4Cl2 were 87.3-107.8% with relative standard deviations (RSD) of 2.8-5.0%. The method limits of quantification of the HXBs were 0.10 ng/g in fly ash and soil samples and 0.09 pg/m3 in ambient air samples. The recoveries ranged from 42.7% to 102.1% with RSD of 3.7-13.9%. This method has been successfully applied to the analysis of the HXBs in the environmental samples. The total concentrations of HXBs in the fly ash, soil and ambient air samples were 19.48 ng/g, 10.44 ng/g and 5.13 pg/m3, respectively, which accounted for 10.6%, 0.4% and 10.8% of the corresponding total concentrations of HCB and HBB. This study provides a reference method for quantitative and/or semiquantitative analyses of novel mix-halogenated organic compounds, and sheds light on the full picture of HXBs pollution in the environment.
Collapse
Affiliation(s)
- Caiming Tang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Jianhua Tan
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, 510110, China
| | - Yujuan Fan
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Zheng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xianzhi Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
59
|
Bocato MZ, Bianchi Ximenez JP, Hoffmann C, Barbosa F. An overview of the current progress, challenges, and prospects of human biomonitoring and exposome studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:131-156. [PMID: 31543064 DOI: 10.1080/10937404.2019.1661588] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Human Biomonitoring (HB), the process for determining whether and to what extent chemical substances penetrated our bodies, serves as a useful tool to quantify human exposure to pollutants. In cases of nutrition and physiologic status, HB plays a critical role in the identification of excess or deficiency of essential nutrients. In pollutant HB studies, levels of substances measured in body fluids (blood, urine, and breast milk) or tissues (hair, nails or teeth) aid in the identification of potential health risks or associated adverse effects. However, even as a widespread practice in several countries, most HB studies reflect exposure to a single compound or mixtures which are measured at a single time point in lifecycle. On the other hand, throughout an individual's lifespan, the contact with different physical, chemical, and social stressors occurs at varying intensities, differing times and durations. Further, the interaction between stressors and body receptors leads to dynamic responses of the entire biological system including proteome, metabolome, transcriptome, and adductome. Bearing this in mind, a relatively new vision in exposure science, defined as the exposome, is postulated to expand the traditional practice of measuring a single exposure to one or few chemicals at one-time point to an approach that addresses measures of exposure to multiple stressors throughout the lifespan. With the exposome concept, the science of exposure advances to an Environment-Wide Association Perspective, which might exhibit a stronger relationship with good health or disease conditions for an individual (phenotype). Thus, this critical review focused on the current progress of HB and exposome investigations, anticipating some challenges, strategies, and future needs to be taken into account for designing future surveys.
Collapse
Affiliation(s)
- Mariana Zuccherato Bocato
- Laboratório de Toxicologia Analítica e de Sistemas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , Brazil
| | - João Paulo Bianchi Ximenez
- Laboratório de Toxicologia Analítica e de Sistemas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Christian Hoffmann
- Departmento de Alimentos e Nutrição Experimental Faculdade de Ciências Farmacêuticas, Universidade de São Paulo , São Paulo , Brazil
| | - Fernando Barbosa
- Laboratório de Toxicologia Analítica e de Sistemas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , Brazil
| |
Collapse
|
60
|
Hedgespeth ML, Nichols EG. Expanding phytoremediation to the realms of known and unknown organic chemicals of concern. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1385-1396. [PMID: 31257906 DOI: 10.1080/15226514.2019.1633265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent advancements in analytical chemistry and data analyses via high-resolution mass spectrometry (HRMS) are evolving scientific understanding of the potential totality of organic chemical exposure and pollutant risk. This review addresses the importance of HRMS approaches, namely suspect screening and nontarget chemical analyses, to the realm of phytoremediation. These analytical approaches are not without caveats and constraints, but they provide an opportunity to understand in greater totality how plant-based technologies contribute, mitigate, and reduce organic chemical exposure across scales of experimental and system-level studies. These analytical tools can enlighten the complexity and efficacy of plant-contaminant system design and expand our understanding of biogenic and anthropogenic chemicals at work in phytoremediation systems. Advances in data analytics from biological sciences, such as metabolomics, are crucial to HRMS analysis. This review provides an overview of targeted, suspect screening, and nontarget HRMS approaches, summarizes the expanding knowledge of regulated and unregulated organic chemicals in the environment, addresses requisite HRMS instrumentation, analysis cost, uncertainty, and data processing techniques, and offers potential bridges of HRMS analyses to phytoremediation research and application.
