51
|
In Situ Surface Reconstruction of Catalysts for Enhanced Hydrogen Evolution. Catalysts 2023. [DOI: 10.3390/catal13010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The in situ surface reconstitution of a catalyst for hydrogen evolution refers to its structure evolution induced by strong interactions with reaction intermediates during the hydrogen evolution reaction (HER), which eventually leads to the self-optimization of active sites. In consideration of the superior performance that can be achieved by in situ surface reconstitution, more and more attention has been paid to the relationship between active site structure evolution and the self-optimization of HER activity. More and more in situ and/or operando techniques have been explored to track the dynamic structural evolution of HER catalysts in order to clarify the underlying mechanism. This review summarizes recent advances in various types of reconstruction such as the reconfiguration of crystallinity, morphological evolution, chemical composition evolution, phase transition refactoring, surface defects, and interface refactoring in the HER process. Finally, different perspectives and outlooks are offered to guide future investigations. This review is expected to provide some new clues for a deeper understanding of in situ surface reconfiguration in hydrogen evolution reactions and the targeted design of catalysts with desirable structures.
Collapse
|
52
|
Hashim LH, Halilu A, Umar YB, Johan MRB, Aroua MK, Koley P, Bhargava SK. Role of lattice strain in bifunctional catalysts for tandem furfural hydrogenation–esterification. Catal Sci Technol 2023. [DOI: 10.1039/d2cy01929a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This research represents that the bifunctional catalyst (Cu/RHSiO2–Al–Mg) which has the lowest lattice strain can significantly enhance catalytic reactivity such as the furfural conversion into furfural acetate.
Collapse
Affiliation(s)
- Luqman H. Hashim
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur – 50603, Malaysia
| | - Ahmed Halilu
- Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur – 50603, Malaysia
| | - Yahaya Balarabe Umar
- School of Chemical and Process Engineering, University of Leeds, LS2 9JT, Leeds, UK
| | - Mohd Rafie Bin Johan
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur – 50603, Malaysia
- Advanced Materials Research Laboratory, Department of Mechanical Engineering, University of Malaya, Kuala Lumpur – 50603, Malaysia
| | - Mohamed Kheireddine Aroua
- Centre for Carbon Dioxide Capture and Utilisation (CCDCU), School of Engineering and Technology, Sunway University, Bandar Sunway, 47500 Petaling Jaya, Malaysia
- Sunway Materials Smart Science and Engineering (SMS2E) Research Cluster, Sunway University, Bandar Sunway, 47500 Petaling Jaya, Malaysia
- Department of Engineering, Lancaster University, Lancaster, LA1 4YW, UK
| | - Paramita Koley
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne – 3001, Australia
| | - Suresh K. Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne – 3001, Australia
| |
Collapse
|
53
|
Chu T, Rong C, Zhou L, Mao X, Zhang B, Xuan F. Progress and Perspectives of Single-Atom Catalysts for Gas Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206783. [PMID: 36106690 DOI: 10.1002/adma.202206783] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Single-atom catalysts (SACs) attract extensive attention in the field of heterogeneous catalysis in recent years due to the maximum atom utilization and unique physical and chemical properties. The gas sensing is actually a heterogeneous catalysis process but the SACs are new to this area. Although SACs show huge potential in gas sensing, the SACs gas sensing area currently is still at the infancy stage. This work critically reviews the recent advances and current status of single-atom gas sensing materials. General synthesis routes, characterization methods, and sensing performance indexes are introduced. At the end, the challenges and future prospects on SACs gas sensing are presented from the authors' perspectives. This work is anticipated to provide insights and guideline for the chemical sensing community.
Collapse
Affiliation(s)
- Tianshu Chu
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chao Rong
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Lei Zhou
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xinyuan Mao
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Bowei Zhang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Fuzhen Xuan
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
54
|
Song Z, Li J, Davis KD, Li X, Zhang J, Zhang L, Sun X. Emerging Applications of Synchrotron Radiation X-Ray Techniques in Single Atomic Catalysts. SMALL METHODS 2022; 6:e2201078. [PMID: 36207288 DOI: 10.1002/smtd.202201078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Single atom catalysts (SACs) can achieve a maximum atom utilization efficiency of 100%, which provides significantly increased active sites compared with traditional catalysts during catalytic reactions. Synchrotron radiation technology is an important characterization method for identifying single-atom catalysts. Several types of internal information, such as the coordination number, bond length and electronic structure of metals, can all be analyzed. This review will focus on the introduction of synchrotron radiation techniques and their applications in SACs. First, the fundamentals of synchrotron radiation and the corresponding techniques applied in characterization of SACs will be briefly introduced, such as X-ray absorption near edge spectroscopy and extended X-ray absorption fine structure spectroscopy and in situ techniques. The detailed information obtained from synchrotron radiation X-ray characterization is described through four routes: 1) the local environment of a specific atom; 2) the oxidation state of SACs; 3) electronic structures at different orbitals; and 4) the in situ structure modification during catalytic reaction. In addition, a systematic summary of synchrotron radiation X-ray characterization on different types of SACs (noble metals and transition metals) will be discussed.
Collapse
Affiliation(s)
- Zhongxin Song
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Junjie Li
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Kieran Doyle Davis
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Xifei Li
- Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Jiujun Zhang
- Institute for New Energy Materials and Engineering/College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Lei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
55
|
Lin X, Ng SF, Ong WJ. Coordinating single-atom catalysts on two-dimensional nanomaterials: A paradigm towards bolstered photocatalytic energy conversion. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
56
|
Rana R, Vila FD, Kulkarni AR, Bare SR. Bridging the Gap between the X-ray Absorption Spectroscopy and the Computational Catalysis Communities in Heterogeneous Catalysis: A Perspective on the Current and Future Research Directions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rachita Rana
- Department of Chemical Engineering, University of California, Davis, California95616, United States
| | - Fernando D. Vila
- Department of Physics, University of Washington, Seattle, Washington98195, United States
| | - Ambarish R. Kulkarni
- Department of Chemical Engineering, University of California, Davis, California95616, United States
| | - Simon R. Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California94025, United States
| |
Collapse
|
57
|
Tang H, Gu H, Li Z, Chai J, Qin F, Lu C, Yu J, Zhai H, Zhang L, Li X, Chen W. Engineering the Coordination Interface of Isolated Co Atomic Sites Anchored on N-Doped Carbon for Effective Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46401-46409. [PMID: 36183270 DOI: 10.1021/acsami.2c09107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The regulation of the coordination environment of the central metal atom is considered as an alternative way to enhance the performance of single-atom catalysts (SACs). Herein, we design an electrocatalyst with active sites of isolated Co atoms coordinated with four sulfur atoms supported on N-doped carbon frameworks (Co1-S4/NC), confirmed by high-angle annular dark-field scanning transmission electron microscope (HADDF-STEM) and synchrotron-radiation-based X-ray absorption fine structure (XAFS) spectroscopy. The Co1-S4/NC possesses higher hydrogen evolution reaction (HER) catalytic activity than other Co species and exceptional stability, which exhibits a small Tafel slope of 60 mV dec-1 and a low overpotential of 114 mV at 10 mA cm-2 during the HER in 0.5 M H2SO4 solution. Furthermore, through in situ X-ray absorption spectrum tests and density functional theory (DFT) calculations, we reveal the catalytic mechanism of Co1-S4 moieties and find that the increasing number of sulfur atoms in the Co coordination environment leads to a substantial reduction of the theoretical HER overpotential. This work may point a new direction for the synthesis, performance regulation, and practical application of single-metal-atom catalysts.
