51
|
Li X, Yang W, Chen H, Pan F, Liu W, Qi D, Yu S, Liu H, Chai X, Liu Y, Pan Y, Wang G. Rapid screening and in vivo target occupancy quantitative evaluation of xanthine oxidase inhibitors based on drug-target binding kinetics research strategy: A case study of Chrysanthemum morifolium Ramat. Biomed Pharmacother 2023; 161:114379. [PMID: 36827711 DOI: 10.1016/j.biopha.2023.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 02/24/2023] Open
Abstract
Chrysanthemum morifolium Ramat. is a kind of food and drug dual-use traditional Chinese medicine possessing multiple pharmacological and biochemical benefits. In our study, a rapid and high-throughput method based on Surface plasmon resonance (SPR) biosensor technology was developed and verified for screening potential xanthine oxidase (XOD) inhibitors exemplarily in the Chrysanthemum morifolium Ramat. Coupled with ultra-high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS), 14 XOD-binders were identified. In the SPR-based biosensor and molecular docking analysis, most compounds exhibited a strong affinity and binding kinetic property (association rate constant, Kon and dissociation rate constant, Koff) for XOD and could be regarded as potential inhibitors. More importantly, to further accurately assess target occupancy of candidate compounds in vivo, a mathematical model was established and verified involving three crucial intrinsic kinetic processes (Pharmacokinetics, Binding kinetic and Target kinetic). Overall, the proposed screening and assessment strategy could be proved an effective theoretical basis for further pharmacodynamic evaluation.
Collapse
Affiliation(s)
- Xueyan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wenning Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hongjiao Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Fulu Pan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wei Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dongying Qi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huining Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoyu Chai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yanli Pan
- Institute of Information on Traditional Chinese Medicine China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Guopeng Wang
- Zhongcai Health (Beijing) Biological Technology Development Co., Ltd., Beijing 101500, China.
| |
Collapse
|
52
|
Ligand Gaussian Accelerated Molecular Dynamics 2 (LiGaMD2): Improved Calculations of Ligand Binding Thermodynamics and Kinetics with Closed Protein Pocket. J Chem Theory Comput 2023; 19:733-745. [PMID: 36706316 DOI: 10.1021/acs.jctc.2c01194] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ligand binding thermodynamics and kinetics are critical parameters for drug design. However, it has proven challenging to efficiently predict ligand binding thermodynamics and kinetics from molecular simulations due to limited simulation timescales. Protein dynamics, especially in the ligand binding pocket, often plays an important role in ligand binding. Based on our previously developed Ligand Gaussian accelerated molecular dynamics (LiGaMD), here we present LiGaMD2 in which a selective boost potential was applied to both the ligand and protein residues in the binding pocket to improve sampling of ligand binding and dissociation. To validate the performance of LiGaMD2, the T4 lysozyme (T4L) mutants with open and closed pockets bound by different ligands were chosen as model systems. LiGaMD2 could efficiently capture repetitive ligand dissociation and binding within microsecond simulations of all T4L systems. The obtained ligand binding kinetic rates and free energies agreed well with available experimental values and previous modeling results. Therefore, LiGaMD2 provides an improved approach to sample opening of closed protein pockets for ligand dissociation and binding, thereby allowing for efficient calculations of ligand binding thermodynamics and kinetics.
Collapse
|
53
|
Heydari S, Raniolo S, Livi L, Limongelli V. Transferring chemical and energetic knowledge between molecular systems with machine learning. Commun Chem 2023; 6:13. [PMID: 36697971 PMCID: PMC9839695 DOI: 10.1038/s42004-022-00790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/07/2022] [Indexed: 01/15/2023] Open
Abstract
Predicting structural and energetic properties of a molecular system is one of the fundamental tasks in molecular simulations, and it has applications in chemistry, biology, and medicine. In the past decade, the advent of machine learning algorithms had an impact on molecular simulations for various tasks, including property prediction of atomistic systems. In this paper, we propose a novel methodology for transferring knowledge obtained from simple molecular systems to a more complex one, endowed with a significantly larger number of atoms and degrees of freedom. In particular, we focus on the classification of high and low free-energy conformations. Our approach relies on utilizing (i) a novel hypergraph representation of molecules, encoding all relevant information for characterizing multi-atom interactions for a given conformation, and (ii) novel message passing and pooling layers for processing and making free-energy predictions on such hypergraph-structured data. Despite the complexity of the problem, our results show a remarkable Area Under the Curve of 0.92 for transfer learning from tri-alanine to the deca-alanine system. Moreover, we show that the same transfer learning approach can also be used in an unsupervised way to group chemically related secondary structures of deca-alanine in clusters having similar free-energy values. Our study represents a proof of concept that reliable transfer learning models for molecular systems can be designed, paving the way to unexplored routes in prediction of structural and energetic properties of biologically relevant systems.
Collapse
Affiliation(s)
- Sajjad Heydari
- grid.21613.370000 0004 1936 9609Department of Computer Science, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| | - Stefano Raniolo
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera italiana (USI), via G. Buffi 13, CH-6900 Lugano, Switzerland
| | - Lorenzo Livi
- grid.21613.370000 0004 1936 9609Department of Computer Science, University of Manitoba, Winnipeg, MB R3T 2N2 Canada ,grid.8391.30000 0004 1936 8024Department of Computer Science, University of Exeter, Exeter, EX4 4QF UK
| | - Vittorio Limongelli
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera italiana (USI), via G. Buffi 13, CH-6900 Lugano, Switzerland ,grid.4691.a0000 0001 0790 385XDepartment of Pharmacy, University of Naples “Federico II”, via D. Montesano 49, I-80131 Naples, Italy
| |
Collapse
|
54
|
Wernersson S, Birgersson S, Akke M. Cosolvent Dimethyl Sulfoxide Influences Protein-Ligand Binding Kinetics via Solvent Viscosity Effects: Revealing the Success Rate of Complex Formation Following Diffusive Protein-Ligand Encounter. Biochemistry 2023; 62:44-52. [PMID: 36542811 DOI: 10.1021/acs.biochem.2c00507] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein-ligand-exchange kinetics determines the duration of biochemical signals and consequently plays an important role in drug design. Binding studies commonly require solubilization of designed ligands in solvents such as dimethyl sulfoxide (DMSO), resulting in residual amounts of DMSO following titration of solubilized ligands into aqueous protein samples. Therefore, it is critical to establish whether DMSO influences protein-ligand binding. Here, we address the general and indirect effect of DMSO on protein-ligand binding caused by solvent viscosity, which is strongly dependent on the relative concentrations of DMSO and water. As a model system, we studied the binding of a drug-like ligand to the carbohydrate recognition domain of galectin-3 in the presence of variable amounts of DMSO. We used isothermal titration calorimetry to characterize binding thermodynamics and 15N NMR relaxation to monitor kinetics. The binding enthalpy is not affected, but we observe a subtle trend of increasingly unfavorable entropy of binding, and consequently decreased affinity, with increasing DMSO concentration. The increasing concentration of DMSO results in a reduced association rate of binding, while the dissociation rate is less affected. The observed association rate is inversely proportional to the viscosity of the DMSO-water mixture, as expected from theory, but significantly reduced from the diffusion-controlled limit. By comparing the viscosity dependence of the observed association rate with that of the theoretical diffusion-controlled association rate, we estimate the success rate of productive complex formation following an initial encounter of proteins and ligands, showing that only one out of several hundred binding "attempts" are successful.
Collapse
Affiliation(s)
- Sven Wernersson
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00Lund, Sweden
| | - Simon Birgersson
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00Lund, Sweden
| | - Mikael Akke
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00Lund, Sweden
| |
Collapse
|
55
|
Sohraby F, Nunes-Alves A. Advances in computational methods for ligand binding kinetics. Trends Biochem Sci 2022; 48:437-449. [PMID: 36566088 DOI: 10.1016/j.tibs.2022.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Binding kinetic parameters can be correlated with drug efficacy, which in recent years led to the development of various computational methods for predicting binding kinetic rates and gaining insight into protein-drug binding paths and mechanisms. In this review, we introduce and compare computational methods recently developed and applied to two systems, trypsin-benzamidine and kinase-inhibitor complexes. Methods involving enhanced sampling in molecular dynamics simulations or machine learning can be used not only to predict kinetic rates, but also to reveal factors modulating the duration of residence times, selectivity, and drug resistance to mutations. Methods which require less computational time to make predictions are highlighted, and suggestions to reduce the error of computed kinetic rates are presented.
Collapse
Affiliation(s)
- Farzin Sohraby
- Institute of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | - Ariane Nunes-Alves
- Institute of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany.
| |
Collapse
|
56
|
Cifone MT, He Y, Basu R, Wang N, Davoodi S, Spagnuolo LA, Si Y, Daryaee T, Stivala CE, Walker SG, Tonge PJ. Heterobivalent Inhibitors of Acetyl-CoA Carboxylase: Drug Target Residence Time and Time-Dependent Antibacterial Activity. J Med Chem 2022; 65:16510-16525. [PMID: 36459397 PMCID: PMC10303036 DOI: 10.1021/acs.jmedchem.2c01380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The relationship between drug-target residence time and the post-antibiotic effect (PAE) provides insights into target vulnerability. To probe the vulnerability of bacterial acetyl-CoA carboxylase (ACC), a series of heterobivalent inhibitors were synthesized based on pyridopyrimidine 1 and moiramide B (3) which bind to the biotin carboxylase and carboxyltransferase ACC active sites, respectively. The heterobivalent compound 17, which has a linker of 50 Å, was a tight binding inhibitor of Escherichia coli ACC (Kiapp 0.2 nM) and could be displaced from ACC by a combination of both 1 and 3 but not just by 1. In agreement with the prolonged occupancy of ACC resulting from forced proximity binding, the heterobivalent inhibitors produced a PAE in E. coli of 1-4 h in contrast to 1 and 3 in combination or alone, indicating that ACC is a vulnerable target and highlighting the utility of kinetic, time-dependent effects in the drug mechanism of action.
