51
|
Tang H, Li Y, Kakinen A, Andrikopoulos N, Sun Y, Kwak E, Davis TP, Ding F, Ke PC. Graphene quantum dots obstruct the membrane axis of Alzheimer's amyloid beta. Phys Chem Chem Phys 2021; 24:86-97. [PMID: 34878460 PMCID: PMC8771921 DOI: 10.1039/d1cp04246g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a primary form of dementia with debilitating consequences, but no effective cure is available. While the pathophysiology of AD remains multifactorial, the aggregation of amyloid beta (Aβ) mediated by the cell membrane is known to be the cause for the neurodegeneration associated with AD. Here we examined the effects of graphene quantum dots (GQDs) on the obstruction of the membrane axis of Aβ in its three representative forms of monomers (Aβ-m), oligomers (Aβ-o), and amyloid fibrils (Aβ-f). Specifically, we determined the membrane fluidity of neuroblastoma SH-SY5Y cells perturbed by the Aβ species, especially by the most toxic Aβ-o, and demonstrated their recovery by GQDs using confocal fluorescence microscopy. Our computational data through discrete molecular dynamics simulations further revealed energetically favorable association of the Aβ species with the GQDs in overcoming peptide-peptide aggregation. Overall, this study positively implicated GQDs as an effective agent in breaking down the membrane axis of Aβ, thereby circumventing adverse downstream events and offering a potential therapeutic solution for AD.
Collapse
Affiliation(s)
- Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yuhuan Li
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China,Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Nicholas Andrikopoulos
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Eunbi Kwak
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia,The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| | - Thomas P. Davis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Pu Chun Ke
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia,The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| |
Collapse
|
52
|
Chai J, Li Q, Zhao Y, Liu Y. Nanocomposites Facilitate the Removal of Aβ Fibrils for Neuroprotection. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1372-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
53
|
Zhang Z, Yuan Q, Li M, Bao B, Tang Y. A Ratiometric Fluorescent Conjugated Oligomer for Amyloid β Recognition, Aggregation Inhibition, and Detoxification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104581. [PMID: 34708516 DOI: 10.1002/smll.202104581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/08/2021] [Indexed: 06/13/2023]
Abstract
The sensitive recognition and effective inhibition of toxic amyloid β protein (Aβ) aggregates play a critical role in early diagnosis and treatment of neurodegenerative diseases. In this work, a new conjugated oligo(fluorene-co-phenylene) (OFP) modified with 1,8-naphthalimide (NA) derivative OFP-NA-NO2 is designed and synthesized as a ratiometric fluorescence probe for sensing Aβ, inhibiting the assembly of Aβ, and detoxicating the cytotoxicity of Aβ aggregates. In the presence of Aβ, the active ester group on the side chain of OFP-NA-NO2 can covalently react with the amino group on Aβ, effectively inhibiting the formation of Aβ aggregates and degrading the preformed fibrils. In this case, the fluorescence intensity ratio of NA to OFP (INA /IOFP ) increases greatly. The detection limit is calculated to be 89.9 nM, presenting the most sensitive ratiometric recognition of Aβ. Interestingly, OFP-NA-NO2 can dramatically recover the cell viability of PC-12 and restore the Aβ-clearing ability of microglia. Therefore, this ratiometric probe exhibits the targeted recognition of Aβ, effective inhibition of Aβ aggregates, and detox effect, which is potential for early diagnosis and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ziqi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Qiong Yuan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Meiqi Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Benkai Bao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yanli Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
54
|
Zhao Y, Zhang Z, Pan Z, Liu Y. Advanced bioactive nanomaterials for biomedical applications. EXPLORATION (BEIJING, CHINA) 2021; 1:20210089. [PMID: 37323697 PMCID: PMC10191050 DOI: 10.1002/exp.20210089] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Bioactive materials are a kind of materials with unique bioactivities, which can change the cellular behaviors and elicit biological responses from living tissues. Bioactive materials came into the spotlight in the late 1960s when the researchers found that the materials such as bioglass could react with surrounding bone tissue for bone regeneration. In the following decades, advances in nanotechnology brought the new development opportunities to bioactive nanomaterials. Bioactive nanomaterials are not a simple miniaturization of macroscopic materials. They exhibit unique bioactivities due to their nanoscale size effect, high specific surface area, and precise nanostructure, which can significantly influence the interactions with biological systems. Nowadays, bioactive nanomaterials have represented an important and exciting area of research. Current and future applications ensure that bioactive nanomaterials have a high academic and clinical importance. This review summaries the recent advances in the field of bioactive nanomaterials, and evaluate the influence factors of bioactivities. Then, a range of bioactive nanomaterials and their potential biomedical applications are discussed. Furthermore, the limitations, challenges, and future opportunities of bioactive nanomaterials are also discussed.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjinP. R. China
| | - Zhanzhan Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjinP. R. China
| | - Zheng Pan
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjinP. R. China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjinP. R. China
| |
Collapse
|
55
|
Liu Z, Liu Q, Zhang B, Liu Q, Fang L, Gou S. Blood-Brain Barrier Permeable and NO-Releasing Multifunctional Nanoparticles for Alzheimer's Disease Treatment: Targeting NO/cGMP/CREB Signaling Pathways. J Med Chem 2021; 64:13853-13872. [PMID: 34517696 DOI: 10.1021/acs.jmedchem.1c01240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of novel therapeutic strategies for combating Alzheimer's disease (AD) is challenging but imperative. Multifunctional nanoparticles are promising tools for regulating complex pathological dysfunctions for AD treatment. Herein, we constructed multifunctional nanoparticles consisting of regadenoson (Reg), nitric oxide (NO) donor, and YC-1 in a single molecular entity that can spontaneously self-assemble into nanoparticles and load donepezil to yield Reg-nanoparticles (Reg-NPs). The Reg moiety enabled the Reg-NPs to effectively regulate tight junction-associated proteins in the blood-brain barrier, thus facilitating the permeation of donepezil through the barrier and its accumulation in the brain. Moreover, the released NO and YC-1 activated the NO/cGMP/CREB signaling pathway by stimulating soluble guanylyl cyclase and inhibiting phosphodiesterase activity, which finally reduced cytotoxicity induced by aggregated Aβ in the neurons and was beneficial for synaptic plasticity and memory formation.
Collapse
Affiliation(s)
- Zhikun Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qingqing Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Bin Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qiao Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
56
|
Li R, Zhao L, Yao A, Si D, Shang Y, Ding X, An H, Ye H, Zhang Y, Li H. Design of Lubricant-Infused Surfaces Based on Mussel-Inspired Nanosilica Coatings: Solving Adhesion by Pre-Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10708-10719. [PMID: 34450019 DOI: 10.1021/acs.langmuir.1c01305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Slippery liquid-infused porous surfaces (SLIPSs) have attracted wide interest with regard to their excellent liquid repellency properties and broad applications in various fields associated with anti-adhesion. However, the preparation processes depending on the chemical properties of the substrate and the poor stability of the lubricant layer hinder the practical applications. In this work, a facile method to fabricate SLIPSs based on the mussel-inspired polydopamine (PDA)-mediated nanosilica structures is demonstrated. A variety of substrates can be decorated with SLIPSs by successive treatment of PDA-assisted sol-gel process, fluorination, and lubricant filling. The robust uniform and nanotextured silica coating, mediated by the pre-adhered PDA layer, shows enhanced lubricant-locking ability even when subjected to increased evaporation and high shear from flowing water or spinning compared with hierarchical silica rough structures. The obtained SLIPSs exhibit high transparency and excellent resistance against adhesion of liquid/solid contaminants and biofoulings through this pre-adhesion of PDA strategy. The well-defined nanosilica coating of high decoration covering micron-scaled pore walls enables improved durability of the slippery surfaces for antifouling of the porous membrane under pressure-driven filtration and this may be employed as a potential candidate for fouling resistance of porous materials.
Collapse
Affiliation(s)
- Rishun Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Lizhi Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Anfeng Yao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Didi Si
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Yanlong Shang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Xiaoli Ding
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Huiqin An
- School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Hui Ye
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Hong Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
57
|
Andrikopoulos N, Song Z, Wan X, Douek AM, Javed I, Fu C, Xing Y, Xin F, Li Y, Kakinen A, Koppel K, Qiao R, Whittaker AK, Kaslin J, Davis TP, Song Y, Ding F, Ke PC. Inhibition of Amyloid Aggregation and Toxicity with Janus Iron Oxide Nanoparticles. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:6484-6500. [PMID: 34887621 PMCID: PMC8651233 DOI: 10.1021/acs.chemmater.1c01947] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Amyloid aggregation is a ubiquitous form of protein misfolding underlying the pathologies of Alzheimer's disease (AD), Parkinson's disease (PD) and type 2 diabetes (T2D), three primary forms of human amyloid diseases. While much has been learned about the origin, diagnosis and management of these neurological and metabolic disorders, no cure is currently available due in part to the dynamic and heterogeneous nature of the toxic oligomers induced by amyloid aggregation. Here we synthesized beta casein-coated iron oxide nanoparticles (βCas IONPs) via a BPA-P(OEGA-b-DBM) block copolymer linker. Using a thioflavin T kinetic assay, transmission electron microscopy, Fourier transform infrared spectroscopy, discrete molecular dynamics simulations and cell viability assays, we examined the Janus characteristics and the inhibition potential of βCas IONPs against the aggregation of amyloid beta (Aβ), alpha synuclein (αS) and human islet amyloid polypeptide (IAPP) which are implicated in the pathologies of AD, PD and T2D. Incubation of zebrafish embryos with the amyloid proteins largely inhibited hatching and elicited reactive oxygen species, which were effectively rescued by the inhibitor. Furthermore, Aβ-induced damage to mouse brain was mitigated in vivo with the inhibitor. This study revealed the potential of Janus nanoparticles as a new nanomedicine against a diverse range of amyloid diseases.
