51
|
Tan H, Yang L, Huang Y, Tao L, Chen D. "Novel" Synthetic Antioxidants in House Dust from Multiple Locations in the Asia-Pacific Region and the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8675-8682. [PMID: 34110804 DOI: 10.1021/acs.est.1c00195] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Synthetic antioxidants represent a complex group of additive chemicals broadly used in consumer products. While traditional antioxidants such as 2,6-di-tert-butyl-4-methylphenol (BHT) have been well studied, a variety of "novel" antioxidants have emerged with extensive applications but received much less attention. Our study aimed to explore a suite of 34 emerging antioxidants in house dust from four different regions, including Guangzhou (China), Adelaide (Australia), Carbondale (Illinois), and Hanoi (Vietnam). The results revealed broad occurrence of several rarely investigated chemicals in house dust across regions, including triethylene glycol bis(3-tert-butyl-4-hydroxy-5-methylphenyl)propionate (AO245), 2,6-di-tert-butyl-4-(dimethylamino)methylphenol (AO4703), 2,2'-thiene-2,5-diylbis(5-tert-butyl-1,3-benzoxazole) (BBOT), 1,3-diphenylguanidine (DPG), 2,4-bis(1,1-dimethylethyl)phenol (2,4DtBP), and 2,6-bis(1,1-dimethylethyl)phenol (2,6DtBP). In particular, DPG exhibited a median concentration of 5030-11 400 ng/g in house dust from the studied regions except for Hanoi (305 ng/g), generally 1 order of magnitude greater than that of BHT (890-1060 ng/g) and dominating the compositional profiles of antioxidants. Estimated intake of target antioxidants by toddlers via dust ingestion, even under the high exposure scenario, was determined to be 2-4 orders of magnitude lower than the reference doses of selected antioxidants. However, potential risks from long-term exposure to a cocktail of antioxidants under environmentally relevant concentrations merit further investigations due to insufficient knowledge on the sources, fate, and toxicokinetics of these chemicals to date.
Collapse
Affiliation(s)
- Hongli Tan
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Liu Yang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yichao Huang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Lin Tao
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
52
|
Jin X, Yu H, Wang B, Sun Z, Zhang Z, Liu QS, Zheng Y, Zhou Q, Jiang G. Airborne particulate matters induce thrombopoiesis from megakaryocytes through regulating mitochondrial oxidative phosphorylation. Part Fibre Toxicol 2021; 18:19. [PMID: 33985555 PMCID: PMC8117637 DOI: 10.1186/s12989-021-00411-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Although airborne fine particulate matter (PM) pollution has been demonstrated as an independent risk factor for pulmonary and cardiovascular diseases, their currently-available toxicological data is still far from sufficient to explain the cause-and-effect. Platelets can regulate a variety of physiological and pathological processes, and the epidemiological study has indicated a positive association between PM exposure and the increased number of circulative platelets. As one of the target organs for PM pollution, the lung has been found to be involved in the storage of platelet progenitor cells (i.e. megakaryocytes) and thrombopoiesis. Whether PM exposure influences thrombopoiesis or not is thus explored in the present study by investigating the differentiation of megakaryocytes upon PM treatment. RESULTS The results showed that PM exposure promoted the thrombopoiesis in an exposure concentration-dependent manner. PM exposure induced the megakaryocytic maturation and development by causing cell morphological changes, occurrence of DNA ploidy, and alteration in the expressions of biomarkers for platelet formation. The proteomics assay demonstrated that the main metabolic pathway regulating PM-incurred alteration of megakaryocytic maturation and thrombopoiesis was the mitochondrial oxidative phosphorylation (OXPHOS) process. Furthermore, airborne PM sample promoted-thrombopoiesis from megakaryocytes was related to particle size, but independent of sampling filters. CONCLUSION The findings for the first time unveil the potential perturbation of haze exposure in thrombopoiesis from megakaryocytes by regulating mitochondrial OXPHOS. The substantial evidence on haze particle-incurred hematotoxicity obtained herein provided new insights for assessing the hazardous health risks from PM pollution.
Collapse
Affiliation(s)
- Xiaoting Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- China School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hongyan Yu
- China School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Baoqiang Wang
- China School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, People's Republic of China
| | - Ze Zhang
- China School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Yuxin Zheng
- China School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, People's Republic of China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, People's Republic of China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
53
|
Xu X, Liu A, Hu S, Ares I, Martínez-Larrañaga MR, Wang X, Martínez M, Anadón A, Martínez MA. Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chem 2021; 353:129488. [PMID: 33714793 DOI: 10.1016/j.foodchem.2021.129488] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Synthetic phenolic antioxidants can interact with peroxides produced by food. This paper reviews correlation between BHA, BHT and TBHQ metabolism and harms they cause and provides a theoretical basis for rational use of BHA, BHT and TBHQ in food, and also put some attention on the transformation and metabolic products of PG. We introduce BHA, BHT, TBHQ, PG and their possible metabolic pathways, and discuss possible harms and their specific mechanisms responsible. Excessive addition or incorrect use of synthetic phenolic antioxidants results in carcinogenicity, cytotoxicity, oxidative stress induction and endocrine disrupting effects, which warrant attention. BHA carcinogenicity is related to production of metabolites TBHQ and TQ, and cytotoxic effect of BHA is the main cause of apoptosis induction. BHT carcinogenicity depends on DNA damage degree, and tumour promotion is mainly related to production of quinone methylation metabolites. TBHQ carcinogenicity is related to induction of metabolite TQ and enzyme CYP1A1.
Collapse
Affiliation(s)
- Xiaoqing Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Aimei Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Siyi Hu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China.
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain.
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| |
Collapse
|
54
|
Healthy Drinks with Lovely Colors: Phenolic Compounds as Constituents of Functional Beverages. BEVERAGES 2021. [DOI: 10.3390/beverages7010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Consumers increasingly prefer and seek food and beverages, which, due to their natural characteristics, bring health benefits, both in the prevention of diseases and in their curative power. In this way, the production of nutraceutical foods and beverages gains more and more importance in the market. On the other hand, and because the eyes also eat, producing attractive foods due to their color, texture, appearance, and sensory characteristics is a permanent challenge in the food industry. Being able to gather healthy and attractive items in a single food is an even greater challenge. The long list of benefits associated with phenolic compounds, such as antioxidant, anticancer, anti-inflammatory, and antiaging properties, among others, fully justifies their use in the enrichment of various food products. Thus, in this review, we propose to summarize the potential use of phenolic compounds used as ingredients of pleasant and functional beverages.