Collapse
Affiliation(s)
- Hao Tang
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Hongfei Gu
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Zheyu Li
- School of Vehicle and Mobility, Tsinghua University, Beijing100084, China
| | - Jing Chai
- School of Vehicle and Mobility, Tsinghua University, Beijing100084, China
| | - Fengjuan Qin
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Chenqi Lu
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Jiayu Yu
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Huazhang Zhai
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Liang Zhang
- School of Vehicle and Mobility, Tsinghua University, Beijing100084, China
- Center for Combustion Energy, Tsinghua University, Beijing100084, China
| | - Xinyuan Li
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
| |
Collapse
|
58
|
Liang X, Fu N, Yao S, Li Z, Li Y. The Progress and Outlook of Metal Single-Atom-Site Catalysis. J Am Chem Soc 2022; 144:18155-18174. [PMID: 36175359 DOI: 10.1021/jacs.1c12642] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-atom-site catalysts (SASCs) featuring maximized atom utilization and isolated active sites have progressed tremendously in recent years as a highly prosperous branch of catalysis research. Varieties of SASCs have been developed that show excellent performance in many catalytic applications. The major goal of SASC research is to establish feasible synthetic strategies for the preparation of high-performance catalysts, to achieve an in-depth understanding of the active-site structures and catalytic mechanisms, and to develop practical catalysts with industrial value. This Perspective describes the up-to-date development of SASCs and related catalysts, such as dual-atom-site catalysts (DASCs) and nano-single-atom-site catalysts (NSASCs), analyzes the current challenges encountered by these catalysts for industrial applications, and proposes their possible future development path.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Ninghua Fu
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Shuangchao Yao
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhi Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.,College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.,College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.,Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
59
|
Abstract
The field of single-atom catalysis (SAC) has expanded greatly in recent years. While there has been much success developing new synthesis methods, a fundamental disconnect exists between most experiments and the theoretical computations used to model them. The real catalysts are based on powder supports, which inevitably contain a multitude of different facets, different surface sites, defects, hydroxyl groups, and other contaminants due to the environment. This makes it extremely difficult to determine the structure of the active SAC site using current techniques. To be tractable, computations aimed at modeling SAC utilize periodic boundary conditions and low-index facets of an idealized support. Thus, the reaction barriers and mechanisms determined computationally represent, at best, a plausibility argument, and there is a strong chance that some critical aspect is omitted. One way to better understand what is plausible is by experimental modeling, i.e., comparing the results of computations to experiments based on precisely defined single-crystalline supports prepared in an ultrahigh-vacuum (UHV) environment. In this review, we report the status of the surface-science literature as it pertains to SAC. We focus on experimental work on supports where the site of the metal atom are unambiguously determined from experiment, in particular, the surfaces of rutile and anatase TiO2, the iron oxides Fe2O3 and Fe3O4, as well as CeO2 and MgO. Much of this work is based on scanning probe microscopy in conjunction with spectroscopy, and we highlight the remarkably few studies in which metal atoms are stable on low-index surfaces of typical supports. In the Perspective section, we discuss the possibility for expanding such studies into other relevant supports.
Collapse
Affiliation(s)
- Florian Kraushofer
- Institute of Applied Physics, Technische Universitat Wien, 1040 Vienna, Austria
| | - Gareth S. Parkinson
- Institute of Applied Physics, Technische Universitat Wien, 1040 Vienna, Austria
| |
Collapse
|
60
|
Recent Advances of Single-atom Catalysts for Electro-catalysis. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2216-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
61
|
Abstract
Two-dimensional (2D) polymers have garnered widespread interest because of their intriguing physicochemical properties. Envisaged applications in fields including nanodevices, solid-state chemistry, physical organic chemistry, and condensed matter physics, however, demand high-quality and large-scale production. In this perspective, we first introduce exotic band structures of organic frameworks holding honeycomb, kagome, and Lieb lattices. We further discuss how mesoscale ordered 2D polymers can be synthesized by means of choosing suitable monomers and optimizing growth conditions. We describe successful polymerization strategies to introducing a non-benzenoid subunit into a π-conjugated carbon lattice via delicately designed monomer precursors. Also, to obviate transfer and restore the intrinsic properties of π-conjugated polymers, new paradigms of aryl-aryl coupling on inert surfaces are discussed. Recent achievements in the photopolymerization demonstrate the need for monomer design. We conclude the potential applications of these organic networks and project the future possibilities in providing new insights into on-surface polymerization.
Collapse
Affiliation(s)
- Tianchao Niu
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Chenqiang Hua
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Miao Zhou
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
- School of Physics, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
62
|
Chen Y, Lin J, Jia B, Wang X, Jiang S, Ma T. Isolating Single and Few Atoms for Enhanced Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201796. [PMID: 35577552 DOI: 10.1002/adma.202201796] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/16/2022] [Indexed: 05/27/2023]
Abstract
Atomically dispersed metal catalysts have triggered great interest in the field of catalysis owing to their unique features. Isolated single or few metal atoms can be anchored on substrates via chemical bonding or space confinement to maximize atom utilization efficiency. The key challenge lies in precisely regulating the geometric and electronic structure of the active metal centers, thus significantly influencing the catalytic properties. Although several reviews have been published on the preparation, characterization, and application of single-atom catalysts (SACs), the comprehensive understanding of SACs, dual-atom catalysts (DACs), and atomic clusters has never been systematically summarized. Here, recent advances in the engineering of local environments of state-of-the-art SACs, DACs, and atomic clusters for enhanced catalytic performance are highlighted. Firstly, various synthesis approaches for SACs, DACs, and atomic clusters are presented. Then, special attention is focused on the elucidation of local environments in terms of electronic state and coordination structure. Furthermore, a comprehensive summary of isolated single and few atoms for the applications of thermocatalysis, electrocatalysis, and photocatalysis is provided. Finally, the potential challenges and future opportunities in this emerging field are presented. This review will pave the way to regulate the microenvironment of the active site for boosting catalytic processes.
Collapse
Affiliation(s)
- Yang Chen
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shuaiyu Jiang
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
63
|
Büchele S, Yakimov A, Collins SM, Ruiz-Ferrando A, Chen Z, Willinger E, Kepaptsoglou DM, Ramasse QM, Müller CR, Safonova OV, López N, Copéret C, Pérez-Ramírez J, Mitchell S. Elucidation of Metal Local Environments in Single-Atom Catalysts Based on Carbon Nitrides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202080. [PMID: 35678101 DOI: 10.1002/smll.202202080] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The ability to tailor the properties of metal centers in single-atom heterogeneous catalysts depends on the availability of advanced approaches for characterization of their structure. Except for specific host materials with well-defined metal adsorption sites, determining the local atomic environment remains a crucial challenge, often relying heavily on simulations. This article reports an advanced analysis of platinum atoms stabilized on poly(triazine imide), a nanocrystalline form of carbon nitride. The approach discriminates the distribution of surface coordination sites in the host, the evolution of metal coordination at different stages during the synthesis of the material, and the potential locations of metal atoms within the lattice. Consistent with density functional theory predictions, simultaneous high-resolution imaging in high-angle annular dark field and bright field modes experimentally confirms the preferred localization of platinum in-plane in the corners of the triangular cavities. X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and dynamic nuclear polarization enhanced 15 N nuclear magnetic resonance (DNP-NMR) spectroscopies coupled with density functional theory (DFT) simulations reveal that the predominant metal species comprise Pt(II) bound to three nitrogen atoms and one chlorine atom inside the coordination sites. The findings, which narrow the gap between experimental and theoretical elucidation, contribute to the improved structural understanding and provide a benchmark for exploring the speciation of single-atom catalysts based on carbon nitrides.
Collapse
Affiliation(s)
- Simon Büchele
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| | - Alexander Yakimov
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| | - Sean M Collins
- Bragg Centre for Materials Research, School of Chemical and Process Engineering and School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Andrea Ruiz-Ferrando
- Institute of Chemical Research of Catalonia and Barcelona Institute of Science and Technology, Av. Països Catalans 16, Tarragona, 43007, Spain
| | - Zupeng Chen
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Elena Willinger
- Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, Zurich, 8092, Switzerland
| | | | - Quentin M Ramasse
- SuperSTEM Laboratory, SciTech Daresbury Campus, Daresbury, WA4 4AD, UK
| | - Christoph R Müller
- Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, Zurich, 8092, Switzerland
| | - Olga V Safonova
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Núria López
- Institute of Chemical Research of Catalonia and Barcelona Institute of Science and Technology, Av. Països Catalans 16, Tarragona, 43007, Spain
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| | - Javier Pérez-Ramírez
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| | - Sharon Mitchell
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| |
Collapse
|
64
|
Shi Y, Zhou Y, Lou Y, Chen Z, Xiong H, Zhu Y. Homogeneity of Supported Single-Atom Active Sites Boosting the Selective Catalytic Transformations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201520. [PMID: 35808964 PMCID: PMC9404403 DOI: 10.1002/advs.202201520] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Indexed: 05/09/2023]
Abstract
Selective conversion of specific functional groups to desired products is highly important but still challenging in industrial catalytic processes. The adsorption state of surface species is the key factor in modulating the conversion of functional groups, which is correspondingly determined by the uniformity of active sites. However, the non-identical number of metal atoms, geometric shape, and morphology of conventional nanometer-sized metal particles/clusters normally lead to the non-uniform active sites with diverse geometric configurations and local coordination environments, which causes the distinct adsorption states of surface species. Hence, it is highly desired to modulate the homogeneity of the active sites so that the catalytic transformations can be better confined to the desired direction. In this review, the construction strategies and characterization techniques of the uniform active sites that are atomically dispersed on various supports are examined. In particular, their unique behavior in boosting the catalytic performance in various chemical transformations is discussed, including selective hydrogenation, selective oxidation, Suzuki coupling, and other catalytic reactions. In addition, the dynamic evolution of the active sites under reaction conditions and the industrial utilization of the single-atom catalysts are highlighted. Finally, the current challenges and frontiers are identified, and the perspectives on this flourishing field is provided.