Collapse
Affiliation(s)
- Nicholas Andrikopoulos
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Zhiyuan Song
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Xulin Wan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Alon M. Douek
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
| | - Yanting Xing
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Fangyun Xin
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Yuhuan Li
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
| | - Kairi Koppel
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Thomas P. Davis
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
- Corresponding Authors: Thomas P. Davis: ; Yang Song, ; Feng Ding: ; Pu Chun Ke:
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Corresponding Authors: Thomas P. Davis: ; Yang Song, ; Feng Ding: ; Pu Chun Ke:
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- Corresponding Authors: Thomas P. Davis: ; Yang Song, ; Feng Ding: ; Pu Chun Ke:
| | - Pu Chun Ke
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia
- The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Corresponding Authors: Thomas P. Davis: ; Yang Song, ; Feng Ding: ; Pu Chun Ke:
| |
Collapse
|
58
|
Jin Y, Chifodya K, Han G, Jiang W, Chen Y, Shi Y, Xu Q, Xi Y, Wang J, Zhou J, Zhang H, Ding Y. High-density lipoprotein in Alzheimer's disease: From potential biomarkers to therapeutics. J Control Release 2021; 338:56-70. [PMID: 34391838 DOI: 10.1016/j.jconrel.2021.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
The inverse correlation between high-density lipoprotein (HDL) levels in vivo and the risk of Alzheimer's disease (AD) has become an inspiration for HDL-inspired AD therapy, including plain HDL and various intelligent HDL-based drug delivery systems. In this review, we will focus on the two endogenous HDL subtypes in the central nervous system (CNS), apolipoprotein E-based HDL (apoE-HDL) and apolipoprotein A-I-based HDL (apoA-I-HDL), especially their influence on AD pathophysiology to reveal HDL's potential as biomarkers for risk prediction, and summarize the relevant therapeutic mechanisms to propose possible treatment strategies. We will emphasize the latest advances of HDL as therapeutics (plain HDL and HDL-based drug delivery systems) to discuss the potential for AD therapy and review innovative techniques in the preparation of HDL-based nanoplatforms to provide a basis for the rational design and future development of anti-AD drugs.
Collapse
Affiliation(s)
- Yi Jin
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China
| | - Kudzai Chifodya
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Guochen Han
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China
| | - Wenxin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yun Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Shi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Qiao Xu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yilong Xi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Wang
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jianping Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| | - Huaqing Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| | - Yang Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| |
Collapse
|
59
|
Cui W, Fu W, Lin Y, Zhang T. Application of Nanomaterials in Neurodegenerative Diseases. Curr Stem Cell Res Ther 2021; 16:83-94. [PMID: 32213159 DOI: 10.2174/1574888x15666200326093410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/07/2020] [Accepted: 02/04/2020] [Indexed: 02/08/2023]
Abstract
Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease are very harmful brain lesions. Due to the difficulty in obtaining therapeutic drugs, the best treatment for neurodegenerative diseases is often not available. In addition, the bloodbrain barrier can effectively prevent the transfer of cells, particles and macromolecules (such as drugs) in the brain, resulting in the failure of the traditional drug delivery system to provide adequate cellular structure repair and connection modes, which are crucial for the functional recovery of neurodegenerative diseases. Nanomaterials are designed to carry drugs across the blood-brain barrier for targets. Nanotechnology uses engineering materials or equipment to interact with biological systems at the molecular level to induce physiological responses through stimulation, response and target site interactions, while minimizing the side effects, thus revolutionizing the treatment and diagnosis of neurodegenerative diseases. Some magnetic nanomaterials play a role as imaging agents or nanoprobes for Magnetic Resonance Imaging to assist in the diagnosis of neurodegenerative diseases. Although the current research on nanomaterials is not as useful as expected in clinical applications, it achieves a major breakthrough and guides the future development direction of nanotechnology in the application of neurodegenerative diseases. This review briefly discusses the application and advantages of nanomaterials in neurodegenerative diseases. Data for this review were identified by searches of PubMed, and references from relevant articles published in English between 2015 and 2019 using the search terms "nanomaterials", "neurodegenerative diseases" and "blood-brain barrier".
Collapse
Affiliation(s)
- Weitong Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Fu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
60
|
Ma M, Liu Z, Gao N, Dong K, Pi Z, Kang L, Du X, Ren J, Qu X. Near-infrared target enhanced peripheral clearance of amyloid-β in Alzheimer's disease model. Biomaterials 2021; 276:121065. [PMID: 34391018 DOI: 10.1016/j.biomaterials.2021.121065] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/16/2021] [Accepted: 08/07/2021] [Indexed: 12/29/2022]
Abstract
Clearance of peripheral amyloid-β (Aβ) has been demonstrated particularly promising for overcoming the blood-brain barrier (BBB) hurdle to remove brain-derived Aβ associated with Alzheimer's disease (AD). However, currently used therapeutic agents targeting peripheral Aβ cannot simultaneously achieve plasma Aβ enrichment and enhanced clearance, which may result in poor bioavailability and rather low efficacy. Moreover, most of therapeutic agents usually promote the unfavorable aggregation of Aβ. Herein, we construct a near-infrared (NIR) regulated surface-transformable and target peptide-guided upconversion platform (UCNP/ONA-P/K), serving as a safe and effective way for Aβ clearance. Taking advantage of extended blood circulation, high selectivity toward Aβ, and surface-transformable property, such UCNP/ONA-P/K can address the challenges of peripheral Aβ clearance by a combination of enhancing the enrichment of plasma Aβ, preventing the unfavorable aggregation of Aβ and simultaneously facilitating the hepatic clearance of the captured Aβ. After verified by a series of systematic toxicity evaluation, cell uptake, deep tissue penetration, and hemolytic experiments, in vivo studies demonstrate that UCNP/ONA-P/K can efficiently decrease brain Aβ burden and reverse memory deficits in 3xTg-AD mice. Overall, this NIR multi-functional design provides a new biocompatible and efficient way for Aβ removal, which will promote the application of peripheral clearance of Aβ for AD treatment.
Collapse
Affiliation(s)
- Mengmeng Ma
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; University of Science and Technology of China, Hefei, Anhui, 230029, PR China
| | - Zhenqi Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; University of Science and Technology of China, Hefei, Anhui, 230029, PR China
| | - Nan Gao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Kai Dong
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Zifeng Pi
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Lihua Kang
- Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin, 130061, PR China.
| | - Xiubo Du
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, PR China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin, 130061, PR China.
| |
Collapse
|
61
|
Zheng C, Li M, Ding J. Challenges and Opportunities of Nanomedicines in Clinical Translation. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2021-0016] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, P. R. China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| |
Collapse
|
62
|
Dou Y, Zhao D, Yang F, Tang Y, Chang J. Natural Phyto-Antioxidant Albumin Nanoagents to Treat Advanced Alzheimer's Disease. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30373-30382. [PMID: 34180234 DOI: 10.1021/acsami.1c07281] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phytotherapeutic approaches are of immense value in the treatment of advanced Alzheimer's disease (AD) because of their diverse biological components and potential multitarget mechanisms. In this study, quercetin, a natural neuroprotective flavonoid, was encapsulated in human serum albumin to obtain HSA@QC nanoparticles (HQ NPs) as a natural phyto-antioxidant albumin nanoagent for the treatment of advanced AD. HQ NPs showed excellent antioxidant effects and protected PC12 cells from H2O2-induced oxidative damage. The intranasal administration of HQ NPs in 11-month-old APP/PS1 mice, which represented advanced AD, effectively prevented the loss of body weight, increased survival rates, and significantly reduced oxidative stress, Aβ aggregation, neuronal apoptosis, and synaptic damage in the brain. It also ultimately reversed severely impaired cognitive function. In addition to their favorable anti-AD effects, HQ NPs exhibited excellent biosafety and biocompatibility owing to their natural composition and are expected to become an ideal choice for future drug development and clinical applications.