Collapse
|
55
|
Yang X, Liang J, Wu Q, Li M, Shan W, Zeng L, Yao L, Liang Y, Wang C, Gao J, Guo Y, Liu Y, Liu R, Luo Q, Zhou Q, Qu G, Jiang G. Developmental Toxicity of Few-Layered Black Phosphorus toward Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1134-1144. [PMID: 33356192 DOI: 10.1021/acs.est.0c05724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Black phosphorus (BP) has extensive applications in various fields. The release of BP into aquatic ecosystems and the potential toxic effects on aquatic organisms are becoming major concerns. Here, we investigated the developmental toxicity of few-layered BP toward the zebrafish. We found that BP could adsorb on the surface of the chorion and could subsequently penetrate within the embryo. After exposure of embryos to 10 mg/L BP, developmental malformations appeared at 96 hpf, especially heart deformities such as pericardial edema and bradycardia, accompanied by severe circulatory system failure. Using transgenic zebrafish larvae, we further characterized cardiovascular defects with cardiac enlargement and impaired cardiac vessels as indicators of damage to the cardiovascular system upon BP exposure. We performed transcriptomic analysis on zebrafish embryos treated with a lower concentration of 2 mg/L. The results showed disruption in genes associated with muscle development, oxygen involved processes, focal adhesion, and VEGF and MAPK signaling pathways. These alterations also indicated that BP carries a risk of developmental perturbation at lower concentrations. This study provides new insights into the effects of BP on aquatic organisms.
Collapse
Affiliation(s)
- Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiefeng Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanyu Shan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zeng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Chang Wang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaquan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Luo
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
56
|
Ecotoxicoproteomic assessment of microplastics and plastic additives in aquatic organisms: A review. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100713. [DOI: 10.1016/j.cbd.2020.100713] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/03/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
|
57
|
Yang Y, Pan L, Zhou Y, Xu R, Li D. Benzo[a]pyrene exposure disrupts steroidogenesis and impairs spermatogenesis in diverse reproductive stages of male scallop (Chlamys farreri). ENVIRONMENTAL RESEARCH 2020; 191:110125. [PMID: 32861722 DOI: 10.1016/j.envres.2020.110125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Benzo[a]pyrene (BaP), a model compound of polycyclic aromatic hydrocarbon known to impair reproductive functions of vertebrates, while the data is scarce in marine invertebrates. To investigate the toxic effects of BaP on invertebrates reproduction, we exposed male scallop (Chlamys farreri) to BaP (0, 0.38 and 3.8 μg/L) throughout three stages of reproductive cycle (early gametogenesis stage, late gametogenesis stage and ripe stage). The results demonstrated that BaP decreased the gonadosomatic index and mature sperms counts in a dose-dependent manner. Significant changes in sex hormones contents and increased 17β-estradiol/testosterone ratio suggested that BaP produced the estrogenic endocrine effects in male scallops. In support of this view, we confirmed that BaP significantly altered transcripts of genes along the upstream PKA and PKC mediated signaling pathway like fshr, lhcgr, adcy, PKA, PKC, PLC and NR5A2. Subsequently, the expressions of genes encoding downstream steroidogenic enzymes (e.g., 3β-HSD, CYP17 and 17β-HSD) were impacted, which corresponded well with hormonal alterations. In addition, BaP suppressed transcriptions of spermatogenesis-related genes, including ccnd2, SCP3, NRF1 and AQP9. Due to different functional demands, these transcript profiles involved in spermatogenesis exhibited a stage-specific expression pattern. Furthermore, histopathological analysis determined that BaP significantly inhibited testicular development and maturation in male scallops. Overall, the present findings indicated that, playing as an estrogenic-like chemical, BaP could disrupt the steroidogenesis pathway, impair spermatogenesis and caused histological damages, thereby inducing reproductive toxicities with dose- and stage-specific effects in male scallops. And the adverse outcomes might threaten the stability of bivalve populations and destroy the function of marine ecosystems in the long term.
Collapse
Affiliation(s)
- Yingying Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
58
|
Liu R, Mabury SA. Synthetic Phenolic Antioxidants: A Review of Environmental Occurrence, Fate, Human Exposure, and Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11706-11719. [PMID: 32915564 DOI: 10.1021/acs.est.0c05077] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Synthetic phenolic antioxidants (SPAs) are widely used in various industrial and commercial products to retard oxidative reactions and lengthen product shelf life. In recent years, numerous studies have been conducted on the environmental occurrence, human exposure, and toxicity of SPAs. Here, we summarize the current understanding of these issues and provide recommendations for future research directions. SPAs have been detected in various environmental matrices including indoor dust, outdoor air particulates, sea sediment, and river water. Recent studies have also observed the occurrence of SPAs, such as 2,6-di-tert-butyl-4-methylphenol (BHT) and 2,4-di-tert-butyl-phenol (DBP), in humans (fat tissues, serum, urine, breast milk, and fingernails). In addition to these parent compounds, some transformation products have also been detected both in the environment and in humans. Human exposure pathways include food intake, dust ingestion, and use of personal care products. For breastfeeding infants, breast milk may be an important exposure pathway. Toxicity studies suggest some SPAs may cause hepatic toxicity, have endocrine disrupting effects, or even be carcinogenic. The toxicity effects of some transformation products are likely worse than those of the parent compound. For example, 2,6-di-tert-butyl-p-benzoquinone (BHT-Q) can cause DNA damage at low concentrations. Future studies should investigate the contamination and environmental behaviors of novel high molecular weight SPAs, toxicity effects of coexposure to several SPAs, and toxicity effects on infants. Future studies should also develop novel SPAs with low toxicity and low migration ability, decreasing the potential for environmental pollution.
Collapse
Affiliation(s)
- Runzeng Liu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Scott A Mabury
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
59
|
Ma C, Jia S, Yuan P, He Z. Catalytic ozonation of 2, 2'-methylenebis (4-methyl-6-tert-butylphenol) over nano-Fe 3O 4@cow dung ash composites: Optimization, toxicity, and degradation mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114597. [PMID: 32806439 DOI: 10.1016/j.envpol.2020.114597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/25/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Composite magnetic oxide at cow dung ash, nano-Fe3O4@cow dung ash (nano-Fe3O4@CDA), was used as catalytic material for the degradation of 2, 2'-methylenebis (4-methyl-6-tert-butylphenol) (AO 2246) in real biologically pretreated landfill leachate. The Fe3O4@CDA composite exhibited catalytic ozonation activity and allowed material separation and magnetic recovery. The effects of several operating parameters including O3 concentration, catalyst dosage, temperature and scavengers were evaluated in parallel. Over 70% of AO 2246 were removed by the nano-Fe3O4@CDA/O3 system under optimum conditions within 120min reaction time. The EPR, GC-MS and free-radical quenching experiments expatiated the mechanism of this degradation process. It was confirmed that the AO 2246 was degraded efficiently in this catalytic micro-ozonation process, Additionally, GC-MS analysis state clearly that the 3,5-bis(1,1-dimethylethyl)phenol, 4-(1,5-dihydroxy-2,6,6-trimethylcyclohex-2-enyl)but-3-en-2-one, ethanone, 1-(1,4-dimethyl-3-cyclohexen-1-yl)-, 5-tert-butyl-6-3, 5-diene-2-one, 2-hydroxyhexanoic acid, 2-propenoic acid 1,1-dimethylethyl ester, butanoic acid, 2-methyl-, methyl ester and propanoic acid, 2, 2-dimethyl- were the dominant oxidation products (OPs) during the degradation of the AO 2246. The EPR results showed that the catalytic ozonation over Fe3O4@CDA led to produce more hydroxyl radicals, which were in favor of AO 2246 degradation. The toxicity evolution was also performed through a QSAR analysis calculated by the ECOSAR program which further demonstrated the different responses toward the AO 2246 and its OPs.
