51
|
A high-throughput screen identifies that CDK7 activates glucose consumption in lung cancer cells. Nat Commun 2019; 10:5444. [PMID: 31784510 PMCID: PMC6884612 DOI: 10.1038/s41467-019-13334-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Elevated glucose consumption is fundamental to cancer, but selectively targeting this pathway is challenging. We develop a high-throughput assay for measuring glucose consumption and use it to screen non-small-cell lung cancer cell lines against bioactive small molecules. We identify Milciclib that blocks glucose consumption in H460 and H1975, but not in HCC827 or A549 cells, by decreasing SLC2A1 (GLUT1) mRNA and protein levels and by inhibiting glucose transport. Milciclib blocks glucose consumption by targeting cyclin-dependent kinase 7 (CDK7) similar to other CDK7 inhibitors including THZ1 and LDC4297. Enhanced PIK3CA signaling leads to CDK7 phosphorylation, which promotes RNA Polymerase II phosphorylation and transcription. Milciclib, THZ1, and LDC4297 lead to a reduction in RNA Polymerase II phosphorylation on the SLC2A1 promoter. These data indicate that our high-throughput assay can identify compounds that regulate glucose consumption and that CDK7 is a key regulator of glucose consumption in cells with an activated PI3K pathway. Many cancer cells have increased glucose consumption compared to normal cells, a feature that can be exploited therapeutically. Here, the authors carry out a chemical screen and identify compounds that selectively blocks glucose metabolism in non-small-cell lung cancer cell lines.
Collapse
|
52
|
Seashore-Ludlow B, Axelsson H, Lundbäck T. Perspective on CETSA Literature: Toward More Quantitative Data Interpretation. SLAS DISCOVERY 2019; 25:118-126. [PMID: 31665966 DOI: 10.1177/2472555219884524] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cellular thermal shift assay (CETSA) was introduced in 2013 to investigate drug-target engagement inside live cells and tissues. As with all thermal shift assays, the response measured by CETSA is not simply governed by ligand affinity to the investigated target protein, but the thermodynamics and kinetics of ligand binding and protein unfolding also contribute to the observed protein stabilization. This limitation is commonly neglected in current applications of the method to validate the target of small-molecule probes. Instead, there is an eagerness to make direct comparisons of CETSA measurements with functional and phenotypic readouts from cells at 37 °C. Here, we present a perspective of the early CETSA literature and put the accumulated data into a quantitative context. The analysis includes annotation of ~270 peer-reviewed papers, the majority of which do not consider the underlying biophysical basis of CETSA. We also detail what future technology developments are needed to enable CETSA-based optimization of structure-activity relationships and more appropriate comparisons of these data with functional or phenotypic responses. Finally, we describe ongoing developments in assay formats that allow for CETSA measurements at single-cell resolution, with the aspiration to allow differentiation in cellular target engagement between cells in co-cultures and more complex models, such as organoids and potentially even tissue.
Collapse
Affiliation(s)
- Brinton Seashore-Ludlow
- Department of Oncology and Pathology, Science for Life Laboratories, Karolinska Institutet, Solna, Sweden
| | - Hanna Axelsson
- Chemical Biology Consortium Sweden, Science for Life Laboratories, Karolinska Institutet, Solna, Sweden
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Science for Life Laboratories, Karolinska Institutet, Solna, Sweden.,Mechanistic Biology & Profiling, Discovery Sciences, R&D, AstraZeneca, Mölndal, Sweden
| |
Collapse
|
53
|
Chung M, Liu C, Yang HW, Köberlin MS, Cappell SD, Meyer T. Transient Hysteresis in CDK4/6 Activity Underlies Passage of the Restriction Point in G1. Mol Cell 2019; 76:562-573.e4. [PMID: 31543423 DOI: 10.1016/j.molcel.2019.08.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 06/04/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
Abstract
Cells escape the need for mitogens at a restriction point several hours before entering S phase. The restriction point has been proposed to result from CDK4/6 initiating partial Rb phosphorylation to trigger a bistable switch whereby cyclin E-CDK2 and Rb mutually reinforce each other to induce Rb hyperphosphorylation. Here, using single-cell analysis, we unexpectedly found that cyclin E/A-CDK activity can only maintain Rb hyperphosphorylation starting at the onset of S phase and that CDK4/6 activity, but not cyclin E/A-CDK activity, is required to hyperphosphorylate Rb throughout G1 phase. Mitogen removal in G1 results in a gradual loss of CDK4/6 activity with a high likelihood of cells sustaining Rb hyperphosphorylation until S phase, at which point cyclin E/A-CDK activity takes over. Thus, it is short-term memory, or transient hysteresis, in CDK4/6 activity following mitogen removal that sustains Rb hyperphosphorylation, demonstrating a probabilistic rather than an irreversible molecular mechanism underlying the restriction point.