Collapse
Affiliation(s)
- Yan Dou
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Dongju Zhao
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Fan Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Yuqing Tang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
63
|
Guo X, Lie Q, Liu Y, Jia Z, Gong Y, Yuan X, Liu J. Multifunctional Selenium Quantum Dots for the Treatment of Alzheimer's Disease by Reducing Aβ-Neurotoxicity and Oxidative Stress and Alleviate Neuroinflammation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30261-30273. [PMID: 34169710 DOI: 10.1021/acsami.1c00690] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
At present, the complex pathogenesis, the difficult-to-overcome blood-brain barrier (BBB), the development of the disease course which cannot be prevented, and other problems are serious challenges in the treatment of Alzheimer's disease (AD). In order to enhance the therapeutic effect of drugs through BBB, we synthesized simple and easy-to-obtain selenium quantum dots (SeQDs), with a multitarget therapeutic effect. This new type of SeQDs has an ultrasmall size and can quickly penetrate the BBB. According to the fluorescence characteristics of SeQDs, we can diagnose and track AD. The experimental results show that SeQDs have strong free-radical scavenging activity, protect cells from oxidative stress induced by different stimuli, and show broad-spectrum antioxidant activity. The SeQDs can not only effectively inhibit Aβ aggregation and significantly reduce Aβ-mediated cytotoxicity, thus preventing AD cascade reaction, but also effectively reduce tau protein phosphorylation by down-regulating PHF1 and CP13 and further reduce oxidative stress, restore mitochondrial functions, and maintain nerve cell stability and protect nerve cells from oxidative stress. In vivo studies demonstrate that SeQDs can continuously accumulate in the brain after rapid passage of BBB and can quickly alleviate AD, significantly improve the memory impairment of AD mice, and improve their learning and memory ability. Therefore, the use of SeQDs in the treatment of AD has great advantages compared with traditional single-target drugs and provides a new direction for the combination of prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xian Guo
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Qiaoshan Lie
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Yanan Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhi Jia
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Youcong Gong
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Xiaoyu Yuan
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jie Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| |
Collapse
|
64
|
Tandon A, Singh SJ, Chaturvedi RK. Nanomedicine against Alzheimer's and Parkinson's Disease. Curr Pharm Des 2021; 27:1507-1545. [PMID: 33087025 DOI: 10.2174/1381612826666201021140904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's and Parkinson's are the two most rampant neurodegenerative disorders worldwide. Existing treatments have a limited effect on the pathophysiology but are unable to fully arrest the progression of the disease. This is due to the inability of these therapeutic molecules to efficiently cross the blood-brain barrier. We discuss how nanotechnology has enabled researchers to develop novel and efficient nano-therapeutics against these diseases. The development of nanotized drug delivery systems has permitted an efficient, site-targeted, and controlled release of drugs in the brain, thereby presenting a revolutionary therapeutic approach. Nanoparticles are also being thoroughly studied and exploited for their role in the efficient and precise diagnosis of neurodegenerative conditions. We summarize the role of different nano-carriers and RNAi-conjugated nanoparticle-based therapeutics for their efficacy in pre-clinical studies. We also discuss the challenges underlying the use of nanomedicine with a focus on their route of administration, concentration, metabolism, and any toxic effects for successful therapeutics in these diseases.
Collapse
Affiliation(s)
- Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sangh J Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rajnish K Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
65
|
Li Y, Tang H, Zhu H, Kakinen A, Wang D, Andrikopoulos N, Sun Y, Nandakumar A, Kwak E, Davis TP, Leong DT, Ding F, Ke PC. Ultrasmall Molybdenum Disulfide Quantum Dots Cage Alzheimer's Amyloid Beta to Restore Membrane Fluidity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29936-29948. [PMID: 34143617 PMCID: PMC8251662 DOI: 10.1021/acsami.1c06478] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Alzheimer's disease (AD) is a major cause of dementia characterized by the overexpression of transmembrane amyloid precursor protein and its neurotoxic byproduct amyloid beta (Aβ). A small peptide of considerable hydrophobicity, Aβ is aggregation prone catalyzed by the presence of cell membranes, among other environmental factors. Accordingly, current AD mitigation strategies often aim at breaking down the Aβ-membrane communication, yet no data is available concerning the cohesive interplay of the three key entities of the cell membrane, Aβ, and its inhibitor. Using a lipophilic Laurdan dye and confocal fluorescence microscopy, we observed cell membrane perturbation and actin reorganization induced by Aβ oligomers but not by Aβ monomers or amyloid fibrils. We further revealed recovery of membrane fluidity by ultrasmall MoS2 quantum dots, also shown in this study as a potent inhibitor of Aβ amyloid aggregation. Using discrete molecular dynamics simulations, we uncovered the binding of MoS2 and Aβ monomers as mediated by hydrophilic interactions between the quantum dots and the peptide N-terminus. In contrast, Aβ oligomers and fibrils were surface-coated by the ultrasmall quantum dots in distinct testudo-like, reverse protein-corona formations to prevent their further association with the cell membrane and adverse effects downstream. This study offers a crucial new insight and a viable strategy for regulating the amyloid aggregation and membrane-axis of AD pathology with multifunctional nanomedicine.
Collapse
Affiliation(s)
- Yuhuan Li
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Houjuan Zhu
- National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Nicholas Andrikopoulos
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Aparna Nandakumar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Eunbi Kwak
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Thomas P. Davis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - David Tai Leong
- National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Pu Chun Ke
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
- The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| |
Collapse
|
66
|
Zheng Y, Zhang Z, Liu Q, Wang Y, Hao J, Kang Z, Wang C, Zhao X, Liu Y, Shi L. A near-infrared light-excitable immunomodulating nano-photosensitizer for effective photoimmunotherapy. Biomater Sci 2021; 9:4191-4198. [PMID: 33982683 DOI: 10.1039/d1bm00569c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Photodynamic therapy has great potential for tumor ablation and the activation of antitumor immune responses. However, its overall therapeutic efficiency is often limited by the immunosuppressive tumor microenvironment. We developed a near-infrared light-excitable immunomodulating nano-photosensitizer (NeINP) that can improve reactive oxygen species production and regulate the immunosuppressive TME to improve photoimmunotherapy. The NeINP is composed of a photosensitive core and a pH-responsive polymer shell, which allows for NeINP loading and delivery of small-molecular immunomodulators to tumor sites for regulation of the immunosuppressive TME and effective photoimmunotherapy. Through the co-delivery of celecoxib and the NIR-triggered photodynamic core to tumors, the NeINP was shown to regulate the immunosuppressive TME and enhance antitumor immunity, leading to the elimination of residual tumor and reduction of metastasis and recurrence. The NeINP can be optimized to co-deliver other immunomodulators, and thus has potential as a universal platform for efficient, precise photoimmunotherapy.
Collapse
Affiliation(s)
- Yadan Zheng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Zhanzhan Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Qi Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Ying Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Jialei Hao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Ziyao Kang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Chun Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Xinzhi Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
67
|
Zeng H, Qi Y, Zhang Z, Liu C, Peng W, Zhang Y. Nanomaterials toward the treatment of Alzheimer’s disease: Recent advances and future trends. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
68
|
Gu Y, Zhao Y, Zhang Z, Hao J, Zheng Y, Liu Q, Liu Y, Shi L. An Antibody-like Polymeric Nanoparticle Removes Intratumoral Galectin-1 to Enhance Antitumor T-Cell Responses in Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22159-22168. [PMID: 33955217 DOI: 10.1021/acsami.1c02116] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Antibodies have shown potential to deplete immunosuppressive factors in tumor tissues. However, intrinsic drawbacks, including time-consuming processes in preparation, high cost, and short half-life time, greatly restrict their applications. In this work, we report an antibody-like polymeric nanoparticle (APN) that is capable of specifically capturing and removing galectin-1 in tumor tissues, thereby enhancing the antitumor T-cell responses. The APN is composed of an albumin-polymer hybrid nanoparticle (core) and an acid-responsive PEG shell. The core of the APN contains multiple recognition units and Tuftsin peptides to capture target factors and activate macrophage-mediated phagocytosis, respectively. By employing galactose as recognition units, the APN facilitated the phagocytosis of galectin-1 in tumor tissues, thereby improving the antitumor responses of tumor-infiltrating T cells. Since the recognition units in the APN can be further replaced to capture and remove other peptides/proteins, the APN provides a feasible approach for the development of synthetic nanoformulations to regulate biological systems and treat diseases.
Collapse
Affiliation(s)
- Yu Gu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhanzhan Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Jialei Hao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yadan Zheng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qi Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| |
Collapse
|
69
|
Kong L, Zhou X, Shi G, Yu Y. Molybdenum disulfide nanosheets-based fluorescent "off-to-on" probe for targeted monitoring and inhibition of β-amyloid oligomers. Analyst 2021; 145:6369-6377. [PMID: 32729592 DOI: 10.1039/d0an00019a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A novel and simple "off-to-on" fluorescent sensing platform for β-amyloid oligomers (Aβo) was developed based on dye (FAM)-labeled single-strand DNA (FAM-ssDNA)-conjugated molybdenum disulfide nanosheets (MoS2 NSs). Due to strong adsorption of ss-DNA to the surface of MoS2 NSs, the fluorescence of FAM was quenched remarkably, leading to a fluorescent "off" state. However, in the presence of Aβo, a hybrid structure between Aβo and FAM-ssDNA resulted in the dissociation of FAM-ssDNA from MoS2 NSs and an obvious fluorescence recovery transformed the fluorescence to an "on" state. The developed fluorescence sensing assay showed a good linear relationship toward Aβo ranging from 0.01 to 20 μM (R2 = 0.994) with a satisfactory detection limit of 3.1 nM. Practical samples of hippocampus and cortex tissues from APP/PS1 double transgenic AD mice were applied to demonstrate feasibility of the assay. Moreover, we found that similar to MoS2 nanoparticles, MoS2 NSs possessed therapeutic effects on Alzheimer's disease (AD) by inhibiting Aβ aggregations and degrading the previously formed Aβ fibrils. Collectively, the high sensitivity, specificity, and good biocompatibility along with an efficient anti-aggregation ability, the presented fluorescent strategy with MoS2 NSs demonstrated their promising potential for future AD-related research.