Collapse
Affiliation(s)
- Yujie Shi
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yuwei Zhou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yang Lou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Zupeng Chen
- College of Chemical EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Haifeng Xiong
- College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Yongfa Zhu
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
65
|
Hou W, Feng P, Guo X, Wang Z, Bai Z, Bai Y, Wang G, Sun K. Catalytic Mechanism of Oxygen Vacancies in Perovskite Oxides for Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202222. [PMID: 35534022 DOI: 10.1002/adma.202202222] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Defective materials have been demonstrated to possess adsorptive and catalytic properties in lithium-sulfur (Li-S) batteries, which can effectively solve the problems of lithium polysulfides (LiPSs) shuttle and sluggish conversion kinetics during charging and discharging of Li-S batteries. However, there is still a lack of research on the quantitative relationship between the defect concentration and the adsorptive-catalytic performance of the electrode. In this work, perovskites Sr0.9 Ti1- x Mnx O3- δ (STMnx ) (x = 0.1-0.3) with different oxygen-vacancy concentrations are quantitatively regulated as research models. Through a series of tests of the adsorptive property and electrochemical performance, a quantitative relationship between oxygen-vacancy concentration and adsorptive-catalytic properties is established. Furthermore, the catalytic mechanism of oxygen vacancies in Li-S batteries is investigated using density functional theory calculations and in situ experiments. The increased oxygen vacancies can effectively increase the binding energy between perovskite and LiPSs, reduce the energy barrier of LiPSs decomposition reaction, and promote LiPSs conversion reaction kinetics. Therefore, the perovskite STMn0.3 with high oxygen-vacancy concentrations exhibits excellent LiPSs adsorptive and catalytic properties, realizing high-efficiency Li-S batteries. This work is helpful to realize the application of the quantitative regulation strategy of defect engineering in Li-S batteries.
Collapse
Affiliation(s)
- Wenshuo Hou
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Pingli Feng
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xin Guo
- Centre for Clean Energy Technology, School of Mathematics and Physics, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| | - Zhenhua Wang
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhe Bai
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu Bai
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematics and Physics, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| | - Kening Sun
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
66
|
Chen M, Chen Y, Yang Z, Luo J, Cai J, Jung JCY, Zhang J, Chen S, Zhang S. Synergy of staggered stacking confinement and microporous defect fixation for high-density atomic FeII-N4 oxygen reduction active sites. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63992-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
67
|
Leshchev D, Rakitin M, Luvizotto B, Kadyrov R, Ravel B, Attenkofer K, Stavitski E. The Inner Shell Spectroscopy beamline at NSLS-II: a facility for in situ and operando X-ray absorption spectroscopy for materials research. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1095-1106. [PMID: 35787577 PMCID: PMC9255565 DOI: 10.1107/s160057752200460x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/01/2022] [Indexed: 05/14/2023]
Abstract
The Inner Shell Spectroscopy (ISS) beamline on the 8-ID station at the National Synchrotron Light Source II (NSLS-II), Upton, NY, USA, is a high-throughput X-ray absorption spectroscopy beamline designed for in situ, operando, and time-resolved material characterization using high monochromatic flux and scanning speed. This contribution discusses the technical specifications of the beamline in terms of optics, heat load management, monochromator motion control, and data acquisition and processing. Results of the beamline tests demonstrating the quality of the data obtainable on the instrument, possible energy scanning speeds, as well as long-term beamline stability are shown. The ability to directly control the monochromator trajectory to define the acquisition time for each spectral region is highlighted. Examples of studies performed on the beamline are presented. The paper is concluded with a brief outlook for future developments.
Collapse
Affiliation(s)
- Denis Leshchev
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Maksim Rakitin
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Bruno Luvizotto
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ruslan Kadyrov
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Bruce Ravel
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
- Material Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Klaus Attenkofer
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Eli Stavitski
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
68
|
Kumar P, Al-Attas TA, Hu J, Kibria MG. Single Atom Catalysts for Selective Methane Oxidation to Oxygenates. ACS NANO 2022; 16:8557-8618. [PMID: 35638813 DOI: 10.1021/acsnano.2c02464] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Direct conversion of methane (CH4) to C1-2 liquid oxygenates is a captivating approach to lock carbons in transportable value-added chemicals, while reducing global warming. Existing approaches utilizing the transformation of CH4 to liquid fuel via tandemized steam methane reforming and the Fischer-Tropsch synthesis are energy and capital intensive. Chemocatalytic partial oxidation of methane remains challenging due to the negligible electron affinity, poor C-H bond polarizability, and high activation energy barrier. Transition-metal and stoichiometric catalysts utilizing harsh oxidants and reaction conditions perform poorly with randomized product distribution. Paradoxically, the catalysts which are active enough to break C-H also promote overoxidation, resulting in CO2 generation and reduced carbon balance. Developing catalysts which can break C-H bonds of methane to selectively make useful chemicals at mild conditions is vital to commercialization. Single atom catalysts (SACs) with specifically coordinated metal centers on active support have displayed intrigued reactivity and selectivity for methane oxidation. SACs can significantly reduce the activation energy due to induced electrostatic polarization of the C-H bond to facilitate the accelerated reaction rate at the low reaction temperature. The distinct metal-support interaction can stabilize the intermediate and prevent the overoxidation of the reaction products. The present review accounts for recent progress in the field of SACs for the selective oxidation of CH4 to C1-2 oxygenates. The chemical nature of catalytic sites, effects of metal-support interaction, and stabilization of intermediate species on catalysts to minimize overoxidation are thoroughly discussed with a forward-looking perspective to improve the catalytic performance.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Tareq A Al-Attas
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
69
|
Liu X, Liu Y, Yang W, Feng X, Wang B. Controlled Modification of Axial Coordination for Transition-Metal Single-Atom Electrocatalyst. Chemistry 2022; 28:e202201471. [PMID: 35707987 DOI: 10.1002/chem.202201471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 12/16/2022]
Abstract
Single-atom catalysts (SACs) have emerged as a new frontier in areas such as electrocatalysis, photocatalysis, and enzymatic catalysis. Aided by recent advances in the synthetic methodologies of nanomaterials, atomic characterization technologies, and theoretical calculation modeling, various SACs have been prepared for a variety of catalytic reactions. To meet the requirements of SACs with distinctive performance and appreciable selectivity, much research has been carried out to adjust the coordination configuration and electronic properties of SACs. This concept summarizes the latest advances in the experimental and computational efforts aimed at tuning the axial coordination of SACs. Series of atoms, functional groups or even macrocycles are oriented into the atomic metal center, and how this affects the electrocatalytic performance is also reviewed. Finally, this concept presents perspectives for the further precise design, preparation and in-situ detection of axially coordinated SACs.