Collapse
Affiliation(s)
- Matthew T Cifone
- Center for Advanced Study of Drug Action, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - YongLe He
- Center for Advanced Study of Drug Action, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Rajeswari Basu
- Center for Advanced Study of Drug Action, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Nan Wang
- Center for Advanced Study of Drug Action, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Shabnam Davoodi
- Center for Advanced Study of Drug Action, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Lauren A Spagnuolo
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Yuanyuan Si
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Taraneh Daryaee
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Craig E Stivala
- Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Stephen G Walker
- Department of Oral Biology and Pathology, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Peter J Tonge
- Center for Advanced Study of Drug Action, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Department of Radiology, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
57
|
Semi-quantitatively Predicting the Residence Time of Three Natural Products on Endothelin Receptor A by Peak Profiling Using the Receptor Functionalized Macroporous Silica Gel as Stationary Phase. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
58
|
Ruzmetov T, Montes R, Sun J, Chen SH, Tang Z, Chang CEA. Binding Kinetics Toolkit for Analyzing Transient Molecular Conformations and Computing Free Energy Landscapes. J Phys Chem A 2022; 126:8761-8770. [DOI: 10.1021/acs.jpca.2c05499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Talant Ruzmetov
- Department of Chemistry, University of California at Riverside, Riverside, California92521, United States
| | - Ruben Montes
- Department of Chemistry, University of California at Riverside, Riverside, California92521, United States
| | - Jianan Sun
- Department of Chemistry, University of California at Riverside, Riverside, California92521, United States
| | - Si-Han Chen
- Department of Chemistry, University of California at Riverside, Riverside, California92521, United States
| | - Zhiye Tang
- Department of Chemistry, University of California at Riverside, Riverside, California92521, United States
| | - Chia-en A. Chang
- Department of Chemistry, University of California at Riverside, Riverside, California92521, United States
| |
Collapse
|
59
|
Wu Y, Wang S, Wang H, Hu B, Wang J. Selectivity mechanism of GRK2/5 inhibition through in silico investigation. Comput Biol Chem 2022; 101:107786. [DOI: 10.1016/j.compbiolchem.2022.107786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
|
60
|
Maya-Martinez R, Xu Y, Guthertz N, Walko M, Karamanos TK, Sobott F, Breeze AL, Radford SE. Dimers of D76N-β 2-microglobulin display potent antiamyloid aggregation activity. J Biol Chem 2022; 298:102659. [PMID: 36328246 PMCID: PMC9712992 DOI: 10.1016/j.jbc.2022.102659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022] Open
Abstract
Self-association of WT β2-microglobulin (WT-β2m) into amyloid fibrils is associated with the disorder dialysis related amyloidosis. In the familial variant D76N-β2m, the single amino acid substitution enhances the aggregation propensity of the protein dramatically and gives rise to a disorder that is independent of renal dysfunction. Numerous biophysical and structural studies on WT- and D76N-β2m have been performed in order to better understand the structure and dynamics of the native proteins and their different potentials to aggregate into amyloid. However, the structural properties of transient D76N-β2m oligomers and their role(s) in assembly remained uncharted. Here, we have utilized NMR methods, combined with photo-induced crosslinking, to detect, trap, and structurally characterize transient dimers of D76N-β2m. We show that the crosslinked D76N-β2m dimers have different structures from those previously characterized for the on-pathway dimers of ΔN6-β2m and are unable to assemble into amyloid. Instead, the crosslinked D76N-β2m dimers are potent inhibitors of amyloid formation, preventing primary nucleation and elongation/secondary nucleation when added in substoichiometric amounts with D76N-β2m monomers. The results highlight the specificity of early protein-protein interactions in amyloid formation and show how mapping these interfaces can inform new strategies to inhibit amyloid assembly.
Collapse
Affiliation(s)
- Roberto Maya-Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Martin Walko
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
61
|
Regueiro-Ren A, Sit SY, Chen Y, Chen J, Swidorski JJ, Liu Z, Venables BL, Sin N, Hartz RA, Protack T, Lin Z, Zhang S, Li Z, Wu DR, Li P, Kempson J, Hou X, Gupta A, Rampulla R, Mathur A, Park H, Sarjeant A, Benitex Y, Rahematpura S, Parker D, Phillips T, Haskell R, Jenkins S, Santone KS, Cockett M, Hanumegowda U, Dicker I, Meanwell NA, Krystal M. The Discovery of GSK3640254, a Next-Generation Inhibitor of HIV-1 Maturation. J Med Chem 2022; 65:11927-11948. [PMID: 36044257 DOI: 10.1021/acs.jmedchem.2c00879] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GSK3640254 is an HIV-1 maturation inhibitor (MI) that exhibits significantly improved antiviral activity toward a range of clinically relevant polymorphic variants with reduced sensitivity toward the second-generation MI GSK3532795 (BMS-955176). The key structural difference between GSK3640254 and its predecessor is the replacement of the para-substituted benzoic acid moiety attached at the C-3 position of the triterpenoid core with a cyclohex-3-ene-1-carboxylic acid substituted with a CH2F moiety at the carbon atom α- to the pharmacophoric carboxylic acid. This structural element provided a new vector with which to explore structure-activity relationships (SARs) and led to compounds with improved polymorphic coverage while preserving pharmacokinetic (PK) properties. The approach to the design of GSK3640254, the development of a synthetic route and its preclinical profile are discussed. GSK3640254 is currently in phase IIb clinical trials after demonstrating a dose-related reduction in HIV-1 viral load over 7-10 days of dosing to HIV-1-infected subjects.
Collapse
Affiliation(s)
- Alicia Regueiro-Ren
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, Princeton, New Jersey08543, United States
| | - Sing-Yuen Sit
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Yan Chen
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Jie Chen
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Jacob J Swidorski
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zheng Liu
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Brian L Venables
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Ny Sin
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Richard A Hartz
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Tricia Protack
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zeyu Lin
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Sharon Zhang
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zhufang Li
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Dauh-Rurng Wu
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Peng Li
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - James Kempson
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Xiaoping Hou
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Anuradha Gupta
- Department of Discovery Synthesis; Bristol Myers Squibb Research and Early Development, Bangalore 560099, India
| | - Richard Rampulla
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Arvind Mathur
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Hyunsoo Park
- Bristol Myers Squibb Chemical and Synthetic Development, New Brunswick, New Jersey08901, United States
| | - Amy Sarjeant
- Bristol Myers Squibb Chemical and Synthetic Development, New Brunswick, New Jersey08901, United States
| | - Yulia Benitex
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Sandhya Rahematpura
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Dawn Parker
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Thomas Phillips
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Roy Haskell
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Susan Jenkins
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Kenneth S Santone
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Mark Cockett
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Umesh Hanumegowda
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Ira Dicker
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Nicholas A Meanwell
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, Princeton, New Jersey08543, United States
| | - Mark Krystal
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| |
Collapse
|
62
|
Basak S, Li Y, Tao S, Daryaee F, Merino J, Gu C, Delker SL, Phan JN, Edwards TE, Walker SG, Tonge PJ. Structure-Kinetic Relationship Studies for the Development of Long Residence Time LpxC Inhibitors. J Med Chem 2022; 65:11854-11875. [PMID: 36037447 PMCID: PMC10182817 DOI: 10.1021/acs.jmedchem.2c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a promising drug target in Gram-negative bacteria. Previously, we described a correlation between the residence time of inhibitors on Pseudomonas aeruginosa LpxC (paLpxC) and the post-antibiotic effect (PAE) caused by the inhibitors on the growth of P. aeruginosa. Given that drugs with prolonged activity following compound removal may have advantages in dosing regimens, we have explored the structure-kinetic relationship for paLpxC inhibition by analogues of the pyridone methylsulfone PF5081090 (1) originally developed by Pfizer. Several analogues have longer residence times on paLpxC than 1 (41 min) including PT913, which has a residence time of 124 min. PT913 also has a PAE of 4 h, extending the original correlation observed between residence time and PAE. Collectively, the studies provide a platform for the rational modulation of paLpxC inhibitor residence time and the potential development of antibacterial agents that cause prolonged suppression of bacterial growth.
Collapse
Affiliation(s)
- Sneha Basak
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Yong Li
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Suyuan Tao
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Fereidoon Daryaee
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Jonathan Merino
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Chendi Gu
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | | | - Jenny N. Phan
- McGill University Montreal, Quebec H3A 0G4, Canada Canada
| | | | - Stephen G. Walker
- Department of Oral Biology and Pathology, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Peter J. Tonge
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Radiology, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
63
|
Quader S, Van Guyse JFR. Bioresponsive Polymers for Nanomedicine-Expectations and Reality! Polymers (Basel) 2022; 14:3659. [PMID: 36080733 PMCID: PMC9460233 DOI: 10.3390/polym14173659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 12/18/2022] Open
Abstract
Bioresponsive polymers in nanomedicine have been widely perceived to selectively activate the therapeutic function of nanomedicine at diseased or pathological sites, while sparing their healthy counterparts. This idea can be described as an advanced version of Paul Ehrlich's magic bullet concept. From that perspective, the inherent anomalies or malfunction of the pathological sites are generally targeted to allow the selective activation or sensory function of nanomedicine. Nonetheless, while the primary goals and expectations in developing bioresponsive polymers are to elicit exclusive selectivity of therapeutic action at diseased sites, this remains difficult to achieve in practice. Numerous research efforts have been undertaken, and are ongoing, to tackle this fine-tuning. This review provides a brief introduction to key stimuli with biological relevance commonly featured in the design of bioresponsive polymers, which serves as a platform for critical discussion, and identifies the gap between expectations and current reality.
