51
|
Budharaju H, Zennifer A, Sethuraman S, Paul A, Sundaramurthi D. Designer DNA biomolecules as a defined biomaterial for 3D bioprinting applications. MATERIALS HORIZONS 2022; 9:1141-1166. [PMID: 35006214 DOI: 10.1039/d1mh01632f] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
DNA has excellent features such as the presence of functional and targeted molecular recognition motifs, tailorability, multifunctionality, high-precision molecular self-assembly, hydrophilicity, and outstanding biocompatibility. Due to these remarkable features, DNA has emerged as a leading next-generation biomaterial of choice to make hydrogels by self-assembly. In recent times, novel routes for the chemical synthesis of DNA, advances in tailorable designs, and affordable production ways have made DNA as a building block material for various applications. These advanced features have made researchers continuously explore the interesting properties of pure and hybrid DNA for 3D bioprinting and other biomedical applications. This review article highlights the topical advancements in the use of DNA as an ideal bioink for the bioprinting of cell-laden three-dimensional tissue constructs for regenerative medicine applications. Various bioprinting techniques and emerging design approaches such as self-assembly, nucleotide sequence, enzymes, and production cost to use DNA as a bioink for bioprinting applications are described. In addition, various types and properties of DNA hydrogels such as stimuli responsiveness and mechanical properties are discussed. Further, recent progress in the applications of DNA in 3D bioprinting are emphasized. Finally, the current challenges and future perspectives of DNA hydrogels in 3D bioprinting and other biomedical applications are discussed.
Collapse
Affiliation(s)
- Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| | - Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
52
|
Liu S, Zhang H, Ahlfeld T, Kilian D, Liu Y, Gelinsky M, Hu Q. Evaluation of different crosslinking methods in altering the properties of extrusion-printed chitosan-based multi-material hydrogel composites. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00194-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractThree-dimensional printing technologies exhibit tremendous potential in the advancing fields of tissue engineering and regenerative medicine due to the precise spatial control over depositing the biomaterial. Despite their widespread utilization and numerous advantages, the development of suitable novel biomaterials for extrusion-based 3D printing of scaffolds that support cell attachment, proliferation, and vascularization remains a challenge. Multi-material composite hydrogels present incredible potential in this field. Thus, in this work, a multi-material composite hydrogel with a promising formulation of chitosan/gelatin functionalized with egg white was developed, which provides good printability and shape fidelity. In addition, a series of comparative analyses of different crosslinking agents and processes based on tripolyphosphate (TPP), genipin (GP), and glutaraldehyde (GTA) were investigated and compared to select the ideal crosslinking strategy to enhance the physicochemical and biological properties of the fabricated scaffolds. All of the results indicate that the composite hydrogel and the resulting scaffolds utilizing TPP crosslinking have great potential in tissue engineering, especially for supporting neo-vessel growth into the scaffold and promoting angiogenesis within engineered tissues.
Graphic abstract
Collapse
|
53
|
Germain N, Dhayer M, Dekiouk S, Marchetti P. Current Advances in 3D Bioprinting for Cancer Modeling and Personalized Medicine. Int J Mol Sci 2022; 23:3432. [PMID: 35408789 PMCID: PMC8998835 DOI: 10.3390/ijms23073432] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Tumor cells evolve in a complex and heterogeneous environment composed of different cell types and an extracellular matrix. Current 2D culture methods are very limited in their ability to mimic the cancer cell environment. In recent years, various 3D models of cancer cells have been developed, notably in the form of spheroids/organoids, using scaffold or cancer-on-chip devices. However, these models have the disadvantage of not being able to precisely control the organization of multiple cell types in complex architecture and are sometimes not very reproducible in their production, and this is especially true for spheroids. Three-dimensional bioprinting can produce complex, multi-cellular, and reproducible constructs in which the matrix composition and rigidity can be adapted locally or globally to the tumor model studied. For these reasons, 3D bioprinting seems to be the technique of choice to mimic the tumor microenvironment in vivo as closely as possible. In this review, we discuss different 3D-bioprinting technologies, including bioinks and crosslinkers that can be used for in vitro cancer models and the techniques used to study cells grown in hydrogels; finally, we provide some applications of bioprinted cancer models.
Collapse
Affiliation(s)
- Nicolas Germain
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche Contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (S.D.)
- Banque de Tissus, Centre de Biologie-Pathologie, CHU Lille, F-59000 Lille, France
| | - Melanie Dhayer
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche Contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (S.D.)
| | - Salim Dekiouk
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche Contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (S.D.)
| | - Philippe Marchetti
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche Contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (M.D.); (S.D.)
- Banque de Tissus, Centre de Biologie-Pathologie, CHU Lille, F-59000 Lille, France
| |
Collapse
|
54
|
Fatimi A, Okoro OV, Podstawczyk D, Siminska-Stanny J, Shavandi A. Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review. Gels 2022; 8:179. [PMID: 35323292 PMCID: PMC8948717 DOI: 10.3390/gels8030179] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Three-dimensional (3D) printing is well acknowledged to constitute an important technology in tissue engineering, largely due to the increasing global demand for organ replacement and tissue regeneration. In 3D bioprinting, which is a step ahead of 3D biomaterial printing, the ink employed is impregnated with cells, without compromising ink printability. This allows for immediate scaffold cellularization and generation of complex structures. The use of cell-laden inks or bio-inks provides the opportunity for enhanced cell differentiation for organ fabrication and regeneration. Recognizing the importance of such bio-inks, the current study comprehensively explores the state of the art of the utilization of bio-inks based on natural polymers (biopolymers), such as cellulose, agarose, alginate, decellularized matrix, in 3D bioprinting. Discussions regarding progress in bioprinting, techniques and approaches employed in the bioprinting of natural polymers, and limitations and prospects concerning future trends in human-scale tissue and organ fabrication are also presented.
Collapse
Affiliation(s)
- Ahmed Fatimi
- Department of Chemistry, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592 Mghila, Beni-Mellal 23000, Morocco
- ERSIC, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592 Mghila, Beni-Mellal 23000, Morocco
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| | - Julia Siminska-Stanny
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
| |
Collapse
|
55
|
Krujatz F, Dani S, Windisch J, Emmermacher J, Hahn F, Mosshammer M, Murthy S, Steingroewer J, Walther T, Kühl M, Gelinsky M, Lode A. Think outside the box: 3D bioprinting concepts for biotechnological applications – recent developments and future perspectives. Biotechnol Adv 2022; 58:107930. [DOI: 10.1016/j.biotechadv.2022.107930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
|
56
|
Novel Hydrogel Material with Tailored Internal Architecture Modified by “Bio” Amphiphilic Components—Design and Analysis by a Physico-Chemical Approach. Gels 2022; 8:gels8020115. [PMID: 35200496 PMCID: PMC8872166 DOI: 10.3390/gels8020115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Nowadays, hydrogels are found in many applications ranging from the industrial to the biological (e.g., tissue engineering, drug delivery systems, cosmetics, water treatment, and many more). According to the specific needs of individual applications, it is necessary to be able to modify the properties of hydrogel materials, particularly the transport and mechanical properties related to their structure, which are crucial for the potential use of the hydrogels in modern material engineering. Therefore, the possibility of preparing hydrogel materials with tunable properties is a very real topic and is still being researched. A simple way to modify these properties is to alter the internal structure by adding another component. The addition of natural substances is convenient due to their biocompatibility and the possibility of biodegradation. Therefore, this work focused on hydrogels modified by a substance that is naturally found in the tissues of our body, namely lecithin. Hydrogels were prepared by different types of crosslinking (physical, ionic, and chemical). Their mechanical properties were monitored and these investigations were supplemented by drying and rehydration measurements, and supported by the morphological characterization of xerogels. With the addition of natural lecithin, it is possible to modify crucial properties of hydrogels such as porosity and mechanical properties, which will play a role in the final applications.