Collapse
Affiliation(s)
- Cui Ma
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Shengyong Jia
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Pengfei Yuan
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Zhengguang He
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
60
|
Lourenço SC, Fraqueza MJ, Fernandes MH, Moldão-Martins M, Alves VD. Application of Edible Alginate Films with Pineapple Peel Active Compounds on Beef Meat Preservation. Antioxidants (Basel) 2020; 9:E667. [PMID: 32722611 PMCID: PMC7464604 DOI: 10.3390/antiox9080667] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 01/09/2023] Open
Abstract
Alginate-based edible films containing natural antioxidants from pineapple peel were applied in the microbial spoilage control, color preservation, and barrier to lipid oxidation of beef steaks under storage at 4 °C for five days. Different stabilization methods of pineapple peel compounds were used before incorporation into alginate films, including extracted compounds with an hydroalcoholic solvent encapsulated in microparticles, microparticles produced by spray-drying pineapple peel juice, and particles obtained by milling freeze dried pineapple peel. Bioactive films exhibited higher antioxidant activity (between 0.15 µmol to 0.35 µmol FeSO4.7H2O/g dried film) than the alginate film without these compounds (0.02 µmol FeSO4.7H2O/g dried film). Results showed that control films without active compounds had no significant effect on decreasing the microbial load of aerobic mesophilic and Pseudomonas spp., while the films containing encapsulated hydroalcoholic extract showed a significant inhibitory effect on microbial growth of meat at two days of storage. Alginate films containing peel encapsulated extract were effective for maintaining the color hue and intensity of red beef meat samples. Pineapple peel antioxidants have the potential to retard lipid oxidation in meat samples, and the possibility of incorporation of a higher amount of pineapple peel bioactive compounds in the films should be investigated.
Collapse
Affiliation(s)
- Sofia C. Lourenço
- LEAF, Linking, Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.C.L.); (M.M.-M.)
| | - Maria João Fraqueza
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, 1300-477 Lisboa, Portugal;
| | - Maria Helena Fernandes
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, 1300-477 Lisboa, Portugal;
| | - Margarida Moldão-Martins
- LEAF, Linking, Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.C.L.); (M.M.-M.)
| | - Vítor D. Alves
- LEAF, Linking, Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.C.L.); (M.M.-M.)
| |
Collapse
|
61
|
Achar JC, Nam G, Jung J, Klammler H, Mohamed MM. Microbubble ozonation of the antioxidant butylated hydroxytoluene: Degradation kinetics and toxicity reduction. ENVIRONMENTAL RESEARCH 2020; 186:109496. [PMID: 32304926 DOI: 10.1016/j.envres.2020.109496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/08/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Butylated hydroxytoluene (BHT) is recognized as a crucial pollutant in aquatic environments, but efforts to achieve its complete removal are without success. The aim of this study was to investigate the degradation efficiency of BHT in water using ozone microbubbles (OMB), coupled with toxicity change assessment at sub-lethal BHT concentrations (0.34, 0.45 and 0.90 μM) based on oxidative stress biomarkers in Daphnia magna. The efficiency of OMB on ozone gas mass transfer was assessed and the contribution of hydroxyl radicals (·OH) in the degradation of BHT was determined using p-chlorobenzoic acid (pCBA) probe compound and a ·OH radical scavenger (sodium carbonate, Na2CO3). The ozone gas mass transfer coefficient (kLa = 1.02 × 10-2 s-1) was much larger than the ozone self-decomposition rate (kd = 8 × 10-4 s-1) implying little influence of self-decomposing ozone in the volumetric ozone transfer during OMB generation. Generally, OMB improved ozone gas mass transfer (1.3-19-fold) relative to conventional ozone techniques, while indirect reaction of BHT with ·OH was dominant (82%) over the direct reaction with molecular ozone. Addition of 15, 25 and 35 mM Na2CO3 reduced BHT degradation by 30, 50 and 65%, respectively, indicating the significance of ·OH in the degradation of BHT. Increase in initial BHT concentration correspondingly reduced its removal rate by OMB possibly due to increase in metabolites produced during ozonation. Post BHT treatment exposure tests recorded significant (p < 0.05) reductions in oxidative stress (according to enzyme activities changes) in D. magna compared to pretreatment tests, demonstrating the effectiveness of OMB in detoxification of BHT. Overall, the results of the study indicate that OMB is extremely efficient in complete degradation of BHT in water and, consequently, significantly (p < 0.05) reducing its toxicity.
Collapse
Affiliation(s)
- Jerry Collince Achar
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Gwiwoong Nam
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Harald Klammler
- Department of Geosciences, Federal University of Bahia, Salvador, Brazil
| | - Mohamed M Mohamed
- Civil and Environmental Engineering Department, College of Engineering, United Arab Emirates University, Al Ain, United Arab Emirates; National Water Center, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
62
|
Zhao HJ, Xu JK, Yan ZH, Ren HQ, Zhang Y. Microplastics enhance the developmental toxicity of synthetic phenolic antioxidants by disturbing the thyroid function and metabolism in developing zebrafish. ENVIRONMENT INTERNATIONAL 2020; 140:105750. [PMID: 32361124 DOI: 10.1016/j.envint.2020.105750] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 05/06/2023]
Abstract
Coexposure of MPs and other contaminants adsorbed from the environment has raised many attentions, but the understanding of the combined effects of MPs and plastic additives are limited. Butylated hydroxyanisole (BHA), a widely used synthetic phenolic antioxidant in plastics, has gained high concerns due to their unintended environmental release and potential threat to aquatic organisms. This study was conducted to reveal the influences of MPs on the bioaccumulation and developmental toxicity of BHA in zebrafish larvae. As a result, MPs promoted the accumulation of BHA in zebrafish larvae and enhanced the toxicity of BHA in larvae development manifested by reduced hatching rates, increased malformation rates and decreased calcified vertebrae. Although the concentration of MPs was not sufficient to cause obvious developmental toxicity, the impacts of MPs on thyroid hormones status might contribute to the aggravated join toxicity. The metabolomic mechanism was revealed to be that the coexposure of BHA and MPs affected the development of zebrafish larvae via disturbing the metabolism of arachidonic acid, glycerophospholipid, and lipids. Our results emphasized that MPs, even at the nontoxic concentrations, in combination with additives caused health risk that should not be ignored.