Collapse
Affiliation(s)
- Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan
| | - Joachim F. R. Van Guyse
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan
- Leiden Academic Center for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
64
|
Doheny D, Manore S, Sirkisoon SR, Zhu D, Aguayo NR, Harrison A, Najjar M, Anguelov M, Cox AO, Furdui CM, Watabe K, Hollis T, Thomas A, Strowd R, Lo HW. An FDA-Approved Antifungal, Ketoconazole, and Its Novel Derivative Suppress tGLI1-Mediated Breast Cancer Brain Metastasis by Inhibiting the DNA-Binding Activity of Brain Metastasis-Promoting Transcription Factor tGLI1. Cancers (Basel) 2022; 14:4256. [PMID: 36077791 PMCID: PMC9454738 DOI: 10.3390/cancers14174256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
The goal of this study is to identify pharmacological inhibitors that target a recently identified novel mediator of breast cancer brain metastasis (BCBM), truncated glioma-associated oncogene homolog 1 (tGLI1). Inhibitors of tGLI1 are not yet available. To identify compounds that selectively kill tGLI1-expressing breast cancer, we screened 1527 compounds using two sets of isogenic breast cancer and brain-tropic breast cancer cell lines engineered to stably express the control, GLI1, or tGLI1 vector, and identified the FDA-approved antifungal ketoconazole (KCZ) to selectively target tGLI1-positive breast cancer cells and breast cancer stem cells, but not tGLI1-negative breast cancer and normal cells. KCZ's effects are dependent on tGLI1. Two experimental mouse metastasis studies have demonstrated that systemic KCZ administration prevented the preferential brain metastasis of tGLI1-positive breast cancer and suppressed the progression of established tGLI1-positive BCBM without liver toxicities. We further developed six KCZ derivatives, two of which (KCZ-5 and KCZ-7) retained tGLI1-selectivity in vitro. KCZ-7 exhibited higher blood-brain barrier penetration than KCZ/KCZ-5 and more effectively reduced the BCBM frequency. In contrast, itraconazole, another FDA-approved antifungal, failed to suppress BCBM. The mechanistic studies suggest that KCZ and KCZ-7 inhibit tGLI1's ability to bind to DNA, activate its target stemness genes Nanog and OCT4, and promote tumor proliferation and angiogenesis. Our study establishes the rationale for using KCZ and KCZ-7 for treating and preventing BCBM and identifies their mechanism of action.
Collapse
Affiliation(s)
- Daniel Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Sara Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Sherona R. Sirkisoon
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Dongqin Zhu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Noah R. Aguayo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Alexandria Harrison
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Mariana Najjar
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Marlyn Anguelov
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Anderson O’Brien Cox
- Proteomics and Metabolomics Shared Resource, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Cristina M. Furdui
- Proteomics and Metabolomics Shared Resource, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Thomas Hollis
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Alexandra Thomas
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Roy Strowd
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
65
|
Pharmacodynamic model of slow reversible binding and its applications in pharmacokinetic/pharmacodynamic modeling: review and tutorial. J Pharmacokinet Pharmacodyn 2022; 49:493-510. [PMID: 36040645 PMCID: PMC9578295 DOI: 10.1007/s10928-022-09822-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/12/2022] [Indexed: 10/14/2022]
Abstract
Therapeutic responses of most drugs are initiated by the rate and degree of binding to their receptors or targets. The law of mass action describes the rate of drug-receptor complex association (kon) and dissociation (koff) where the ratio koff/kon is the equilibrium dissociation constant (Kd). Drugs with slow reversible binding (SRB) often demonstrate delayed onset and prolonged pharmacodynamic effects. This report reviews evidence for drugs with SRB features, describes previous pharmacokinetic/pharmacodynamic (PK/PD) modeling efforts of several such drugs, provides a tutorial on the mathematics and properties of SRB models, demonstrates applications of SRB models to additional compounds, and compares PK/PD fittings of SRB with other mechanistic models. We identified and summarized 52 drugs with in vitro-confirmed SRB from a PubMed literature search. Simulations with a SRB model and observed PK/PD profiles showed delayed and prolonged responses and that increasing doses/kon or decreasing koff led to greater expected maximum effects and a longer duration of effects. Recession slopes for return of responses to baseline after single doses were nearly linear with an inflection point that approaches a limiting value at larger doses. The SRB model newly captured literature data for the antihypertensive effects of candesartan and antiallergic effects of noberastine. Their PD profiles could also be fitted with indirect response and biophase models with minimal differences. The applicability of SRB models is probably commonplace, but underappreciated, owing to the need for in vitro confirmation of binding kinetics and the similarity of PK/PD profiles to models with other mechanistic determinants.
Collapse
|
66
|
Sun D, Gao W, Hu H, Zhou S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm Sin B 2022; 12:3049-3062. [PMID: 35865092 PMCID: PMC9293739 DOI: 10.1016/j.apsb.2022.02.002] [Citation(s) in RCA: 499] [Impact Index Per Article: 166.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 12/14/2022] Open
Abstract
Ninety percent of clinical drug development fails despite implementation of many successful strategies, which raised the question whether certain aspects in target validation and drug optimization are overlooked? Current drug optimization overly emphasizes potency/specificity using structure‒activity-relationship (SAR) but overlooks tissue exposure/selectivity in disease/normal tissues using structure‒tissue exposure/selectivity-relationship (STR), which may mislead the drug candidate selection and impact the balance of clinical dose/efficacy/toxicity. We propose structure‒tissue exposure/selectivity-activity relationship (STAR) to improve drug optimization, which classifies drug candidates based on drug's potency/selectivity, tissue exposure/selectivity, and required dose for balancing clinical efficacy/toxicity. Class I drugs have high specificity/potency and high tissue exposure/selectivity, which needs low dose to achieve superior clinical efficacy/safety with high success rate. Class II drugs have high specificity/potency and low tissue exposure/selectivity, which requires high dose to achieve clinical efficacy with high toxicity and needs to be cautiously evaluated. Class III drugs have relatively low (adequate) specificity/potency but high tissue exposure/selectivity, which requires low dose to achieve clinical efficacy with manageable toxicity but are often overlooked. Class IV drugs have low specificity/potency and low tissue exposure/selectivity, which achieves inadequate efficacy/safety, and should be terminated early. STAR may improve drug optimization and clinical studies for the success of clinical drug development.
Collapse
Affiliation(s)
- Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Wei Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Simon Zhou
- Translational Development and Clinical Pharmacology, Bristol Meyer Squibb Company, Summit, NJ, 07920, USA
| |
Collapse
|
67
|
Mech-Warda P, Giełdoń A, Kawiak A, Maciejewska N, Olszewski M, Makowski M, Chylewska A. Low-Molecular Pyrazine-Based DNA Binders: Physicochemical and Antimicrobial Properties. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123704. [PMID: 35744829 PMCID: PMC9228100 DOI: 10.3390/molecules27123704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022]
Abstract
Pyrazine and its derivatives are a large group of compounds that exhibit broad biological activity, the changes of which can be easily detected by a substituent effect or a change in the functional group. The present studies combined theoretical research with the density functional theory (DFT) approach (B3LYP/6-311+G**) and experimental (potentiometric and spectrophotometric) analysis for a thorough understanding of the structure of chlorohydrazinopyrazine, its physicochemical and cytotoxic properties, and the site and nature of interaction with DNA. The obtained results indicated that 2-chloro-3-hydrazinopyrazine (2Cl3HP) displayed the highest affinity to DNA. Cytotoxicity studies revealed that the compound did not exhibit toxicity toward human dermal keratinocytes, which supported the potential application of 2Cl3HP in clinical use. The study also attempted to establish the possible equilibria occurring in the aqueous solution and, using both theoretical and experimental methods, clearly showed the hydrophilic nature of the compound. The experimental and theoretical results of the study confirmed the quality of the compound, as well as the appropriateness of the selected set of methods for similar research.
Collapse
Affiliation(s)
- Paulina Mech-Warda
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (P.M.-W.); (M.M.)
| | - Artur Giełdoń
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland;
| | - Anna Kawiak
- Institute of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland;
| | - Natalia Maciejewska
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland; (N.M.); (M.O.)
| | - Mateusz Olszewski
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland; (N.M.); (M.O.)
| | - Mariusz Makowski
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (P.M.-W.); (M.M.)
| | - Agnieszka Chylewska
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (P.M.-W.); (M.M.)
- Correspondence:
| |
Collapse
|
68
|
Kinetic Modeling of Time-Dependent Enzyme Inhibition by Pre-Steady-State Analysis of Progress Curves: The Case Study of the Anti-Alzheimer's Drug Galantamine. Int J Mol Sci 2022; 23:ijms23095072. [PMID: 35563466 PMCID: PMC9105972 DOI: 10.3390/ijms23095072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 01/27/2023] Open
Abstract
The Michaelis–Menten model of enzyme kinetic assumes the free ligand approximation, the steady-state approximation and the rapid equilibrium approximation. Analytical methods to model slow-binding inhibitors by the analysis of initial velocities have been developed but, due to their inherent complexity, they are seldom employed. In order to circumvent the complications that arise from the violation of the rapid equilibrium assumption, inhibition is commonly evaluated by pre-incubating the enzyme and the inhibitors so that, even for slow inhibitors, the binding equilibrium is established before the reaction is started. Here, we show that for long drug-target residence time inhibitors, the conventional analysis of initial velocities by the linear regression of double-reciprocal plots fails to provide a correct description of the inhibition mechanism. As a case study, the inhibition of acetylcholinesterase by galantamine, a drug approved for the symptomatic treatment of Alzheimer’s disease, is reported. For over 50 years, analysis based on the conventional steady-state model has overlooked the time-dependent nature of galantamine inhibition, leading to an erroneous assessment of the drug potency and, hence, to discrepancies between biochemical data and the pharmacological evidence. Re-examination of acetylcholinesterase inhibition by pre-steady state analysis of the reaction progress curves showed that the potency of galantamine has indeed been underestimated by a factor of ~100.