Collapse
|
57
|
Chaudhary S, Chakraborty E. Hydrogel based tissue engineering and its future applications in personalized disease modeling and regenerative therapy. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:3. [PMID: 35005036 PMCID: PMC8725962 DOI: 10.1186/s43088-021-00172-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Evolution in the in vitro cell culture from conventional 2D to 3D technique has been a significant accomplishment. The 3D culture models have provided a close and better insight into the physiological study of the human body. The increasing demand for organs like liver, kidney, and pancreas for transplantation, rapid anti-cancer drug screening, and the limitations associated with the use of animal models have attracted the interest of researchers to explore 3D organ culture. MAIN BODY Natural, synthetic, and hybrid material-based hydrogels are being used as scaffolds in 3D culture and provide 'close-to-in vivo' structures. Organoids: the stem cell-derived small size 3D culture systems are now favored due to their ability to mimic the in-vivo conditions of organ or tissue and this characteristic has made it eligible for a variety of clinical applications, drug discovery and regenerative medicine are a few of the many areas of application. The use of animal models for clinical applications has been a long-time ethical and biological challenge to get accurate outcomes. 3D bioprinting has resolved the issue of vascularization in organoid culture to a great extent by its layer-by-layer construction approach. The 3D bioprinted organoids have a popular application in personalized disease modeling and rapid drug development and therapeutics. SHORT CONCLUSIONS This review paper, focuses on discussing the novel organoid culture approach, its advantages and limitations, and potential applications in a variety of life science areas namely cancer research, cell therapy, tissue engineering, and personalized medicine and drug discovery. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Shikha Chaudhary
- SRM Institute of Science & Technology, Chennai, Tamil Nadu 603203 India
| | - Eliza Chakraborty
- Medical Translational Biotechnology Lab, Prof of Department of Biotechnology, Head of the Department of DST-Fist Center (Sponsored By Ministry of Science & Technology, Government of India), Meerut Institute of Engineering and Technology (MIET), Meerut, Uttar Pradesh 250002 India
| |
Collapse
|
58
|
Gu Y, Forget A, Shastri VP. Biobridge: An Outlook on Translational Bioinks for 3D Bioprinting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103469. [PMID: 34862764 PMCID: PMC8787414 DOI: 10.1002/advs.202103469] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/20/2021] [Indexed: 05/30/2023]
Abstract
3D-bioprinting (3DBP) possesses several elements necessary to overcome the deficiencies of conventional tissue engineering, such as defining tissue shape a priori, and serves as a bridge to clinical translation. This transformative potential of 3DBP hinges on the development of the next generation of bioinks that possess attributes for clinical use. Toward this end, in addition to physicochemical characteristics essential for printing, bioinks need to possess proregenerative attributes, while enabling printing of stable structures with a defined biological function that survives implantation and evolves in vivo into functional tissue. With a focus on bioinks for extrusion-based bioprinting, this perspective review advocates a rigorous biology-based approach to engineering bioinks, emphasizing efficiency, reproducibility, and a streamlined translation process that places the clinical endpoint front and center. A blueprint for engineering the next generation of bioinks that satisfy the aforementioned performance criteria for various translational levels (TRL1-5) and a characterization tool kit is presented.
Collapse
Affiliation(s)
- Yawei Gu
- Institute for Macromolecular ChemistryUniversity of FreiburgFreiburg79104Germany
| | - Aurelien Forget
- Institute for Macromolecular ChemistryUniversity of FreiburgFreiburg79104Germany
| | - V. Prasad Shastri
- Institute for Macromolecular ChemistryUniversity of FreiburgFreiburg79104Germany
- Bioss‐Centre for Biological Signalling StudiesUniversity of FreiburgBreisgau79104Germany
| |
Collapse
|
59
|
Samimi Gharaie S, Seyfoori A, Khun Jush B, Zhou X, Pagan E, Godau B, Akbari M. Silicate-Based Electro-Conductive Inks for Printing Soft Electronics and Tissue Engineering. Gels 2021; 7:240. [PMID: 34940299 PMCID: PMC8702023 DOI: 10.3390/gels7040240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogel-based bio-inks have been extensively used for developing three-dimensional (3D) printed biomaterials for biomedical applications. However, poor mechanical performance and the inability to conduct electricity limit their application as wearable sensors. In this work, we formulate a novel, 3D printable electro-conductive hydrogel consisting of silicate nanosheets (Laponite), graphene oxide, and alginate. The result generated a stretchable, soft, but durable electro-conductive material suitable for utilization as a novel electro-conductive bio-ink for the extrusion printing of different biomedical platforms, including flexible electronics, tissue engineering, and drug delivery. A series of tensile tests were performed on the material, indicating excellent stability under significant stretching and bending without any conductive or mechanical failures. Rheological characterization revealed that the addition of Laponite enhanced the hydrogel's mechanical properties, including stiffness, shear-thinning, and stretchability. We also illustrate the reproducibility and flexibility of our fabrication process by extrusion printing various patterns with different fiber diameters. Developing an electro-conductive bio-ink with favorable mechanical and electrical properties offers a new platform for advanced tissue engineering.
Collapse
Affiliation(s)
- Sadaf Samimi Gharaie
- Laboratory for Innovations in Microengineering (LiME), University of Victoria, Victoria, BC V8P 5C2, Canada; (S.S.G.); (A.S.); (B.K.J.); (X.Z.); (E.P.); (B.G.)
| | - Amir Seyfoori
- Laboratory for Innovations in Microengineering (LiME), University of Victoria, Victoria, BC V8P 5C2, Canada; (S.S.G.); (A.S.); (B.K.J.); (X.Z.); (E.P.); (B.G.)
- Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Bardia Khun Jush
- Laboratory for Innovations in Microengineering (LiME), University of Victoria, Victoria, BC V8P 5C2, Canada; (S.S.G.); (A.S.); (B.K.J.); (X.Z.); (E.P.); (B.G.)
| | - Xiong Zhou
- Laboratory for Innovations in Microengineering (LiME), University of Victoria, Victoria, BC V8P 5C2, Canada; (S.S.G.); (A.S.); (B.K.J.); (X.Z.); (E.P.); (B.G.)
| | - Erik Pagan
- Laboratory for Innovations in Microengineering (LiME), University of Victoria, Victoria, BC V8P 5C2, Canada; (S.S.G.); (A.S.); (B.K.J.); (X.Z.); (E.P.); (B.G.)
| | - Brent Godau
- Laboratory for Innovations in Microengineering (LiME), University of Victoria, Victoria, BC V8P 5C2, Canada; (S.S.G.); (A.S.); (B.K.J.); (X.Z.); (E.P.); (B.G.)
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), University of Victoria, Victoria, BC V8P 5C2, Canada; (S.S.G.); (A.S.); (B.K.J.); (X.Z.); (E.P.); (B.G.)
- Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
- Biotechnology Center, Silesian University of Technology, 2A, 44-100 Gliwice, Poland
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
60
|
Barreiro Carpio M, Dabaghi M, Ungureanu J, Kolb MR, Hirota JA, Moran-Mirabal JM. 3D Bioprinting Strategies, Challenges, and Opportunities to Model the Lung Tissue Microenvironment and Its Function. Front Bioeng Biotechnol 2021; 9:773511. [PMID: 34900964 PMCID: PMC8653950 DOI: 10.3389/fbioe.2021.773511] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Human lungs are organs with an intricate hierarchical structure and complex composition; lungs also present heterogeneous mechanical properties that impose dynamic stress on different tissue components during the process of breathing. These physiological characteristics combined create a system that is challenging to model in vitro. Many efforts have been dedicated to develop reliable models that afford a better understanding of the structure of the lung and to study cell dynamics, disease evolution, and drug pharmacodynamics and pharmacokinetics in the lung. This review presents methodologies used to develop lung tissue models, highlighting their advantages and current limitations, focusing on 3D bioprinting as a promising set of technologies that can address current challenges. 3D bioprinting can be used to create 3D structures that are key to bridging the gap between current cell culture methods and living tissues. Thus, 3D bioprinting can produce lung tissue biomimetics that can be used to develop in vitro models and could eventually produce functional tissue for transplantation. Yet, printing functional synthetic tissues that recreate lung structure and function is still beyond the current capabilities of 3D bioprinting technology. Here, the current state of 3D bioprinting is described with a focus on key strategies that can be used to exploit the potential that this technology has to offer. Despite today's limitations, results show that 3D bioprinting has unexplored potential that may be accessible by optimizing bioink composition and looking at the printing process through a holistic and creative lens.
Collapse
Affiliation(s)
- Mabel Barreiro Carpio
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Mohammadhossein Dabaghi
- Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Julia Ungureanu
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Martin R. Kolb
- Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jeremy A. Hirota
- Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Jose Manuel Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Centre for Advanced Light Microscopy, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
61
|
Willson K, Atala A, Yoo JJ. Bioprinting Au Natural: The Biologics of Bioinks. Biomolecules 2021; 11:1593. [PMID: 34827591 PMCID: PMC8615908 DOI: 10.3390/biom11111593] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
The development of appropriate bioinks is a complex task, dependent on the mechanical and biochemical requirements of the final construct and the type of printer used for fabrication. The two most common tissue printers are micro-extrusion and digital light projection printers. Here we briefly discuss the required characteristics of a bioink for each of these printing processes. However, physical printing is only a short window in the lifespan of a printed construct-the system must support and facilitate cellular development after it is printed. To that end, we provide a broad overview of some of the biological molecules currently used as bioinks. Each molecule has advantages for specific tissues/cells, and potential disadvantages are discussed, along with examples of their current use in the field. Notably, it is stressed that active researchers are trending towards the use of composite bioinks. Utilizing the strengths from multiple materials is highlighted as a key component of bioink development.
Collapse
Affiliation(s)
| | | | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC 27157, USA; (K.W.); (A.A.)
| |
Collapse
|
62
|
McGivern S, Boutouil H, Al-Kharusi G, Little S, Dunne NJ, Levingstone TJ. Translational Application of 3D Bioprinting for Cartilage Tissue Engineering. Bioengineering (Basel) 2021; 8:144. [PMID: 34677217 PMCID: PMC8533558 DOI: 10.3390/bioengineering8100144] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/16/2022] Open
Abstract
Cartilage is an avascular tissue with extremely limited self-regeneration capabilities. At present, there are no existing treatments that effectively stop the deterioration of cartilage or reverse its effects; current treatments merely relieve its symptoms and surgical intervention is required when the condition aggravates. Thus, cartilage damage remains an ongoing challenge in orthopaedics with an urgent need for improved treatment options. In recent years, major advances have been made in the development of three-dimensional (3D) bioprinted constructs for cartilage repair applications. 3D bioprinting is an evolutionary additive manufacturing technique that enables the precisely controlled deposition of a combination of biomaterials, cells, and bioactive molecules, collectively known as bioink, layer-by-layer to produce constructs that simulate the structure and function of native cartilage tissue. This review provides an insight into the current developments in 3D bioprinting for cartilage tissue engineering. The bioink and construct properties required for successful application in cartilage repair applications are highlighted. Furthermore, the potential for translation of 3D bioprinted constructs to the clinic is discussed. Overall, 3D bioprinting demonstrates great potential as a novel technique for the fabrication of tissue engineered constructs for cartilage regeneration, with distinct advantages over conventional techniques.