Collapse
Affiliation(s)
- Xiangjian Liu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, P. R. China
| | - Yarong Liu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, P. R. China
| | - Wenxiu Yang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, P. R. China
| | - Xiao Feng
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, P. R. China
| | - Bo Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, P. R. China
| |
Collapse
|
70
|
Chen Z, Liu J, Koh MJ, Loh KP. Single-Atom Catalysis: From Simple Reactions to the Synthesis of Complex Molecules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103882. [PMID: 34510576 DOI: 10.1002/adma.202103882] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/19/2021] [Indexed: 06/13/2023]
Abstract
To date, the scope of single-atom catalysts (SAC) in liquid-phase transformations is rather limited owing to stability issues and the inability to activate complex substances. This calls for a better design of the catalyst support that can provide a dynamic coordination environment needed for catalytic action, and yet retain robustness against leaching or aggregation. In addition, the chemical orthogonality of SAC is useful for designing tandem or multicomponent reactions, in which side reactions common to metal nanoparticles are suppressed. In this review, the intrinsic mechanism will be highlighted that controls reaction efficiency and selectivity in SAC-catalyzed pathways, as well as the structural dynamism of SAC under complex liquid-phase conditions. These mechanistic insights are helpful for the development of next-generation SAC systems for the synthesis of high-value pharmaceuticals through late-stage functionalization, sequential and multicomponent strategies.
Collapse
Affiliation(s)
- Zhongxin Chen
- Department of Chemistry, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jia Liu
- Department of Chemistry, 3 Science Drive 3, Singapore, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Ming Joo Koh
- Department of Chemistry, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Kian Ping Loh
- Department of Chemistry, 3 Science Drive 3, Singapore, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
71
|
The effect of coordination environment on the activity and selectivity of single-atom catalysts. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214493] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
72
|
Liu W, Morfin F, Provost K, Bahri M, Baaziz W, Ersen O, Piccolo L, Zlotea C. Unveiling the Ir single atoms as selective active species for the partial hydrogenation of butadiene by operando XAS. NANOSCALE 2022; 14:7641-7649. [PMID: 35548860 DOI: 10.1039/d2nr00994c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single-atom catalysts represent an intense topic of research due to their interesting catalytic properties for a wide range of reactions. Clarifying the nature of the active sites of single-atom catalysts under realistic working conditions is of paramount importance for the design of performant materials. We have prepared an Ir single-atom catalyst supported on a nitrogen-rich carbon substrate that has proven to exhibit substantial activity toward the hydrogenation of butadiene with nearly 100% selectivity to butenes even at full conversion. We evidence here, by quantitative operando X-ray absorption spectroscopy, that the initial Ir single atoms are coordinated with four light atoms i.e., Ir-X4 (X = C/N/O) with an oxidation state of +3.2. During pre-treatment under hydrogen flow at 250 °C, the Ir atom loses one neighbour (possibly oxygen) and partially reduces to an oxidation state of around +2.0. We clearly demonstrate that Ir-X3 (X = C/N/O) is an active species with very good stability under reactive conditions. Moreover, Ir single atoms remain isolated under a reducing atmosphere at a temperature as high as 400 °C.
Collapse
Affiliation(s)
- W Liu
- Université Paris Est, Institut de Chimie et des Matériaux Paris-Est (UMR7182), CNRS, UPEC, 2-8 rue Henri Dunant, 94320 Thiais, France.
| | - F Morfin
- Univ. Lyon, Université Claude Bernard - Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, F-69626 Villeurbanne Cedex, France
| | - K Provost
- Université Paris Est, Institut de Chimie et des Matériaux Paris-Est (UMR7182), CNRS, UPEC, 2-8 rue Henri Dunant, 94320 Thiais, France.
| | - M Bahri
- Université de Strasbourg, Institut de Physique et Chimie des Matériaux de Strasbourg (UMR7504), 23 rue du Loess, BP 34 67034 Strasbourg Cedex 2, France
| | - W Baaziz
- Université de Strasbourg, Institut de Physique et Chimie des Matériaux de Strasbourg (UMR7504), 23 rue du Loess, BP 34 67034 Strasbourg Cedex 2, France
| | - O Ersen
- Université de Strasbourg, Institut de Physique et Chimie des Matériaux de Strasbourg (UMR7504), 23 rue du Loess, BP 34 67034 Strasbourg Cedex 2, France
| | - L Piccolo
- Univ. Lyon, Université Claude Bernard - Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, F-69626 Villeurbanne Cedex, France
| | - C Zlotea
- Université Paris Est, Institut de Chimie et des Matériaux Paris-Est (UMR7182), CNRS, UPEC, 2-8 rue Henri Dunant, 94320 Thiais, France.
| |
Collapse
|
73
|
Di Liberto G, Cipriano LA, Pacchioni G. Universal Principles for the Rational Design of Single Atom Electrocatalysts? Handle with Care. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Giovanni Di Liberto
- Dipartimento di Scienza dei Materiali, Università di Milano - Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Luis A. Cipriano
- Dipartimento di Scienza dei Materiali, Università di Milano - Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali, Università di Milano - Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| |
Collapse
|
74
|
Gao M, Yang P, Zhang X, Zhang Y, Li D, Feng J. Semi-quantitative design of synergetic surficial/interfacial sites for the semi-continuous oxidation of glycerol. FUNDAMENTAL RESEARCH 2022; 2:412-421. [PMID: 38933400 PMCID: PMC11197512 DOI: 10.1016/j.fmre.2021.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022] Open
Abstract
Qualitatively identifying the dominant catalytic site for each step of a semi-continuous reaction and semi-quantitatively correlating such different sites to the catalytic performance is of great significance toward the integration of multiple well-optimized sites on a heterogeneous catalyst. Herein, a series of structurally defined TiOx-based catalysts were synthesized to provide a feasible approach to investigate the aforementioned issues using the semi-continuous oxidation of glycerol as a model reaction. Detailed investigations have verified the simultaneous presence of two kinds of Pt active sites: 1) Negatively charged Pt bound to the oxygen vacancies of modified TiOx in the form of Ptδ--Ov-Ti3+ sites and 2) metallic Pt (Pt0 site) located away from the interface. Meanwhile, the proportion of surficial and interfacial sites varies over this series of catalysts. Combined in situ FTIR experiments revealed that the reaction network was well-tuned via a site cooperation mechanism: The surficial Pt0 sites dissociatively adsorb the OH group of glycerol with a monodentate bonding geometry and the Ptδ--Ov-Ti3+ sites dissociate the C=O bond of the aldehyde group in a bidentate form. Furthermore, CO-FTIR spectroscopy confirmed a correlation between the reaction rate/product selectivity and the fraction of surficial/interfacial sites. A rational proportion of surficial and interfacial sites is key to enabling a high yield of glyceric acid. The most active catalyst with 32% surface sites and 68% interfacial sites exhibited 90.0% glycerol conversion and 68.5% GLYA selectivity. These findings provide a deeper understanding of the structure-activity relationships using qualitative identification and semi-quantitative analysis.
Collapse
Affiliation(s)
- Mingyu Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pengfei Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinyi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yani Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junting Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
75
|
Creissen CE, Fontecave M. Keeping sight of copper in single-atom catalysts for electrochemical carbon dioxide reduction. Nat Commun 2022; 13:2280. [PMID: 35477712 PMCID: PMC9046394 DOI: 10.1038/s41467-022-30027-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/12/2022] [Indexed: 11/19/2022] Open
Abstract
Cu-based single atom catalysts can convert CO2 into multi-carbon products, however, the assignment of active sites needs great caution. In this comment, the authors discuss the transient Cu cluster formation as active sites and emphasise the need for operando characterisation in mechanistic study.
Collapse
Affiliation(s)
- Charles E Creissen
- Laboratoire de Chimie des Processus Biologiques, CNRS UMR 8229, Collège de France, Paris, France.