Collapse
|
69
|
Gao W, Hu H, Dai L, He M, Yuan H, Zhang H, Liao J, Wen B, Li Y, Palmisano M, Traore MDM, Zhou S, Sun D. Structure‒tissue exposure/selectivity relationship (STR) correlates with clinical efficacy/safety. Acta Pharm Sin B 2022; 12:2462-2478. [PMID: 35646532 PMCID: PMC9136610 DOI: 10.1016/j.apsb.2022.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/23/2022] [Accepted: 02/12/2022] [Indexed: 11/17/2022] Open
Abstract
Drug optimization, which improves drug potency/specificity by structure‒activity relationship (SAR) and drug-like properties, is rigorously performed to select drug candidates for clinical trials. However, the current drug optimization may overlook the structure‒tissue exposure/selectivity-relationship (STR) in disease-targeted tissues vs. normal tissues, which may mislead the drug candidate selection and impact the balance of clinical efficacy/toxicity. In this study, we investigated the STR in correlation with observed clinical efficacy/toxicity using seven selective estrogen receptor modulators (SERMs) that have similar structures, same molecular target, and similar/different pharmacokinetics. The results showed that drug's plasma exposure was not correlated with drug's exposures in the target tissues (tumor, fat pad, bone, uterus), while tissue exposure/selectivity of SERMs was correlated with clinical efficacy/safety. Slight structure modifications of four SERMs did not change drug's plasma exposure but altered drug's tissue exposure/selectivity. Seven SERMs with high protein binding showed higher accumulation in tumors compared to surrounding normal tissues, which is likely due to tumor EPR effect of protein-bound drugs. These suggest that STR alters drug's tissue exposure/selectivity in disease-targeted tissues vs. normal tissues impacting clinical efficacy/toxicity. Drug optimization needs to balance the SAR and STR in selecting drug candidate for clinical trial to improve success of clinical drug development.
Collapse
Affiliation(s)
- Wei Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lipeng Dai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Miao He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hebao Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huixia Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jinhui Liao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yan Li
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, Summit, NJ 07920, USA
| | - Maria Palmisano
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, Summit, NJ 07920, USA
| | - Mohamed Dit Mady Traore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Simon Zhou
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, Summit, NJ 07920, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
70
|
Eberle SA, Gustavsson M. A Scintillation Proximity Assay for Real-Time Kinetic Analysis of Chemokine-Chemokine Receptor Interactions. Cells 2022; 11:1317. [PMID: 35455996 PMCID: PMC9024993 DOI: 10.3390/cells11081317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Chemokine receptors are extensively involved in a broad range of physiological and pathological processes, making them attractive drug targets. However, despite considerable efforts, there are very few approved drugs targeting this class of seven transmembrane domain receptors to date. In recent years, the importance of including binding kinetics in drug discovery campaigns was emphasized. Therefore, kinetic insight into chemokine-chemokine receptor interactions could help to address this issue. Moreover, it could additionally deepen our understanding of the selectivity and promiscuity of the chemokine-chemokine receptor network. Here, we describe the application, optimization and validation of a homogenous Scintillation Proximity Assay (SPA) for real-time kinetic profiling of chemokine-chemokine receptor interactions on the example of ACKR3 and CXCL12. The principle of the SPA is the detection of radioligand binding to receptors reconstituted into nanodiscs by scintillation light. No receptor modifications are required. The nanodiscs provide a native-like environment for receptors and allow for full control over bilayer composition and size. The continuous assay format enables the monitoring of binding reactions in real-time, and directly accounts for non-specific binding and potential artefacts. Minor adaptations additionally facilitate the determination of equilibrium binding metrics, making the assay a versatile tool for the study of receptor-ligand interactions.
Collapse
Affiliation(s)
| | - Martin Gustavsson
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
| |
Collapse
|
71
|
Vlachodimou A, de Vries H, Pasoli M, Goudswaard M, Kim SA, Kim YC, Scortichini M, Marshall M, Linden J, Heitman LH, Jacobson KA, IJzerman AP. Kinetic profiling and functional characterization of 8-phenylxanthine derivatives as A 2B adenosine receptor antagonists. Biochem Pharmacol 2022; 200:115027. [PMID: 35395239 DOI: 10.1016/j.bcp.2022.115027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/30/2022]
Abstract
A2B adenosine receptor (A2BAR) antagonists have therapeutic potential in inflammation-related diseases such as asthma, chronic obstructive pulmonary disease and cancer. However, no drug is currently clinically approved, creating a demand for research on novel antagonists. Over the last decade, the study of target binding kinetics, along with affinity and potency, has been proven valuable in early drug discovery stages, as it is associated with improved in vivo drug efficacy and safety. In this study, we report the synthesis and biological evaluation of a series of xanthine derivatives as A2BAR antagonists, including an isothiocyanate derivative designed to bind covalently to the receptor. All 28 final compounds were assessed in radioligand binding experiments, to evaluate their affinity and for those qualifying, kinetic binding parameters. Both structure-affinity and structure-kinetic relationships were derived, providing a clear relationship between affinity and dissociation rate constants. Two structurally similar compounds, 17 and 18, were further evaluated in a label-free assay due to their divergent kinetic profiles. An extended cellular response was associated with long A2BAR residence times. This link between a ligand's A2BAR residence time and its functional effect highlights the importance of binding kinetics as a selection parameter in the early stages of drug discovery.
Collapse
Affiliation(s)
- Anna Vlachodimou
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands
| | - Henk de Vries
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands
| | - Milena Pasoli
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands
| | - Miranda Goudswaard
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands
| | - Soon-Ai Kim
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Yong-Chul Kim
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Mirko Scortichini
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Melissa Marshall
- Department of Internal Medicine and Molecular Physiology & Biological Physics, University of Virginia Health Science Center, Charlottesville, VA 22908, USA
| | - Joel Linden
- Department of Internal Medicine and Molecular Physiology & Biological Physics, University of Virginia Health Science Center, Charlottesville, VA 22908, USA
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands; Oncode Institute, Leiden, the Netherlands
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands.
| |
Collapse
|
72
|
Zhang H, Yan W, Sun Y, Yuan H, Su L, Cao X, Wang P, Xu Z, Hu Y, Wang Z, Wang Y, Fu K, Sun Y, Chen Y, Cheng J, Guo D. Long Residence Time at the Vasopressin V 2 Receptor Translates into Superior Inhibitory Effects in Ex Vivo and In Vivo Models of Autosomal Dominant Polycystic Kidney Disease. J Med Chem 2022; 65:7717-7728. [PMID: 35363466 DOI: 10.1021/acs.jmedchem.2c00011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prevailing strategies directing early-phase drug discovery heavily rely on equilibrium-based metrics such as affinity, which overlooks the kinetic process of a drug molecule interacting with its target. Herein, we developed a number of vasopressin V2 receptor (V2R) antagonists with divergent binding affinities and kinetics for autosomal dominant polycystic kidney disease (ADPKD). Surprisingly, the residence time of the V2R antagonists, but not their affinity, was correlated with the efficacy in both ex vivo and in vivo models of ADPKD. We envision that the kinetics-directed drug candidate selection and development may have general applicability for ADPKD and other therapeutic areas as well.
Collapse
Affiliation(s)
- Haoran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Wenzhong Yan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yongzhan Sun
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, Tianjin Medical University, Tianjin 300070, China
| | - Haoxing Yuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Limin Su
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Xudong Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Peng Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Zhou Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Youhui Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Zhongjian Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Yinan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Kequan Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Yupeng Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, Tianjin Medical University, Tianjin 300070, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
73
|
IJzerman AP, Jacobson KA, Müller CE, Cronstein BN, Cunha RA. International Union of Basic and Clinical Pharmacology. CXII: Adenosine Receptors: A Further Update. Pharmacol Rev 2022; 74:340-372. [PMID: 35302044 PMCID: PMC8973513 DOI: 10.1124/pharmrev.121.000445] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our previous International Union of Basic and Clinical Pharmacology report on the nomenclature and classification of adenosine receptors (2011) contained a number of emerging developments with respect to this G protein-coupled receptor subfamily, including protein structure, protein oligomerization, protein diversity, and allosteric modulation by small molecules. Since then, a wealth of new data and results has been added, allowing us to explore novel concepts such as target binding kinetics and biased signaling of adenosine receptors, to examine a multitude of receptor structures and novel ligands, to gauge new pharmacology, and to evaluate clinical trials with adenosine receptor ligands. This review should therefore be considered a further update of our previous reports from 2001 and 2011. SIGNIFICANCE STATEMENT: Adenosine receptors (ARs) are of continuing interest for future treatment of chronic and acute disease conditions, including inflammatory diseases, neurodegenerative afflictions, and cancer. The design of AR agonists ("biased" or not) and antagonists is largely structure based now, thanks to the tremendous progress in AR structural biology. The A2A- and A2BAR appear to modulate the immune response in tumor biology. Many clinical trials for this indication are ongoing, whereas an A2AAR antagonist (istradefylline) has been approved as an anti-Parkinson agent.