Collapse
Affiliation(s)
- Sophie McGivern
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (S.M.); (H.B.); (G.A.-K.); (N.J.D.)
| | - Halima Boutouil
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (S.M.); (H.B.); (G.A.-K.); (N.J.D.)
- Centre for Medical Engineering Research (MEDeng), Dublin City University, D09 NA55 Dublin, Ireland
| | - Ghayadah Al-Kharusi
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (S.M.); (H.B.); (G.A.-K.); (N.J.D.)
- Centre for Medical Engineering Research (MEDeng), Dublin City University, D09 NA55 Dublin, Ireland
| | - Suzanne Little
- Insight SFI Research Centre for Data Analytics, Dublin City University, D09 NA55 Dublin, Ireland;
| | - Nicholas J. Dunne
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (S.M.); (H.B.); (G.A.-K.); (N.J.D.)
- Centre for Medical Engineering Research (MEDeng), Dublin City University, D09 NA55 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, D09 NA55 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
- Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 PN40 Dublin, Ireland
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Tanya J. Levingstone
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (S.M.); (H.B.); (G.A.-K.); (N.J.D.)
- Centre for Medical Engineering Research (MEDeng), Dublin City University, D09 NA55 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, D09 NA55 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
- Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
63
|
Vernerey FJ, Lalitha Sridhar S, Muralidharan A, Bryant SJ. Mechanics of 3D Cell-Hydrogel Interactions: Experiments, Models, and Mechanisms. Chem Rev 2021; 121:11085-11148. [PMID: 34473466 DOI: 10.1021/acs.chemrev.1c00046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogels are highly water-swollen molecular networks that are ideal platforms to create tissue mimetics owing to their vast and tunable properties. As such, hydrogels are promising cell-delivery vehicles for applications in tissue engineering and have also emerged as an important base for ex vivo models to study healthy and pathophysiological events in a carefully controlled three-dimensional environment. Cells are readily encapsulated in hydrogels resulting in a plethora of biochemical and mechanical communication mechanisms, which recapitulates the natural cell and extracellular matrix interaction in tissues. These interactions are complex, with multiple events that are invariably coupled and spanning multiple length and time scales. To study and identify the underlying mechanisms involved, an integrated experimental and computational approach is ideally needed. This review discusses the state of our knowledge on cell-hydrogel interactions, with a focus on mechanics and transport, and in this context, highlights recent advancements in experiments, mathematical and computational modeling. The review begins with a background on the thermodynamics and physics fundamentals that govern hydrogel mechanics and transport. The review focuses on two main classes of hydrogels, described as semiflexible polymer networks that represent physically cross-linked fibrous hydrogels and flexible polymer networks representing the chemically cross-linked synthetic and natural hydrogels. In this review, we highlight five main cell-hydrogel interactions that involve key cellular functions related to communication, mechanosensing, migration, growth, and tissue deposition and elaboration. For each of these cellular functions, recent experiments and the most up to date modeling strategies are discussed and then followed by a summary of how to tune hydrogel properties to achieve a desired functional cellular outcome. We conclude with a summary linking these advancements and make the case for the need to integrate experiments and modeling to advance our fundamental understanding of cell-matrix interactions that will ultimately help identify new therapeutic approaches and enable successful tissue engineering.
Collapse
Affiliation(s)
- Franck J Vernerey
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States.,Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Shankar Lalitha Sridhar
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States
| | - Archish Muralidharan
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Stephanie J Bryant
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States.,Department of Chemical and Biological Engineering, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States.,BioFrontiers Institute, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States
| |
Collapse
|
64
|
Oliver-Ferrándiz M, Milián L, Sancho-Tello M, Martín de Llano JJ, Gisbert Roca F, Martínez-Ramos C, Carda C, Mata M. Alginate-Agarose Hydrogels Improve the In Vitro Differentiation of Human Dental Pulp Stem Cells in Chondrocytes. A Histological Study. Biomedicines 2021; 9:834. [PMID: 34356898 PMCID: PMC8301309 DOI: 10.3390/biomedicines9070834] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Matrix-assisted autologous chondrocyte implantation (MACI) has shown promising results for cartilage repair, combining cultured chondrocytes and hydrogels, including alginate. The ability of chondrocytes for MACI is limited by different factors including donor site morbidity, dedifferentiation, limited lifespan or poor proliferation in vitro. Mesenchymal stem cells could represent an alternative for cartilage regeneration. In this study, we propose a MACI scaffold consisting of a mixed alginate-agarose hydrogel in combination with human dental pulp stem cells (hDPSCs), suitable for cartilage regeneration. Scaffolds were characterized according to their rheological properties, and their histomorphometric and molecular biology results. Agarose significantly improved the biomechanical behavior of the alginate scaffolds. Large scaffolds were manufactured, and a homogeneous distribution of cells was observed within them. Although primary chondrocytes showed a greater capacity for chondrogenic differentiation, hDPSCs cultured in the scaffolds formed large aggregates of cells, acquired a rounded morphology and expressed high amounts of type II collagen and aggrecan. Cells cultured in the scaffolds expressed not only chondral matrix-related genes, but also remodeling proteins and chondrocyte differentiation factors. The degree of differentiation of cells was proportional to the number and size of the cell aggregates that were formed in the hydrogels.
Collapse
Affiliation(s)
- María Oliver-Ferrándiz
- Department of Pathology, Faculty of Medicine and Odontology, University of Valencia, Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain; (M.O.-F.); (L.M.); (J.J.M.d.L.); (C.C.); (M.M.)
| | - Lara Milián
- Department of Pathology, Faculty of Medicine and Odontology, University of Valencia, Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain; (M.O.-F.); (L.M.); (J.J.M.d.L.); (C.C.); (M.M.)
- Health Research Institute Foundation (INCLIVA), Menéndez y Pelayo St., 4, 46010 Valencia, Spain
| | - María Sancho-Tello
- Department of Pathology, Faculty of Medicine and Odontology, University of Valencia, Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain; (M.O.-F.); (L.M.); (J.J.M.d.L.); (C.C.); (M.M.)
- Health Research Institute Foundation (INCLIVA), Menéndez y Pelayo St., 4, 46010 Valencia, Spain
| | - José Javier Martín de Llano
- Department of Pathology, Faculty of Medicine and Odontology, University of Valencia, Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain; (M.O.-F.); (L.M.); (J.J.M.d.L.); (C.C.); (M.M.)
- Health Research Institute Foundation (INCLIVA), Menéndez y Pelayo St., 4, 46010 Valencia, Spain
| | - Fernando Gisbert Roca
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera, s/n, 46022 Valencia, Spain;
| | - Cristina Martínez-Ramos
- Unit Predepartamental of Medicine, Jaime I University, Avda. Sos Baynat, s/n, 12071 Castellón de la Plana, Spain;
| | - Carmen Carda
- Department of Pathology, Faculty of Medicine and Odontology, University of Valencia, Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain; (M.O.-F.); (L.M.); (J.J.M.d.L.); (C.C.); (M.M.)
- Health Research Institute Foundation (INCLIVA), Menéndez y Pelayo St., 4, 46010 Valencia, Spain
- Center for Biomedical Research Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Melchor Fernández Almagro St., 3, 28029 Madrid, Spain
| | - Manuel Mata
- Department of Pathology, Faculty of Medicine and Odontology, University of Valencia, Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain; (M.O.-F.); (L.M.); (J.J.M.d.L.); (C.C.); (M.M.)
- Health Research Institute Foundation (INCLIVA), Menéndez y Pelayo St., 4, 46010 Valencia, Spain
- Center for Biomedical Research Network in Respiratory Diseases (CIBER-ES), Melchor Fernández Almagro St., 3, 28029 Madrid, Spain
| |
Collapse
|
65
|
Naranda J, Bračič M, Vogrin M, Maver U. Recent Advancements in 3D Printing of Polysaccharide Hydrogels in Cartilage Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3977. [PMID: 34300896 PMCID: PMC8305911 DOI: 10.3390/ma14143977] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022]
Abstract
The application of hydrogels coupled with 3-dimensional (3D) printing technologies represents a modern concept in scaffold development in cartilage tissue engineering (CTE). Hydrogels based on natural biomaterials are extensively used for this purpose. This is mainly due to their excellent biocompatibility, inherent bioactivity, and special microstructure that supports tissue regeneration. The use of natural biomaterials, especially polysaccharides and proteins, represents an attractive strategy towards scaffold formation as they mimic the structure of extracellular matrix (ECM) and guide cell growth, proliferation, and phenotype preservation. Polysaccharide-based hydrogels, such as alginate, agarose, chitosan, cellulose, hyaluronan, and dextran, are distinctive scaffold materials with advantageous properties, low cytotoxicity, and tunable functionality. These superior properties can be further complemented with various proteins (e.g., collagen, gelatin, fibroin), forming novel base formulations termed "proteo-saccharides" to improve the scaffold's physiological signaling and mechanical strength. This review highlights the significance of 3D bioprinted scaffolds of natural-based hydrogels used in CTE. Further, the printability and bioink formation of the proteo-saccharides-based hydrogels have also been discussed, including the possible clinical translation of such materials.