Collapse
Affiliation(s)
- Melanie L Hedgespeth
- Department of Forest and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
61
|
Thomas RS, Bahadori T, Buckley TJ, Cowden J, Deisenroth C, Dionisio KL, Frithsen JB, Grulke CM, Gwinn MR, Harrill JA, Higuchi M, Houck KA, Hughes MF, Hunter ES, Isaacs KK, Judson RS, Knudsen TB, Lambert JC, Linnenbrink M, Martin TM, Newton SR, Padilla S, Patlewicz G, Paul-Friedman K, Phillips KA, Richard AM, Sams R, Shafer TJ, Setzer RW, Shah I, Simmons JE, Simmons SO, Singh A, Sobus JR, Strynar M, Swank A, Tornero-Valez R, Ulrich EM, Villeneuve DL, Wambaugh JF, Wetmore BA, Williams AJ. The Next Generation Blueprint of Computational Toxicology at the U.S. Environmental Protection Agency. Toxicol Sci 2019; 169:317-332. [PMID: 30835285 PMCID: PMC6542711 DOI: 10.1093/toxsci/kfz058] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The U.S. Environmental Protection Agency (EPA) is faced with the challenge of efficiently and credibly evaluating chemical safety often with limited or no available toxicity data. The expanding number of chemicals found in commerce and the environment, coupled with time and resource requirements for traditional toxicity testing and exposure characterization, continue to underscore the need for new approaches. In 2005, EPA charted a new course to address this challenge by embracing computational toxicology (CompTox) and investing in the technologies and capabilities to push the field forward. The return on this investment has been demonstrated through results and applications across a range of human and environmental health problems, as well as initial application to regulatory decision-making within programs such as the EPA's Endocrine Disruptor Screening Program. The CompTox initiative at EPA is more than a decade old. This manuscript presents a blueprint to guide the strategic and operational direction over the next 5 years. The primary goal is to obtain broader acceptance of the CompTox approaches for application to higher tier regulatory decisions, such as chemical assessments. To achieve this goal, the blueprint expands and refines the use of high-throughput and computational modeling approaches to transform the components in chemical risk assessment, while systematically addressing key challenges that have hindered progress. In addition, the blueprint outlines additional investments in cross-cutting efforts to characterize uncertainty and variability, develop software and information technology tools, provide outreach and training, and establish scientific confidence for application to different public health and environmental regulatory decisions.
Collapse
Affiliation(s)
- Russell S. Thomas
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Tina Bahadori
- National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency
| | - Timothy J. Buckley
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - John Cowden
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Chad Deisenroth
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Kathie L. Dionisio
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Jeffrey B. Frithsen
- Chemical Safety for Sustainability National Research Program, Office of Research and Development, US Environmental Protection Agency
| | - Christopher M. Grulke
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Maureen R. Gwinn
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Joshua A. Harrill
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Mark Higuchi
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Keith A. Houck
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Michael F. Hughes
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - E. Sidney Hunter
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Kristin K. Isaacs
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Richard S. Judson
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Thomas B. Knudsen
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Jason C. Lambert
- National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency
| | - Monica Linnenbrink
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Todd M. Martin
- National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Seth R. Newton
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Stephanie Padilla
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Grace Patlewicz
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Katie Paul-Friedman
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Katherine A. Phillips
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Ann M. Richard
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Reeder Sams
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Timothy J. Shafer
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - R. Woodrow Setzer
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Imran Shah
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Jane E. Simmons
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Steven O. Simmons
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Amar Singh
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Jon R. Sobus
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Mark Strynar
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Adam Swank
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Rogelio Tornero-Valez
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Elin M. Ulrich
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Daniel L Villeneuve
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - John F. Wambaugh
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Barbara A. Wetmore
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Antony J. Williams
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| |
Collapse
|
62
|
|
63
|
O’Lenick CR, Pleil JD, Stiegel MA, Sobus JR, Wallace MAG. Detection and analysis of endogenous polar volatile organic compounds (PVOCs) in urine for human exposome research. Biomarkers 2019; 24:240-248. [PMID: 30475075 PMCID: PMC10614422 DOI: 10.1080/1354750x.2018.1548031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/24/2018] [Accepted: 11/04/2018] [Indexed: 12/14/2022]
Abstract
Background: The human exposome, defined as '…everything that is not the genome', comprises all chemicals in the body interacting with life processes. The exposome drives genes x environment (GxE) interactions that can cause long-term latency and chronic diseases. The exposome constantly changes in response to external exposures and internal metabolism. Different types of compounds are found in different biological media. Objective: Measure polar volatile organic compounds (PVOCs) excreted in urine to document endogenous metabolites and exogenous compounds from environmental exposures. Methods: Use headspace collection and sorbent tube thermal desorption coupled with bench-top gas chromatography-mass spectrometry (GC-MS) for targeted and non-targeted approaches. Identify and categorize PVOCs that may distinguish among healthy and affected individuals. Results: Method is successfully demonstrated to tabulate a series of 28 PVOCs detected in human urine across 120 samples from 28 human subjects. Median concentrations range from below detect to 165 ng/mL. Certain PVOCs have potential health implications. Conclusions: Headspace collection with sorbent tubes is an effective method for documenting PVOCs in urine that are otherwise difficult to measure. This methodology can provide probative information regarding biochemical processes and adverse outcome pathways (AOPs) for toxicity testing.