Collapse
Affiliation(s)
- Adriaan P IJzerman
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| | - Kenneth A Jacobson
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| | - Christa E Müller
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| | - Bruce N Cronstein
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| | - Rodrigo A Cunha
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| |
Collapse
|
74
|
Zhu J, Guo T, Wang Z, Zhao Y. Triggered azobenzene-based prodrugs and drug delivery systems. J Control Release 2022; 345:475-493. [PMID: 35339578 DOI: 10.1016/j.jconrel.2022.03.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 12/18/2022]
Abstract
Azobenzene-based molecules show unique trans-cis isomerization upon ultraviolet light irradiation, which induce the change of polarity, crystallinity, stability, and binding affinity with pharmacological target. Moreover, azobenzene is the substrate of azoreductase that is often overexpressed in many pathological sites, e.g. hypoxic solid tumor. Therefore, azobenzene can be a multifunctional molecule in material science, pharmaceutical science and biomedicine because of its sensitivity to light, hypoxia and certain enzymes, hence showing potential application in site-specific smart therapy. Herein we focus on the employment of azobenzene and its derivatives for engineering triggered prodrug and drug delivery systems, and provide an overview of photoswitchable azo-based prodrugs, the associated problems regarding ultraviolet light and reversible isomerization, as well as the potential solutions. We also present the advance of azo-bearing delivery vehicles wherein azobenzene act as the linker, capping agent, and building block, and discuss the corresponding mechanisms for controlled cargo release, endocytosis enhancement and sensitization of free radical cancer therapy.
Collapse
Affiliation(s)
- Jundong Zhu
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Tao Guo
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Zheng Wang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
75
|
Wang J, Bhattarai A, Do HN, Akhter S, Miao Y. Molecular Simulations and Drug Discovery of Adenosine Receptors. Molecules 2022; 27:2054. [PMID: 35408454 PMCID: PMC9000248 DOI: 10.3390/molecules27072054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/02/2023] Open
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of human membrane proteins. Four subtypes of adenosine receptors (ARs), the A1AR, A2AAR, A2BAR and A3AR, each with a unique pharmacological profile and distribution within the tissues in the human body, mediate many physiological functions and serve as critical drug targets for treating numerous human diseases including cancer, neuropathic pain, cardiac ischemia, stroke and diabetes. The A1AR and A3AR preferentially couple to the Gi/o proteins, while the A2AAR and A2BAR prefer coupling to the Gs proteins. Adenosine receptors were the first subclass of GPCRs that had experimental structures determined in complex with distinct G proteins. Here, we will review recent studies in molecular simulations and computer-aided drug discovery of the adenosine receptors and also highlight their future research opportunities.
Collapse
Affiliation(s)
| | | | | | | | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA; (J.W.); (A.B.); (H.N.D.); (S.A.)
| |
Collapse
|
76
|
Gomez-Soler M, Gehring MP, Lechtenberg BC, Zapata-Mercado E, Ruelos A, Matsumoto MW, Hristova K, Pasquale EB. Ligands with different dimeric configurations potently activate the EphA2 receptor and reveal its potential for biased signaling. iScience 2022; 25:103870. [PMID: 35243233 PMCID: PMC8858996 DOI: 10.1016/j.isci.2022.103870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/13/2021] [Accepted: 02/01/2022] [Indexed: 12/03/2022] Open
Abstract
The EphA2 receptor tyrosine kinase activates signaling pathways with different, and sometimes opposite, effects in cancer and other pathologies. Thus, highly specific and potent biased ligands that differentially control EphA2 signaling responses could be therapeutically valuable. Here, we use EphA2-specific monomeric peptides to engineer dimeric ligands with three different geometric configurations to combine a potential ability to differentially modulate EphA2 signaling responses with the high potency and prolonged receptor residence time characteristic of dimeric ligands. The different dimeric peptides readily induce EphA2 clustering, autophosphorylation and signaling, the best with sub-nanomolar potency. Yet, there are differences in two EphA2 signaling responses induced by peptides with different configurations, which exhibit distinct potency and efficacy. The peptides bias signaling when compared with the ephrinA1-Fc ligand and do so via different mechanisms. These findings provide insights into Eph receptor signaling, and proof-of-principle that different Eph signaling responses can be distinctly modulated.
Collapse
Affiliation(s)
- Maricel Gomez-Soler
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Marina P. Gehring
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Bernhard C. Lechtenberg
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville Victoria 3052, Australia and Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Elmer Zapata-Mercado
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alyssa Ruelos
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Mike W. Matsumoto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Elena B. Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
77
|
Srinivasan B. A guide to enzyme kinetics in early drug discovery. FEBS J 2022; 290:2292-2305. [PMID: 35175693 DOI: 10.1111/febs.16404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 12/28/2022]
Abstract
Drugs interact with their target of interest to bring about the desired phenotypic outcome that results in disease alleviation. Traditionally, most lead optimization exercises were driven by affinity measures (like IC50 ) to inform structure-activity relationship (SAR)-guided medicinal chemistry. However, an IC50 value is a thermodynamic estimate measured under equilibrium conditions that can vary as a function of substrate concentration and/or time (the latter especially for nonequilibrium modalities). Further, like other thermodynamic estimates, it is a state-function that is indifferent to the path traversed from the initial state to the final state. This can be a cause for concern in drug discovery given the predominance of nonequilibrium interactions and the open thermodynamic nature of the human system. Under such situations, employing rates along with equilibrium constants (or IC50 values) would be far more relevant to capture the time evolution of the small molecule's interaction with the target of interest. These rates are generally typified by the rate of association, rate of dissociation and the residence time of the small molecule on the target (target occupancy). These parameters, when combined with the concept of target vulnerability, therapeutic window, pharmacokinetic profile of the small molecule, estimates of endogenous ligand and target turnover, will shed critical insights into the kinetics and dynamics of a small molecule's interaction with the protein, and allow realistic modelling of the system to enable optimizations and dosing decisions. With that aim, this guide will attempt to introduce the traditional role of mechanistic enzymology within drug discovery and emphasize the importance of kinetics in guiding SAR-based optimizations. It will also present initial ideas on how kinetic investigation should be positioned relative to the temporal span of a drug-discovery pipeline to leverage maximal utility from the investment in time and effort.
Collapse
Affiliation(s)
- Bharath Srinivasan
- Mechanistic and Structural Biology Discovery Sciences R&D AstraZeneca Cambridge UK
| |
Collapse
|
78
|
Quader S, Kataoka K, Cabral H. Nanomedicine for brain cancer. Adv Drug Deliv Rev 2022; 182:114115. [PMID: 35077821 DOI: 10.1016/j.addr.2022.114115] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/18/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023]
Abstract
CNS tumors remain among the deadliest forms of cancer, resisting conventional and new treatment approaches, with mortality rates staying practically unchanged over the past 30 years. One of the primary hurdles for treating these cancers is delivering drugs to the brain tumor site in therapeutic concentration, evading the blood-brain (tumor) barrier (BBB/BBTB). Supramolecular nanomedicines (NMs) are increasingly demonstrating noteworthy prospects for addressing these challenges utilizing their unique characteristics, such as improving the bioavailability of the payloadsviacontrolled pharmacokinetics and pharmacodynamics, BBB/BBTB crossing functions, superior distribution in the brain tumor site, and tumor-specific drug activation profiles. Here, we review NM-based brain tumor targeting approaches to demonstrate their applicability and translation potential from different perspectives. To this end, we provide a general overview of brain tumor and their treatments, the incidence of the BBB and BBTB, and their role on NM targeting, as well as the potential of NMs for promoting superior therapeutic effects. Additionally, we discuss critical issues of NMs and their clinical trials, aiming to bolster the potential clinical applications of NMs in treating these life-threatening diseases.
Collapse
Affiliation(s)
- Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan.
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
79
|
Shen Z, Ratia K, Cooper L, Kong D, Lee H, Kwon Y, Li Y, Alqarni S, Huang F, Dubrovskyi O, Rong L, Thatcher G, Xiong R. Design of SARS-CoV-2 PLpro Inhibitors for COVID-19 Antiviral Therapy Leveraging Binding Cooperativity. J Med Chem 2022; 65:2940-2955. [PMID: 34665619 PMCID: PMC8547495 DOI: 10.1021/acs.jmedchem.1c01307] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Indexed: 12/29/2022]
Abstract
Antiviral agents that complement vaccination are urgently needed to end the COVID-19 pandemic. The SARS-CoV-2 papain-like protease (PLpro), one of only two essential cysteine proteases that regulate viral replication, also dysregulates host immune sensing by binding and deubiquitination of host protein substrates. PLpro is a promising therapeutic target, albeit challenging owing to featureless P1 and P2 sites recognizing glycine. To overcome this challenge, we leveraged the cooperativity of multiple shallow binding sites on the PLpro surface, yielding novel 2-phenylthiophenes with nanomolar inhibitory potency. New cocrystal structures confirmed that ligand binding induces new interactions with PLpro: by closing of the BL2 loop of PLpro forming a novel "BL2 groove" and by mimicking the binding interaction of ubiquitin with Glu167 of PLpro. Together, this binding cooperativity translates to the most potent PLpro inhibitors reported to date, with slow off-rates, improved binding affinities, and low micromolar antiviral potency in SARS-CoV-2-infected human cells.