Collapse
Affiliation(s)
- Hua-Jin Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jian-Kang Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ze-Hua Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hong-Qiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
63
|
Sun Z, Tang Z, Yang X, Liu QS, Liang Y, Fiedler H, Zhang J, Zhou Q, Jiang G. Perturbation of 3-tert-butyl-4-hydroxyanisole in adipogenesis of male mice with normal and high fat diets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135608. [PMID: 31767314 DOI: 10.1016/j.scitotenv.2019.135608] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
As one of the widely used anthropogenic food additives, 3-tert-butyl-4-hydroxyanisole (3-BHA) has been found to perturb adipogenesis in vitro and induce lipid accumulation in some strains of oleaginous microalgae. The impact of this chemical on adipocyte development and lipid metabolism in mammals remains to be elucidated. In this study, we performed 18-week oral administration of 3-BHA to male C57BL/6J mice with normal diet (ND) or high-fat diet (HFD) and investigated its impacts on adipogenesis and lipid accumulation in vivo. The results indicated that long-term exposure to 3-BHA impacted the mouse body weight gain, white adipose tissue accumulation, and plasma lipids through transcriptional regulation of adipogenesis, lipid metabolism, and adipocyte endocrine function, while glucose metabolism and insulin sensitivity remained unaffected. HFD-fed mice responded to 3-BHA stimulation differently from ND-fed animals, suggesting potential risks for the human burden of 3-BHA in lean and obese subjects. The findings herein validate 3-BHA as an environmental obesogen, and more caution is recommended for its authorized use as a food antioxidant against lipid rancidity.
Collapse
Affiliation(s)
- Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Tang
- Department of POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Heidelore Fiedler
- Örebro University, School of Science and Technology, MTM Research Centre, SE-701 82 Örebro, Sweden; UN Environment (UNEP), Chemicals Branch, CH-1219 Châtelaine (GE), Switzerland
| | - Jianqing Zhang
- Department of POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
64
|
Ham J, Lim W, You S, Song G. Butylated hydroxyanisole induces testicular dysfunction in mouse testis cells by dysregulating calcium homeostasis and stimulating endoplasmic reticulum stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134775. [PMID: 31710847 DOI: 10.1016/j.scitotenv.2019.134775] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/09/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Butylated hydroxyanisole (BHA), a synthetic phenolic antioxidant (SPA), has been used as a food additive. However, BHA acts as an environmental hormone, i.e., endocrine disruptor. Here, we investigated BHA-induced male reproductive dysfunction in mouse Leydig and Sertoli cells. We found that BHA suppressed proliferation and induced cell cycle arrest in TM3 and TM4 cells. Furthermore, we investigated mitochondrial permeabilization, expression profiles of pro-apoptotic and anti-apoptotic proteins, calcium influx, and endoplasmic reticulum (ER) stress in testicular cells after BHA treatment. The results indicated that BHA-mediated calcium dysregulation and ER stress downregulated steroidogenesis- and spermatogenesis-related genes in mouse testis cell lines. Additionally, proliferation of both TM3 and TM4 cells in response to BHA treatment was regulated via the Mapk and Akt signaling pathways. Therefore, constant BHA exposure may lead to testicular toxicity via mitochondrial dysfunction, ER stress, and abnormal calcium levels in the testis.
Collapse
Affiliation(s)
- Jiyeon Ham
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Seungkwon You
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Gwonhwa Song
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
65
|
Liang X, Zhao Y, Liu W, Li Z, Souders CL, Martyniuk CJ. Butylated hydroxytoluene induces hyperactivity and alters dopamine-related gene expression in larval zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113624. [PMID: 31780362 DOI: 10.1016/j.envpol.2019.113624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/30/2019] [Accepted: 11/12/2019] [Indexed: 05/21/2023]
Abstract
Butylated hydroxytoluene (BHT) is one of the most frequently used synthetic phenolic antioxidants added to food and consumer products such as plastics as a preservative. Due to its high production volume, BHT has been detected in aquatic environments, raising concerns about sub-lethal toxicity. However, there are limited toxicological data for BHT, especially in fish. In this study, zebrafish embryos were exposed to BHT at concentrations ranging 0.01-100 μM for up to 6 days post fertilization (dpf). Acute toxicity was assessed, and experiments revealed that BHT had a 96 h LC50 value of 57.61 μM. At sub-lethal doses (0.1-60 μM), BHT markedly decreased heart rates of zebrafish embryos at 48 h and 72 h by ∼25-30%. Basal and maximal respiration of zebrafish embryos at 24 hpf were decreased by 59.3% and 41.4% respectively following exposure to 100 μM BHT. Behavior in zebrafish was measured at 6 dpf following exposures to 0.01-10 μM BHT. Locomotor behaviors (e.g. total distance moved and velocity) were significantly increased in larvae at doses higher than 0.1 μM BHT. In addition, dark-avoidance behavior was decreased following exposure to 0.01 μM BHT, while conversely, it was increased in zebrafish exposed to 0.1 μM BHT. To investigate potential underlying mechanisms that could explain behavioral changes, transcripts involved in dopamine signaling were measured. Relative expression of dat mRNA was increased in larval fish from the 0.01 μM BHT treatment, while there were no effects on dat mRNA levels at higher concentrations. The mRNA levels of drd3 were decreased in zebrafish from the 1 μM BHT treatment. Taken together, BHT can affect the expression of the dopamine system, which is hypothesized to be related to the abnormal anxiety-associated behavior of larval zebrafish.
Collapse
Affiliation(s)
- Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Yaqian Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Wang Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Zhitong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
66
|
Ham J, Lim W, Whang KY, Song G. Butylated hydroxytoluene induces dysregulation of calcium homeostasis and endoplasmic reticulum stress resulting in mouse Leydig cell death. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113421. [PMID: 31677866 DOI: 10.1016/j.envpol.2019.113421] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Butylated hydroxytoluene (BHT) is a synthetic phenolic antioxidant that has been used as an additive for fat- or oil-containing foods. The exposure index value increases with extended usage of the chemical. Further, estimated total amount of BHT could exceed standard regulation, considering dietary intake or another exposure. Although BHT may induce side effects in reproductive systems, adequate research had not yet been performed to confirm them. In this study, we investigated the effects of BHT on mouse Leydig cells (TM3), which are components of testis. Our results indicated that BHT suppressed cellular proliferation and induced cell cycle arrest in TM3 cells. Moreover, BHT hampered cytosolic and mitochondrial calcium homeostasis in TM3 cells. Furthermore, BHT treatment led to endoplasmic reticulum (ER) stress and DNA fragmentation, simultaneously stimulating intrinsic apoptosis signal transduction. To elucidate the mode of action of BHT on Leydig cells, we performed western blot analysis and confirmed the activation of the PI3K/AKT and MAPK pathways. Collectively, our results demonstrated that BHT has toxic effects on mouse Leydig cells via induction of calcium dysregulation and ER-mitochondria dysfunction.