Collapse
Affiliation(s)
- Mingyu Chung
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Clark Building W200, Stanford, CA 94305, USA
| | - Chad Liu
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Clark Building W200, Stanford, CA 94305, USA
| | - Hee Won Yang
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Clark Building W200, Stanford, CA 94305, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Marielle S Köberlin
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Clark Building W200, Stanford, CA 94305, USA
| | - Steven D Cappell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Clark Building W200, Stanford, CA 94305, USA; Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Clark Building W200, Stanford, CA 94305, USA.
| |
Collapse
|
54
|
Anticancer properties of 5Z-(4-fluorobenzylidene)-2-(4-hydroxyphenylamino)-thiazol-4-one. Sci Rep 2019; 9:10609. [PMID: 31337851 PMCID: PMC6650463 DOI: 10.1038/s41598-019-47177-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/09/2019] [Indexed: 11/09/2022] Open
Abstract
4-thiazolidinones, which are privileged structures in medicinal chemistry, comprise the well-known class of heterocycles and are a source of new drug-like compounds. Undoubtedly, the 5-bulky-substituted-2,4-thiazolidinediones - a class of antihyperglycemic glitazones, which are peroxisome proliferator-activated receptor gamma (PPARγ) agonists, are the most described group among them. As there are various chemically distinct 4-thiazolidinones, different subtypes have been selected for studies; however, their main pharmacological profiles are similar. The aim of this study was to evaluate the anticancer activity of 5Z-(4-fluorobenzylidene)-2-(4-hydroxyphenylamino)-thiazol-4-one (Les-236) in four human cancer cell lines, A549, SCC-15, SH-SY5Y, and CACO-2, and investigate its impact on the production of reactive oxygen species (ROS) and the apoptotic process as well as cytotoxicity and metabolism in these cell lines. The cell lines were exposed to increasing concentrations (1 nM to 100 µM) of the studied compound for 6, 24, and 48 h, and later, ROS production, cell viability, caspase-3 activity, and cell metabolism were examined. The obtained results showed that the studied compound decreased the production of ROS, increased the release of lactate dehydrogenase, and decreased cell metabolism/proliferation in all the five cell lines at micromolar concentrations. Interestingly, over a wide range of concentrations (from 1 nM to 100 µM), Les-236 was able to increase the activity of caspase-3 in BJ (after 6 h of exposure), A549, CACO-2, and SCC-15 (after 48 h of exposure) cell lines which could be an effect of the activation of PPARγ-dependent pathways.
Collapse
|
55
|
Jorda R, Havlíček L, Šturc A, Tušková D, Daumová L, Alam M, Škerlová J, Nekardová M, Peřina M, Pospíšil T, Široká J, Urbánek L, Pachl P, Řezáčová P, Strnad M, Klener P, Kryštof V. 3,5,7-Substituted Pyrazolo[4,3-d]pyrimidine Inhibitors of Cyclin-Dependent Kinases and Their Evaluation in Lymphoma Models. J Med Chem 2019; 62:4606-4623. [DOI: 10.1021/acs.jmedchem.9b00189] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Radek Jorda
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Libor Havlíček
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Antonín Šturc
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Diana Tušková
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 128 53 Prague, Czech Republic
| | - Lenka Daumová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 128 53 Prague, Czech Republic
| | - Mahmudul Alam
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 128 53 Prague, Czech Republic
| | - Jana Škerlová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
- Institute of Molecular Genetics, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Michaela Nekardová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
- Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Miroslav Peřina
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Tomáš Pospíšil
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jitka Široká
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Lubor Urbánek
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
- Institute of Molecular Genetics, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 128 53 Prague, Czech Republic
| | - Vladimír Kryštof
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
56
|
Gregg T, Sdao SM, Dhillon RS, Rensvold JW, Lewandowski SL, Pagliarini DJ, Denu JM, Merrins MJ. Obesity-dependent CDK1 signaling stimulates mitochondrial respiration at complex I in pancreatic β-cells. J Biol Chem 2019; 294:4656-4666. [PMID: 30700550 PMCID: PMC6433064 DOI: 10.1074/jbc.ra118.006085] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/25/2019] [Indexed: 12/18/2022] Open
Abstract