Collapse
Affiliation(s)
- Jakob Naranda
- Department of Orthopaedics, University Medical Centre Maribor, SI-2000 Maribor, Slovenia;
| | - Matej Bračič
- Faculty of Mechanical Engineering, University of Maribor, SI-2000 Maribor, Slovenia;
| | - Matjaž Vogrin
- Department of Orthopaedics, University Medical Centre Maribor, SI-2000 Maribor, Slovenia;
- Department of Orthopaedics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
- Department of Pharmacology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| |
Collapse
|
66
|
Fazal F, Raghav S, Callanan A, Koutsos V, Radacsi N. Recent advancements in the bioprinting of vascular grafts. Biofabrication 2021; 13. [PMID: 34102613 DOI: 10.1088/1758-5090/ac0963] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023]
Abstract
Recent advancements in the bioinks and three-dimensional (3D) bioprinting methods used to fabricate vascular constructs are summarized herein. Critical biomechanical properties required to fabricate an ideal vascular graft are highlighted, as well as various testing methods have been outlined to evaluate the bio-fabricated grafts as per the Food and Drug Administration (FDA) and International Organization for Standardization (ISO) guidelines. Occlusive artery disease and cardiovascular disease are the major causes of death globally. These diseases are caused by the blockage in the arteries, which results in a decreased blood flow to the tissues of major organs in the body, such as the heart. Bypass surgery is often performed using a vascular graft to re-route the blood flow. Autologous grafts represent a gold standard for such bypass surgeries; however, these grafts may be unavailable due to the previous harvesting or possess a poor quality. Synthetic grafts serve well for medium to large-sized vessels, but they fail when used to replace small-diameter vessels, generally smaller than 6 mm. Various tissue engineering approaches have been used to address the urgent need for vascular graft that can withstand hemodynamic blood pressure and has the ability to grow and remodel. Among these approaches, 3D bioprinting offers an attractive solution to construct patient-specific vessel grafts with layered biomimetic structures.
Collapse
Affiliation(s)
- Faraz Fazal
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, EH9 3FB Edinburgh, United Kingdom.,Department of Mechanical Engineering, University of Engineering and Technology, Lahore, (New Campus) Pakistan
| | - Sakshika Raghav
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, EH9 3FB Edinburgh, United Kingdom
| | - Anthony Callanan
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, The King's Buildings, EH9 3JL Edinburgh, United Kingdom
| | - Vasileios Koutsos
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, EH9 3FB Edinburgh, United Kingdom
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, EH9 3FB Edinburgh, United Kingdom
| |
Collapse
|
67
|
Investigation on the Composition of Agarose-Collagen I Blended Hydrogels as Matrices for the Growth of Spheroids from Breast Cancer Cell Lines. Pharmaceutics 2021; 13:pharmaceutics13070963. [PMID: 34206758 PMCID: PMC8308953 DOI: 10.3390/pharmaceutics13070963] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) cell culture systems mimic the structural complexity of the tissue microenvironment and are gaining increasing importance as they resemble the extracellular matrix (ECM)–cell and cell–cell physical interactions occurring in vivo. Several scaffold-based culture systems have been already proposed as valuable tools for large-scale production of spheroids, but they often suffer of poor reproducibility or high costs of production. In this work, we present a reliable 3D culture system based on collagen I-blended agarose hydrogels and show how the variation in the agarose percentage affects the physical and mechanical properties of the resulting hydrogel. The influence of the different physical and mechanical properties of the blended hydrogels on the growth, size, morphology, and cell motility of the spheroids obtained by culturing three different breast cancer cell lines (MCF-7, MDA-MB-361, and MDA-MB-231) was also evaluated. As proof of concept, the cisplatin penetration and its cytotoxic effect on the tumor spheroids as function of the hydrogel stiffness were also investigated. Noteworthily, the possibility to recover the spheroids from the hydrogels for further processing and other biological studies has been considered. This feature, in addition to the ease of preparation, the lack of cross-linking chemistry and the high reproducibility, makes this hydrogel a reliable biomimetic matrix for the growth of 3D cell structures.
Collapse
|
68
|
Warren D, Tomaskovic-Crook E, Wallace GG, Crook JM. Engineering in vitro human neural tissue analogs by 3D bioprinting and electrostimulation. APL Bioeng 2021; 5:020901. [PMID: 33834152 PMCID: PMC8019355 DOI: 10.1063/5.0032196] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
There is a fundamental need for clinically relevant, reproducible, and standardized in vitro human neural tissue models, not least of all to study heterogenic and complex human-specific neurological (such as neuropsychiatric) disorders. Construction of three-dimensional (3D) bioprinted neural tissues from native human-derived stem cells (e.g., neural stem cells) and human pluripotent stem cells (e.g., induced pluripotent) in particular is appreciably impacting research and conceivably clinical translation. Given the ability to artificially and favorably regulate a cell's survival and behavior by manipulating its biophysical environment, careful consideration of the printing technique, supporting biomaterial and specific exogenously delivered stimuli, is both required and advantageous. By doing so, there exists an opportunity, more than ever before, to engineer advanced and precise tissue analogs that closely recapitulate the morphological and functional elements of natural tissues (healthy or diseased). Importantly, the application of electrical stimulation as a method of enhancing printed tissue development in vitro, including neuritogenesis, synaptogenesis, and cellular maturation, has the added advantage of modeling both traditional and new stimulation platforms, toward improved understanding of efficacy and innovative electroceutical development and application.
Collapse
Affiliation(s)
- Danielle Warren
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Fairy Meadow, NSW 2519 Australia
| | | | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Fairy Meadow, NSW 2519 Australia
| | - Jeremy M. Crook
- Author to whom correspondence should be addressed:. Tel.: +61 2 4221 3011
| |
Collapse
|
69
|
Zhou Y, Jia E, Qiao Y, Shi H, Liu Z, Pan M, Zhao X, Bai Y, Ge Q. Low bias multiple displacement amplification with confinement effect based on agarose gel. Anal Bioanal Chem 2021; 413:4397-4405. [PMID: 34050387 DOI: 10.1007/s00216-021-03415-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 11/24/2022]
Abstract
Multiple displacement amplification (MDA) is a popular single-cell whole-genome amplification (WGA) technique that can greatly improve the amplification efficiency of single-cell genomes. However, there is an inherent problem that cannot be completely solved, that is, the amplification bias. We here propose an improved MDA method based on low melting agarose gel, named gelMDA. Firstly, the agarose gel and solution were characterized with SEM and fluorescent reagent. Then, we used gelMDA for cDNA amplification in library preparation of RNA-seq, and conventional MDA was used as a comparison. The sensitivity, efficiency of gelMDA, and amplification bias were evaluated with fluorescence curve, product yield, and the sequencing results. Finally, gelMDA was used for single-cell transcriptome sequencing. The results showed that the sensitivity and product yield of gelMDA were significantly higher than those of conventional MDA. A lower coefficient of variation (CV) and a higher reproducibility were obtained from gelMDA sequencing results. A region of 30 μm in diameter was amplified from the tissue sections and successfully sequenced. In conclusion, gelMDA obtained higher amplification efficiency and lower amplification bias in the present study. It suggested the great potential in single-cell RNA amplification and sequencing.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Erteng Jia
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Yi Qiao
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Huajuan Shi
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Zhiyu Liu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Min Pan
- School of Medicine, Southeast University, Nanjing, 210097, Jiangsu, China
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Yunfei Bai
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China.
| |
Collapse
|
70
|
Moghaddam AS, Khonakdar HA, Arjmand M, Jafari SH, Bagher Z, Moghaddam ZS, Chimerad M, Sisakht MM, Shojaei S. Review of Bioprinting in Regenerative Medicine: Naturally Derived Bioinks and Stem Cells. ACS APPLIED BIO MATERIALS 2021; 4:4049-4070. [PMID: 35006822 DOI: 10.1021/acsabm.1c00219] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Regenerative medicine offers the potential to repair or substitute defective tissues by constructing active tissues to address the scarcity and demands for transplantation. The method of forming 3D constructs made up of biomaterials, cells, and biomolecules is called bioprinting. Bioprinting of stem cells provides the ability to reliably recreate tissues, organs, and microenvironments to be used in regenerative medicine. 3D bioprinting is a technique that uses several biomaterials and cells to tailor a structure with clinically relevant geometries and sizes. This technique's promise is demonstrated by 3D bioprinted tissues, including skin, bone, cartilage, and cardiovascular, corneal, hepatic, and adipose tissues. Several bioprinting methods have been combined with stem cells to effectively produce tissue models, including adult stem cells, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and differentiation techniques. In this review, technological challenges of printed stem cells using prevalent naturally derived bioinks (e.g., carbohydrate polymers and protein-based polymers, peptides, and decellularized extracellular matrix), recent advancements, leading companies, and clinical trials in the field of 3D bioprinting are delineated.