Collapse
Affiliation(s)
- Lingna Kong
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | | | | | | |
Collapse
|
70
|
Ji W, Li Y, Liu R, Lu Z, Liu L, Shi Z, Shen J, Zhang X. Synaptic vesicle-inspired nanoparticles with spatiotemporally controlled release ability as a "nanoguard" for synergistic treatment of synucleinopathies. MATERIALS HORIZONS 2021; 8:1199-1206. [PMID: 34821912 DOI: 10.1039/d0mh01542c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Synaptic vesicle-inspired nanoparticles (RT-PPB NPs) as a "nanoguard" were designed for clearing the toxic α-synuclein aggregates in diseased neurons and preventing the culprits from escaping to affect other normal cells. The NPs could overcome a series of tissue and cellular barriers and controllably release drugs in the diseased neurons, which ensured the optimization of synergistic treatment. This study indicates that the synaptic vesicle-inspired NPs may have the potential to open up a new avenue for the treatment of synucleinopathies, as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Weihong Ji
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Ramezani M, Hesami MD, Rafiei Y, Ghareghozloo ER, Meratan AA, Nikfarjam N. Efficient Amyloid Fibrillation Inhibition and Remodeling of Preformed Fibrils of Bovine Insulin by Propolis Polyphenols-Based Nanosheets. ACS APPLIED BIO MATERIALS 2021; 4:3547-3560. [DOI: 10.1021/acsabm.1c00068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mohammad Ramezani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Maryam Dehghan Hesami
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Yasin Rafiei
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | | | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Nasser Nikfarjam
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
72
|
Chen J, Zhao Y, Yao Q, Gao Y. Pathological environment directed in situ peptidic supramolecular assemblies for nanomedicines. Biomed Mater 2021; 16:022011. [PMID: 33630754 DOI: 10.1088/1748-605x/abc2e9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peptidic self-assembly provides a powerful method to build biomedical materials with integrated functions. In particular, pathological environment instructed peptidic supramolecular have gained great progress in treating various diseases. Typically, certain pathology related factors convert hydrophilic precursors to corresponding more hydrophobic motifs to assemble into supramolecular structures. Herein, we would like to review the recent progress of nanomedicines based on the development of instructed self-assembly against several specific disease models. Firstly we introduce the cancer instructed self-assembly. These assemblies have exhibited great inhibition efficacy, as well as enhanced imaging contrast, against cancer models both in vitro and in vivo. Then we discuss the infection instructed peptidic self-assembly. A number of different molecular designs have demonstrated the potential antibacterial application with satisfied efficiency for peptidic supramolecular assemblies. Further, we discuss the application of instructed peptidic self-assembly for other diseases including neurodegenerative disease and vaccine. The assemblies have succeeded in down-regulating abnormal Aβ aggregates and immunotherapy. In summary, the self-assembly precursors are typical two-component molecules with (1) a self-assembling motif and (2) a cleavable trigger responsive to the pathological environment. Upon cleavage, the self-assembly occurs selectively in pathological loci whose targeting capability is independent from active targeting. Bearing the novel targeting regime, we envision that the pathological conditions instructed peptidic self-assembly will lead a paradigm shift on biomedical materials.
Collapse
Affiliation(s)
- Jiali Chen
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yan Zhao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qingxin Yao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuan Gao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
73
|
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem Rev 2021; 121:2545-2647. [PMID: 33543942 PMCID: PMC8836097 DOI: 10.1021/acs.chemrev.0c01122] [Citation(s) in RCA: 403] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Molecular Biology, University of Naples Federico II, Naples 80138, Italy
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Mara Chiricotto
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - James McCarty
- Chemistry Department, Western Washington University, Bellingham, Washington 98225, United States
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yifat Miller
- Department of Chemistry and The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Stepan Timr
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Jiaxing Chen
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Brianna Hnath
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, and Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sylvain Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Fabio Sterpone
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Philippe Derreumaux
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
74
|
Yu D, Liu C, Zhang H, Ren J, Qu X. Glycoengineering artificial receptors for microglia to phagocytose Aβ aggregates. Chem Sci 2021; 12:4963-4969. [PMID: 34163743 PMCID: PMC8179537 DOI: 10.1039/d0sc07067j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Oligomeric and fibrillar amyloid-β (Aβ) are principally internalized via receptor-mediated endocytosis (RME) by microglia, the main scavenger of Aβ in the brain. Nevertheless, the inflammatory cascade will be evoked after vast Aβ aggregate binding to pattern recognition receptors on the cell membrane, which then significantly decreases the expression of these receptors and further deteriorate Aβ deposition. This vicious circle will weaken the ability of microglia for Aβ elimination. Herein, a combination of metabolic glycoengineering and self-triggered click chemistry is utilized to engineer microglial membranes with ThS as artificial Aβ receptors to promote microglia to phagocytose Aβ aggregates. Additionally, to circumvent the undesirable immune response during the process of the bioorthogonal chemistry reaction and Aβ-microglial interaction, Mn-porphyrin metal-organic frameworks (Mn-MOFs) with superoxide dismutase (SOD) and catalase (CAT) mimic activity are employed to carry N-azidoacetylmannosamine (AcManNAz) and eradicate over-expressed reactive oxygen species (ROSs). The artificial Aβ receptors independent of a signal pathway involved in immunomodulation as well as Mn-MOFs with antioxidant properties can synergistically promote the phagocytosis and clearance of Aβ with significantly enhanced activity and negligible adverse effects. The present study will not only provide valuable insight into the rational design of the microglial surface engineering strategy via bioorthogonal chemistry, but also hold great potential for other disease intervention associated with receptor starvation.
Collapse
Affiliation(s)
- Dongqin Yu
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Chun Liu
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Haochen Zhang
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| |
Collapse
|
75
|
Xu Y, Zhao M, Zhou D, Zheng T, Zhang H. The application of multifunctional nanomaterials in Alzheimer's disease: A potential theranostics strategy. Biomed Pharmacother 2021; 137:111360. [PMID: 33582451 DOI: 10.1016/j.biopha.2021.111360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
By virtue of their small size, nanomaterials can cross the blood-brain barrier and, when modified to target specific cells or regions, can achieve high bioavailability at the intended site of action. Modified nanomaterials are therefore promising agents for the diagnosis and treatment of neurodegenerative diseases such as Alzheimer's disease (AD). Here we review the roles and mechanisms of action of nanomaterials in AD. First, we discuss the general characteristics of nanomaterials and their application to nanomedicine. Then, we summarize recent studies on the diagnosis and treatment of AD using modified nanomaterials. These studies indicate that using nanomaterials is a potential strategy for AD treatment by slowing the progression of AD through enhanced therapeutic effects.
Collapse
Affiliation(s)
- Yilan Xu
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Manna Zhao
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Dongming Zhou
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Tingting Zheng
- Department of Neurology, The First Affiliated Hospital of ZheJiang Chinese Medical University, Zhejiang Provincial Hospital of TCM, Hangzhou 310058, Zhejiang, China
| | - Heng Zhang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China.
| |
Collapse
|
76
|
Kakinen A, Javed I, Davis TP, Ke PC. In vitro and in vivo models for anti-amyloidosis nanomedicines. NANOSCALE HORIZONS 2021; 6:95-119. [PMID: 33438715 DOI: 10.1039/d0nh00548g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Amyloid diseases are global epidemics characterized by the accumulative deposits of cross-beta amyloid fibrils and plaques. Despite decades of intensive research, few solutions are available for the diagnosis, treatment, and prevention of these debilitating diseases. Since the early work on the interaction of human β2-microglobulin and nanoparticles by Linse et al. in 2007, the field of amyloidosis inhibition has gradually evolved into a new frontier in nanomedicine offering numerous interdisciplinary research opportunities, especially for materials, chemistry and biophysics. In this review we summarise, for the first time, the in vitro and in vivo models employed thus far in the field of anti-amyloidosis nanomedicines. Based on this systematic summary, we bring forth the notion that, due to the complex and often overlapping physiopathologies of amyloid diseases, there is a crucial need for the appropriate use of in vitro and in vivo models for validating novel anti-amyloidosis nanomedicines, and there is a crucial need for the development of new animal models that reflect the behavioural, symptomatic and cross-talk hallmarks of amyloid diseases such as Alzheimer's (AD), Parkinson's (PD) diseases and type 2 diabetes (T2DM).