Collapse
Affiliation(s)
- Jiyeon Ham
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea
| | - Kwang-Youn Whang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
67
|
Du B, Zhang Y, Lam JCW, Pan S, Huang Y, Chen B, Lan S, Li J, Luo D, Zeng L. Prevalence, Biotransformation, and Maternal Transfer of Synthetic Phenolic Antioxidants in Pregnant Women from South China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13959-13969. [PMID: 31702911 DOI: 10.1021/acs.est.9b04709] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Synthetic phenolic antioxidants (SPAs) have been identified as an emerging group of contaminants in recent years. However, there are significant gaps in our knowledge of human prenatal exposure to these synthetic chemicals. In this study, a set of eight SPAs and four major transformation products (TPs) were systematically analyzed in matched samples of maternal plasma, cord plasma, and placenta from a population of pregnant women. Five of the eight target SPAs and all four target TPs were frequently detected in the maternal-placental-fetal unit, indicating prenatal exposure to SPAs and the transfer of SPAs across the placenta. In the three matrices, 2,6-di-tert-butyl-hydroxytoluene (BHT), 2,4-di-tert-butylphenol (DBP), and 2,2'-methylenebis(4-methyl-6-tert-butylphenol) (AO 2246) were identified as the most abundant SPAs, while 2,6-di-tert-butyl-1,4-benzoquinone (BHT-Q) and 2,6-di-tert-butyl-4-hydroxy-4-methyl-2,5-cyclohexadienone (BHT-quinol) were identified as the predominant TPs of BHT. In the maternal plasma, concentrations of both BHT-Q and BHT-quinol were significantly correlated with BHT (p < 0.001), suggesting that the two TPs mainly originated from the biotransformation of BHT itself in pregnant women. The transplacental transfer efficiencies (TTEs) of the SPAs and TPs were structure-dependent and generally less than 1. Significantly higher TTEs for four target TPs than their parent BHT were identified. To our knowledge, this study provides the first evidence that SPAs and TPs transfer across the placenta in pregnant women.
Collapse
Affiliation(s)
- Bibai Du
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment , Jinan University , Guangzhou 511443 , China
| | - Yun Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment , Jinan University , Guangzhou 511443 , China
| | - James C W Lam
- Department of Science and Environmental Studies , The Education University of Hong Kong , Hong Kong SAR , China
| | - Shilei Pan
- Department of Obstetrics and Gynecology , Zhujiang Hospital of Southern Medical University , Guangzhou 510280 , China
| | - Yuxin Huang
- Department of Obstetrics and Gynecology , Zhujiang Hospital of Southern Medical University , Guangzhou 510280 , China
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences , Sun Yat-sen University , Zhuhai 519082 , China
| | - Shenyu Lan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment , Jinan University , Guangzhou 511443 , China
| | - Juan Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment , Jinan University , Guangzhou 511443 , China
| | - Dan Luo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment , Jinan University , Guangzhou 511443 , China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment , Jinan University , Guangzhou 511443 , China
| |
Collapse
|
68
|
Wang Y, He L, Lv G, Liu W, Liu J, Ma X, Sun X. Distribution, transformation and toxicity evaluation of 2,6-Di-tert-butyl-hydroxytotulene in aquatic environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113330. [PMID: 31606662 DOI: 10.1016/j.envpol.2019.113330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/31/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
2,6-Di-tert-butyl-hydroxytotulene (BHT), as a significant synthetic phenolic antioxidant (SPA), has received increasing attention in the environmental field. In the present study, the BHT is confirmed to be mainly distributed in the liquid phase in the environment base on the Aspen PLUS simulation results. The mechanism and kinetics of BHT transformation initiated by OH radicals were conducted in aquatic environment using density functional theory (DFT) method. Briefly, seven initiation reactions and three detailed transformation pathways of BHT were reported. The H atoms in the t-butyl and methyl group were found more favorable to be abstracted. The C1 site of the BHT was susceptible to addition by OH radicals. Rate constants of different initial reactions were calculated and they were inhibited by temperature rise. Meanwhile, the acute and chronic toxicities of BHT and its metabolites were evaluated at three different trophic levels using the ECOSAR program. During the degradation process, the toxicities of these metabolites gradually decreased, but the toxicities of the final product 2,6-di-tert-butyl-2,5-cyclohexadien-1,4-dione (BHT-Q) were significantly increased. These results could help to reveal the transformation mechanism and risk assessment of BHT in aquatic environment, and further design the experimental and industrial applications of SPAs.
Collapse
Affiliation(s)
- Yan Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Lin He
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), Leipzig, 04318, Germany
| | - Guochun Lv
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Wen Liu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Jiashuo Liu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Xiaohui Ma
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
69
|
Liu R, Mabury SA. Synthetic Phenolic Antioxidants in Personal Care Products in Toronto, Canada: Occurrence, Human Exposure, and Discharge via Greywater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13440-13448. [PMID: 31609587 DOI: 10.1021/acs.est.9b04120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although synthetic phenolic antioxidants (SPAs) are widely used in various personal care products (PCPs), little is known about their levels, composition profiles, human exposure, or environmental emissions. In this study, the occurrence of SPAs was evaluated in 15 categories of 214 PCPs collected in Toronto, Canada. Nine SPAs were detected in the PCPs, of which only 2,6-di-tert-butyl-4-methylphenol (BHT, < method quantification limit (MQL)-827 900 ng/g, mean: 35 602 ng/g, median: 249 ng/g) was observed with a detection frequency of >50%. When the 214 PCPs were separated into products labeled as containing BHT and those labeled as not containing BHT, the BHT-labeled PCPs (mean: 369 253 ng//g, median: 382 560 ng/g) contained significantly higher concentrations of BHT than the BHT-unlabeled PCPs (mean: 4960 ng/g, median: 199 ng/g) did (p < 0.01). Five transformation products (TPs) of BHT were also detected in the PCPs at low concentrations (∑TPs: < MQL to 19 014 ng/g, mean: 730 ng/g, median: < MQL) and detection frequencies (12.6-37.4%). Preliminary calculations found that dermal absorption via PCP use may be an important exposure pathway for BHT (mean: 565 879 ng/day median: 2988 ng/day), although this is a negligible exposure pathway for other SPAs. In addition, the estimated discharges of BHT (mean: 7852 g/day, median: 88 g/day) via greywater after PCP use were calculated, which represents a nonignorable source of BHT loading into wastewater treatment plants in Toronto (contributing 10%). To our knowledge, this is the first evaluation of human exposure to and discharge of SPAs via PCP use.