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, CNRS UMR 8229, Collège de France, Paris, France.
| |
Collapse
|
76
|
Rodriguez JA, Rui N, Zhang F, Senanayake SD. In Situ Studies of Methane Activation Using Synchrotron-Based Techniques: Guiding the Conversion of C–H Bonds. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- José A. Rodriguez
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Materials Science and Chemical Engineering, SUNY at Stony Brook, Stony Brook, New York 11794, United States
| | - Ning Rui
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Feng Zhang
- Department of Materials Science and Chemical Engineering, SUNY at Stony Brook, Stony Brook, New York 11794, United States
| | - Sanjaya D. Senanayake
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
77
|
Chang B, Zhang L, Wu S, Sun Z, Cheng Z. Engineering single-atom catalysts toward biomedical applications. Chem Soc Rev 2022; 51:3688-3734. [PMID: 35420077 DOI: 10.1039/d1cs00421b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Due to inherent structural defects, common nanocatalysts always display limited catalytic activity and selectivity, making it practically difficult for them to replace natural enzymes in a broad scope of biologically important applications. By decreasing the size of the nanocatalysts, their catalytic activity and selectivity will be substantially improved. Guided by this concept, the advances of nanocatalysts now enter an era of atomic-level precise control. Single-atom catalysts (denoted as SACs), characterized by atomically dispersed active sites, strikingly show utmost atomic utilization, precisely located metal centers, unique metal-support interactions and identical coordination environments. Such advantages of SACs drastically boost the specific activity per metal atom, and thus provide great potential for achieving superior catalytic activity and selectivity to functionally mimic or even outperform natural enzymes of interest. Although the size of the catalysts does matter, it is not clear whether the guideline of "the smaller, the better" is still correct for developing catalysts at the single-atom scale. Thus, it is clearly a new, urgent issue to address before further extending SACs into biomedical applications, representing an important branch of nanomedicine. This review begins by providing an overview of recent advances of synthesis strategies of SACs, which serve as a basis for the discussion of emerging achievements in improving the enzyme-like catalytic properties at an atomic level. Then, we carefully compare the structures and functions of catalysts at various scales from nanoparticles, nanoclusters, and few-atom clusters to single atoms. Contrary to conventional wisdom, SACs are not the most catalytically active catalysts in specific reactions, especially those requiring multi-site auxiliary activities. After that, we highlight the unique roles of SACs toward biomedical applications. To appreciate these advances, the challenges and prospects in rapidly growing studies of SACs-related catalytic nanomedicine are also discussed in this review.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Liqin Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Shaolong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Ziyan Sun
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China. .,Bohai rim Advanced Research Institute for Drug Discovery, Yantai, 264000, China.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, California 94305, USA
| |
Collapse
|
78
|
Tomboc GM, Kim T, Jung S, Yoon HJ, Lee K. Modulating the Local Coordination Environment of Single-Atom Catalysts for Enhanced Catalytic Performance in Hydrogen/Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105680. [PMID: 35102698 DOI: 10.1002/smll.202105680] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Single-atom catalysts (SACs) hold the promise of utilizing 100% of the participating atoms in a reaction as active catalytic sites, achieving a remarkable boost in catalytic efficiency. Thus, they present great potential for noble metal-based electrochemical application systems, such as water electrolyzers and fuel cells. However, their practical applications are severely hindered by intrinsic complications, namely atom agglomeration and relocation, originating from the uncontrollably high surface energy of isolated single-atoms (SAs) during postsynthetic treatment processes or catalytic reactions. Extensive efforts have been made to develop new methodologies for strengthening the interactions between SAs and supports, which could ensure the desired stability of the active catalytic sites and their full utilization by SACs. This review covers the recent progress in SACs development while emphasizing the association between the regulation of coordination environments (e.g., coordination atoms, numbers, sites, structures) and the electrocatalytic performance of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The crucial role of coordination chemistry in modifying the intrinsic properties of SACs and manipulating their metal-loading, stability, and catalytic properties is elucidated. Finally, the future challenges of SACS development and the industrial outlook of this field are discussed.
Collapse
Affiliation(s)
- Gracita M Tomboc
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Taekyung Kim
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Sangmin Jung
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Hyo Jae Yoon
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
79
|
Tang P, Lee HJ, Hurlbutt K, Huang PY, Narayanan S, Wang C, Gianolio D, Arrigo R, Chen J, Warner JH, Pasta M. Elucidating the Formation and Structural Evolution of Platinum Single-Site Catalysts for the Hydrogen Evolution Reaction. ACS Catal 2022; 12:3173-3180. [PMID: 35558899 PMCID: PMC9086987 DOI: 10.1021/acscatal.1c05958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/04/2022] [Indexed: 12/12/2022]
Abstract
Platinum single-site catalysts (SSCs) are a promising technology for the production of hydrogen from clean energy sources. They have high activity and maximal platinum-atom utilization. However, the bonding environment of platinum during operation is poorly understood. In this work, we present a mechanistic study of platinum SSCs using operando, synchrotron-X-ray absorption spectroscopy. We synthesize an atomically dispersed platinum complex with aniline and chloride ligands onto graphene and characterize it with ex-situ electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, X-ray absorption near-edge structure spectroscopy (XANES), and extended X-ray absorption fine structure spectroscopy (EXAFS). Then, by operando EXAFS and XANES, we show that as a negatively biased potential is applied, the Pt-N bonds break first followed by the Pt-Cl bonds. The platinum is reduced from platinum(II) to metallic platinum(0) by the onset of the hydrogen-evolution reaction at 0 V. Furthermore, we observe an increase in Pt-Pt bonding, indicating the formation of platinum agglomerates. Together, these results indicate that while aniline is used to prepare platinum SSCs, the single-site complexes are decomposed and platinum agglomerates at operating potentials. This work is an important contribution to the understanding of the evolution of bonding environment in SSCs and provides some molecular insights into how platinum agglomeration causes the deactivation of SSCs over time.
Collapse
Affiliation(s)
- Peng Tang
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Hyeon Jeong Lee
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Kevin Hurlbutt
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Po-Yuan Huang
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Sudarshan Narayanan
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Chenbo Wang
- Oxford Suzhou Centre for Advanced Research, 388 Ruoshui Road, Suzhou 215123, Jiangsu Province, P. R. China
| | - Diego Gianolio
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Rosa Arrigo
- School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, United Kingdom
| | - Jun Chen
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Jamie H. Warner
- Materials Graduate Program, Texas Materials Institute, The University of Texas at Austin, 204 East Dean Keeton Street, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 East Dean Keeton Street, Austin, Texas 78712, United States
| | - Mauro Pasta
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
- Oxford Suzhou Centre for Advanced Research, 388 Ruoshui Road, Suzhou 215123, Jiangsu Province, P. R. China
| |
Collapse
|
80
|
Jin Z, Li P, Fang Z, Yu G. Emerging Electrochemical Techniques for Probing Site Behavior in Single-Atom Electrocatalysts. Acc Chem Res 2022; 55:759-769. [PMID: 35148075 DOI: 10.1021/acs.accounts.1c00785] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Single-atom catalysts (SACs) have aroused tremendous interest over the past decade, particularly in the community of energy and environment-related electrocatalysis. A rapidly growing number of recent publications have recognized it as a promising candidate with maximum atomic utilization, distinct activity, and selectivity in comparison to bulk catalysts and nanocatalysts. However, the complexity of localized coordination environments and the dispersion of isolated sites lead to significant difficulties when it comes to gaining insight into the intrinsic behavior of electrocatalytic reactions. Furthermore, the low metal loadings of most SACs make conventional ensemble measurements less likely to be accurate on the subnanoscale. Thus, it remains challenging to probe the activity and properties of individual atomic sites by available commercial instruments and analytical methods. In spite of this, continuing efforts have lately focused on the development of advanced measurement methodologies, which are very useful to the fundamental understanding of SACs. There have recently been a number of in situ/operando techniques applied to SACs, such as electron microscopy, spectroscopy, and other analysis methods, which support relevant functions to identify the active sites and reaction intermediates and to investigate the dynamic behavior of localized structures of the catalytic sites.This Account aims to present recent electrochemical probing techniques which can be used to identify single-atomic catalytic sites within solid supports. First, we describe the basic principles of molecular probe methods for the study and analysis of electrocatalytic site behavior. In particular, the in situ probing technique enabled by surface interrogation scanning electrochemical microscopy (SI-SECM) can measure the active site density and kinetic rate with high resolution. An alternative electrochemical probing technique is further demonstrated on the basis of single-entity electrochemistry, which allows the unique electrochemical imaging of the size and catalytic rate of single atoms, molecules, and clusters. The merits and limitations of different electrochemical techniques are then discussed, along with perspectives for future prospects. Apart from this, we further showcase the powerful capability of emerging electrochemical probing techniques for determining significant effects and properties of SACs for various electrocatalytic reactions, including oxygen reduction and evolution, hydrogen evolution, and nitrate reduction. Overall, electrochemical techniques with atomic resolution have greatly increased opportunities for observing, measuring, and understanding the surface and interface chemistry during energy conversion. In the future, it is anticipated that the development of electrochemical probing techniques will be advanced with innovative perspectives on the behavior and features of SACs. We hope that this Account can contribute in several ways to promoting the fundamental knowledge and technical progress of emerging electrochemical measurements for studying SACs.