Collapse
Affiliation(s)
- Abolfazl Salehi Moghaddam
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4593, Iran
| | - Hossein Ali Khonakdar
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, Dresden D-01069, Germany.,Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Seyed Hassan Jafari
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4593, Iran
| | - Zohreh Bagher
- ENT and Head & Neck Research Centre and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Zahra Salehi Moghaddam
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Mohammadreza Chimerad
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16844, Iran
| | - Mahsa Mollapour Sisakht
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran 19379-57511, Iran.,Department of Biochemistry, Erasmus University Medical Center, Rotterdam 3000 DR, The Netherlands
| | - Shahrokh Shojaei
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, PO Box 13185/768, Tehran 15689-37813, Iran.,Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Tehran Branch, PO Box 13185-768, Tehran 15689-37813, Iran
| |
Collapse
|
71
|
Lima DM, Chinellato AC, Champeau M. Boron nitride-based nanocomposite hydrogels: preparation, properties and applications. SOFT MATTER 2021; 17:4475-4488. [PMID: 33903866 DOI: 10.1039/d1sm00212k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hexagonal boron nitride (h-BN) nanostructures are well-known for their good chemical stability, thermal conductivity and high elastic modulus. BN can be used as a filler in hydrogels to significantly improve their mechanical and thermal properties, to reinforce their biocompatibility and to provide self-healing capacity. Moreover, in contrast with their carbon equivalents, BN nanocomposites are transparent and electrically insulating. Herein, we present an overview of BN-based nanocomposite hydrogels. First, the properties of h-BN are described, as well as common exfoliation and functionalization techniques employed to obtain BN nanosheets. Then, methods for preparing BN-nanocomposite hydrogels are explained, followed by a specific overview of the relationship between the composition and structure of the nanocomposites and the functional properties. Finally, the main properties of these materials are discussed in view of the thermal, mechanical, and self-healing properties, along with the potential applications in tissue engineering, thermal management, drug delivery and water treatment.
Collapse
Affiliation(s)
- Diego Moreira Lima
- Center of Engineering, Modelling and Applied Social Sciences, Federal University of ABC, Santo André, SP 09210-580, Brazil.
| | - Anne Cristine Chinellato
- Center of Engineering, Modelling and Applied Social Sciences, Federal University of ABC, Santo André, SP 09210-580, Brazil.
| | - Mathilde Champeau
- Center of Engineering, Modelling and Applied Social Sciences, Federal University of ABC, Santo André, SP 09210-580, Brazil.
| |
Collapse
|
72
|
Pedroza-González SC, Rodriguez-Salvador M, Pérez-Benítez BE, Alvarez MM, Santiago GTD. Bioinks for 3D Bioprinting: A Scientometric Analysis of Two Decades of Progress. Int J Bioprint 2021; 7:333. [PMID: 34007938 PMCID: PMC8126700 DOI: 10.18063/ijb.v7i2.337] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
This scientometric analysis of 393 original papers published from January 2000 to June 2019 describes the development and use of bioinks for 3D bioprinting. The main trends for bioink applications and the primary considerations guiding the selection and design of current bioink components (i.e., cell types, hydrogels, and additives) were reviewed. The cost, availability, practicality, and basic biological considerations (e.g., cytocompatibility and cell attachment) are the most popular parameters guiding bioink use and development. Today, extrusion bioprinting is the most widely used bioprinting technique. The most reported use of bioinks is the generic characterization of bioink formulations or bioprinting technologies (32%), followed by cartilage bioprinting applications (16%). Similarly, the cell-type choice is mostly generic, as cells are typically used as models to assess bioink formulations or new bioprinting methodologies rather than to fabricate specific tissues. The cell-binding motif arginine-glycine-aspartate is the most common bioink additive. Many articles reported the development of advanced functional bioinks for specific biomedical applications; however, most bioinks remain the basic compositions that meet the simple criteria: Manufacturability and essential biological performance. Alginate and gelatin methacryloyl are the most popular hydrogels that meet these criteria. Our analysis suggests that present-day bioinks still represent a stage of emergence of bioprinting technology.
Collapse
Affiliation(s)
- Sara Cristina Pedroza-González
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
- Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
| | | | | | - Mario Moisés Alvarez
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, Mexico 64849
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
- Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
| |
Collapse
|
73
|
Abstract
3D-Bioprinting has seen a rapid expansion in the last few years, with an increasing number of reported bioinks. Alginate is a natural biopolymer that forms hydrogels by ionic cross-linking with calcium ions. Due to its biocompatibility and ease of gelation, it is an ideal ingredient for bioinks. This review focuses on recent advances on bioink formulations based on the combination of alginate with other polysaccharides. In particular, the molecular weight of the alginate and its loading level have an impact on the material's performance, as well as the loading of the divalent metal salt and its solubility, which affects the cross-linking of the gel. Alginate is often combined with other polysaccharides that can sigificantly modify the properties of the gel, and can optimise alginate for use in different biological applications. It is also possible to combine alginate with sacrificial polymers, which can temporarily reinforce the 3D printed construct, but then be removed at a later stage. Other additives can be formulated into the gels to enhance performance, including nanomaterials that tune rheological properties, peptides to encourage cell adhesion, or growth factors to direct stem cell differentiation. The ease of formulating multiple components into alginate gels gives them considerable potential for further development. In summary, this review will facilitate the identification of different alginate-polysaccharide bioink formulations and their optimal applications, and help inform the design of second generation bioinks, allowing this relatively simple gel system to achieve more sophisticated control over biological processes.
Collapse
Affiliation(s)
- Carmen C Piras
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| | - David K Smith
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| |
Collapse
|
74
|
Tamay DG, Hasirci N. Bioinks-materials used in printing cells in designed 3D forms. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1072-1106. [PMID: 33720806 DOI: 10.1080/09205063.2021.1892470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Use of materials to activate non-functional or damaged organs and tissues goes back to early ages. The first materials used for this purpose were metals, and in time, novel materials such as ceramics, polymers and composites were introduced to the field to serve in medical applications. In the last decade, the advances in material sciences, cell biology, technology and engineering made 3D printing of living tissues or organ models in the designed structure and geometry possible by using cells alone or together with hydrogels through additive manufacturing. This review aims to give a brief information about the chemical structures and properties of bioink materials and their applications in the production of 3D tissue constructs.
Collapse
Affiliation(s)
- Dilara Goksu Tamay
- BIOMATEN - Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey.,Department of Biomedical Engineering, Middle East Technical University, Ankara, Turkey
| | - Nesrin Hasirci
- BIOMATEN - Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey.,Department of Biomedical Engineering, Middle East Technical University, Ankara, Turkey.,Department of Chemistry, Middle East Technical University, Ankara, Turkey.,Tissue Engineering and Biomaterial Research Center, Near East University, TRNC, Mersin 10, Turkey
| |
Collapse
|
75
|
Beaumont M, Tran R, Vera G, Niedrist D, Rousset A, Pierre R, Shastri VP, Forget A. Hydrogel-Forming Algae Polysaccharides: From Seaweed to Biomedical Applications. Biomacromolecules 2021; 22:1027-1052. [PMID: 33577286 PMCID: PMC7944484 DOI: 10.1021/acs.biomac.0c01406] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/29/2021] [Indexed: 12/22/2022]
Abstract
With the increasing growth of the algae industry and the development of algae biorefinery, there is a growing need for high-value applications of algae-extracted biopolymers. The utilization of such biopolymers in the biomedical field can be considered as one of the most attractive applications but is challenging to implement. Historically, polysaccharides extracted from seaweed have been used for a long time in biomedical research, for example, agarose gels for electrophoresis and bacterial culture. To overcome the current challenges in polysaccharides and help further the development of high-added-value applications, an overview of the entire polysaccharide journey from seaweed to biomedical applications is needed. This encompasses algae culture, extraction, chemistry, characterization, processing, and an understanding of the interactions of soft matter with living organisms. In this review, we present algae polysaccharides that intrinsically form hydrogels: alginate, carrageenan, ulvan, starch, agarose, porphyran, and (nano)cellulose and classify these by their gelation mechanisms. The focus of this review further lays on the culture and extraction strategies to obtain pure polysaccharides, their structure-properties relationships, the current advances in chemical backbone modifications, and how these modifications can be used to tune the polysaccharide properties. The available techniques to characterize each organization scale of a polysaccharide hydrogel are presented, and the impact on their interactions with biological systems is discussed. Finally, a perspective of the anticipated development of the whole field and how the further utilization of hydrogel-forming polysaccharides extracted from algae can revolutionize the current algae industry are suggested.