Collapse
Affiliation(s)
- Runzeng Liu
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , M5S 3H6 , Ontario , Canada
| | - Scott A Mabury
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , M5S 3H6 , Ontario , Canada
| |
Collapse
|
70
|
Sun Z, Yang X, Liu QS, Li C, Zhou Q, Fiedler H, Liao C, Zhang J, Jiang G. Butylated hydroxyanisole isomers induce distinct adipogenesis in 3T3-L1 cells. JOURNAL OF HAZARDOUS MATERIALS 2019; 379:120794. [PMID: 31238218 DOI: 10.1016/j.jhazmat.2019.120794] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Butylated hydroxyanisole (BHA) isomers, as the widely used anthropogenic antioxidants in food, have been revealed to induce endocrine disrupting effects, while the mechanism how BHA isomers regulate the lipogenic differentiation remains to be elucidated. Using 3T3-L1 differentiation model, the effects of BHA isomers, including 2-tert-butyl-4-hydroxyanisole (2-BHA), 3-tert-butyl-4-hydroxyanisole (3-BHA) and their mixture (BHA), on adipogenesis were tested. The results showed that 3-BHA and BHA promoted adipocyte differentiation and enhanced the cellular lipid accumulation through the regulation of the transcriptional and protein levels of the adipogenetic biomarkers, while 2-BHA had no effect. The effective window for 3-BHA induced lipogenesis was the first four days during 3T3-L1 differentiation. BHA isomers showed no binding affinities for peroxisome proliferator activated receptor γ (PPARγ). Instead, the upstream of PPARγ signaling pathway, i.e. the phosphorylation of cAMP-response element binding protein (CREB), upregulation of CAAT/enhancer-binding proteins β (C/EBPβ) and elevated cell proliferation during postconfluent mitosis stage were induced by 3-BHA exposure. Altogether, this study revealed the adipogenic effect of 3-BHA through interference with the upstream events of the PPARγ signaling pathway. The authorized usage of BHA as food additives and its occurrence in human sera can potentially contribute to the incidence of obesity, which is of high concern.
Collapse
Affiliation(s)
- Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanhai Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Heidelore Fiedler
- Örebro University, School of Science and Technology, MTM Research Centre, SE-701 82 Örebro, Sweden; UN Environment (UNEP), Chemicals Branch, CH-1219 Châtelaine GE, Switzerland
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqing Zhang
- Department of POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
71
|
Yang X, Ku T, Sun Z, Liu QS, Yin N, Zhou Q, Faiola F, Liao C, Jiang G. Assessment of the carcinogenic effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin using mouse embryonic stem cells to form teratoma in vivo. Toxicol Lett 2019; 312:139-147. [PMID: 31082521 DOI: 10.1016/j.toxlet.2019.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/21/2019] [Accepted: 05/09/2019] [Indexed: 12/26/2022]
Abstract
As the most toxic dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has gained lots of concerns, due to its diverse deleterious effects. However, the knowledge on carcinogenic risk of TCDD during early stage of development remains scarce. The in vivo teratoma formation model based on the transplantation of embryonic stem cells (ESCs) in immunodeficient mice is appealing for studying pluripotency and tumorigenicity in developmental biology, and also shows promise in environmental toxicology, especially in carcinogenesis researches. In this study, the malignant transformation of mouse embryonic stem cells (mESCs) pretreated with TCDD was investigated during their in vivo differentiation using teratoma formation model. Based on characterization of the pluripotency and differentiation capabilities of mESCs, evil changes in teratomas derived from TCDD-exposed mESCs were systematically studied. The results showed that TCDD significantly up-regulated CYP1A1 transcriptional levels in mESCs, elevated the incidence of malignant change in mESC-derived teratomas, and caused indefinite proliferation capabilities in sequential cultures of tumor tissues. The findings suggested that TCDD could exert carcinogenic effect on mESCs during their differentiation into teratoma in vivo, and more attention should be paid to the adverse health effects of this chemical during gestation or early developmental period.
Collapse
Affiliation(s)
- Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingting Ku
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, 030006, China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
72
|
Liu R, Mabury SA. Unexpectedly high concentrations of 2,4-di-tert-butylphenol in human urine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1423-1428. [PMID: 31265952 DOI: 10.1016/j.envpol.2019.06.077] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
Synthetic phenolic antioxidants (SPAs) have received increasing attention due to the reports of toxicity and environmental contamination. Nevertheless, limited information was available on human burdens of these SPAs, with the exception of 2,6-di-tert-butyl-4-methylphenol (BHT). In our study, BHT as well as six other SPAs were analyzed in human urine samples from United States donors. Three SPA congeners were detected in human urine: BHT, 2,4-di-tert-butylphenol (DBP), and 3-tert-butyl-4-hydroxyanisole (BHA). BHT, which is the congener received most concerns, was detected at low concentrations [geometric mean (GM): 0.06 ng/mL], whereas four of its metabolites were detected at relatively high concentrations (GM: 1.68 ng/mL). Surprisingly, DBP was detected at extremely high concentrations (GM: 18.3 ng/mL). The concentrations of DBP (GM: 25.8 ng/mL), BHT (0.853 ng/mL), and metabolites (GM: 10.5 ng/mL) increased significantly after the urine samples were hydrolyzed by β-glucuronidase (p < 0.01), indicating the prevalence of the conjugated forms of SPAs and their metabolites in human urine. DBP, which has previously received little attention, was the predominant congener, contributing 88.2% and 63.6% to total target concentrations in the urine samples before and after β-glucuronidase hydrolysis, respectively. Thus, previous studies have vastly underestimated the burdens of SPAs to humans. To our knowledge, this is the first study revealing the presence of DBP in human urine.
Collapse
Affiliation(s)
- Runzeng Liu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Ontario, Canada.
| | - Scott A Mabury
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Ontario, Canada
| |
Collapse
|
73
|
Park S, Lee JY, Lim W, You S, Song G. Butylated Hydroxyanisole Exerts Neurotoxic Effects by Promoting Cytosolic Calcium Accumulation and Endoplasmic Reticulum Stress in Astrocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9618-9629. [PMID: 31381342 DOI: 10.1021/acs.jafc.9b02899] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Astrocytes provide nutritional support, regulate inflammation, and perform synaptic functions in the human brain. Although butylated hydroxyanisole (BHA) is a well-known antioxidant, several studies in animals have indicated BHA-mediated liver toxicity, retardation in reproductive organ development and learning, and sleep deficit. However, the specific effects of BHA on human astrocytes and the underlying mechanisms are yet unclear. Here, we investigated the antigrowth effects of BHA through cell cycle arrest and downregulation of regulatory protein expression. The typical cell proliferative signaling pathways, phosphoinositide 3-kinase/protein kinase B and extracellular signal-regulated kinase 1/2, were downregulated in astrocytes after BHA treatment. BHA increased the levels of pro-apoptotic proteins, such as BAX, cytochrome c, cleaved caspase 3, and cleaved caspase 9, and decreased the level of anti-apoptotic protein BCL-XL. It also increased the cytosolic calcium level and the expression of endoplasmic reticulum stress proteins. Treatment with BAPTA-AM, a calcium chelator, attenuated the increased levels of ER stress proteins and cleaved members of the caspase family. We further performed an in vivo evaluation of the neurotoxic effect of BHA on zebrafish embryos and glial fibrillary acidic protein, a representative astrocyte biomarker, in a gfap:eGFP zebrafish transgenic model. Our results provide clear evidence of the potent cytotoxic effects of BHA on human astrocytes, which lead to disruption of the brain and nerve development.