Collapse
Affiliation(s)
| | - Joachim D. Pleil
- U.S. Environmental Protection Agency, Exposure Methods and Measurements Division, NERL/ORD, Research Triangle Park, NC, USA
| | | | - Jon R. Sobus
- U.S. Environmental Protection Agency, Exposure Methods and Measurements Division, NERL/ORD, Research Triangle Park, NC, USA
| | - M. Ariel Geer Wallace
- U.S. Environmental Protection Agency, Exposure Methods and Measurements Division, NERL/ORD, Research Triangle Park, NC, USA
| |
Collapse
|
64
|
The strength in numbers: comprehensive characterization of house dust using complementary mass spectrometric techniques. Anal Bioanal Chem 2019; 411:1957-1977. [PMID: 30830245 PMCID: PMC6458998 DOI: 10.1007/s00216-019-01615-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/20/2018] [Accepted: 01/15/2019] [Indexed: 11/18/2022]
Abstract
Untargeted analysis of a composite house dust sample has been performed as part of a collaborative effort to evaluate the progress in the field of suspect and nontarget screening and build an extensive database of organic indoor environment contaminants. Twenty-one participants reported results that were curated by the organizers of the collaborative trial. In total, nearly 2350 compounds were identified (18%) or tentatively identified (25% at confidence level 2 and 58% at confidence level 3), making the collaborative trial a success. However, a relatively small share (37%) of all compounds were reported by more than one participant, which shows that there is plenty of room for improvement in the field of suspect and nontarget screening. An even a smaller share (5%) of the total number of compounds were detected using both liquid chromatography–mass spectrometry (LC-MS) and gas chromatography–mass spectrometry (GC-MS). Thus, the two MS techniques are highly complementary. Most of the compounds were detected using LC with electrospray ionization (ESI) MS and comprehensive 2D GC (GC×GC) with atmospheric pressure chemical ionization (APCI) and electron ionization (EI), respectively. Collectively, the three techniques accounted for more than 75% of the reported compounds. Glycols, pharmaceuticals, pesticides, and various biogenic compounds dominated among the compounds reported by LC-MS participants, while hydrocarbons, hydrocarbon derivatives, and chlorinated paraffins and chlorinated biphenyls were primarily reported by GC-MS participants. Plastics additives, flavor and fragrances, and personal care products were reported by both LC-MS and GC-MS participants. It was concluded that the use of multiple analytical techniques was required for a comprehensive characterization of house dust contaminants. Further, several recommendations are given for improved suspect and nontarget screening of house dust and other indoor environment samples, including the use of open-source data processing tools. One of the tools allowed provisional identification of almost 500 compounds that had not been reported by participants. ![]()
Collapse
|
65
|
Li D, Suh S. Health risks of chemicals in consumer products: A review. ENVIRONMENT INTERNATIONAL 2019; 123:580-587. [PMID: 30622082 DOI: 10.1016/j.envint.2018.12.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/01/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
Increasingly diverse chemicals are used in consumer products, while our understanding of their exposure pathways and associated human health risks still lags behind. This paper aims to identify the dominant patterns of exposure pathways and associated health risks of chemicals used in consumer products reported in the peer-reviewed literature. We analyzed 342 articles covering 202 unique chemicals, and distilled the information on the functional uses, product applications, exposure routes, exposure pathways, toxicity endpoints and their combinations. We found that the volume of the literature addressing human health risks of chemicals in consumer products is increasing. Among others, phthalates, bisphenol-A, and polybrominated diphenyl ethers were the most frequently discussed chemical groups in the literature reviewed. Emerged from our review were a number of frequently reported functional use/product application combinations, including plasticizers, polymers/monomers, and flame retardants used in food contact products, personal care products, cosmetics, furniture, flooring, and electronics. We also observed a strong tendency that the number of publications on a chemical surges following major regulatory changes or exposure incidents associated with the chemical. We highlight the need to develop the capacity and the mechanism through which human health risks of chemicals in consumer products can be identified prior to their releases.