Collapse
Affiliation(s)
- Zhengnan Shen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
- UICentre (Drug Discovery @ UIC), University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Kiira Ratia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
- Research Resources Center, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
| | - Laura Cooper
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
- Department of Microbiology, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
| | - Deyu Kong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
- UICentre (Drug Discovery @ UIC), University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
| | - Hyun Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
- Research Resources Center, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
| | - Youngjin Kwon
- Research Resources Center, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
| | - Yangfeng Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
- UICentre (Drug Discovery @ UIC), University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
| | - Saad Alqarni
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
| | - Fei Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
- UICentre (Drug Discovery @ UIC), University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
| | - Oleksii Dubrovskyi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
- UICentre (Drug Discovery @ UIC), University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
| | - Lijun Rong
- Department of Microbiology, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
| | - Gregory Thatcher
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Rui Xiong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
- UICentre (Drug Discovery @ UIC), University of Illinois at Chicago (UIC), Chicago, IL, 60612, USA
| |
Collapse
|
80
|
Lay CS, Thomas DA, Evans JP, Campbell M, McCombe K, Phillipou AN, Gordon LJ, Jones EJ, Riching K, Mahmood M, Messenger C, Carver CE, Gatfield KM, Craggs PD. Development of an intracellular quantitative assay to measure compound binding kinetics. Cell Chem Biol 2022; 29:287-299.e8. [PMID: 34520747 DOI: 10.1016/j.chembiol.2021.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/09/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023]
Abstract
Contemporary drug discovery typically quantifies the effect of a molecule on a biological target using the equilibrium-derived measurements of IC50, EC50, or KD. Kinetic descriptors of drug binding are frequently linked with the effectiveness of a molecule in modulating a disease phenotype; however, these parameters are yet to be fully adopted in early drug discovery. Nanoluciferase bioluminescence resonance energy transfer (NanoBRET) can be used to measure interactions between fluorophore-conjugated probes and luciferase fused target proteins. Here, we describe an intracellular NanoBRET competition assay that can be used to quantify cellular kinetic rates of compound binding to nanoluciferase-fused bromodomain and extra-terminal (BET) proteins. Comparative rates are generated using a cell-free NanoBRET assay and by utilizing orthogonal recombinant protein-based methodologies. A screen of known pan-BET inhibitors is used to demonstrate the value of this approach in the investigation of kinetic selectivity between closely related proteins.
Collapse
Affiliation(s)
- Charles S Lay
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Daniel A Thomas
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK; Arctoris, Oxford OX14 4SA, UK
| | - John P Evans
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Matthew Campbell
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Kristopher McCombe
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK; Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Alexander N Phillipou
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Laurie J Gordon
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Emma J Jones
- Protein and Cellular Sciences, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | | | - Mahnoor Mahmood
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Cassie Messenger
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Charlotte E Carver
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Kelly M Gatfield
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Peter D Craggs
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK; GSK-Francis Crick Institute Linklabs, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| |
Collapse
|
81
|
Probing altered enzyme activity in the biochemical characterization of cancer. Biosci Rep 2022; 42:230680. [PMID: 35048115 PMCID: PMC8819661 DOI: 10.1042/bsr20212002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Enzymes have evolved to catalyze their precise reactions at the necessary rates, locations, and time to facilitate our development, to respond to a variety of insults and challenges, and to maintain a healthy, balanced state. Enzymes achieve this extraordinary feat through their unique kinetic parameters, myriad regulatory strategies, and their sensitivity to their surroundings, including substrate concentration and pH. The Cancer Genome Atlas (TCGA) highlights the extraordinary number of ways in which the finely tuned activities of enzymes can be disrupted, contributing to cancer development and progression often due to somatic and/or inherited genetic alterations. Rather than being limited to the domain of enzymologists, kinetic constants such as kcat, Km, and kcat/Km are highly informative parameters that can impact a cancer patient in tangible ways—these parameters can be used to sort tumor driver mutations from passenger mutations, to establish the pathways that cancer cells rely on to drive patients’ tumors, to evaluate the selectivity and efficacy of anti-cancer drugs, to identify mechanisms of resistance to treatment, and more. In this review, we will discuss how changes in enzyme activity, primarily through somatic mutation, can lead to altered kinetic parameters, new activities, or changes in conformation and oligomerization. We will also address how changes in the tumor microenvironment can affect enzymatic activity, and briefly describe how enzymology, when combined with additional powerful tools, and can provide us with tremendous insight into the chemical and molecular mechanisms of cancer.
Collapse
|
82
|
Perveen S, Sharma R. Screening approaches and therapeutic targets: The two driving wheels of tuberculosis drug discovery. Biochem Pharmacol 2022; 197:114906. [PMID: 34990594 DOI: 10.1016/j.bcp.2021.114906] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) is an infectious disease, infecting a quarter of world's population. Drug resistant TB further exacerbates the grim scenario of the drying TB drug discovery pipeline. The limited arsenal to fight TB presses the need for thorough efforts for identifying promising hits to combat the disease. The review highlights the efforts in the field of tuberculosis drug discovery, with an emphasis on massive drug screening campaigns for identifying novel hits against Mtb in both industry and academia. As an intracellular pathogen, mycobacteria reside in a complicated intracellular environment with multiple factors at play. Here, we outline various strategies employed in an effort to mimic the intracellular milieu for bringing the screening models closer to the actual settings. The review also focuses on the novel targets and pathways that could aid in target-based drug discovery in TB. The recent high throughput screening efforts resulting in the identification of potent hits against Mtb has been summarized in this article. There is a pressing need for effective screening strategies and approaches employing innovative tools and recent technologies; including nanotechnology, gene-editing tools such as CRISPR-cas system, host-directed bacterial killing and high content screening to augment the TB drug discovery pipeline with safer and shorter drug regimens.
Collapse
Affiliation(s)
- Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
83
|
Liang J, Tran VNN, Hemez C, Abel Zur Wiesch P. Current Approaches of Building Mechanistic Pharmacodynamic Drug-Target Binding Models. Methods Mol Biol 2022; 2385:1-17. [PMID: 34888713 DOI: 10.1007/978-1-0716-1767-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mechanistic pharmacodynamic models that incorporate the binding kinetics of drug-target interactions have several advantages in understanding target engagement and the efficacy of a drug dose. However, guidelines on how to build and interpret mechanistic pharmacodynamic drug-target binding models considering both biological and computational factors are still missing in the literature. In this chapter, current approaches of building mechanistic PD models and their advantages are discussed. We also present a methodology on how to select a suitable model considering both biological and computational perspectives, as well as summarize the challenges of current mechanistic PD models.
Collapse
Affiliation(s)
- Jingyi Liang
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Vi Ngoc-Nha Tran
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Colin Hemez
- Graduate Program in Biophysics, Harvard University, Boston, MA, USA
| | - Pia Abel Zur Wiesch
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA, USA.
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, Blindern, Oslo, Norway.
| |
Collapse
|
84
|
Clementino-Neto J, da Silva JKS, de Melo Bastos Cavalcante C, da Silva-Júnior PF, David CC, de Araújo MV, Mendes CB, de Queiroz AC, da Silva ECO, de Souza ST, da Silva Fonseca EJ, da Silva TMS, de Amorim Camara C, Moura-Neto V, de Araújo-Júnior JX, da Silva-Júnior EF, da-Silva AX, Alexandre-Moreira MS. In vitro antitumor activity of dialkylamine-1,4-naphthoquinones toward human glioblastoma multiforme cells. NEW J CHEM 2022. [DOI: 10.1039/d1nj05915g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we evaluated the in vitro antitumor activity of dialkylamino-1,4-naphthoquinones (1a–n) toward human glioblastoma multiforme cells (GBM02).
Collapse
Affiliation(s)
- José Clementino-Neto
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
- Laboratory of Electrophysiology and Brain Metabolism, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - João Kaycke Sarmento da Silva
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Cibelle de Melo Bastos Cavalcante
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
- Laboratory of Electrophysiology and Brain Metabolism, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Paulo Fernando da Silva-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Cibelle Cabral David
- Laboratory of Bioactive Compounds Synthesis, Molecular Sciences Department, Federal Rural University of Pernambuco, Campus Dois Irmãos, Dom Manuel de Medeiros Street, Recife 57171-900, PE, Brazil
| | - Morgana Vital de Araújo
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Carmelita Bastos Mendes
- Laboratory of Electrophysiology and Brain Metabolism, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Aline Cavalcanti de Queiroz
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
- Laboratory of Microbiology, Immunology and Parasitology, Complex Of Medical Sciences And Nursing, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, AL, Brazil
| | - Elaine Cristina Oliveira da Silva
- Laboratory of Characterization and Microscopy of Materials, Institute of Physics, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió, 57072, AL, Brazil
| | - Samuel Teixeira de Souza
- Laboratory of Characterization and Microscopy of Materials, Institute of Physics, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió, 57072, AL, Brazil
| | - Eduardo Jorge da Silva Fonseca
- Laboratory of Characterization and Microscopy of Materials, Institute of Physics, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió, 57072, AL, Brazil
| | - Tânia Maria Sarmento da Silva
- Laboratory of Bioactive Compounds Synthesis, Molecular Sciences Department, Federal Rural University of Pernambuco, Campus Dois Irmãos, Dom Manuel de Medeiros Street, Recife 57171-900, PE, Brazil
| | - Celso de Amorim Camara
- Laboratory of Bioactive Compounds Synthesis, Molecular Sciences Department, Federal Rural University of Pernambuco, Campus Dois Irmãos, Dom Manuel de Medeiros Street, Recife 57171-900, PE, Brazil
| | - Vivaldo Moura-Neto
- State Institute of Brain Paulo Niemeyer, Rezende Street, Rio de Janeiro 20231-092, RJ, Brazil
| | - João Xavier de Araújo-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Adriana Ximenes da-Silva
- Laboratory of Electrophysiology and Brain Metabolism, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Magna Suzana Alexandre-Moreira
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| |
Collapse
|
85
|
Kinetic intracellular assay measures compound binding kinetics at intracellular targets within living cells. FUTURE DRUG DISCOVERY 2021. [DOI: 10.4155/fdd-2021-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
86
|
Murray BW, Rogers E, Zhai D, Deng W, Chen X, Sprengeler PA, Zhang X, Graber A, Reich SH, Stopatschinskaja S, Solomon B, Besse B, Drilon A. Molecular Characteristics of Repotrectinib That Enable Potent Inhibition of TRK Fusion Proteins and Resistant Mutations. Mol Cancer Ther 2021; 20:2446-2456. [PMID: 34625502 PMCID: PMC9762329 DOI: 10.1158/1535-7163.mct-21-0632] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/28/2021] [Accepted: 10/01/2021] [Indexed: 01/07/2023]
Abstract
NTRK chromosomal rearrangements yield oncogenic TRK fusion proteins that are sensitive to TRK inhibitors (larotrectinib and entrectinib) but often mutate, limiting the durability of response for NTRK + patients. Next-generation inhibitors with compact macrocyclic structures (repotrectinib and selitrectinib) were designed to avoid resistance mutations. Head-to-head potency comparisons of TRK inhibitors and molecular characterization of binding interactions are incomplete, obscuring a detailed understanding of how molecular characteristics translate to potency. Larotrectinib, entrectinib, selitrectinib, and repotrectinib were characterized using cellular models of wild-type TRKA/B/C fusions and resistance mutant variants with a subset evaluated in xenograft tumor models. Crystal structures were determined for repotrectinib bound to TRKA (wild-type, solvent-front mutant). TKI-naïve and pretreated case studies are presented. Repotrectinib was the most potent inhibitor of wild-type TRKA/B/C fusions and was more potent than selitrectinib against all tested resistance mutations, underscoring the importance of distinct features of the macrocycle structures. Cocrystal structures of repotrectinib with wild-type TRKA and the TRKAG595R SFM variant elucidated how differences in macrocyclic inhibitor structure, binding orientation, and conformational flexibility affect potency and mutant selectivity. The SFM crystal structure revealed an unexpected intramolecular arginine sidechain interaction. Repotrectinib caused tumor regression in LMNA-NTRK1 xenograft models harboring GKM, SFM, xDFG, and GKM + SFM compound mutations. Durable responses were observed in TKI-naïve and -pretreated patients with NTRK + cancers treated with repotrectinib (NCT03093116). This comprehensive analysis of first- and second-generation TRK inhibitors informs the clinical utility, structural determinants of inhibitor potency, and design of new generations of macrocyclic inhibitors.