Collapse
Affiliation(s)
- Sunwoo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology , Korea University , Seoul 02841 , Republic of Korea
| | - Jin-Young Lee
- Department of Biochemistry , Medical College of Wisconsin , Milwaukee , Wisconsin 53226 , United States
| | - Whasun Lim
- Department of Food and Nutrition , Kookmin University , Seoul 02707 , Republic of Korea
| | - Seungkwon You
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology , Korea University , Seoul 02841 , Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology , Korea University , Seoul 02841 , Republic of Korea
| |
Collapse
|
74
|
Liu R, Mabury SA. Synthetic phenolic antioxidants and transformation products in dust from different indoor environments in Toronto, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:23-29. [PMID: 30954820 DOI: 10.1016/j.scitotenv.2019.03.495] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/26/2019] [Accepted: 03/31/2019] [Indexed: 06/09/2023]
Abstract
Synthetic phenolic antioxidants (SPAs) are a class of anthropogenic antioxidants that are widely used in a large variety of commercial products. Although several SPAs have been listed as targets for risk assessment by Environment and Climate Change Canada, little data are available on the occurrence of SPAs in the Canadian environment. In this study, eighty-three indoor dust samples were collected from offices and homes in Toronto. Eight SPAs were detected at concentrations ranging from 67.2 to 1.55e4 ng/g, with a geometric mean (GM) concentration of 1.49e3 ng/g, among which 2,6-di-tert-butyl-4-methylphenol (BHT) was the primary congener and had a GM concentration of 658 ng/g. Four BHT transformation products (TPs) were also detected in the indoor dust samples, with concentrations ranging from 40.4 to 1.27e4 ng/g and a GM concentration of 883 ng/g. No significant concentration difference was observed between the office and home dust samples for either the summed target SPA or TP concentrations (p > 0.05). The calculated estimated daily intakes of these chemical contaminants (0.004-10.0 ng/kg BW/day) suggest that they pose no immediate health risk to the Canadian population. To the best of our knowledge, this is the first report of the occurrence of these chemical contaminants and their transformation products in Canadian indoor environments, and furthermore the first detection of 4-tert-butyl-phenol in an environmental sample.
Collapse
Affiliation(s)
- Runzeng Liu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto M5S 3H6, Ontario, Canada.
| | - Scott A Mabury
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto M5S 3H6, Ontario, Canada
| |
Collapse
|
75
|
Lu Z, Smyth SA, De Silva AO. Distribution and fate of synthetic phenolic antioxidants in various wastewater treatment processes in Canada. CHEMOSPHERE 2019; 219:826-835. [PMID: 30562689 DOI: 10.1016/j.chemosphere.2018.12.068] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 05/14/2023]
Abstract
Synthetic phenolic antioxidants (SPAs) are of emerging concern due to their potential environmental risks. However, the environmental occurrence and fate of SPAs are poorly understood. In this study, 13 SPAs were analyzed in 70 liquid and 21 solid samples from 12 wastewater treatment plants (WWTPs) in 2016 to investigate the distribution and composition of SPAs in different wastewater treatment processes in Canada. Wastewater samples were liquid-liquid extracted and biosolids were treated using ultrasonic assisted solvent extraction. SPAs were analyzed by ultra-performance liquid chromatography-tandem mass spectrometry. The concentrations of total SPAs were in the ranges of 71-3193 ng L-1 in influent, less than method quantification limits (MQLs)-520 ng L-1 in effluent, and 479-4794 ng g-1 in biosolids (dry weight (dw)). SPAs were effectively removed (median >75%) from the liquid stream in most WWTPs. In one aerated lagoon and two primary treatment sites, low removal efficiency (median -26%-43%) was observed for 4-tert-octylphenol (4-tOP). These results indicate that wastewater effluent is a vector for SPAs, including the endocrine disruptor 4-tOP, to aquatic environments. The mass balance approximation found major removal mechanisms are sludge sorption/separation and degradation. A preliminary risk assessment suggested that most SPAs in WWTP effluent were unlikely to pose ecotoxicological risks to aquatic organisms in the receiving waters. Future research should evaluate the environmental risks of SPAs associated with land application of biosolids and investigate the occurrence and fate of the degradation products of these contaminants.
Collapse
Affiliation(s)
- Zhe Lu
- Science & Technology Branch, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario, L7S 1A1, Canada; Institut des Sciences de La Mer de Rimouski (ISMER), Université Du Québec à Rimouski (UQAR), 310 Allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada.
| | - Shirley Anne Smyth
- Science & Technology Branch, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario, L7S 1A1, Canada.
| | - Amila O De Silva
- Science & Technology Branch, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario, L7S 1A1, Canada.
| |
Collapse
|
76
|
Li C, Cui X, Chen Y, Liao C, Ma LQ. Synthetic phenolic antioxidants and their major metabolites in human fingernail. ENVIRONMENTAL RESEARCH 2019; 169:308-314. [PMID: 30500685 DOI: 10.1016/j.envres.2018.11.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Synthetic phenolic antioxidants (SPAs) have been widely used in foods, polymers, and cosmetics, but very limited information is available about their occurrence in human tissues. In this study, five SPAs, namely 2,6-di-tert-butyl-4-methylphenol (BHT), 2-tert-butyl-4-hydroxyanisole (BHA), propyl-, octyl-, and dodecyl-gallate (PG, OG, and DG), and four major metabolites of BHT, including 3,5-di-tert-butyl-4 -hydroxybenzaldehyde (BHT-CHO), 2,6-di-tert-butyl-4-(hydroxymethyl) phenol (BHT-OH), 3,5-di-tertbutyl-4-hydroxybenzoic acid (BHT-COOH), and 2,6-di-tert-butyl-1,4-benzoquinone (BHT-Q), were determined in human fingernail samples collected from Nanjing, China. Total concentrations of the nine target analytes (∑9SPAs) were 523-14,000 ng/g. BHT was the predominant SPA compound and detected in all samples at a range of 309-11,400 ng/g. The ∑9SPAs was negatively correlated with age of fingernail donors (p < 0.05). In addition, indoor dust samples from the living places of the fingernail providers were collected with aim to better understand the SPA exposure pathways. A positive correlation (p < 0.05) was found only for DG concentrations between paired fingernail and dust samples, while not for other SPAs, suggesting that SPAs accumulated in fingernails may not be mainly from indoor dust. SPAs were measured for the first time in human fingernail, and the elevated concentrations in fingernail suggest that the health risk of SPAs should be paid more attention due to their bioaccumulation potential in human body. Further studies are warranted about exposure pathway, distribution and metabolism of SPAs in human body.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
77
|
Rapid Data Analytics to Relate Sugarcane Aphid [(Melanaphis sacchari (Zehntner)] Population and Damage on Sorghum (Sorghum bicolor (L.) Moench). Sci Rep 2019; 9:370. [PMID: 30674945 PMCID: PMC6344576 DOI: 10.1038/s41598-018-36815-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
Sugarcane aphid [(Melanaphis sacchari (Zehntner)] emerged in the United States in 2013 as a new pest infesting sorghum (Sorghum bicolor (L.) Moench). Aphid population and plant damage are assessed by field scouting with mean comparison tests or repeated regression analysis. Because of inherently large replication errors from the field and interactions between treatments, new data analytics are needed to rapidly visualize the pest emergence trend and its impact on plant damage. This study utilized variable importance in the projection (VIP) and regression vector statistics of partial least squares (PLS) modeling to deduce directional relationships between aphid population and leaf damage from biweekly field monitoring (independent variable) and chemical composition (dependent variable) of 24 sweet sorghum cultivars. Regardless of environment, aphid population increase preceded the maximum damage rating. Greater damage rating at earlier growth stage in 2015 than 2016 led to an overall higher damage rating in 2015 than 2016. This trend in damage coincided with higher concentrations of trans-aconitic acid and polyphenolic secondary products in stem juice in 2016 than 2015, at the expense of primary sugar production. Developed rapid data analytics could be extended to link phenotypes to perturbation parameters (e.g., cultivar and growth stage), enabling integrated pest management.