Collapse
Affiliation(s)
- Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
77
|
Zhao Y, Li Q, Chai J, Liu Y. Cargo‐Templated Crosslinked Polymer Nanocapsules and Their Biomedical Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Qiushi Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Jingshan Chai
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
78
|
Zhang L, Sun H, Chen Y, Wei M, Lee J, Li F, Ling D. Functional nanoassemblies for the diagnosis and therapy of Alzheimer's diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1696. [PMID: 33463089 DOI: 10.1002/wnan.1696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that affects populations around the world. Many therapeutics have been investigated for AD diagnosis and/or therapy, but the efficacy is largely limited by the poor bioavailability of drugs and by the presence of the blood-brain barrier. Recently, the development of nanomedicines enables efficient drug delivery to the brain, but the complex pathological mechanism of AD prevents them from successful treatment. As a type of advanced nanomedicine, multifunctional nanoassemblies self-assembled from nanoscale imaging or therapeutic agents can simultaneously target multiple pathological factors, showing great potential in the diagnosis and therapy of AD. To help readers better understand this emerging field, in this review, we first introduce the pathological mechanisms and the potential drug candidates of AD, as well as the design strategies of nanoassemblies for improving AD targeting efficiency. Moreover, the progress of dynamic nanoassemblies that can diagnose and/or treat AD in response to the endogenous or exogenous stimuli will be described. Finally, we conclude with our perspectives on the future development in this field. The objective of this review is to outline the latest progress of using nanoassemblies to overcome the complex pathological environment of AD for improved diagnosis and therapy, in hopes of accelerating the future development of intelligent AD nanomedicines. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Lingxiao Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Heng Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Min Wei
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
- National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
79
|
Wang H, Xu X, Pan YC, Yan Y, Hu XY, Chen R, Ravoo BJ, Guo DS, Zhang T. Recognition and Removal of Amyloid-β by a Heteromultivalent Macrocyclic Coassembly: A Potential Strategy for the Treatment of Alzheimer's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006483. [PMID: 33325586 DOI: 10.1002/adma.202006483] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The imbalance of amyloid-β (Aβ) production and clearance causes aggregation of Aβ1-42 monomers to form fibrils and amyloid plaques, which is an indispensable process in the pathogenesis of Alzheimer's disease (AD), and eventually leads to pathological changes and cognitive impairment. Consequently, Aβ1-42 is the most important target for the treatment of AD. However, developing a single treatment method that can recognize Aβ1-42 , inhibit Aβ1-42 fibrillation, eliminate amyloid plaques, improve cognitive impairments, and alleviate AD-like pathology is challenging. Here, a coassembly composed of cyclodextrin (CD) and calixarene (CA) is designed, and it is used as an anti-Aβ therapy agent. The CD-CA coassembly is based on the previously reported heteromultivalent recognition strategy and is able to successfully eliminate amyloid plaques and degrade Aβ1-42 monomers in 5xFAD mice. More importantly, the coassembly improves recognition and spatial cognition deficits, and synaptic plasticity impairment in the 5xFAD mice. In addition, the coassembly ameliorates AD-like pathology including prevention of neuronal apoptosis and oxidant stress, and alteration of M1/M2 microglial polarization states. This supramolecular approach makes full use of both molecular recognition and self-assembly of macrocyclic amphiphiles, and is a promising novel strategy for AD treatment.
Collapse
Affiliation(s)
- Hui Wang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - XinXin Xu
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Yu-Chen Pan
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin, 300071, P. R. China
| | - YuXing Yan
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin, 300071, P. R. China
| | - RunWen Chen
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, Münster, 48149, Germany
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin, 300071, P. R. China
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
80
|
Li Y, Tang H, Andrikopoulos N, Javed I, Cecchetto L, Nandakumar A, Kakinen A, Davis TP, Ding F, Ke PC. The membrane axis of Alzheimer's nanomedicine. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000040. [PMID: 33748816 PMCID: PMC7971452 DOI: 10.1002/anbr.202000040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Alzheimer's disease (AD) is a major neurological disorder impairing its carrier's cognitive function, memory and lifespan. While the development of AD nanomedicine is still nascent, the field is evolving into a new scientific frontier driven by the diverse physicochemical properties and theranostic potential of nanomaterials and nanocomposites. Characteristic to the AD pathology is the deposition of amyloid plaques and tangles of amyloid beta (Aβ) and tau, whose aggregation kinetics may be curbed by nanoparticle inhibitors via sequence-specific targeting or nonspecific interactions with the amyloidogenic proteins. As literature implicates cell membrane as a culprit in AD pathogenesis, here we summarize the membrane axis of AD nanomedicine and present a new rationale that the field development may greatly benefit from harnessing our existing knowledge of Aβ-membrane interaction, nanoparticle-membrane interaction and Aβ-nanoparticle interaction.
Collapse
Affiliation(s)
- Yuhuan Li
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, 200032, China
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Nicholas Andrikopoulos
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Luca Cecchetto
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemical and Pharmaceutical Science, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Aparna Nandakumar
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Pu Chun Ke
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, 200032, China
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
81
|
Krishna KV, Saha RN, Dubey SK. Biophysical, Biochemical, and Behavioral Implications of ApoE3 Conjugated Donepezil Nanomedicine in a Aβ 1-42 Induced Alzheimer's Disease Rat Model. ACS Chem Neurosci 2020; 11:4139-4151. [PMID: 33251785 DOI: 10.1021/acschemneuro.0c00430] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder and is the most common type of dementia. Amyloid β (Aβ) plaques play an important role in the pathophysiology of AD. However, the existing therapeutic strategies are not effective for the management of both Aβ-induced neurotoxicity and Aβ fibrils clearance in biological conditions. Herein, we have developed lipoprotein conjugated polymeric nanoparticles that can boost the clearance rate of Aβ fibrils and mitigate Aβ-induced neurotoxicity in AD rat. These nanoparticles were designed by loading donepezil in an amphiphilic polymer with a lipoprotein (ApoE3) integrated over the surface. Polymeric nanoparticles were prepared by a nanoprecipitation method, and ApoE3 was conjugated to the polymer layer by polysorbate 80. In the present study, we intended to examine the protective effect of ApoE3 nanoparticles against Aβ-induced neurotoxicity both in vitro and in vivo to evaluate if these can reduce the Aβ fibril formation and cognitive and behavioral deficits observed in AD induced rats. In the in vitro study, neurotoxicity induced by Aβ1-42 in human neuroblastoma (SH-SY5Y) cells was found to be significantly reduced upon treatment with ApoE3 donepezil nanoparticles. The presence of the ApoE3 significantly modified the morphology of Aβ fibrils and also inhibited the formation Aβ oligomers. Moreover, in the in vivo study, following treatment, AD induced rats were tested on Morris water maze (MWM) and passive avoidance task for their cognitive ability and sacrificed for biochemical estimations. From our observations, ApoE3 donepezil nanoparticles exhibited neuroprotection in the Aβ1-42 induced model by mitigating the pathological features and cognitive impairments. Thus, we anticipate that the nanosized lipoprotein carriers will possibly offer a rational therapeutic strategy in the formulation development of AD.
Collapse
Affiliation(s)
- Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, 345055 Pilani, Rajasthan, India
| | - Ranendra Narayan Saha
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, 345055 Pilani, Rajasthan, India
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Dubai Campus, Dubai International Academic City, P.O. Box 345055, Dubai, United Arab Emirates
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, 345055 Pilani, Rajasthan, India
| |
Collapse
|
82
|
Chen P, Ding F, Cai R, Javed I, Yang W, Zhang Z, Li Y, Davis TP, Ke PC, Chen C. Amyloidosis Inhibition, a New Frontier of the Protein Corona. NANO TODAY 2020; 35:100937. [PMID: 32728376 PMCID: PMC7388636 DOI: 10.1016/j.nantod.2020.100937] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The protein corona has served as a central dogma and a nuisance to the applications of nanomedicine and nanobiotechnology for well over a decade. Here we introduce the emerging field of amyloidosis inhibition, which aims to understand and harness the interfacial phenomena associated with a nanoparticle interacting with pathogenic amyloid proteins. Much of this interaction correlates with our understanding of the protein corona, and yet much differs, as elaborated for the first time in this Perspective. Specifically, we examine the in vitro, in silico and in vivo features of the new class of "amyloid protein corona", and discuss how the interactions with nanoparticles may halt the self-assembly of amyloid proteins. As amyloidosis is driven off pathway by the nanoparticles, the oligomeric and protofibrillar populations are suppressed to ameliorate their cytotoxicity. Furthermore, as amyloid proteins spread via the transport of bodily fluids or cross seeding, amyloidosis is inherently associated with dynamic proteins and ligands to evoke the immune system. Accordingly, we ponder the structural and medical implications of the amyloid protein corona in the presence of their stimulated cytokines. Understanding and exploiting the amyloid protein corona may facilitate the development of new theranostics against a range of debilitating amyloid diseases.