Collapse
Affiliation(s)
- Marco Beaumont
- Queensland
University of Technology, Brisbane, Australia
| | - Remy Tran
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg, Germany
| | - Grace Vera
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg, Germany
| | - Dennis Niedrist
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg, Germany
| | - Aurelie Rousset
- Centre
d’Étude et de Valorisation des Algues, Pleubian, France
| | - Ronan Pierre
- Centre
d’Étude et de Valorisation des Algues, Pleubian, France
| | - V. Prasad Shastri
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg, Germany
- Centre
for Biological Signalling Studies, University
of Freiburg, Frieburg, Germany
| | - Aurelien Forget
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg, Germany
| |
Collapse
|
76
|
Jin M, Shi J, Zhu W, Yao H, Wang DA. Polysaccharide-Based Biomaterials in Tissue Engineering: A Review. TISSUE ENGINEERING PART B-REVIEWS 2021; 27:604-626. [PMID: 33267648 DOI: 10.1089/ten.teb.2020.0208] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In addition to proteins and nucleic acids, polysaccharides are an important type of biomacromolecule widely distributed in plants, animals, and microorganisms. Polysaccharides are considered as promising biomaterials due to their significant bioactivities, natural abundance, immunoactivity, and chemical modifiability for tissue engineering (TE) applications. Due to the similarities of the biochemical properties of polysaccharides and the extracellular matrix of human bodies, polysaccharides are increasingly recognized and accepted. Furthermore, the degradation behavior of these macromolecules is generally nontoxic. Certain delicate properties, such as remarkable mechanical properties and tunable tissue response, can be obtained by modifying the functional groups on the surface of polysaccharide molecules. The applications of polysaccharide-based biomaterials in the TE field have been growing intensively in recent decades, for example, bone/cartilage regeneration, cardiac regeneration, neural regeneration, and skin regeneration. This review summarizes the main essential properties of polysaccharides, including their chemical properties, crosslinking mechanisms, and biological properties, and focuses on the association between their structures and properties. The recent progress in polysaccharide-based biomaterials in various TE applications is reviewed, and the prospects for future studies are addressed as well. We intend this review to offer a comprehensive understanding of and inspiration for the research and development of polysaccharide-based materials in TE.
Collapse
Affiliation(s)
- Min Jin
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Junli Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P.R. China
| | - Wenzhen Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P.R. China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, P.R. China.,Karolinska Institute Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
| |
Collapse
|
77
|
Benwood C, Chrenek J, Kirsch RL, Masri NZ, Richards H, Teetzen K, Willerth SM. Natural Biomaterials and Their Use as Bioinks for Printing Tissues. Bioengineering (Basel) 2021; 8:27. [PMID: 33672626 PMCID: PMC7924193 DOI: 10.3390/bioengineering8020027] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The most prevalent form of bioprinting-extrusion bioprinting-can generate structures from a diverse range of materials and viscosities. It can create personalized tissues that aid in drug testing and cancer research when used in combination with natural bioinks. This paper reviews natural bioinks and their properties and functions in hard and soft tissue engineering applications. It discusses agarose, alginate, cellulose, chitosan, collagen, decellularized extracellular matrix, dextran, fibrin, gelatin, gellan gum, hyaluronic acid, Matrigel, and silk. Multi-component bioinks are considered as a way to address the shortfalls of individual biomaterials. The mechanical, rheological, and cross-linking properties along with the cytocompatibility, cell viability, and printability of the bioinks are detailed as well. Future avenues for research into natural bioinks are then presented.
Collapse
Affiliation(s)
- Claire Benwood
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Josie Chrenek
- Biomedical Engineering Program, University of Victoria, Victoria, BC V8P 5C2, Canada; (J.C.); (H.R.); (K.T.)
| | - Rebecca L. Kirsch
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Nadia Z. Masri
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Hannah Richards
- Biomedical Engineering Program, University of Victoria, Victoria, BC V8P 5C2, Canada; (J.C.); (H.R.); (K.T.)
| | - Kyra Teetzen
- Biomedical Engineering Program, University of Victoria, Victoria, BC V8P 5C2, Canada; (J.C.); (H.R.); (K.T.)
| | - Stephanie M. Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Biomedical Engineering Program, University of Victoria, Victoria, BC V8P 5C2, Canada; (J.C.); (H.R.); (K.T.)
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada;
| |
Collapse
|
78
|
Pita-López ML, Fletes-Vargas G, Espinosa-Andrews H, Rodríguez-Rodríguez R. Physically cross-linked chitosan-based hydrogels for tissue engineering applications: A state-of-the-art review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110176] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
79
|
Choi YJ, Park H, Ha DH, Yun HS, Yi HG, Lee H. 3D Bioprinting of In Vitro Models Using Hydrogel-Based Bioinks. Polymers (Basel) 2021; 13:366. [PMID: 33498852 PMCID: PMC7865738 DOI: 10.3390/polym13030366] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), which has recently emerged as a global pandemic, has caused a serious economic crisis due to the social disconnection and physical distancing in human society. To rapidly respond to the emergence of new diseases, a reliable in vitro model needs to be established expeditiously for the identification of appropriate therapeutic agents. Such models can be of great help in validating the pathological behavior of pathogens and therapeutic agents. Recently, in vitro models representing human organs and tissues and biological functions have been developed based on high-precision 3D bioprinting. In this paper, we delineate an in-depth assessment of the recently developed 3D bioprinting technology and bioinks. In particular, we discuss the latest achievements and future aspects of the use of 3D bioprinting for in vitro modeling.
Collapse
Affiliation(s)
- Yeong-Jin Choi
- Department of Advanced Biomaterials Research, Korea Institute of Materials Science (KIMS), 797, Changwon 51508, Korea; (Y.-J.C.); (H.P.); (H.-S.Y.)
| | - Honghyun Park
- Department of Advanced Biomaterials Research, Korea Institute of Materials Science (KIMS), 797, Changwon 51508, Korea; (Y.-J.C.); (H.P.); (H.-S.Y.)
| | | | - Hui-Suk Yun
- Department of Advanced Biomaterials Research, Korea Institute of Materials Science (KIMS), 797, Changwon 51508, Korea; (Y.-J.C.); (H.P.); (H.-S.Y.)
| | - Hee-Gyeong Yi
- Department of Rural and Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University (CNU), Gwangju 61186, Korea
| | - Hyungseok Lee
- Department of Mechanical and Biomedical Engineering, Kangwon National University (KNU), Chuncheon 24341, Korea
- Interdisciplinary Program in Biohealth-Machinery Convergence Engineering, Kangwon National University (KNU), Chuncheon 24341, Korea
| |
Collapse
|
80
|
Khrunyk Y, Lach S, Petrenko I, Ehrlich H. Progress in Modern Marine Biomaterials Research. Mar Drugs 2020; 18:E589. [PMID: 33255647 PMCID: PMC7760574 DOI: 10.3390/md18120589] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
The growing demand for new, sophisticated, multifunctional materials has brought natural structural composites into focus, since they underwent a substantial optimization during long evolutionary selection pressure and adaptation processes. Marine biological materials are the most important sources of both inspiration for biomimetics and of raw materials for practical applications in technology and biomedicine. The use of marine natural products as multifunctional biomaterials is currently undergoing a renaissance in the modern materials science. The diversity of marine biomaterials, their forms and fields of application are highlighted in this review. We will discuss the challenges, solutions, and future directions of modern marine biomaterialogy using a thorough analysis of scientific sources over the past ten years.
Collapse
Affiliation(s)
- Yuliya Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, 620002 Ekaterinburg, Russia;
- Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, 620990 Ekaterinburg, Russia
| | - Slawomir Lach
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany;
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany;
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
| |
Collapse
|
81
|
Gu Y, Schwarz B, Forget A, Barbero A, Martin I, Shastri VP. Advanced Bioink for 3D Bioprinting of Complex Free-Standing Structures with High Stiffness. Bioengineering (Basel) 2020; 7:E141. [PMID: 33171883 PMCID: PMC7711998 DOI: 10.3390/bioengineering7040141] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
One of the challenges in 3D-bioprinting is the realization of complex, volumetrically defined structures, that are also anatomically accurate and relevant. Towards this end, in this study we report the development and validation of a carboxylated agarose (CA)-based bioink that is amenable to 3D printing of free-standing structures with high stiffness at physiological temperature using microextrusion printing without the need for a fugitive phase or post-processing or support material (FRESH). By blending CA with negligible amounts of native agarose (NA) a bioink formulation (CANA) which is suitable for printing with nozzles of varying internal diameters under ideal pneumatic pressure was developed. The ability of the CANA ink to exhibit reproducible sol-gel transition at physiological temperature of 37 °C was established through rigorous characterization of the thermal behavior, and rheological properties. Using a customized bioprinter equipped with temperature-controlled nozzle and print bed, high-aspect ratio objects possessing anatomically-relevant curvature and architecture have been printed with high print reproducibility and dimension fidelity. Objects printed with CANA bioink were found to be structurally stable over a wide temperature range of 4 °C to 37 °C, and exhibited robust layer-to-layer bonding and integration, with evenly stratified structures, and a porous interior that is conducive to fluid transport. This exceptional layer-to-layer fusion (bonding) afforded by the CANA bioink during the print obviated the need for post-processing to stabilize printed structures. As a result, this novel CANA bioink is capable of yielding large (5-10 mm tall) free-standing objects ranging from simple tall cylinders, hemispheres, bifurcated 'Y'-shaped and 'S'-shaped hollow tubes, and cylinders with compartments without the need for support and/or a fugitive phase. Studies with human nasal chondrocytes showed that the CANA bioink is amenable to the incorporation of high density of cells (30 million/mL) without impact on printability. Furthermore, printed cells showed high viability and underwent mitosis which is necessary for promoting remodeling processes. The ability to print complex structures with high cell densities, combined with excellent cell and tissue biocompatibility of CA bodes well for the exploitation of CANA bioinks as a versatile 3D-bioprinting platform for the clinical translation of regenerative paradigms.