Collapse
Affiliation(s)
- Zhaoyu Jin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Panpan Li
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zhiwei Fang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
81
|
Wang Z, Wu F. Emerging Single-Atom Catalysts/Nanozymes for Catalytic Biomedical Applications. Adv Healthc Mater 2022; 11:e2101682. [PMID: 34729955 DOI: 10.1002/adhm.202101682] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/10/2021] [Indexed: 12/29/2022]
Abstract
Single-atom catalysts (SACs) are a type of atomically dispersed nanozymes with the highest atom utilization, which employ low-coordinated single atoms as the catalytically active sites. SACs not only inherit the merits of traditional nanozymes, but also hold high catalytic activity and superb catalytic selectivity, which ensure their tremendous application potential in environmental remediation, energy storage and conversion, chemical industry, nanomedicine, etc. Nevertheless, undesired aggregation effect of single atoms during preactivation and reaction processes is significantly enhanced owing to the high surface free energy of single atoms. In this case, appropriate substrates are requisite to prevent the aggregation event through the powerful interactions between the single atoms and the substrates, thereby stabilizing the high catalytic activity of the catalysts. In this review, the synthetic methods and characterization approaches of SACs are first described. Then the application cases of SACs in nanomedicine are summarized. Finally, the current challenges and future opportunities of the SACs in nanomedicine are outlined. It is hoped that this review may have implications for furthering the development of new SACs with improved biophysicochemical properties and broadened biomedical applications.
Collapse
Affiliation(s)
- Zihao Wang
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing 210096 P. R. China
| | - Fu‐Gen Wu
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing 210096 P. R. China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University) Ministry of Education 22 Shuangyong Road Nanning 530022 P. R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor 22 Shuangyong Road Nanning 530022 P. R. China
| |
Collapse
|
82
|
Aggarwal P, Sarkar D, Awasthi K, Menezes PW. Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: Current developments and future challenges. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214289] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
83
|
Shi X, Cao LN, Chen M, Huang Y. Recent progress on two-dimensional materials confining single atoms for CO2 photoreduction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
84
|
Realistic Modelling of Dynamics at Nanostructured Interfaces Relevant to Heterogeneous Catalysis. Catalysts 2022. [DOI: 10.3390/catal12010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The focus of this short review is directed towards investigations of the dynamics of nanostructured metallic heterogeneous catalysts and the evolution of interfaces during reaction—namely, the metal–gas, metal–liquid, and metal–support interfaces. Indeed, it is of considerable interest to know how a metal catalyst surface responds to gas or liquid adsorption under reaction conditions, and how its structure and catalytic properties evolve as a function of its interaction with the support. This short review aims to offer the reader a birds-eye view of state-of-the-art methods that enable more realistic simulation of dynamical phenomena at nanostructured interfaces by exploiting resource-efficient methods and/or the development of computational hardware and software.
Collapse
|
85
|
Li WH, Yang J, Wang D, Li Y. Striding the threshold of an atom era of organic synthesis by single-atom catalysis. Chem 2022. [DOI: 10.1016/j.chempr.2021.10.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
86
|
Sun L, Reddu V, Wang X. Multi-atom cluster catalysts for efficient electrocatalysis. Chem Soc Rev 2022; 51:8923-8956. [DOI: 10.1039/d2cs00233g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presents recent developments in the synthesis, modulation and characterization of multi-atom cluster catalysts for electrochemical energy applications.
Collapse
Affiliation(s)
- Libo Sun
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore 138602, Singapore
| | - Vikas Reddu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Xin Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|
87
|
Shah SSA, Najam T, Javed MS, Bashir MS, Nazir MA, Khan NA, Rehman AU, Subhan MA, Rahman MM. Recent Advances in Synthesis and Applications of Single-Atom Catalysts for Rechargeable Batteries. CHEM REC 2021; 22:e202100280. [PMID: 34921492 DOI: 10.1002/tcr.202100280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/28/2021] [Indexed: 11/12/2022]
Abstract
The rapid development of flexible and wearable optoelectronic devices, demanding the superior, reliable, and ultra-long cycling energy storage systems. But poor performances of electrode materials used in energy devices are main obstacles. Recently, single-atom catalysts (SACs) are considered as emerging and potential candidates as electrode materials for battery devices. Herein, we have discussed the recent methods for the fabrication of SACs for rechargeable metal-air batteries, metal-CO2 batteries, metal-sulfur batteries, and other batteries, following the recent advances in assembling and performance of these batteries by using SACs as electrode materials. The role of SACs to solve the bottle-neck problems of these energy storage devices and future perspectives are also discussed.
Collapse
Affiliation(s)
- Syed Shoaib Ahmad Shah
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China.,Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Tayyaba Najam
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Muhammad Sohail Bashir
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Muhammad Altaf Nazir
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Naseem Ahmad Khan
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Aziz Ur Rehman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Md Abdus Subhan
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Mohammed Muzibur Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Jeddah, Saudi Arabia
| |
Collapse
|
88
|
|
89
|
Tang Y, Li Y, Feng Tao F. Activation and catalytic transformation of methane under mild conditions. Chem Soc Rev 2021; 51:376-423. [PMID: 34904592 DOI: 10.1039/d1cs00783a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the last few decades, worldwide scientists have been motivated by the promising production of chemicals from the widely existing methane (CH4) under mild conditions for both chemical synthesis with low energy consumption and climate remediation. To achieve this goal, a whole library of catalytic chemistries of transforming CH4 to various products under mild conditions is required to be developed. Worldwide scientists have made significant efforts to reach this goal. These significant efforts have demonstrated the feasibility of oxidation of CH4 to value-added intermediate compounds including but not limited to CH3OH, HCHO, HCOOH, and CH3COOH under mild conditions. The fundamental understanding of these chemical and catalytic transformations of CH4 under mild conditions have been achieved to some extent, although currently neither a catalyst nor a catalytic process can be used for chemical production under mild conditions at a large scale. In the academic community, over ten different reactions have been developed for converting CH4 to different types of oxygenates under mild conditions in terms of a relatively low activation or catalysis temperature. However, there is still a lack of a molecular-level understanding of the activation and catalysis processes performed in extremely complex reaction environments under mild conditions. This article reviewed the fundamental understanding of these activation and catalysis achieved so far. Different oxidative activations of CH4 or catalytic transformations toward chemical production under mild conditions were reviewed in parallel, by which the trend of developing catalysts for a specific reaction was identified and insights into the design of these catalysts were gained. As a whole, this review focused on discussing profound insights gained through endeavors of scientists in this field. It aimed to present a relatively complete picture for the activation and catalytic transformations of CH4 to chemicals under mild conditions. Finally, suggestions of potential explorations for the production of chemicals from CH4 under mild conditions were made. The facing challenges to achieve high yield of ideal products were highlighted and possible solutions to tackle them were briefly proposed.