Collapse
Affiliation(s)
- Dingsheng Li
- Bren School of Environmental Science & Management, University of California Santa Barbara, Santa Barbara, CA, United States; School of Community Health Sciences, University of Nevada, Reno, NV, United States
| | - Sangwon Suh
- Bren School of Environmental Science & Management, University of California Santa Barbara, Santa Barbara, CA, United States.
| |
Collapse
|
66
|
Ring CL, Arnot JA, Bennett DH, Egeghy PP, Fantke P, Huang L, Isaacs KK, Jolliet O, Phillips KA, Price PS, Shin HM, Westgate JN, Setzer RW, Wambaugh JF. Consensus Modeling of Median Chemical Intake for the U.S. Population Based on Predictions of Exposure Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:719-732. [PMID: 30516957 PMCID: PMC6690061 DOI: 10.1021/acs.est.8b04056] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Prioritizing the potential risk posed to human health by chemicals requires tools that can estimate exposure from limited information. In this study, chemical structure and physicochemical properties were used to predict the probability that a chemical might be associated with any of four exposure pathways leading from sources-consumer (near-field), dietary, far-field industrial, and far-field pesticide-to the general population. The balanced accuracies of these source-based exposure pathway models range from 73 to 81%, with the error rate for identifying positive chemicals ranging from 17 to 36%. We then used exposure pathways to organize predictions from 13 different exposure models as well as other predictors of human intake rates. We created a consensus, meta-model using the Systematic Empirical Evaluation of Models framework in which the predictors of exposure were combined by pathway and weighted according to predictive ability for chemical intake rates inferred from human biomonitoring data for 114 chemicals. The consensus model yields an R2 of ∼0.8. We extrapolate to predict relevant pathway(s), median intake rate, and credible interval for 479 926 chemicals, mostly with minimal exposure information. This approach identifies 1880 chemicals for which the median population intake rates may exceed 0.1 mg/kg bodyweight/day, while there is 95% confidence that the median intake rate is below 1 μg/kg BW/day for 474572 compounds.
Collapse
Affiliation(s)
- Caroline L. Ring
- National Center for Computational Toxicology, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831
| | - Jon A. Arnot
- ARC Arnot Research and Consulting, 36 Sproat Ave. Toronto, ON, Canada, M4M 1W4
- Department of Physical & Environmental Sciences, University of Toronto Scarborough 1265 Military Trail, Toronto, ON, Canada, M1C 1A4
- Department of Pharmacology and Toxicology, University of Toronto, 1 King’s College Cir, Toronto, ON, Canada, M5S 1A8
| | - Deborah H. Bennett
- Department of Public Health Sciences, University of California, Davis, California, 95616
| | - Peter P. Egeghy
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Peter Fantke
- Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lei Huang
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109
| | - Kristin K. Isaacs
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Olivier Jolliet
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109
| | - Katherine A. Phillips
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Paul S. Price
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Hyeong-Moo Shin
- Department of Earth and Environmental Sciences, University of Texas, Arlington, Texas, 76019
| | - John N. Westgate
- ARC Arnot Research and Consulting, 36 Sproat Ave. Toronto, ON, Canada, M4M 1W4
| | - R. Woodrow Setzer
- National Center for Computational Toxicology, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - John F. Wambaugh
- National Center for Computational Toxicology, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711
- Corresponding Author: John F. Wambaugh, 109 T.W. Alexander Dr, NC 27711, USA, , Phone: (919) 541-7641
| |
Collapse
|
67
|
Sobus JR, Grossman JN, Chao A, Singh R, Williams AJ, Grulke CM, Richard AM, Newton SR, McEachran AD, Ulrich EM. Using prepared mixtures of ToxCast chemicals to evaluate non-targeted analysis (NTA) method performance. Anal Bioanal Chem 2019; 411:835-851. [PMID: 30612177 DOI: 10.1007/s00216-018-1526-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/14/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
Abstract
Non-targeted analysis (NTA) methods are increasingly used to discover contaminants of emerging concern (CECs), but the extent to which these methods can support exposure and health studies remains to be determined. EPA's Non-Targeted Analysis Collaborative Trial (ENTACT) was launched in 2016 to address this need. As part of ENTACT, 1269 unique substances from EPA's ToxCast library were combined to make ten synthetic mixtures, with each mixture containing between 95 and 365 substances. As a participant in the trial, we first performed blinded NTA on each mixture using liquid chromatography (LC) coupled with high-resolution mass spectrometry (HRMS). We then performed an unblinded evaluation to identify limitations of our NTA method. Overall, at least 60% of spiked substances could be observed using selected methods. Discounting spiked isomers, true positive rates from the blinded and unblinded analyses reached a maximum of 46% and 65%, respectively. An overall reproducibility rate of 75% was observed for substances spiked into more than one mixture and observed at least once. Considerable discordance in substance identification was observed when comparing a subset of our results derived from two separate reversed-phase chromatography methods. We conclude that a single NTA method, even when optimized, can likely characterize only a subset of ToxCast substances (and, by extension, other CECs). Rigorous quality control and self-evaluation practices should be required of labs generating NTA data to support exposure and health studies. Accurate and transparent communication of performance results will best enable meaningful interpretations and defensible use of NTA data. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Jon R Sobus
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA.