Collapse
Affiliation(s)
- Pengyu Chen
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Rong Cai
- CAS Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
| | - Ibrahim Javed
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Wen Yang
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, United States
| | - Zhenzhen Zhang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yuhuan Li
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China
| | - Thomas P. Davis
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Pu Chun Ke
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China
| | - Chunying Chen
- CAS Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
| |
Collapse
|
83
|
Zheng Y, Wang P, Li S, Geng X, Zou L, Jin M, Zou Q, Wang Q, Yang X, Wang K. Development of DNA Aptamer as a β-Amyloid Aggregation Inhibitor. ACS APPLIED BIO MATERIALS 2020; 3:8611-8618. [DOI: 10.1021/acsabm.0c00996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Pei Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Shaoyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Xiuhua Geng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Liyuan Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Meimei Jin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Qingqing Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
84
|
Rütter M, Milošević N, David A. Say no to drugs: Bioactive macromolecular therapeutics without conventional drugs. J Control Release 2020; 330:1191-1207. [PMID: 33207257 DOI: 10.1016/j.jconrel.2020.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
The vast majority of nanomedicines (NM) investigated today consists of a macromolecular carrier and a drug payload (conjugated or encapsulated), with a purpose of preferential delivery of the drug to the desired site of action, either through passive accumulation, or by active targeting via ligand-receptor interaction. Several drug delivery systems (DDS) have already been approved for clinical use. However, recent reports are corroborating the notion that NM do not necessarily need to include a drug payload, but can exert biological effects through specific binding/blocking of important target proteins at the site of action. The seminal work of Kopeček et al. on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers containing biorecognition motifs (peptides or oligonucleotides) for crosslinking cell surface non-internalizing receptors of malignant cells and inducing their apoptosis, without containing any low molecular weight drug, led to the definition of a special group of NM, termed Drug-Free Macromolecular Therapeutics (DFMT). Systems utilizing this approach are typically designed to employ pendant targeting-ligands on the same macromolecule to facilitate multivalent interactions with receptors. The lack of conventional small molecule drugs reduces toxicity and adverse effects at off-target sites. In this review, we describe different types of DFMT that possess biological activity without attached low molecular weight drugs. We classified the relevant research into several groups by their mechanisms of action, and compare the advantages and disadvantages of these different approaches. We show that identification of target sites, specificity of attached targeting ligands, binding affinity and the synthesis of carriers of defined size and ligand spacing are crucial aspects of DFMT development. We further discuss how knowledge in the field of NM accumulated in the past few decades can help in the design of a successful DFMT to speed up the translation into clinical practice.
Collapse
Affiliation(s)
- Marie Rütter
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Nenad Milošević
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
85
|
Gong L, Zhang X, Ge K, Yin Y, Machuki JO, Yang Y, Shi H, Geng D, Gao F. Carbon nitride-based nanocaptor: An intelligent nanosystem with metal ions chelating effect for enhanced magnetic targeting phototherapy of Alzheimer's disease. Biomaterials 2020; 267:120483. [PMID: 33129186 DOI: 10.1016/j.biomaterials.2020.120483] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/29/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
Metal ions imbalance, a well-established pathologic feature of alzheimer's disease (AD), ultimately results in the deposition of amyloid-β peptide (Aβ) proteins and Aβ-induced neurotoxicity. Herein, to overcome these hurdles, an intelligent Aβ nanocaptor with the capacity to chelate metal ions and targeted therapy is developed by anchoring carbon nitride (C3N4) nanodots to Fe3O4@mesoporous silica nanospheres, and decorated with benzothiazole aniline (BTA) (designated as B-FeCN). The C3N4 nanodots could effectively capture superfluous Cu2+ to suppress the formation of Cu2+-Aβ complex thereby eliminating Aβ aggregation. Simultaneously, the nanocaptor enables local low-temperature hyperthermia to promote the dissolution of preformed fiber precipitates, therefore, maximizing the therapeutic benefits. Owing to its favorable photothermal effect, the blood-brain barrier (BBB) permeability of the nanocaptor is noticeably ameliorated upon laser illumination, which conquers the limitations associated with traditional anti-AD drugs, as evidenced by in vivo and in vitro studies. Besides, leveraging on the magnetic properties of Fe3O4 core, the nanocaptor is magnetized to access to the targeted Aβ regions under extrinsic magnetic field. BTA conjugation, which specifically binds to the β2 position of the Aβ fibers, executes specific targeting at Aβ plaques, and synchronously endows the BTA-modified nanocaptor with fluorescent imaging property for sensitively detecting Aβ aggregates. In view of these superiorities, nanocaptors combine metallostasis restoration and Aβ targeted therapy can surmount the interference of copper ions, enhance BBB permeability and protect cells against Aβ-induced neurotoxicity, which provides new avenues for developing neuroprotective nanosystems for the treatment of alzheimer's disease.
Collapse
Affiliation(s)
- Ling Gong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, PR China; Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, PR China
| | - Xing Zhang
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, 52074, Germany
| | - Kezhen Ge
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, PR China; Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, PR China
| | - Yiming Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, PR China; Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, PR China
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, PR China
| | - Yun Yang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Zhejiang, 325027, PR China
| | - Hengliang Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, PR China
| | - Deqin Geng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, PR China; Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu, 221002, PR China.
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, PR China.
| |
Collapse
|
86
|
Yang H, Mu W, Wei D, Zhang Y, Duan Y, Gao J, Gong X, Wang H, Wu X, Tao H, Chang J. A Novel Targeted and High-Efficiency Nanosystem for Combinational Therapy for Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902906. [PMID: 33042734 PMCID: PMC7539195 DOI: 10.1002/advs.201902906] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/23/2020] [Indexed: 05/06/2023]
Abstract
Alzheimer's disease (AD) remains the most prevalent neurodegenerative disease, and no effective treatment is available yet. Metal-ion-triggered aggregates of amyloid-beta (Aβ) peptide and acetylcholine imbalance are reported to be possible factors in AD pathogenesis. Thus, a combination therapy that can not only inhibit and reduce Aβ aggregation but also simultaneously regulate acetylcholine imbalance that can serve as a potential treatment for AD is needed. Here, clioquinol (metal-ion chelating agent) and donepezil (acetylcholinesterase (AChE) inhibitor) co-encapsulated human serum albumin (HSA) nanoparticles (dcHGT NPs) are designed, which are modified with transcriptional activator protein (TAT) and monosialotetrahexosylganglioside (GM1). The GM1 lipid and TAT peptide endow this drug delivery nanosystem with high brain entry efficiency and long-term retention capabilities through intranasal administration. It is found that dcHGT NPs can significantly inhibit and eliminate Aβ aggregation, relieve acetylcholine-related inflammation in microglial cells, and protect primary neurons from Aβ oligomer-induced neurotoxicity in vitro. The alleviation of Aβ-related inflammation and AChE-inhibited effect further synergistically adjust acetylcholine imbalance. It is further demonstrated that dcHGT NPs reduce Aβ deposition, ameliorate neuron morphological changes, rescue memory deficits, and greatly improve acetylcholine regulation ability in vivo. This multifunctional synergetic nanosystem can be a new candidate to achieve highly efficient combination therapy for AD.
Collapse
Affiliation(s)
- Han Yang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| | - Weihang Mu
- Department of RehabilitationTianjin Children's Hospital238 Longyan Road, Beichen DistrictTianjin300072P. R. China
| | - Daohe Wei
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| | - Yue Zhang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| | - Yue Duan
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| | - Jun‐xiao Gao
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| | - Xiao‐qun Gong
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| | - Han‐jie Wang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| | - Xiao‐li Wu
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| | - Huaying Tao
- Department of NeurologyTianjin Medical University General Hospital154 Anshan Road, Heping DistrictTianjin300072P. R. China
| | - Jin Chang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjin300072P. R. China
| |
Collapse
|
87
|
Ma Y, Ye Z, Zhang C, Wang X, Li HW, Wong MS, Luo HB, Xiao L. Deep Red Blinking Fluorophore for Nanoscopic Imaging and Inhibition of β-Amyloid Peptide Fibrillation. ACS NANO 2020; 14:11341-11351. [PMID: 32857496 DOI: 10.1021/acsnano.0c03400] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Deposition and aggregation of β-amyloid (Aβ) peptides are demonstrated to be closely related to the pathogenesis of Alzheimer's disease (AD). Development of functional molecules capable of visualizing Aβ1-40 aggregates with nanoscale resolution and even modulating Aβ assembly has attracted great attention recently. In this work, we use monocyanine fluorophore as the lead structure to develop a set of deep red carbazole-based cyanine molecules, which can specifically bind with Aβ1-40 fibril via electrostatic and van der Waals interactions. Spectroscopic and microscopic characterizations demonstrate that one of these fluorophores, (E)-1-(2-(2-methoxyethoxy)ethyl)-4-(2-(9-methyl-9H-carbazol-3-yl)vinyl) quinolinium iodide (me-slg) can bind to Aβ1-40 aggregates with strong fluorescence enhancement. The photophysical properties of me-slg at the single-molecule level, including low "on/off" duty cycle, high photon output, and sufficient switching cycles, enable real-time nanoscopic imaging of Aβ1-40 aggregates. Morphology-dependent toxic effect of Aβ1-40 aggregates toward PC12 cells is unveiled from in situ nanoscopic fluorescence imaging. In addition, me-slg displays a strong inhibitory effect on Aβ1-40 fibrillation in a low inhibitor-protein ratio (e.g., I:P = 0.2). A noticeably reduced cytotoxic effect of Aβ1-40 after the addition of me-slg is also confirmed. These results afford promising applications in the design of a nanoscopic imaging probe for amyloid fibril as well as the development of inhibitors to modulate the fibrillation process.