Collapse
Affiliation(s)
- Yawei Gu
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany; (Y.G.); (B.S.); (A.F.)
| | - Benjamin Schwarz
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany; (Y.G.); (B.S.); (A.F.)
| | - Aurelien Forget
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany; (Y.G.); (B.S.); (A.F.)
| | - Andrea Barbero
- Tissue Engineering Laboratory, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (A.B.); (I.M.)
| | - Ivan Martin
- Tissue Engineering Laboratory, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (A.B.); (I.M.)
| | - V. Prasad Shastri
- Institute for Macromolecular Chemistry, University of Freiburg, 79104 Freiburg, Germany; (Y.G.); (B.S.); (A.F.)
| |
Collapse
|
82
|
Abstract
Microvasculature functions at the tissue and cell level, regulating local mass exchange of oxygen and nutrient-rich blood. While there has been considerable success in the biofabrication of large- and small-vessel replacements, functional microvasculature has been particularly challenging to engineer due to its size and complexity. Recently, three-dimensional bioprinting has expanded the possibilities of fabricating sophisticated microvascular systems by enabling precise spatiotemporal placement of cells and biomaterials based on computer-aided design. However, there are still significant challenges facing the development of printable biomaterials that promote robust formation and controlled 3D organization of microvascular networks. This review provides a thorough examination and critical evaluation of contemporary biomaterials and their specific roles in bioprinting microvasculature. We first provide an overview of bioprinting methods and techniques that enable the fabrication of microvessels. We then offer an in-depth critical analysis on the use of hydrogel bioinks for printing microvascularized constructs within the framework of current bioprinting modalities. We end with a review of recent applications of bioprinted microvasculature for disease modeling, drug testing, and tissue engineering, and conclude with an outlook on the challenges facing the evolution of biomaterials design for bioprinting microvasculature with physiological complexity.
Collapse
Affiliation(s)
- Ryan W. Barrs
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jia Jia
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sophia E. Silver
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael Yost
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
83
|
Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. Printability and Shape Fidelity of Bioinks in 3D Bioprinting. Chem Rev 2020; 120:11028-11055. [PMID: 32856892 PMCID: PMC7564085 DOI: 10.1021/acs.chemrev.0c00084] [Citation(s) in RCA: 446] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Indexed: 12/23/2022]
Abstract
Three-dimensional bioprinting uses additive manufacturing techniques for the automated fabrication of hierarchically organized living constructs. The building blocks are often hydrogel-based bioinks, which need to be printed into structures with high shape fidelity to the intended computer-aided design. For optimal cell performance, relatively soft and printable inks are preferred, although these undergo significant deformation during the printing process, which may impair shape fidelity. While the concept of good or poor printability seems rather intuitive, its quantitative definition lacks consensus and depends on multiple rheological and chemical parameters of the ink. This review discusses qualitative and quantitative methodologies to evaluate printability of bioinks for extrusion- and lithography-based bioprinting. The physicochemical parameters influencing shape fidelity are discussed, together with their importance in establishing new models, predictive tools and printing methods that are deemed instrumental for the design of next-generation bioinks, and for reproducible comparison of their structural performance.
Collapse
Affiliation(s)
- Andrea Schwab
- AO
Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Riccardo Levato
- Department
of Orthopaedics, University Medical Center
Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Department
of Clinical Sciences, Faculty of Veterinary
Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Matteo D’Este
- AO
Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Susanna Piluso
- Department
of Orthopaedics, University Medical Center
Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Department
of Developmental BioEngineering, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - David Eglin
- AO
Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Jos Malda
- Department
of Orthopaedics, University Medical Center
Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Department
of Clinical Sciences, Faculty of Veterinary
Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| |
Collapse
|
84
|
Sanz-Garcia A, Sodupe-Ortega E, Pernía-Espinoza A, Shimizu T, Escobedo-Lucea C. A Versatile Open-Source Printhead for Low-Cost 3D Microextrusion-Based Bioprinting. Polymers (Basel) 2020; 12:E2346. [PMID: 33066265 PMCID: PMC7602012 DOI: 10.3390/polym12102346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional (3D) bioprinting promises to be essential in tissue engineering for solving the rising demand for organs and tissues. Some bioprinters are commercially available, but their impact on the field of Tissue engineering (TE) is still limited due to their cost or difficulty to tune. Herein, we present a low-cost easy-to-build printhead for microextrusion-based bioprinting (MEBB) that can be installed in many desktop 3D printers to transform them into 3D bioprinters. We can extrude bioinks with precise control of print temperature between 2-60 °C. We validated the versatility of the printhead, by assembling it in three low-cost open-source desktop 3D printers. Multiple units of the printhead can also be easily put together in a single printer carriage for building a multi-material 3D bioprinter. Print resolution was evaluated by creating representative calibration models at different temperatures using natural hydrogels such as gelatin and alginate, and synthetic ones like poloxamer. Using one of the three modified low-cost 3D printers, we successfully printed cell-laden lattice constructs with cell viabilities higher than 90% after 24-h post printing. Controlling temperature and pressure according to the rheological properties of the bioinks was essential in achieving optimal printability and great cell viability. The cost per unit of our device, which can be used with syringes of different volume, is less expensive than any other commercially available product. These data demonstrate an affordable open-source printhead with the potential to become a reliable alternative to commercial bioprinters for any laboratory.
Collapse
Affiliation(s)
- Andres Sanz-Garcia
- Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 5 E (P.O. Box 56), 00014 Helsinki, Finland; (A.S.-G.); (E.S.-O.)
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan;
| | - Enrique Sodupe-Ortega
- Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 5 E (P.O. Box 56), 00014 Helsinki, Finland; (A.S.-G.); (E.S.-O.)
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan;
- Department of Mechanical Engineering, University of La Rioja, San José de Calasanz 31, Edificio Departamental, 26004 Logroño, Spain;
| | - Alpha Pernía-Espinoza
- Department of Mechanical Engineering, University of La Rioja, San José de Calasanz 31, Edificio Departamental, 26004 Logroño, Spain;
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan;
| | - Carmen Escobedo-Lucea
- Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 5 E (P.O. Box 56), 00014 Helsinki, Finland; (A.S.-G.); (E.S.-O.)
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan;
| |
Collapse
|
85
|
Ramesh S, Kovelakuntla V, Meyer AS, Rivero IV. Three-dimensional printing of stimuli-responsive hydrogel with antibacterial activity. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bprint.2020.e00106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
86
|
Mancha Sánchez E, Gómez-Blanco JC, López Nieto E, Casado JG, Macías-García A, Díaz Díez MA, Carrasco-Amador JP, Torrejón Martín D, Sánchez-Margallo FM, Pagador JB. Hydrogels for Bioprinting: A Systematic Review of Hydrogels Synthesis, Bioprinting Parameters, and Bioprinted Structures Behavior. Front Bioeng Biotechnol 2020; 8:776. [PMID: 32850697 PMCID: PMC7424022 DOI: 10.3389/fbioe.2020.00776] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/18/2020] [Indexed: 12/23/2022] Open
Abstract
Nowadays, bioprinting is rapidly evolving and hydrogels are a key component for its success. In this sense, synthesis of hydrogels, as well as bioprinting process, and cross-linking of bioinks represent different challenges for the scientific community. A set of unified criteria and a common framework are missing, so multidisciplinary research teams might not efficiently share the advances and limitations of bioprinting. Although multiple combinations of materials and proportions have been used for several applications, it is still unclear the relationship between good printability of hydrogels and better medical/clinical behavior of bioprinted structures. For this reason, a PRISMA methodology was conducted in this review. Thus, 1,774 papers were retrieved from PUBMED, WOS, and SCOPUS databases. After selection, 118 papers were analyzed to extract information about materials, hydrogel synthesis, bioprinting process, and tests performed on bioprinted structures. The aim of this systematic review is to analyze materials used and their influence on the bioprinting parameters that ultimately generate tridimensional structures. Furthermore, a comparison of mechanical and cellular behavior of those bioprinted structures is presented. Finally, some conclusions and recommendations are exposed to improve reproducibility and facilitate a fair comparison of results.
Collapse
Affiliation(s)
- Enrique Mancha Sánchez
- Bioengineering and Health Technologies Unit, Minimally Invasive Surgery Centre Jesús Usón, Cáceres, Spain
| | - J. Carlos Gómez-Blanco
- Bioengineering and Health Technologies Unit, Minimally Invasive Surgery Centre Jesús Usón, Cáceres, Spain
| | - Esther López Nieto
- Stem Cells Unit, Minimally Invasive Surgery Centre Jesús Usón, Cáceres, Spain
| | - Javier G. Casado
- Stem Cells Unit, Minimally Invasive Surgery Centre Jesús Usón, Cáceres, Spain
| | | | - María A. Díaz Díez
- School of Industrial Engineering, University of Extremadura, Badajoz, Spain
| | | | | | | | - J. Blas Pagador
- Bioengineering and Health Technologies Unit, Minimally Invasive Surgery Centre Jesús Usón, Cáceres, Spain
| |
Collapse
|
87
|
Cui X, Li J, Hartanto Y, Durham M, Tang J, Zhang H, Hooper G, Lim K, Woodfield T. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks. Adv Healthc Mater 2020; 9:e1901648. [PMID: 32352649 DOI: 10.1002/adhm.201901648] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/14/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
3D bioprinting involves the combination of 3D printing technologies with cells, growth factors and biomaterials, and has been considered as one of the most advanced tools for tissue engineering and regenerative medicine (TERM). However, despite multiple breakthroughs, it is evident that numerous challenges need to be overcome before 3D bioprinting will eventually become a clinical solution for a variety of TERM applications. To produce a 3D structure that is biologically functional, cell-laden bioinks must be optimized to meet certain key characteristics including rheological properties, physico-mechanical properties, and biofunctionality; a difficult task for a single component bioink especially for extrusion based bioprinting. As such, more recent research has been centred on multicomponent bioinks consisting of a combination of two or more biomaterials to improve printability, shape fidelity and biofunctionality. In this article, multicomponent hydrogel-based bioink systems are systemically reviewed based on the inherent nature of the bioink (natural or synthetic hydrogels), including the most current examples demonstrating properties and advances in application of multicomponent bioinks, specifically for extrusion based 3D bioprinting. This review article will assist researchers in the field in identifying the most suitable bioink based on their requirements, as well as pinpointing current unmet challenges in the field.