| | - Jarod N Grossman
- Student Contractor, U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA.,Agilent Technologies Inc., Santa Clara, CA, 95051, USA
| | - Alex Chao
- Student Contractor, U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA
| | - Randolph Singh
- Oak Ridge Institute for Science and Education (ORISE) Participant, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA
| | - Antony J Williams
- U.S. Environmental Protection Agency, Office of Research and Development, National Center for Computational Toxicology, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA
| | - Christopher M Grulke
- U.S. Environmental Protection Agency, Office of Research and Development, National Center for Computational Toxicology, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA
| | - Ann M Richard
- U.S. Environmental Protection Agency, Office of Research and Development, National Center for Computational Toxicology, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA
| | - Seth R Newton
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA
| | - Andrew D McEachran
- Oak Ridge Institute for Science and Education (ORISE) Participant, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA
| | - Elin M Ulrich
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
68
|
Cohen Hubal EA, Wetmore BA, Wambaugh JF, El-Masri H, Sobus JR, Bahadori T. Advancing internal exposure and physiologically-based toxicokinetic modeling for 21st-century risk assessments. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:11-20. [PMID: 30116055 PMCID: PMC6760598 DOI: 10.1038/s41370-018-0046-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 05/22/2023]
Abstract
Scientifically sound, risk-informed evaluation of chemicals is essential to protecting public health. Systematically leveraging information from exposure, toxicology, and epidemiology studies can provide a holistic understanding of how real-world exposure to chemicals may impact the health of populations, including sensitive and vulnerable individuals and life-stages. Increasingly, public health policy makers are employing toxicokinetic (TK) modeling tools to integrate these data streams and predict potential human health impact. Development of a suite of tools for predicting internal exposure, including physiologically-based toxicokinetic (PBTK) models, is being driven by needs to address large numbers of data-poor chemicals efficiently, translate bioactivity, and mechanistic information from new in vitro test systems, and integrate multiple lines of evidence to enable scientifically sound, risk-informed decisions. New modeling approaches are being designed "fit for purpose" to inform specific decision contexts, with applications ranging from rapid screening of hundreds of chemicals, to improved prediction of risks during sensitive stages of development. New data are being generated experimentally and computationally to support these models. Progress to meet the demand for internal exposure and PBTK modeling tools will require transparent publication of models and data to build credibility in results, as well as opportunities to partner with decision makers to evaluate and build confidence in use of these for improved decisions that promote safe use of chemicals.
Collapse
Affiliation(s)
| | - Barbara A Wetmore
- National Exposure Research Laboratory (NERL), US EPA, Washington, USA
| | - John F Wambaugh
- National Center for Computational Toxicology (NCCT), US EPA, Washington, USA
| | - Hisham El-Masri
- National Health and Environmental Effects Laboratory (NHEERL), US EPA, Washington, USA
| | - Jon R Sobus
- National Exposure Research Laboratory (NERL), US EPA, Washington, USA
| | - Tina Bahadori
- National Center for Environmental Assessment (NCEA), US EPA, Washington, USA
| |
Collapse
|
69
|
EPA's non-targeted analysis collaborative trial (ENTACT): genesis, design, and initial findings. Anal Bioanal Chem 2018; 411:853-866. [PMID: 30519961 DOI: 10.1007/s00216-018-1435-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/14/2018] [Accepted: 10/17/2018] [Indexed: 01/19/2023]
Abstract
In August 2015, the US Environmental Protection Agency (EPA) convened a workshop entitled "Advancing non-targeted analyses of xenobiotic chemicals in environmental and biological media." The purpose of the workshop was to bring together the foremost experts in non-targeted analysis (NTA) to discuss the state-of-the-science for generating, interpreting, and exchanging NTA measurement data. During the workshop, participants discussed potential designs for a collaborative project that would use EPA resources, including the ToxCast library of chemical substances, the DSSTox database, and the CompTox Chemicals Dashboard, to evaluate cutting-edge NTA methods. That discussion was the genesis of EPA's Non-Targeted Analysis Collaborative Trial (ENTACT). Nearly 30 laboratories have enrolled in ENTACT and used a variety of chromatography, mass spectrometry, and data processing approaches to characterize ten synthetic chemical mixtures, three standardized media (human serum, house dust, and silicone band) extracts, and thousands of individual substances. Initial results show that nearly all participants have detected and reported more compounds in the mixtures than were intentionally added, with large inter-lab variability in the number of reported compounds. A comparison of gas and liquid chromatography results shows that the majority (45.3%) of correctly identified compounds were detected by only one method and 15.4% of compounds were not identified. Finally, a limited set of true positive identifications indicates substantial differences in observable chemical space when employing disparate separation and ionization techniques as part of NTA workflows. This article describes the genesis of ENTACT, all study methods and materials, and an analysis of results submitted to date. Graphical abstract ᅟ.