Collapse
Affiliation(s)
- Yuanyuan Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhongju Ye
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chen Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xueli Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Man Shing Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
88
|
Ma M, Gao N, Li X, Liu Z, Pi Z, Du X, Ren J, Qu X. A Biocompatible Second Near-Infrared Nanozyme for Spatiotemporal and Non-Invasive Attenuation of Amyloid Deposition through Scalp and Skull. ACS NANO 2020; 14:9894-9903. [PMID: 32806077 DOI: 10.1021/acsnano.0c02733] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Phototherapy, such as photodynamic therapy and photothermal therapy, holds great potential for modulation of Alzheimer's β-amyloid (Aβ) self-assembly. Unfortunately, current works for phototherapy of Alzheimer's disease (AD) are just employing either visible or first near-infrared (NIR-I) light with limited tissue penetration, which can not avoid damaging nearby normal tissues of AD patients through the dense skull and scalp. To overcome the shortcomings of AD phototherapy, herein we report an amyloid targeting, N-doped three-dimensional mesoporous carbon nanosphere (KD8@N-MCNs) as a second near-infrared (NIR-II) PTT agent. This makes it possible for photothermal dissociation of Aβ aggregates through the scalp and skull in a NIR-II window without hurting nearby normal tissues. Besides, KD8@N-MCNs have both superoxide dismutase and catalase activities, which can scavenge intracellular superfluous reactive oxygen species and alleviate neuroinflammation in vivo. Furthermore, KD8@N-MCNs efficiently cross the blood-brain barrier owing to the covalently grafted target peptides of KLVFFAED on the nanosphere surface. In vivo studies demonstrate that KD8@N-MCNs decrease Aβ deposits, ameliorate memory deficits, and alleviate neuroinflammation in the 3xTg-AD mouse model. Our work provides a biocompatible and non-invasive way to attenuate AD-associated pathology.
Collapse
Affiliation(s)
- Mengmeng Ma
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Nan Gao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xuexia Li
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zhenqi Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zifeng Pi
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiubo Du
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230029, China
| |
Collapse
|
89
|
Caballero AB, Gamez P. Nanochaperone-Based Strategies to Control Protein Aggregation Linked to Conformational Diseases. Angew Chem Int Ed Engl 2020; 60:41-52. [PMID: 32706460 DOI: 10.1002/anie.202007924] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 12/14/2022]
Abstract
The generation of highly organized amyloid fibrils is associated with a wide range of conformational pathologies, including primarily neurodegenerative diseases. Such disorders are characterized by misfolded proteins that lose their normal physiological roles and acquire toxicity. Recent findings suggest that proteostasis network impairment may be one of the causes leading to the accumulation and spread of amyloids. These observations are certainly contributing to a new focus in anti-amyloid drug design, whose efforts are so far being centered on single-target approaches aimed at inhibiting amyloid aggregation. Chaperones, known to maintain proteostasis, hence represent interesting targets for the development of novel therapeutics owing to their potential protective role against protein misfolding diseases. In this minireview, research on nanoparticles that can either emulate or help molecular chaperones in recognizing and/or correcting protein misfolding is discussed. The nascent concept of "nanochaperone" may indeed set future directions towards the development of cost-effective, disease-modifying drugs to treat several currently fatal disorders.
Collapse
Affiliation(s)
- Ana B Caballero
- nanoBIC, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Patrick Gamez
- nanoBIC, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
90
|
Caballero AB, Gamez P. Nanochaperone‐Based Strategies to Control Protein Aggregation Linked to Conformational Diseases. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ana B. Caballero
- nanoBIC Departament de Química Inorgànica i Orgànica Universitat de Barcelona Martí i Franquès, 1–11 08028 Barcelona Spain
- Institute of Nanoscience and Nanotechnology (IN2UB) Universitat de Barcelona 08028 Barcelona Spain
| | - Patrick Gamez
- nanoBIC Departament de Química Inorgànica i Orgànica Universitat de Barcelona Martí i Franquès, 1–11 08028 Barcelona Spain
- Institute of Nanoscience and Nanotechnology (IN2UB) Universitat de Barcelona 08028 Barcelona Spain
- Catalan Institution for Research and Advanced Studies (ICREA) Passeig Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
91
|
Ke PC, Zhou R, Serpell LC, Riek R, Knowles TPJ, Lashuel HA, Gazit E, Hamley IW, Davis TP, Fändrich M, Otzen DE, Chapman MR, Dobson CM, Eisenberg DS, Mezzenga R. Half a century of amyloids: past, present and future. Chem Soc Rev 2020; 49:5473-5509. [PMID: 32632432 PMCID: PMC7445747 DOI: 10.1039/c9cs00199a] [Citation(s) in RCA: 304] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amyloid diseases are global epidemics with profound health, social and economic implications and yet remain without a cure. This dire situation calls for research into the origin and pathological manifestations of amyloidosis to stimulate continued development of new therapeutics. In basic science and engineering, the cross-β architecture has been a constant thread underlying the structural characteristics of pathological and functional amyloids, and realizing that amyloid structures can be both pathological and functional in nature has fuelled innovations in artificial amyloids, whose use today ranges from water purification to 3D printing. At the conclusion of a half century since Eanes and Glenner's seminal study of amyloids in humans, this review commemorates the occasion by documenting the major milestones in amyloid research to date, from the perspectives of structural biology, biophysics, medicine, microbiology, engineering and nanotechnology. We also discuss new challenges and opportunities to drive this interdisciplinary field moving forward.
Collapse
Affiliation(s)
- Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, Zhejiang University, Hangzhou 310058, China; Department of Chemistry, Columbia University, New York, New York, 10027, USA
| | - Louise C. Serpell
- School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Hilal A. Lashuel
- Laboratory of Molecular Neurobiology and Neuroproteomics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ian W. Hamley
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Daniel Erik Otzen
- Department of Molecular Biology, Center for Insoluble Protein Structures (inSPIN), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Matthew R. Chapman
- Department of Molecular, Cellular and Developmental Biology, Centre for Microbial Research, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - David S. Eisenberg
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA
| | - Raffaele Mezzenga
- Department of Health Science & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092 Zurich, Switzerland
- Department of Materials, ETH Zurich, Wolfgang Pauli Strasse 10, 8093 Zurich, Switzerland
| |
Collapse
|
92
|
Andrikopoulos N, Li Y, Cecchetto L, Nandakumar A, Da Ros T, Davis TP, Velonia K, Ke PC. Nanomaterial synthesis, an enabler of amyloidosis inhibition against human diseases. NANOSCALE 2020; 12:14422-14440. [PMID: 32638780 DOI: 10.1039/d0nr04273k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Amyloid diseases are global epidemics with no cure currently available. In the past decade, the use of engineered nanomaterials as inhibitors or probes against the pathogenic aggregation of amyloid peptides and proteins has emerged as a new frontier in nanomedicine. In this Minireview, we summarize for the first time the pivotal role of chemical synthesis in enabling the development of this multidisciplinary field.
Collapse
Affiliation(s)
- Nicholas Andrikopoulos
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Yuhuan Li
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Luca Cecchetto
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia. and Department of Chemical and Pharmaceutical Science, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Aparna Nandakumar
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Tatiana Da Ros
- Department of Chemical and Pharmaceutical Science, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia. and Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane Qld 4072, Australia.
| | - Kelly Velonia
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece.