β-Cell mitochondria play a central role in coupling glucose metabolism with insulin secretion. Here, we identified a metabolic function of cyclin-dependent kinase 1 (CDK1)/cyclin B1-the activation of mitochondrial respiratory complex I-that is active in quiescent adult β-cells and hyperactive in β-cells from obese (ob/ob) mice. In WT islets, respirometry revealed that 65% of complex I flux and 49% of state 3 respiration is sensitive to CDK1 inhibition. Islets from ob/ob mice expressed more cyclin B1 and exhibited a higher sensitivity to CDK1 blockade, which reduced complex I flux by 76% and state 3 respiration by 79%. The ensuing reduction in mitochondrial NADH utilization, measured with two-photon NAD(P)H fluorescence lifetime imaging (FLIM), was matched in the cytosol by a lag in citrate cycling, as shown with a FRET reporter targeted to β-cells. Moreover, time-resolved measurements revealed that in ob/ob islets, where complex I flux dominates respiration, CDK1 inhibition is sufficient to restrict the duty cycle of ATP/ADP and calcium oscillations, the parameter that dynamically encodes β-cell glucose sensing. Direct complex I inhibition with rotenone mimicked the restrictive effects of CDK1 inhibition on mitochondrial respiration, NADH turnover, ATP/ADP, and calcium influx. These findings identify complex I as a critical mediator of obesity-associated metabolic remodeling in β-cells and implicate CDK1 as a regulator of complex I that enhances β-cell glucose sensing.
Collapse
Affiliation(s)
- Trillian Gregg
- From the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism and
| | - Sophia M Sdao
- From the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism and
| | - Rashpal S Dhillon
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Jarred W Rensvold
- Morgridge Institute for Research and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53715, and
| | - Sophie L Lewandowski
- From the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism and
| | - David J Pagliarini
- Morgridge Institute for Research and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53715, and
| | - John M Denu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Matthew J Merrins
- From the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism and
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705
| |
Collapse
|
57
|
Schade AE, Oser MG, Nicholson HE, DeCaprio JA. Cyclin D-CDK4 relieves cooperative repression of proliferation and cell cycle gene expression by DREAM and RB. Oncogene 2019; 38:4962-4976. [PMID: 30833638 PMCID: PMC6586519 DOI: 10.1038/s41388-019-0767-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/24/2019] [Accepted: 02/19/2019] [Indexed: 12/19/2022]
Abstract
The Retinoblastoma protein (RB) restricts cell cycle gene expression and entry into the cell cycle. The RB-related protein p130 forms the DREAM (DP, RB-like, E2F and MuvB) complex and contributes to repression of cell cycle dependent genes during quiescence. Although both RB and DREAM bind and repress an overlapping set of E2F dependent gene promoters, it remains unclear if they cooperate to restrict cell cycle entry. To test the specific contributions of RB and DREAM, we generated RB and p130 knockout cells in primary human fibroblasts. Knockout of both p130 and RB yielded higher levels of cell cycle gene expression in G0 and G1 cells compared to cells with knockout of RB alone, indicating a role for DREAM and RB in repression of cell cycle genes. We observed that RB played a dominant role in E2F dependent gene repression during mid to late G1 while DREAM activity was more prominant during G0 and early G1. Cyclin D - Cyclin Dependent Kinase 4 (CDK4) dependent phosphorylation of p130 occurred during early G1 and led to the release of p130 and MuvB from E2F4 and decreased p130 and MuvB binding to cell cycle promoters. Specific inhibition of CDK4 activity by palbociclib blocked DREAM complex disassembly during cell cycle entry. In addition, sensitivity to CDK4 inhibition was dependent on RB and an intact DREAM complex in both normal cells as well as in palbociclib-sensitive cancer cell lines. Although RB knockout cells were partially resistant to CDK4 inhibition, RB and p130 double knockout cells were significantly more resistant to palbociclib treatment. These results indicate that DREAM cooperates with RB in repressing E2F dependent gene expression and cell cycle entry and supports a role for DREAM as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Amy E Schade
- Program in Virology, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Boston, MA, 02115, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Hilary E Nicholson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - James A DeCaprio