Collapse
|
70
|
Bolinius DJ, Sobek A, Löf MF, Undeman E. Evaluating the consumption of chemical products and articles as proxies for diffuse emissions to the environment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1427-1440. [PMID: 30207349 DOI: 10.1039/c8em00270c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study we have evaluated the use of consumption of manufactured products (chemical products and articles) in the EU as proxies for diffuse emissions of chemicals to the environment. The content of chemical products is relatively well known. However, the content of articles (products defined by their shape rather than their composition) is less known and currently has to be estimated from chemicals that are known to occur in a small set of materials, such as plastics, that are part of the articles. Using trade and production data from Eurostat in combination with product composition data from a database on chemical content in materials (the Commodity Guide), we were able to calculate trends in the apparent consumption and in-use stocks for 768 chemicals in the EU for the period 2003-2016. The results showed that changes in the apparent consumption of these chemicals over time are smaller than in the consumption of corresponding products in which the chemicals are present. In general, our results suggest that little change in chemical consumption has occurred over the timespan studied, partly due to the financial crisis in 2008 which led to a sudden drop in the consumption, and partly due to the fact that each of the chemicals studied is present in a wide variety of products. Estimated in-use stocks of chemicals show an increasing trend over time, indicating that the mass of chemicals in articles in the EU, that could potentially be released to the environment, is increasing. The quantitative results from this study are associated with large uncertainties due to limitations of the available data. These limitations are highlighted in this study and further underline the current lack of transparency on chemicals in articles. Recommendations on how to address these limitations are also discussed.
Collapse
Affiliation(s)
- Damien J Bolinius
- Baltic Sea Centre, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | | | | |
Collapse
|
71
|
Nicolas CI, Mansouri K, Phillips KA, Grulke CM, Richard AM, Williams AJ, Rabinowitz J, Isaacs KK, Yau A, Wambaugh JF. Rapid experimental measurements of physicochemical properties to inform models and testing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:901-909. [PMID: 29729507 PMCID: PMC6214190 DOI: 10.1016/j.scitotenv.2018.04.266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 04/14/2023]
Abstract
The structures and physicochemical properties of chemicals are important for determining their potential toxicological effects, toxicokinetics, and route(s) of exposure. These data are needed to prioritize the risk for thousands of environmental chemicals, but experimental values are often lacking. In an attempt to efficiently fill data gaps in physicochemical property information, we generated new data for 200 structurally diverse compounds, which were rigorously selected from the USEPA ToxCast chemical library, and whose structures are available within the Distributed Structure-Searchable Toxicity Database (DSSTox). This pilot study evaluated rapid experimental methods to determine five physicochemical properties, including the log of the octanol:water partition coefficient (known as log(Kow) or logP), vapor pressure, water solubility, Henry's law constant, and the acid dissociation constant (pKa). For most compounds, experiments were successful for at least one property; log(Kow) yielded the largest return (176 values). It was determined that 77 ToxPrint structural features were enriched in chemicals with at least one measurement failure, indicating which features may have played a role in rapid method failures. To gauge consistency with traditional measurement methods, the new measurements were compared with previous measurements (where available). Since quantitative structure-activity/property relationship (QSAR/QSPR) models are used to fill gaps in physicochemical property information, 5 suites of QSPRs were evaluated for their predictive ability and chemical coverage or applicability domain of new experimental measurements. The ability to have accurate measurements of these properties will facilitate better exposure predictions in two ways: 1) direct input of these experimental measurements into exposure models; and 2) construction of QSPRs with a wider applicability domain, as their predicted physicochemical values can be used to parameterize exposure models in the absence of experimental data.