Collapse
Affiliation(s)
- Yu Tang
- Institute of Molecular Catalysis and In situ/operando Studies, College of Chemistry, Fuzhou University, Fujian, 350000, China.
| | - Yuting Li
- Department of Chemical and Petroleum Engineering, University of Kansas, KS 66045, USA.
| | - Franklin Feng Tao
- Department of Chemical and Petroleum Engineering, University of Kansas, KS 66045, USA.
| |
Collapse
|
90
|
Full life cycle characterization strategies for spatiotemporal evolution of heterogeneous catalysts. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63786-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
91
|
Rikanati L, Dery S, Gross E. AFM-IR and s-SNOM-IR measurements of chemically addressable monolayers on Au nanoparticles. J Chem Phys 2021; 155:204704. [PMID: 34852499 DOI: 10.1063/5.0072079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The performance of catalysts depends on their nanoscale properties, and local variations in structure and composition can have a dramatic impact on the catalytic reactivity. Therefore, probing the localized reactivity of catalytic surfaces using high spatial resolution vibrational spectroscopy, such as infrared (IR) nanospectroscopy and tip-enhanced Raman spectroscopy, is essential for mapping their reactivity pattern. Two fundamentally different scanning probe IR nanospectroscopy techniques, namely, scattering-type scanning near-field optical microscopy (s-SNOM) and atomic force microscopy-infrared spectroscopy (AFM-IR), provide the capabilities for mapping the reactivity pattern of catalytic surfaces with a spatial resolution of ∼20 nm. Herein, we compare these two techniques with regard to their applicability for probing the vibrational signature of reactive molecules on catalytic nanoparticles. For this purpose, we use chemically addressable self-assembled molecules on Au nanoparticles as model systems. We identified significant spectral differences depending on the measurement technique, which originate from the fundamentally different working principles of the applied methods. While AFM-IR spectra provided information from all the molecules that were positioned underneath the tip, the s-SNOM spectra were more orientation-sensitive. Due to its field-enhancement factor, the s-SNOM spectra showed higher vibrational signals for dipoles that were perpendicularly oriented to the surface. The s-SNOM sensitivity to the molecular orientation influenced the amplitude, position, and signal-to-noise ratio of the collected spectra. Ensemble-based IR measurements verified that differences in the localized IR spectra stem from the enhanced sensitivity of s-SNOM measurements to the adsorption geometry of the probed molecules.
Collapse
Affiliation(s)
- Lihi Rikanati
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shahar Dery
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Elad Gross
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
92
|
Liu P, Huang X, Mance D, Copéret C. Atomically dispersed iridium on MgO(111) nanosheets catalyses benzene–ethylene coupling towards styrene. Nat Catal 2021. [DOI: 10.1038/s41929-021-00700-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
93
|
Wang X, Zhang Y, Wu J, Zhang Z, Liao Q, Kang Z, Zhang Y. Single-Atom Engineering to Ignite 2D Transition Metal Dichalcogenide Based Catalysis: Fundamentals, Progress, and Beyond. Chem Rev 2021; 122:1273-1348. [PMID: 34788542 DOI: 10.1021/acs.chemrev.1c00505] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Single-atom catalysis has been recognized as a pivotal milestone in the development history of heterogeneous catalysis by virtue of its superior catalytic performance, ultrahigh atomic utilization, and well-defined structure. Beyond single-atom protrusions, two more motifs of single-atom substitutions and single-atom vacancies along with synergistic single-atom motif assemblies have been progressively developed to enrich the single-atom family. On the other hand, besides traditional carbon material based substrates, a wide variety of 2D transitional metal dichalcogenides (TMDs) have been emerging as a promising platform for single-atom catalysis owing to their diverse elemental compositions, variable crystal structures, flexible electronic structures, and intrinsic activities toward many catalytic reactions. Such substantial expansion of both single-atom motifs and substrates provides an enriched toolbox to further optimize the geometric and electronic structures for pushing the performance limit. Concomitantly, higher requirements have been put forward for synthetic and characterization techniques with related technical bottlenecks being continuously conquered. Furthermore, this burgeoning single-atom catalyst (SAC) system has triggered serial scientific issues about their changeable single atom-2D substrate interaction, ambiguous synergistic effects of various atomic assemblies, as well as dynamic structure-performance correlations, all of which necessitate further clarification and comprehensive summary. In this context, this Review aims to summarize and critically discuss the single-atom engineering development in the whole field of 2D TMD based catalysis covering their evolution history, synthetic methodologies, characterization techniques, catalytic applications, and dynamic structure-performance correlations. In situ characterization techniques are highlighted regarding their critical roles in real-time detection of SAC reconstruction and reaction pathway evolution, thus shedding light on lifetime dynamic structure-performance correlations which lay a solid theoretical foundation for the whole catalytic field, especially for SACs.
Collapse
Affiliation(s)
- Xin Wang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yuwei Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jing Wu
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Zheng Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Qingliang Liao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Zhuo Kang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
94
|
Singh B, Gawande MB, Kute AD, Varma RS, Fornasiero P, McNeice P, Jagadeesh RV, Beller M, Zbořil R. Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chem Rev 2021; 121:13620-13697. [PMID: 34644065 DOI: 10.1021/acs.chemrev.1c00158] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supported single-metal atom catalysts (SACs) are constituted of isolated active metal centers, which are heterogenized on inert supports such as graphene, porous carbon, and metal oxides. Their thermal stability, electronic properties, and catalytic activities can be controlled via interactions between the single-metal atom center and neighboring heteroatoms such as nitrogen, oxygen, and sulfur. Due to the atomic dispersion of the active catalytic centers, the amount of metal required for catalysis can be decreased, thus offering new possibilities to control the selectivity of a given transformation as well as to improve catalyst turnover frequencies and turnover numbers. This review aims to comprehensively summarize the synthesis of Fe-SACs with a focus on anchoring single atoms (SA) on carbon/graphene supports. The characterization of these advanced materials using various spectroscopic techniques and their applications in diverse research areas are described. When applicable, mechanistic investigations conducted to understand the specific behavior of Fe-SACs-based catalysts are highlighted, including the use of theoretical models.
Collapse
Affiliation(s)
- Baljeet Singh
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193 Portugal
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Arun D Kute
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamiciam, INSTM Trieste Research Unit and ICCOM-CNR Trieste Research Unit, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Peter McNeice
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.,Department of Chemistry, REVA University, Bangalore 560064, India
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic.,CEET Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
95
|
Kim J, Choi S, Cho J, Kim SY, Jang HW. Toward Multicomponent Single-Atom Catalysis for Efficient Electrochemical Energy Conversion. ACS MATERIALS AU 2021; 2:1-20. [PMID: 36855696 PMCID: PMC9888646 DOI: 10.1021/acsmaterialsau.1c00041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-atom catalysts (SACs) have recently emerged as the ultimate solution for overcoming the limitations of traditional catalysts by bridging the gap between homogeneous and heterogeneous catalysts. Atomically dispersed identical active sites enable a maximal atom utilization efficiency, high activity, and selectivity toward the wide range of electrochemical reactions, superior structural robustness, and stability over nanoparticles due to strong atomic covalent bonding with supports. Mononuclear active sites of SACs can be further adjusted by engineering with multicomponent elements, such as introducing dual-metal active sites or additional neighbor atoms, and SACs can be regarded as multicomponent SACs if the surroundings of the active sites or the active sites themselves consist of multiple atomic elements. Multicomponent engineering offers an increased combinational diversity in SACs and unprecedented routes to exceed the theoretical catalytic performance limitations imposed by single-component scaling relationships for adsorption and transition state energies of reactions. The precisely designed structures of multicomponent SACs are expected to be responsible for the synergistic optimization of the overall electrocatalytic performance by beneficially modulating the electronic structure, the nature of orbital filling, the binding energy of reaction intermediates, the reaction pathways, and the local structural transformations. This Review demonstrates these synergistic effects of multicomponent SACs by highlighting representative breakthroughs on electrochemical conversion reactions, which might mitigate the global energy crisis of high dependency on fossil fuels. General synthesis methods and characterization techniques for SACs are also introduced. Then, the perspective on challenges and future directions in the research of SACs is briefly summarized. We believe that careful tailoring of multicomponent active sites is one of the most promising approaches to unleash the full potential of SACs and reach the superior catalytic activity, selectivity, and stability at the same time, which makes SACs promising candidates for electrocatalysts in various energy conversion reactions.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungkyun Choi
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinhyuk Cho
- Department
of Materials Science and Engineering, Korea
University, Seoul 02841, Republic of Korea
| | - Soo Young Kim
- Department
of Materials Science and Engineering, Korea
University, Seoul 02841, Republic of Korea,
| | - Ho Won Jang
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Republic of Korea,Advanced
Institute of Convergence Technology, Seoul
National University, Suwon 16229, Republic of Korea,
| |
Collapse
|
96
|
Vats N, Negi DS, Singh D, Sigle W, Abb S, Sen S, Szilagyi S, Ochner H, Ahuja R, Kern K, Rauschenbach S, van Aken PA. Catalyzing Bond-Dissociation in Graphene via Alkali-Iodide Molecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102037. [PMID: 34528384 DOI: 10.1002/smll.202102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Atomic design of a 2D-material such as graphene can be substantially influenced by etching, deliberately induced in a transmission electron microscope. It is achieved primarily by overcoming the threshold energy for defect formation by controlling the kinetic energy and current density of the fast electrons. Recent studies have demonstrated that the presence of certain species of atoms can catalyze atomic bond dissociation processes under the electron beam by reducing their threshold energy. Most of the reported catalytic atom species are single atoms, which have strong interaction with single-layer graphene (SLG). Yet, no such behavior has been reported for molecular species. This work shows by experimentally comparing the interaction of alkali and halide species separately and conjointly with SLG, that in the presence of electron irradiation, etching of SLG is drastically enhanced by the simultaneous presence of alkali and iodine atoms. Density functional theory and first principles molecular dynamics calculations reveal that due to charge-transfer phenomena the CC bonds weaken close to the alkali-iodide species, which increases the carbon displacement cross-section. This study ascribes pronounced etching activity observed in SLG to the catalytic behavior of the alkali-iodide species in the presence of electron irradiation.