- Program in Virology, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Boston, MA, 02115, USA. .,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA. .,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
58
|
Panicker RC, Chattopadhaya S, Coyne AG, Srinivasan R. Allosteric Small-Molecule Serine/Threonine Kinase Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:253-278. [PMID: 31707707 DOI: 10.1007/978-981-13-8719-7_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Deregulation of protein kinase activity has been linked to many diseases ranging from cancer to AIDS and neurodegenerative diseases. Not surprisingly, drugging the human kinome - the complete set of kinases encoded by the human genome - has been one of the major drug discovery pipelines. Majority of the approved clinical kinase inhibitors target the ATP binding site of kinases. However, the remarkable sequence and structural similarity of ATP binding pockets of kinases make selective inhibition of kinases a daunting task. To circumvent these issues, allosteric inhibitors that target sites other than the orthosteric ATP binding pocket have been developed. The structural diversity of the allosteric sites allows these inhibitors to have higher selectivity, lower toxicity and improved physiochemical properties and overcome drug resistance associated with the use of conventional kinase inhibitors. In this chapter, we will focus on the allosteric inhibitors of selected serine/threonine kinases, outline the benefits of using these inhibitors and discuss the challenges and future opportunities.
Collapse
Affiliation(s)
- Resmi C Panicker
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People's Republic of China
| | | | - Anthony G Coyne
- University Chemical Laboratory, University of Cambridge, Cambridge, UK
| | - Rajavel Srinivasan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People's Republic of China.
| |
Collapse
|
59
|
Hu G, Wang C, Xin X, Li S, Li Z, Zhao Y, Gong P. Design, synthesis and biological evaluation of novel 2,4-diaminopyrimidine derivatives as potent antitumor agents. NEW J CHEM 2019. [DOI: 10.1039/c9nj02154j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Two series of 2-aminopyrimidine derivatives possessing triazolopiperazine or 1,4,8-triazaspiro[4.5]decan-3-one scaffolds were designed, synthesized and evaluated for their biological activity.
Collapse
Affiliation(s)
- Gang Hu
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Chu Wang
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Xin Xin
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Shuaikang Li
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Zefei Li
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Yanfang Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Ping Gong
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang
- China
| |
Collapse
|
60
|
Zhang G, Ren Y. Molecular Modeling and Design Studies of Purine Derivatives as Novel CDK2 Inhibitors. Molecules 2018; 23:molecules23112924. [PMID: 30423939 PMCID: PMC6278423 DOI: 10.3390/molecules23112924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 11/16/2022] Open
Abstract
Cyclin-dependent kinase 2 (CDK2) is a potential target for treating cancer. Purine heterocycles have attracted particular attention as the scaffolds for the development of CDK2 inhibitors. To explore the interaction mechanism and the structure–activity relationship (SAR) and to design novel candidate compounds as potential CDK2 inhibitors, a systematic molecular modeling study was conducted on 35 purine derivatives as CDK2 inhibitors by combining three-dimensional quantitative SAR (3D-QSAR), virtual screening, molecular docking, and molecular dynamics (MD) simulations. The predictive CoMFA model (q2 = 0.743, rpred2 = 0.991), the CoMSIA model (q2 = 0.808, rpred2 = 0.990), and the Topomer CoMFA model (q2 = 0.779, rpred2 = 0.962) were obtained. Contour maps revealed that the electrostatic, hydrophobic, hydrogen bond donor and steric fields played key roles in the QSAR models. Thirty-one novel candidate compounds with suitable predicted activity (predicted pIC50 > 8) were designed by using the results of virtual screening. Molecular docking indicated that residues Asp86, Glu81, Leu83, Lys89, Lys33, and Gln131 formed hydrogen bonds with the ligand, which affected activity of the ligand. Based on the QSAR model prediction and molecular docking, two candidate compounds, I13 and I60 (predicted pIC50 > 8, docking score > 10), with the most potential research value were further screened out. MD simulations of the corresponding complexes of these two candidate compounds further verified their stability. This study provided valuable information for the development of new potential CDK2 inhibitors.
Collapse
Affiliation(s)
- Gaomin Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Yujie Ren
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|