Collapse
Affiliation(s)
- Chantel I Nicolas
- ScitoVation, LLC 6 Davis Drive, Durham, NC 27703, USA; National Center for Computational Toxicology, Office of Research and Development, US EPA, Research Triangle Park, NC 27711, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA
| | - Kamel Mansouri
- ScitoVation, LLC 6 Davis Drive, Durham, NC 27703, USA; National Center for Computational Toxicology, Office of Research and Development, US EPA, Research Triangle Park, NC 27711, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA
| | - Katherine A Phillips
- National Exposure Research Laboratory, Office of Research and Development, US EPA, Research Triangle Park, NC 27711, USA
| | - Christopher M Grulke
- National Center for Computational Toxicology, Office of Research and Development, US EPA, Research Triangle Park, NC 27711, USA
| | - Ann M Richard
- National Center for Computational Toxicology, Office of Research and Development, US EPA, Research Triangle Park, NC 27711, USA
| | - Antony J Williams
- National Center for Computational Toxicology, Office of Research and Development, US EPA, Research Triangle Park, NC 27711, USA
| | - James Rabinowitz
- National Center for Computational Toxicology, Office of Research and Development, US EPA, Research Triangle Park, NC 27711, USA
| | - Kristin K Isaacs
- National Exposure Research Laboratory, Office of Research and Development, US EPA, Research Triangle Park, NC 27711, USA
| | - Alice Yau
- Southwest Research Institute, San Antonio, TX 78238, USA
| | - John F Wambaugh
- National Center for Computational Toxicology, Office of Research and Development, US EPA, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
72
|
Sobus JR, Wambaugh JF, Isaacs KK, Williams AJ, McEachran AD, Richard AM, Grulke CM, Ulrich EM, Rager JE, Strynar MJ, Newton SR. Integrating tools for non-targeted analysis research and chemical safety evaluations at the US EPA. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2018; 28:411-426. [PMID: 29288256 PMCID: PMC6661898 DOI: 10.1038/s41370-017-0012-y] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/04/2017] [Accepted: 08/25/2017] [Indexed: 05/18/2023]
Abstract
Tens-of-thousands of chemicals are registered in the U.S. for use in countless processes and products. Recent evidence suggests that many of these chemicals are measureable in environmental and/or biological systems, indicating the potential for widespread exposures. Traditional public health research tools, including in vivo studies and targeted analytical chemistry methods, have been unable to meet the needs of screening programs designed to evaluate chemical safety. As such, new tools have been developed to enable rapid assessment of potentially harmful chemical exposures and their attendant biological responses. One group of tools, known as "non-targeted analysis" (NTA) methods, allows the rapid characterization of thousands of never-before-studied compounds in a wide variety of environmental, residential, and biological media. This article discusses current applications of NTA methods, challenges to their effective use in chemical screening studies, and ways in which shared resources (e.g., chemical standards, databases, model predictions, and media measurements) can advance their use in risk-based chemical prioritization. A brief review is provided of resources and projects within EPA's Office of Research and Development (ORD) that provide benefit to, and receive benefits from, NTA research endeavors. A summary of EPA's Non-Targeted Analysis Collaborative Trial (ENTACT) is also given, which makes direct use of ORD resources to benefit the global NTA research community. Finally, a research framework is described that shows how NTA methods will bridge chemical prioritization efforts within ORD. This framework exists as a guide for institutions seeking to understand the complexity of chemical exposures, and the impact of these exposures on living systems.
Collapse
Affiliation(s)
- Jon R Sobus
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - John F Wambaugh
- U.S. Environmental Protection Agency, Office of Research and Development, National Center for Computational Toxicology, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Kristin K Isaacs
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Antony J Williams
- U.S. Environmental Protection Agency, Office of Research and Development, National Center for Computational Toxicology, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Andrew D McEachran
- Oak Ridge Institute for Science and Education (ORISE) Participant, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Ann M Richard
- U.S. Environmental Protection Agency, Office of Research and Development, National Center for Computational Toxicology, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Christopher M Grulke
- U.S. Environmental Protection Agency, Office of Research and Development, National Center for Computational Toxicology, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Elin M Ulrich
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Julia E Rager
- Oak Ridge Institute for Science and Education (ORISE) Participant, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
- ToxStrategies, Inc., 9390 Research Blvd., Suite 100, Austin, TX, 78759, USA
| | - Mark J Strynar
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Seth R Newton
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
73
|
McEachran AD, Mansouri K, Grulke C, Schymanski EL, Ruttkies C, Williams AJ. "MS-Ready" structures for non-targeted high-resolution mass spectrometry screening studies. J Cheminform 2018; 10:45. [PMID: 30167882 PMCID: PMC6117229 DOI: 10.1186/s13321-018-0299-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/21/2018] [Indexed: 02/05/2023] Open
Abstract
Chemical database searching has become a fixture in many non-targeted identification workflows based on high-resolution mass spectrometry (HRMS). However, the form of a chemical structure observed in HRMS does not always match the form stored in a database (e.g., the neutral form versus a salt; one component of a mixture rather than the mixture form used in a consumer product). Linking the form of a structure observed via HRMS to its related form(s) within a database will enable the return of all relevant variants of a structure, as well as the related metadata, in a single query. A Konstanz Information Miner (KNIME) workflow has been developed to produce structural representations observed using HRMS ("MS-Ready structures") and links them to those stored in a database. These MS-Ready structures, and associated mappings to the full chemical representations, are surfaced via the US EPA's Chemistry Dashboard ( https://comptox.epa.gov/dashboard/ ). This article describes the workflow for the generation and linking of ~ 700,000 MS-Ready structures (derived from ~ 760,000 original structures) as well as download, search and export capabilities to serve structure identification using HRMS. The importance of this form of structural representation for HRMS is demonstrated with several examples, including integration with the in silico fragmentation software application MetFrag. The structures, search, download and export functionality are all available through the CompTox Chemistry Dashboard, while the MetFrag implementation can be viewed at https://msbi.ipb-halle.de/MetFragBeta/ .