Collapse
Affiliation(s)
- Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, 1142, New Zealand
| | - Jun Li
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Yusak Hartanto
- Department of Chemical Engineering, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mitchell Durham
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Junnan Tang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Hu Zhang
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Gary Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, 1142, New Zealand
| | - Khoon Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1142, New Zealand
| | - Tim Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1142, New Zealand
| |
Collapse
|
88
|
Agarose-based biomaterials for advanced drug delivery. J Control Release 2020; 326:523-543. [PMID: 32702391 DOI: 10.1016/j.jconrel.2020.07.028] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 02/03/2023]
Abstract
Agarose is a prominent marine polysaccharide representing reversible thermogelling behavior, outstanding mechanical properties, high bioactivity, and switchable chemical reactivity for functionalization. As a result, agarose has received particular attention in the fabrication of advanced delivery systems as sophisticated carriers for therapeutic agents. The ever-growing use of agarose-based biomaterials for drug delivery systems resulted in rapid growth in the number of related publications, however still, a long way should be paved to achieve FDA approval for most of the proposed products. This review aims at a classification of agarose-based biomaterials and their derivatives applicable for controlled/targeted drug delivery purposes. Moreover, it attempts to deal with opportunities and challenges associated with the future developments ahead of agarose-based biomaterials in the realm of advanced drug delivery. Undoubtedly, this class of biomaterials needs further advancement, and a lot of critical questions have yet to be answered.
Collapse
|
89
|
Mao Z, Bi X, Ye F, Shu X, Sun L, Guan J, Ritchie RO, Wu S. Controlled Cryogelation and Catalytic Cross-Linking Yields Highly Elastic and Robust Silk Fibroin Scaffolds. ACS Biomater Sci Eng 2020; 6:4512-4522. [PMID: 33455190 DOI: 10.1021/acsbiomaterials.0c00752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Silk biomaterials with tunable mechanical properties and biological properties are of special importance for tissue engineering. Here, we fabricated silk fibroin (SF, from Bombyx mori silk) scaffolds from cryogelation under controlled temperature and catalytic cross-linking conditions. Structurally, the cryogelled scaffolds demonstrated a greater β-sheet content but significantly smaller β-sheet domains compared to that without chemical cross-linking and catalyst. Mechanically, the cryogelled scaffolds were softer and highly elastic under tension and compression. The 120% tensile elongation and >85% recoverable compressive strain were among the best properties reported for SF scaffolds. Cyclic compression tests proved the robustness of such scaffolds to resist fatigue. The mechanical properties, as well as the degradation rate of the scaffolds, can be fine-tuned by varying the concentrations of the catalyst and the cross-linker. For biological responses, in vitro rat bone mesenchymal stem cell (rBMSC) culture studies demonstrated that cryogelled SF scaffolds supported better cell attachment and proliferation than the routine freeze-thawed scaffolds. The in vivo subcutaneous implantation results showed excellent histocompatibility and tissue ingrowth for the cryogelled SF scaffolds. This straightforward approach of enhanced elasticity of SF scaffolds and fine-tunability in mechanical performances, suggests a promising strategy to develop novel SF biomaterials for soft tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Zhinan Mao
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing 100191, China
| | - Xuewei Bi
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beijing 100083, China
| | - Fan Ye
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing 100191, China
| | - Xiong Shu
- Beijing Research Institute of Traumatology & Orthopaedics, Beijing 100035, China
| | - Lei Sun
- Beijing Research Institute of Traumatology & Orthopaedics, Beijing 100035, China
| | - Juan Guan
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing 100191, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beijing 100083, China
| | - Robert O Ritchie
- Department of Materials Science & Engineering, University of California, Berkeley, California 94720, United States
| | - Sujun Wu
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
90
|
Hazur J, Detsch R, Karakaya E, Kaschta J, Teßmar J, Schneidereit D, Friedrich O, Schubert DW, Boccaccini AR. Improving alginate printability for biofabrication: establishment of a universal and homogeneous pre-crosslinking technique. Biofabrication 2020; 12:045004. [PMID: 32485692 DOI: 10.1088/1758-5090/ab98e5] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many different biofabrication approaches as well as a variety of bioinks have been developed by researchers working in the field of tissue engineering. A main challenge for bioinks often remains the difficulty to achieve shape fidelity after printing. In order to overcome this issue, a homogeneous pre-crosslinking technique, which is universally applicable to all alginate-based materials, was developed. In this study, the Young's Modulus after post-crosslinking of selected hydrogels, as well as the chemical characterization of alginate in terms of M/G ratio and molecular weight, were determined. With our technique it was possible to markedly enhance the printability of a 2% (w/v) alginate solution, without using a higher polymer content, fillers or support structures. 3D porous scaffolds with a height of around 5 mm were printed. Furthermore, the rheological behavior of different pre-crosslinking degrees was studied. Shear forces on cells as well as the flow profile of the bioink inside the printing nozzle during the process were estimated. A high cell viability of printed NIH/3T3 cells embedded in the novel bioink of more than 85% over a time period of two weeks could be observed.
Collapse
Affiliation(s)
- Jonas Hazur
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr.6, 91058, Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Hedegaard CL, Mata A. Integrating self-assembly and biofabrication for the development of structures with enhanced complexity and hierarchical control. Biofabrication 2020; 12:032002. [DOI: 10.1088/1758-5090/ab84cb] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
92
|
Sheet PS, Koley D. Dendritic Hydrogel Bioink for 3D Printing of Bacterial Microhabitat. ACS APPLIED BIO MATERIALS 2019; 2:5941-5948. [PMID: 32490360 PMCID: PMC7266169 DOI: 10.1021/acsabm.9b00866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A glucose-modified dendritic hydrogel is used as a bioink for bacterial encapsulation. This biocompatible hydrogel is a potentially suitable alternative to conventional alginate hydrogel for bacterial encapsulation, as it readily forms gel in the presence of Na+ or K+ ions without any additional stimuli such as pH, temperature, sonication, or the presence of divalent metal ions. We created a bacterial microhabitat by adding the gelator to phosphate-buffered saline containing live bacteria at physiological pH and using an additive three-dimensional (3D) printing technique. The bacteria remained viable and metabolically active within the 3D printed bacterial microhabitat, as shown with confocal laser scanning microscopy (CLSM) and scanning electrochemical microscopy (SECM).
Collapse
Affiliation(s)
- Partha S. Sheet
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Dipankar Koley
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
93
|
Current Biomedical Applications of 3D Printing and Additive Manufacturing. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081713] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Additive manufacturing (AM) has emerged over the past four decades as a cost-effective, on-demand modality for fabrication of geometrically complex objects. The ability to design and print virtually any object shape using a diverse array of materials, such as metals, polymers, ceramics and bioinks, has allowed for the adoption of this technology for biomedical applications in both research and clinical settings. Current advancements in tissue engineering and regeneration, therapeutic delivery, medical device fabrication and operative management planning ensure that AM will continue to play an increasingly important role in the future of healthcare. In this review, we outline current biomedical applications of common AM techniques and materials.
Collapse
|
94
|
Ashammakhi N, Ahadian S, Xu C, Montazerian H, Ko H, Nasiri R, Barros N, Khademhosseini A. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio 2019; 1:100008. [PMID: 32159140 PMCID: PMC7061634 DOI: 10.1016/j.mtbio.2019.100008] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/12/2022] Open
Abstract
The native tissues are complex structures consisting of different cell types, extracellular matrix materials, and biomolecules. Traditional tissue engineering strategies have not been able to fully reproduce biomimetic and heterogeneous tissue constructs because of the lack of appropriate biomaterials and technologies. However, recently developed three-dimensional bioprinting techniques can be leveraged to produce biomimetic and complex tissue structures. To achieve this, multicomponent bioinks composed of multiple biomaterials (natural, synthetic, or hybrid natural-synthetic biomaterials), different types of cells, and soluble factors have been developed. In addition, advanced bioprinting technologies have enabled us to print multimaterial bioinks with spatial and microscale resolution in a rapid and continuous manner, aiming to reproduce the complex architecture of the native tissues. This review highlights important advances in heterogeneous bioinks and bioprinting technologies to fabricate biomimetic tissue constructs. Opportunities and challenges to further accelerate this research area are also described.
Collapse
Affiliation(s)
- N. Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, 8000, Finland
| | - S. Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
| | - C. Xu
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
- School of Dentistry, The University of Queensland, Herston, QLD, 4006, Australia
| | - H. Montazerian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
| | - H. Ko
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
| | - R. Nasiri
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - N. Barros
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
| | - A. Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California – Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California – Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|