Collapse
Affiliation(s)
- Brion W. Murray
- Turning Point Therapeutics, San Diego, California.,Corresponding Author: Brion W. Murray, Turning Point Therapeutics, 10628 Science Center Drive, Suite 200, San Diego, CA 92121. Phone: 858-926-5251; E-mail:
| | - Evan Rogers
- Turning Point Therapeutics, San Diego, California
| | - Dayong Zhai
- Turning Point Therapeutics, San Diego, California
| | - Wei Deng
- Turning Point Therapeutics, San Diego, California
| | - Xi Chen
- Wuxi Biortus Biosciences Co., Ltd., Jiangyin, Jiangsu, China
| | | | - Xin Zhang
- Turning Point Therapeutics, San Diego, California
| | - Armin Graber
- Turning Point Therapeutics, San Diego, California
| | | | | | | | | | - Alexander Drilon
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, New York
| |
Collapse
|
87
|
Edwards T, Foloppe N, Harris SA, Wells G. The future of biomolecular simulation in the pharmaceutical industry: what we can learn from aerodynamics modelling and weather prediction. Part 1. understanding the physical and computational complexity of in silico drug design. Acta Crystallogr D Struct Biol 2021; 77:1348-1356. [PMID: 34726163 PMCID: PMC8561735 DOI: 10.1107/s2059798321009712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 09/17/2021] [Indexed: 02/04/2023] Open
Abstract
The predictive power of simulation has become embedded in the infrastructure of modern economies. Computer-aided design is ubiquitous throughout industry. In aeronautical engineering, built infrastructure and materials manufacturing, simulations are routinely used to compute the performance of potential designs before construction. The ability to predict the behaviour of products is a driver of innovation by reducing the cost barrier to new designs, but also because radically novel ideas can be piloted with relatively little risk. Accurate weather forecasting is essential to guide domestic and military flight paths, and therefore the underpinning simulations are critical enough to have implications for national security. However, in the pharmaceutical and biotechnological industries, the application of computer simulations remains limited by the capabilities of the technology with respect to the complexity of molecular biology and human physiology. Over the last 30 years, molecular-modelling tools have gradually gained a degree of acceptance in the pharmaceutical industry. Drug discovery has begun to benefit from physics-based simulations. While such simulations have great potential for improved molecular design, much scepticism remains about their value. The motivations for such reservations in industry and areas where simulations show promise for efficiency gains in preclinical research are discussed. In this, the first of two complementary papers, the scientific and technical progress that needs to be made to improve the predictive power of biomolecular simulations, and how this might be achieved, is firstly discussed (Part 1). In Part 2, the status of computer simulations in pharma is contrasted with aerodynamics modelling and weather forecasting, and comments are made on the cultural changes needed for equivalent computational technologies to become integrated into life-science industries.
Collapse
Affiliation(s)
- Tom Edwards
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | | - Sarah Anne Harris
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Geoff Wells
- School of Pharmacy, University College London, London, United Kingdom
| |
Collapse
|
88
|
Kokh DB, Wade RC. G Protein-Coupled Receptor-Ligand Dissociation Rates and Mechanisms from τRAMD Simulations. J Chem Theory Comput 2021; 17:6610-6623. [PMID: 34495672 DOI: 10.1021/acs.jctc.1c00641] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
There is a growing appreciation of the importance of drug-target binding kinetics for lead optimization. For G protein-coupled receptors (GPCRs), which mediate signaling over a wide range of time scales, the drug dissociation rate is often a better predictor of in vivo efficacy than binding affinity, although it is more challenging to compute. Here, we assess the ability of the τ-Random Acceleration Molecular Dynamics (τRAMD) approach to reproduce relative residence times and reveal dissociation mechanisms and the effects of allosteric modulation for two important membrane-embedded drug targets: the β2-adrenergic receptor and the muscarinic acetylcholine receptor M2. The dissociation mechanisms observed in the relatively short RAMD simulations (in which molecular dynamics (MD) simulations are performed using an additional force with an adaptively assigned random orientation applied to the ligand) are in general agreement with much more computationally intensive conventional MD and metadynamics simulations. Remarkably, although decreasing the magnitude of the random force generally reduces the number of egress routes observed, the ranking of ligands by dissociation rate is hardly affected and agrees well with experiment. The simulations also reproduce changes in residence time due to allosteric modulation and reveal associated changes in ligand dissociation pathways.
Collapse
Affiliation(s)
- Daria B Kokh
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.,Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
89
|
Bianciotto M, Gkeka P, Kokh DB, Wade RC, Minoux H. Contact Map Fingerprints of Protein-Ligand Unbinding Trajectories Reveal Mechanisms Determining Residence Times Computed from Scaled Molecular Dynamics. J Chem Theory Comput 2021; 17:6522-6535. [PMID: 34494849 DOI: 10.1021/acs.jctc.1c00453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The binding kinetic properties of potential drugs may significantly influence their subsequent clinical efficacy. Predictions of these properties based on computer simulations provide a useful alternative to their expensive and time-consuming experimental counterparts, even at an early drug discovery stage. Herein, we perform scaled molecular dynamics (ScaledMD) simulations on a set of 27 ligands of HSP90 belonging to more than seven chemical series to estimate their relative residence times. We introduce two new techniques for the analysis and the classification of the simulated unbinding trajectories. The first technique, which helps in estimating the limits of the free energy well around the bound state, and the second one, based on a new contact map fingerprint, allow the description and the comparison of the paths that lead to unbinding. Using these analyses, we find that ScaledMD's relative residence time generally enables the identification of the slowest unbinders. We propose an explanation for the underestimation of the residence times of a subset of compounds, and we investigate how the biasing in ScaledMD can affect the mechanistic insights that can be gained from the simulations.
Collapse
Affiliation(s)
- Marc Bianciotto
- Molecular Design Sciences, Sanofi R&D, 94403 Vitry-sur-Seine, France
| | - Paraskevi Gkeka
- Molecular Design Sciences, Sanofi R&D, 91 385 Chilly-Mazarin, France
| | - Daria B Kokh
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany.,Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany
| | - Hervé Minoux
- Data and Data Science, Sanofi R&D, 91 385 Chilly-Mazarin, France
| |
Collapse
|
90
|
Saganuwan SA. Application of modified Michaelis - Menten equations for determination of enzyme inducing and inhibiting drugs. BMC Pharmacol Toxicol 2021; 22:57. [PMID: 34635182 PMCID: PMC8507113 DOI: 10.1186/s40360-021-00521-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pharmacokinetics (PK) is the process of absorption, distribution, metabolism and elimination (ADME) of drugs. Some drugs undergo zero-order kinetics (ethyl alcohol), first order kinetics (piroxicam) and mixed order kinetics (ascorbic acid). Drugs that undergo Michaelis-Menten metabolism are characterized by either increased or decreased metabolism constant (Km) and maximum velocity (Vmax) of enzyme reaction. Hence literatures were searched with a view to translating in vitro-in vivo enzyme kinetics to pharmacokinetic/pharmacodynamic parameters for determination of enzyme inducing and inhibiting drugs, in order to achieve optimal clinical efficacy and safety. METHODS A narrative review of retrospective secondary data on drugs, their metabolites, Vmax and Km, generated in the laboratory and clinical environments was adopted, using inclusion and exclusion criteria. Key word search strategy was applied, to assess databases of published articles on enzyme inducing and inhibiting drugs, that obey Michaelis-Menten kinetics. In vitro and in vivo kinetic parameters, such as concentration of substrate, rate of endogenous substrate production, cellular metabolic rate, initial velocity of metabolism, intrinsic clearance, percent saturation and unsaturation of the enzyme substrate, were calculated using original and modified formulas. Years and numbers of searched publications, types of equations and their applications were recorded. RESULTS A total of fifty-six formulas both established and modified were applied in the present study. Findings have shown that theophylline, voriconazole, phenytoin, thiopental, fluorouracil, thyamine and thymidine are enzyme inducers whereas, mibefradil, metronidazole, isoniazid and puromicin are enzyme inhibitors. They are metabolized and eliminated according to Michaelis-Menten principle. The order could be mixed but may change to zero or first order, depending on drug concentration, frequency and route of drug administration. CONCLUSION Hence, pharmacokinetic-pharmacodynamic translation can be optimally achieved by incorporating, newly modified Michaelis-Menten equations into pharmacokinetic formulas for clinical efficacy and safety of the enzyme inducing and inhibiting therapeutic agents used in laboratory and clinical settings.