Collapse
|
78
|
Wang X, Hou X, Zhou Q, Liao C, Jiang G. Synthetic Phenolic Antioxidants and Their Metabolites in Sediments from the Coastal Area of Northern China: Spatial and Vertical Distributions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13690-13697. [PMID: 30394738 DOI: 10.1021/acs.est.8b04448] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Synthetic phenolic antioxidants (SPAs) are widely used in foodstuffs, cosmetics, plastics, and rubber products. Little is known about their spatiotemporal distribution in the marine environment. In this study, a total of 144 surface sediments and three sediment cores were collected from the coastal areas of northern China to determine the spatial and vertical distributions of SPAs. For surface sediments, the total concentrations of five SPAs and their four metabolites (∑9SPAs) ranged from 133 to 4800 (mean: 588) ng/g dry weight (dw). The ∑9SPAs in surface sediments showed a decrease trend with the distance from the coast to the open sea. For sediment core samples, the ∑9SPAs in the inner-shelf mud (core-1 and core-3) showed a slight increase trend from the bottom to upper layers, whereas that in the central-shelf mud (core-2) did not. The principal component analysis suggests that the composition profiles of SPAs in both surface sediment and sediment core samples were similar, while the sediments close to the coast were obviously affected by the human activities. This is the first study to report the spatial and vertical distributions of SPAs and their metabolites in sediments from the coastal marine environment.
Collapse
Affiliation(s)
- Xiaoyun Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
79
|
Yang X, Sun Z, Wang W, Zhou Q, Shi G, Wei F, Jiang G. Developmental toxicity of synthetic phenolic antioxidants to the early life stage of zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:559-568. [PMID: 29945090 DOI: 10.1016/j.scitotenv.2018.06.213] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/17/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
Synthetic phenolic antioxidants (SPAs) have gained high concerns due to their extensive usages and unintended environmental release via various routes. Their contamination in water system could pose potential threat to aquatic organisms, therefore, the studies on the aquatic toxicology of this kind of chemicals are of high importance. In this research, the developmental toxicities of four commonly used SPAs, including butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tert-butyl hydroquinone (TBHQ), and 2,2'-methylenebis (6-tert-butyl-4-methylphenol) (AO2246) were investigated using the zebrafish embryo toxicity test (ZFET). The results showed that these four SPAs exerted different acute toxicities to zebrafish, and the toxic order, based on their 96 h LC50 values, was AO2246 > TBHQ > BHA > BHT, and decreased hatching rates were induced for the embryos in BHA, TBHQ and AO2246 exposure groups. Non-lethal exposures of BHA (≤20 μM), TBHQ (≤20 μM), BHT (≤200 μM) and AO2246 (≤2 μM) decreased the heart rates and body lengths of zebrafish in exposure concentration-dependent manners. Diverse morphological deformities, including uninflated swim bladder, pericardial edema, spinal curvature, severe yolk deformation, or abnormal pigmentation, were induced in zebrafish larvae upon SPA treatments. The transcriptional levels of the related genes, examined by quantitative PCR, indicated that the interferences of SPAs with hypothalamic-pituitary-thyroid axis (HPT axis), GH/PRL synthesis and Hedgehog (hh) pathway contributed to their developmental toxicities in zebrafish. The up-regulation of pluripotency biomarker, Oct4, caused the developmental retardation during the early stages of zebrafish embryos in BHA and TBHQ exposure groups. The results obtained herein provided important information on the developmental toxicity of SPAs, which could be very helpful in guiding the risk assessment on their aquatic toxicology.
Collapse
Affiliation(s)
- Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanyi Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Guoqing Shi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fusheng Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; China National Environmental Monitoring Centre, Beijing 100012, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
80
|
Wang X, Hou X, Hu Y, Zhou Q, Liao C, Jiang G. Synthetic Phenolic Antioxidants and Their Metabolites in Mollusks from the Chinese Bohai Sea: Occurrence, Temporal Trend, and Human Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10124-10133. [PMID: 30088754 DOI: 10.1021/acs.est.8b03322] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Synthetic phenolic antioxidants (SPAs) are a group of chemicals widely used in various daily necessities and industrial supplies. Little is known about the occurrence and bioaccumulation potential of SPAs in marine biota. In this study, five commonly used SPAs and their four metabolites were detected in mollusk samples ( n = 274) collected from the Chinese Bohai Sea during 2006-2016 and the spatiotemporal distribution and bioaccumulation of SPAs in mollusks were examined. The concentrations of 2,6-di- tert-butyl-4-hydroxytoluene (BHT) ranged from 383 to 501000 ng/g (geometric mean: 3450 ng/g), accounting for 79.4% of the total concentrations of SPAs and their metabolites (∑9SPAs). The mollusk species, Rapana venosa (RAP), contained higher levels of BHT than other species, suggesting that Rap could be used as a potential bioindicator for monitoring of the BHT pollution in the investigated region. The ∑9SPAs concentrations in mollusks gradually increased with years and a significant positive correlation ( r = 0.900, p < 0.05) was found between ∑9SPAs concentration and trophic level of the mollusks. The trophic magnification factor value of ∑9SPAs was calculated as 16.1, suggesting a high biomagnification potential of SPAs in mollusks in the Chinese Bohai Sea. The estimated daily intake of ∑9SPAs through dietary ingestion of mollusks was up to 602 and 789 ng/kg bw/day for adults and children and teenagers, respectively. The principal component analysis result suggests that there exists a common source for three gallates (OG, DG, and PG), and BHT metabolites in mollusks were mainly derived from degradation of BHT. This is the first study to report the occurrence and bioaccumulation potentials of SPAs and their metabolites in invertebrate species from coastal marine environments.
Collapse
Affiliation(s)
- Xiaoyun Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yu Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|