Collapse
Affiliation(s)
- Nilesh Vats
- Max Planck Institute for Solid State Research, Heisenberstr.1, 70569, Stuttgart, Germany
| | - Devendra S Negi
- Max Planck Institute for Solid State Research, Heisenberstr.1, 70569, Stuttgart, Germany
| | - Deobrat Singh
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, 75120, Sweden
| | - Wilfried Sigle
- Max Planck Institute for Solid State Research, Heisenberstr.1, 70569, Stuttgart, Germany
| | - Sabine Abb
- Max Planck Institute for Solid State Research, Heisenberstr.1, 70569, Stuttgart, Germany
| | - Suman Sen
- Max Planck Institute for Solid State Research, Heisenberstr.1, 70569, Stuttgart, Germany
| | - Sven Szilagyi
- Max Planck Institute for Solid State Research, Heisenberstr.1, 70569, Stuttgart, Germany
| | - Hannah Ochner
- Max Planck Institute for Solid State Research, Heisenberstr.1, 70569, Stuttgart, Germany
| | - Rajeev Ahuja
- Max Planck Institute for Solid State Research, Heisenberstr.1, 70569, Stuttgart, Germany
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, 75120, Sweden
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Klaus Kern
- Max Planck Institute for Solid State Research, Heisenberstr.1, 70569, Stuttgart, Germany
- Institut de Physique de la Matière Condensée, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Stephan Rauschenbach
- Max Planck Institute for Solid State Research, Heisenberstr.1, 70569, Stuttgart, Germany
- Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Peter A van Aken
- Max Planck Institute for Solid State Research, Heisenberstr.1, 70569, Stuttgart, Germany
| |
Collapse
|
97
|
Liu S, Xu H, Liu D, Yu H, Zhang F, Zhang P, Zhang R, Liu W. Identify the Activity Origin of Pt Single-Atom Catalyst via Atom-by-Atom Counting. J Am Chem Soc 2021; 143:15243-15249. [PMID: 34495666 DOI: 10.1021/jacs.1c06381] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Atom dispersion in metal supported catalysts is vital as it structurally accounts for their catalytic performances. Since practical catalysts normally present structural diversity, such as the coexistence of single atoms, clusters, and particles, traditional spectroscopy methods including chemisorption, titration, and X-ray absorption, however, provide only an averaged description about the atom dispersion but are not able to distinguish localized structural divergence. In this work, through developing a methodology of electron-microscopy-based atom recognition statistics (EMARS), catalyst dispersion has been redefined at atomic precision in real space via the statistically counting 18 000+ Pt atoms for a Pt/Al2O3 industrial reforming catalyst. The EMARS results combined with in situ microscopy evidence disclose that the activity for aromatics production quantitatively correlates with the density of Pt single-atoms, while Pt clusters contribute no direct activity but could kinetically transform into single-atoms when being heated under an oxidative atmosphere. Compared to EMARS, the traditional hydrogen-oxygen titration method is found to induce serious bias in the Pt dispersion in reference to actual activity. This distinctive capability of EMARS for metal dispersion quantification offers a possibility of directly identifying the catalysis roles of different metal species in a practical catalyst via atom-resolved statistics.
Collapse
Affiliation(s)
- Shuhui Liu
- Dalian Jiaotong University, 794 Huanghe Road, Dalian, Liaoning 116028, China
| | - Hua Xu
- China National Petroleum Corporation, Petrochemical Research Institute, 100007 Beijing, China
| | - Dongdong Liu
- Division of Energy Research Resources, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Hao Yu
- China National Petroleum Corporation, Petrochemical Research Institute, 100007 Beijing, China
| | - Fan Zhang
- Division of Energy Research Resources, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Peng Zhang
- China National Petroleum Corporation, Petrochemical Research Institute, 100007 Beijing, China
| | - Ruolin Zhang
- China National Petroleum Corporation, Petrochemical Research Institute, 100007 Beijing, China
| | - Wei Liu
- Division of Energy Research Resources, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| |
Collapse
|
98
|
Sun H, Zhu Y, Jung W. Tuning Reconstruction Level of Precatalysts to Design Advanced Oxygen Evolution Electrocatalysts. Molecules 2021; 26:molecules26185476. [PMID: 34576947 PMCID: PMC8469832 DOI: 10.3390/molecules26185476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/25/2022] Open
Abstract
Surface reconstruction engineering is an effective strategy to promote the catalytic activities of electrocatalysts, especially for water oxidation. Taking advantage of the physicochemical properties of precatalysts by manipulating their structural self-reconstruction levels provide a promising methodology for achieving suitable catalysts. In this review, we focus on recent advances in research related to the rational control of the process and level of surface transformation ultimately to design advanced oxygen evolution electrocatalysts. We start by discussing the original contributions to surface changes during electrochemical reactions and related factors that can influence the electrocatalytic properties of materials. We then present an overview of current developments and a summary of recently proposed strategies to boost electrochemical performance outcomes by the controlling structural self-reconstruction process. By conveying these insights, processes, general trends, and challenges, this review will further our understanding of surface reconstruction processes and facilitate the development of high-performance electrocatalysts beyond water oxidation.
Collapse
Affiliation(s)
- Hainan Sun
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
| | - Yinlong Zhu
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia;
| | - WooChul Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
- Correspondence:
| |
Collapse
|
99
|
Speck FD, Kim JH, Bae G, Joo SH, Mayrhofer KJJ, Choi CH, Cherevko S. Single-Atom Catalysts: A Perspective toward Application in Electrochemical Energy Conversion. JACS AU 2021; 1:1086-1100. [PMID: 34467351 PMCID: PMC8397360 DOI: 10.1021/jacsau.1c00121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 05/29/2023]
Abstract
Single-atom catalysts (SACs) hold great promise for maximized metal utilization, exceptional tunability of the catalytic site, and selectivity. Moreover, they can substantially contribute to lower the cost and abundancy challenges associated with raw materials. Significant breakthroughs have been achieved over the past decade, for instance, in terms of synthesis methods for SACs, their catalytic activity, and the mechanistic understanding of their functionality. Still, great challenges lie ahead in order to render them viable for application in important fields such as electrochemical energy conversion of renewable electrical energy. We have identified three particular development fields for advanced SACs that we consider crucial, namely, the scale-up of the synthesis, the understanding of their performance in real devices such as fuel cells and electrolyzers, and the understanding and mitigation of their degradation. In this Perspective, we review recent activities of the community and provide our outlook with respect to the aspects required to bring SACs toward application.
Collapse
Affiliation(s)
- Florian D. Speck
- Helmholtz-Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Jae Hyung Kim
- Clean
Energy Research Center, Korea Institute
of Science and Technology (KIST), 5 Hwarangro 14-gil, Seoul 02792, Republic of Korea
| | - Geunsu Bae
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sang Hoon Joo
- Department
of Chemistry, Ulsan National Institute of
Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Karl J. J. Mayrhofer
- Helmholtz-Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstr. 3, 91058 Erlangen, Germany
- Department
of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstr. 3, Erlangen 91058, Germany
| | - Chang Hyuck Choi
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Serhiy Cherevko
- Helmholtz-Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
100
|
Recent developments of nanocarbon based supports for PEMFCs electrocatalysts. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63736-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|