| | - Pu Chun Ke
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
93
|
Lv L, Yang F, Li H, Yuan J. Brain‐targeted co‐delivery of β‐amyloid converting enzyme 1
shRNA
and epigallocatechin‐3‐gallate by multifunctional nanocarriers for Alzheimer's disease treatment. IUBMB Life 2020; 72:1819-1829. [PMID: 32668504 DOI: 10.1002/iub.2330] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/24/2020] [Accepted: 05/24/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Lijie Lv
- Department of Medical and NursingThe First Hospital of Jilin University Changchun China
| | - Fan Yang
- Department of Pediatric SurgeryThe First Hospital of Jilin University Changchun China
| | - He Li
- Department of Pain MedicineThe First Hospital of Jilin University Changchun China
| | - Jiuli Yuan
- Department of Medical and NursingThe First Hospital of Jilin University Changchun China
| |
Collapse
|
94
|
Graphene oxide enhances β-amyloid clearance by inducing autophagy of microglia and neurons. Chem Biol Interact 2020; 325:109126. [DOI: 10.1016/j.cbi.2020.109126] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 12/15/2022]
|
95
|
Zheng Y, Zhang Z, Liu Q, Zhao Y, Zheng C, Hao J, Yi K, Wang Y, Wang C, Zhao X, Shi L, Kang C, Liu Y. Multifunctional Nanomodulators Regulate Multiple Pathways To Enhance Antitumor Immunity. ACS APPLIED BIO MATERIALS 2020; 3:4635-4642. [DOI: 10.1021/acsabm.0c00513] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yadan Zheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
- National Demonstration Center for Experimental Chemistry Education, Nankai University, Tianjin 300071, China
| | - Zhanzhan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
- National Demonstration Center for Experimental Chemistry Education, Nankai University, Tianjin 300071, China
| | - Qi Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
- National Demonstration Center for Experimental Chemistry Education, Nankai University, Tianjin 300071, China
| | - Yu Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
- National Demonstration Center for Experimental Chemistry Education, Nankai University, Tianjin 300071, China
| | - Chunxiong Zheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
- National Demonstration Center for Experimental Chemistry Education, Nankai University, Tianjin 300071, China
| | - Jialei Hao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
- National Demonstration Center for Experimental Chemistry Education, Nankai University, Tianjin 300071, China
| | - Kaikai Yi
- Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ying Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
- National Demonstration Center for Experimental Chemistry Education, Nankai University, Tianjin 300071, China
| | - Chun Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
- National Demonstration Center for Experimental Chemistry Education, Nankai University, Tianjin 300071, China
| | - Xinzhi Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
- National Demonstration Center for Experimental Chemistry Education, Nankai University, Tianjin 300071, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
- National Demonstration Center for Experimental Chemistry Education, Nankai University, Tianjin 300071, China
| | - Chunsheng Kang
- Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
- National Demonstration Center for Experimental Chemistry Education, Nankai University, Tianjin 300071, China
| |
Collapse
|
96
|
Liu H, Qian C, Yang T, Wang Y, Luo J, Zhang C, Wang X, Wang X, Guo Z. Small molecule-mediated co-assembly of amyloid-β oligomers reduces neurotoxicity through promoting non-fibrillar aggregation. Chem Sci 2020; 11:7158-7169. [PMID: 34123000 PMCID: PMC8159368 DOI: 10.1039/d0sc00392a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Amyloid-β (Aβ) oligomers, particularly low molecular weight (LMW) oligomers, rather than fibrils, contribute very significantly to the onset and progression of Alzheimer's Disease (AD). However, due to the inherent heterogeneity and metastability of oligomers, most of the conventional anti-oligomer therapies have indirectly modulated oligomers' toxicity through manipulating Aβ self-assembly to reduce oligomer levels, which are prone to suffering from the risk of regenerating toxic oligomers from the products of modulation. To circumvent this disadvantage, we demonstrate, for the first time, rational design of rigid pincer-like scaffold-based small molecules with blood–brain barrier permeability that specifically co-assemble with LMW Aβ oligomers through directly binding to the exposed hydrophobic regions of oligomers to form non-fibrillar, degradable, non-toxic co-aggregates. As a proof of concept, treatment with a europium complex (EC) in such a structural mode can rescue Aβ-mediated dysfunction in C. elegans models of AD in vivo. This small molecule-mediated oligomer co-assembly strategy offers an efficient approach for AD treatment. A rational design of pincer-like scaffold-based small molecule with blood-brain barrier permeability that can specifically co-assemble with low molecular weight Aβ oligomers to form non-fibrillar, degradable, non-toxic co-aggregates.![]()
Collapse
Affiliation(s)
- Hao Liu
- College of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Chengyuan Qian
- College of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Tao Yang
- Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210093 P. R. China
| | - Yanqing Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University Yancheng 224007 P. R. China
| | - Jian Luo
- College of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Changli Zhang
- School of Environmental Science, Nanjing Xiaozhuang College Nanjing 211171 P. R. China
| | - Xiaohui Wang
- College of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China .,State Key Laboratory of Coordination Chemistry, Nanjing University Nanjing 210093 P. R. China
| | - Xiaoyong Wang
- Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210093 P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, Nanjing University Nanjing 210093 P. R. China
| |
Collapse
|
97
|
Li XL, Wang P, Xie Y. Protease nexin-1 protects against Alzheimer's disease by regulating the sonic hedgehog signaling pathway. Int J Neurosci 2020; 131:1087-1096. [PMID: 32449865 DOI: 10.1080/00207454.2020.1773821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective: To explore the role of protease nexin-1 (PN-1) in Alzheimer's disease (AD) via the sonic hedgehog (SHH) pathway.Methods: PN-1 lentiviral activation particles were injected into APP/PS1 transgenic AD and wild-type (WT) mice; these mice were subjected to the Morris water maze test, followed by ELISA, thioflavin S staining and NeuN-TUNEL dual staining. HT22 cells were induced with Aβ1-42 and treated with PN-1 siRNA and/or cyclopamine (an SHH signaling inhibitor). The cells were then subjected to MTT and Annexin V-FITC/PI analyses. qRT-PCR and Western blotting were conducted to measure mRNA and protein expression.Results: The escape latency of the APP/PS1 transgenic AD mice was extended with a decreased number of platform crossings; in addition, increased Aβ deposits, Aβ1-42 levels and hippocampal neuron apoptosis were observed in the brain tissues of AD mice. However, these changes were improved by PN-1 lentiviral activation particles. In addition, PN-1 overexpression inhibited the SHH pathway in AD mice. Moreover, PN-1 overexpression abolished the Aβ1-42-induced activation of the SHH pathway in HT22 cells. In addition, Aβ1-42 induction resulted in an increased apoptotic rate and decreased cell viability of HT22 cells; however, these effects were reversed by PN-1 or cyclopamine. Compared with that in the PN-1 siRNA + cyclopamine + Aβ1-42 group, apoptosis of HT22 cells in the cyclopamine + Aβ1-42 group was reduced and cell viability was improved.Conclusion: PN-1, by blocking SHH pathway, reduced apoptosis of hippocampal neurons to improve spatial learning and memory ability, thereby playing a protective role in AD.
Collapse
Affiliation(s)
- Xiao-Long Li
- Department of Neurology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Pu Wang
- Department of Neurology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Yuan Xie
- Department of Neurology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| |
Collapse
|
98
|
Ke PC, Pilkington EH, Sun Y, Javed I, Kakinen A, Peng G, Ding F, Davis TP. Mitigation of Amyloidosis with Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901690. [PMID: 31183916 PMCID: PMC6904546 DOI: 10.1002/adma.201901690] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/15/2019] [Indexed: 05/19/2023]
Abstract
Amyloidosis is a biophysical phenomenon of protein aggregation with biological and pathogenic implications. Among the various strategies developed to date, nanomaterials and multifunctional nanocomposites possessing certain structural and physicochemical traits are promising candidates for mitigating amyloidosis in vitro and in vivo. The mechanisms underpinning protein aggregation and toxicity are introduced, and opportunities in materials science to drive this interdisciplinary field forward are highlighted. Advancement of this emerging frontier hinges on exploitation of protein self-assembly and interactions of amyloid proteins with nanoparticles, intracellular and extracellular proteins, chaperones, membranes, organelles, and biometals.
Collapse
Affiliation(s)
- Pu Chun Ke
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Emily H. Pilkington
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- Department of Physics, Ningbo University, Ningbo 315211, China
| | - Ibrahim Javed
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Aleksandr Kakinen
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Thomas P. Davis
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| |
Collapse
|
99
|
Mi P, Cabral H, Kataoka K. Ligand-Installed Nanocarriers toward Precision Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902604. [PMID: 31353770 DOI: 10.1002/adma.201902604] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/04/2019] [Indexed: 05/20/2023]
Abstract
Development of drug-delivery systems that selectively target neoplastic cells has been a major goal of nanomedicine. One major strategy for achieving this milestone is to install ligands on the surface of nanocarriers to enhance delivery to target tissues, as well as to enhance internalization of nanocarriers by target cells, which improves accuracy, efficacy, and ultimately enhances patient outcomes. Herein, recent advances regarding the development of ligand-installed nanocarriers are introduced and the effect of their design on biological performance is discussed. Besides academic achievements, progress on ligand-installed nanocarriers in clinical trials is presented, along with the challenges faced by these formulations. Lastly, the future perspectives of ligand-installed nanocarriers are discussed, with particular emphasis on their potential for emerging precision therapies.
Collapse
Affiliation(s)
- Peng Mi
- Department of Radiology, Center for Medical Imaging, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17 People's South Road, Chengdu, 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
- Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
100
|
Cao F, Zhang L, You Y, Zheng L, Ren J, Qu X. An Enzyme‐Mimicking Single‐Atom Catalyst as an Efficient Multiple Reactive Oxygen and Nitrogen Species Scavenger for Sepsis Management. Angew Chem Int Ed Engl 2020; 59:5108-5115. [DOI: 10.1002/anie.201912182] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/22/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Fangfang Cao
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Lu Zhang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
| | - Yawen You
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation FacilityInstitute of High Energy PhysicsChinese Academy of Sciences Beijing 100049 China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
| |
Collapse
|