Collapse
Affiliation(s)
- Andrew D. McEachran
- Oak Ridge Institute for Science and Education (ORISE) Research Participation Program, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Mail Drop D143-02, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA
| | - Kamel Mansouri
- Oak Ridge Institute for Science and Education (ORISE) Research Participation Program, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Mail Drop D143-02, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA
- Present Address: Integrated Laboratory Systems, Inc., 601 Keystone Dr., Morrisville, NC 27650 USA
| | - Chris Grulke
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Mail Drop D143-02, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA
| | - Emma L. Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, avenue du Swing, 4367 Belvaux, Luxembourg
| | - Christoph Ruttkies
- Department of Stress and Development Biology, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120 Halle (Saale), Germany
| | - Antony J. Williams
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Mail Drop D143-02, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA
| |
Collapse
|
74
|
Tang C, Tan J. Quasi-targeted analysis of halogenated organic pollutants in fly ash, soil, ambient air and flue gas using gas chromatography-high resolution mass spectrometry with isotopologue distribution comparison and predicted retention time alignment. J Chromatogr A 2018; 1555:74-88. [DOI: 10.1016/j.chroma.2018.04.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 01/20/2023]
|
75
|
Isaacs KK, Phillips KA, Biryol D, Dionisio KL, Price PS. Consumer product chemical weight fractions from ingredient lists. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2018; 28:216-222. [PMID: 29115287 PMCID: PMC6082127 DOI: 10.1038/jes.2017.29] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/25/2017] [Accepted: 08/12/2017] [Indexed: 05/29/2023]
Abstract
Assessing human exposures to chemicals in consumer products requires composition information. However, comprehensive composition data for products in commerce are not generally available. Many consumer products have reported ingredient lists that are constructed using specific guidelines. A probabilistic model was developed to estimate quantitative weight fraction (WF) values that are consistent with the rank of an ingredient in the list, the number of reported ingredients, and labeling rules. The model provides the mean, median, and 95% upper and lower confidence limit WFs for ingredients of any rank in lists of any length. WFs predicted by the model compared favorably with those reported on Material Safety Data Sheets. Predictions for chemicals known to provide specific functions in products were also found to reasonably agree with reported WFs. The model was applied to a selection of publicly available ingredient lists, thereby estimating WFs for 1293 unique ingredients in 1123 products in 81 product categories. Predicted WFs, although less precise than reported values, can be estimated for large numbers of product-chemical combinations and thus provide a useful source of data for high-throughput or screening-level exposure assessments.
Collapse
Affiliation(s)
- Kristin K Isaacs
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, E205-02, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Katherine A Phillips
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, E205-02, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Derya Biryol
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, E205-02, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Kathie L Dionisio
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, E205-02, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Paul S Price
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, E205-02, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
76
|
Abstract
The preparation methods and applications of flavor and fragrance capsules based on polymeric, inorganic and polymeric–inorganic wall materials are summarized.
Collapse
Affiliation(s)
- Lei He
- School of Perfume and Aroma Technology
- Shanghai Institute of Technology
- Shanghai
- China
| | - Jing Hu
- School of Perfume and Aroma Technology
- Shanghai Institute of Technology
- Shanghai
- China
| | - Weijun Deng
- School of Perfume and Aroma Technology
- Shanghai Institute of Technology
- Shanghai
- China
| |
Collapse
|