Collapse
Affiliation(s)
- Saganuwan Alhaji Saganuwan
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Federal University of Agriculture, P.M.B.2373, Makurdi, Benue State, Nigeria.
| |
Collapse
|
91
|
A novel assay based on pre-equilibrium titration curves for the determination of enzyme inhibitor binding kinetics. EUROPEAN BIOPHYSICS JOURNAL 2021; 50:1037-1043. [PMID: 34159406 PMCID: PMC8448677 DOI: 10.1007/s00249-021-01554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/10/2021] [Accepted: 06/09/2021] [Indexed: 11/27/2022]
Abstract
Selection of pharmacological agents based on potency measurements performed at equilibrium fail to incorporate the kinetic aspects of the drug–target interaction. Here we describe a method for screening or characterization of enzyme inhibitors that allows the concomitant determination of the equilibrium inhibition constant in unison with rates of complex formation and dissociation. The assay is distinct from conventional enzymatic assays and is based on the analysis of inhibition curves recorded prior to full equilibration of the system. The methodology is illustrated using bicyclic peptide inhibitors of the serine protease plasma kallikrein.
Collapse
|
92
|
Voss JH, Nagel J, Rafehi M, Guixà-González R, Malfacini D, Patt J, Kehraus S, Inoue A, König GM, Kostenis E, Deupi X, Namasivayam V, Müller CE. Unraveling binding mechanism and kinetics of macrocyclic Gα q protein inhibitors. Pharmacol Res 2021; 173:105880. [PMID: 34506902 DOI: 10.1016/j.phrs.2021.105880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/23/2021] [Accepted: 09/05/2021] [Indexed: 10/20/2022]
Abstract
G proteins represent intracellular switches that transduce signals relayed from G protein-coupled receptors. The structurally related macrocyclic depsipeptides FR900359 (FR) and YM-254890 (YM) are potent, selective inhibitors of the Gαq protein family. We recently discovered that radiolabeled FR and YM display strongly divergent residence times, which translates into significantly longer antiasthmatic effects of FR. The present study is aimed at investigating the molecular basis for this observed disparity. Based on docking studies, we mutated amino acid residues of the Gαq protein predicted to interact with FR or YM, and recombinantly expressed the mutated Gαq proteins in cells in which the native Gαq proteins had been knocked out by CRISPR-Cas9. Both radioligands showed similar association kinetics, and their binding followed a conformational selection mechanism, which was rationalized by molecular dynamics simulation studies. Several mutations of amino acid residues near the putative binding site of the "lipophilic anchors" of FR, especially those predicted to interact with the isopropyl group present in FR but not in YM, led to dramatically accelerated dissociation kinetics. Our data indicate that the long residence time of FR depends on lipophilic interactions within its binding site. The observed structure-kinetic relationships point to a complex binding mechanism of FR, which likely involves snap-lock- or dowel-like conformational changes of either ligand or protein, or both. These experimental data will be useful for the design of compounds with a desired residence time, a parameter that has now been recognized to be of utmost importance in drug development.
Collapse
Affiliation(s)
- Jan H Voss
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Jessica Nagel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Muhammad Rafehi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Ramon Guixà-González
- Condensed Matter Theory Group, Paul Scherrer Institute (PSI), Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Davide Malfacini
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53113 Bonn, Germany
| | - Julian Patt
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53113 Bonn, Germany
| | - Stefan Kehraus
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53113 Bonn, Germany
| | - Asuka Inoue
- Tohoku University, Graduate School of Pharmaceutical Sciences, Sendai, Miyagi 980-8578 Japan
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53113 Bonn, Germany
| | - Evi Kostenis
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53113 Bonn, Germany
| | - Xavier Deupi
- Condensed Matter Theory Group, Paul Scherrer Institute (PSI), Forschungsstrasse 111, Villigen 5232, Switzerland; Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| |
Collapse
|
93
|
Basu R, Wang N, Basak S, Daryaee F, Babar M, Allen EK, Walker SG, Haley JD, Tonge PJ. Impact of Target Turnover on the Translation of Drug-Target Residence Time to Time-Dependent Antibacterial Activity. ACS Infect Dis 2021; 7:2755-2763. [PMID: 34357770 DOI: 10.1021/acsinfecdis.1c00317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The translation of time-dependent drug-target occupancy to extended pharmacological activity at low drug concentration depends on factors such as target vulnerability and the rate of target turnover. Previously, we demonstrated that the postantibiotic effect (PAE) caused by inhibitors of bacterial drug targets could be used to assess target vulnerability, and that high levels of target vulnerability coupled with relatively low rates of target resynthesis resulted in a strong correlation between drug-target residence time and the PAE following compound washout. Although the residence time of inhibitors on UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC) in Pseudomonas aeruginosa (paLpxC) results in significant PAE, inhibitors of the equivalent enzyme in Escherichia coli (ecLpxC) do not cause a PAE. Hyperactivity of the fatty acid biosynthesis enzyme FabZ or the inclusion of sub-MIC levels of azithromycin lead to the observation of a PAE for three inhibitors of ecLpxC. FabZ hyperactivity has been shown to stabilize ecLpxC, and using mass spectrometry, we demonstrate that the appearance of a PAE can be directly linked to a 3-fold increase in the stability of ecLpxC. These studies substantiate the importance of target turnover in time-dependent drug activity.
Collapse
Affiliation(s)
- Rajeswari Basu
- Center for Advanced Study of Drug Action, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Nan Wang
- Center for Advanced Study of Drug Action, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Sneha Basak
- Center for Advanced Study of Drug Action, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Fereidoon Daryaee
- Center for Advanced Study of Drug Action, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Mustufa Babar
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Eleanor K. Allen
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Stephen G. Walker
- Department of Oral Biology and Pathology, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - John D. Haley
- Department of Pathology, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Peter J. Tonge
- Center for Advanced Study of Drug Action, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Department of Radiology, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
94
|
Murray BW, Zhai D, Deng W, Zhang X, Ung J, Nguyen V, Zhang H, Barrera M, Parra A, Cowell J, Lee DJ, Aloysius H, Rogers E. TPX-0131, a Potent CNS-penetrant, Next-generation Inhibitor of Wild-type ALK and ALK-resistant Mutations. Mol Cancer Ther 2021; 20:1499-1507. [PMID: 34158340 PMCID: PMC9398166 DOI: 10.1158/1535-7163.mct-21-0221] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/14/2021] [Accepted: 06/04/2021] [Indexed: 01/07/2023]
Abstract
Since 2011, with the approval of crizotinib and subsequent approval of four additional targeted therapies, anaplastic lymphoma kinase (ALK) inhibitors have become important treatments for a subset of patients with lung cancer. Each generation of ALK inhibitor showed improvements in terms of central nervous system (CNS) penetration and potency against wild-type (WT) ALK, yet a key continued limitation is their susceptibility to resistance from ALK active-site mutations. The solvent front mutation (G1202R) and gatekeeper mutation (L1196M) are major resistance mechanisms to the first two generations of inhibitors while patients treated with the third-generation ALK inhibitor lorlatinib often experience progressive disease with multiple mutations on the same allele (mutations in cis, compound mutations). TPX-0131 is a compact macrocyclic molecule designed to fit within the ATP-binding boundary to inhibit ALK fusion proteins. In cellular assays, TPX-0131 was more potent than all five approved ALK inhibitors against WT ALK and many types of ALK resistance mutations, e.g., G1202R, L1196M, and compound mutations. In biochemical assays, TPX-0131 potently inhibited (IC50 <10 nmol/L) WT ALK and 26 ALK mutants (single and compound mutations). TPX-0131, but not lorlatinib, caused complete tumor regression in ALK (G1202R) and ALK compound mutation-dependent xenograft models. Following repeat oral administration of TPX-0131 to rats, brain levels of TPX-0131 were approximately 66% of those observed in plasma. Taken together, preclinical studies show that TPX-0131 is a CNS-penetrant, next-generation ALK inhibitor that has potency against WT ALK and a spectrum of acquired resistance mutations, especially the G1202R solvent front mutation and compound mutations, for which there are currently no effective therapies.
Collapse
Affiliation(s)
| | - Dayong Zhai
- Turning Point Therapeutics, San Diego, California
| | - Wei Deng
- Turning Point Therapeutics, San Diego, California
| | - Xin Zhang
- Turning Point Therapeutics, San Diego, California
| | - Jane Ung
- Turning Point Therapeutics, San Diego, California
| | | | - Han Zhang
- Turning Point Therapeutics, San Diego, California
| | | | - Ana Parra
- Turning Point Therapeutics, San Diego, California
| | | | - Dong J Lee
- Turning Point Therapeutics, San Diego, California
| | | | - Evan Rogers
- Turning Point Therapeutics, San Diego, California
| |
Collapse
|
95
|
Bosch B, DeJesus MA, Poulton NC, Zhang W, Engelhart CA, Zaveri A, Lavalette S, Ruecker N, Trujillo C, Wallach JB, Li S, Ehrt S, Chait BT, Schnappinger D, Rock JM. Genome-wide gene expression tuning reveals diverse vulnerabilities of M. tuberculosis. Cell 2021; 184:4579-4592.e24. [PMID: 34297925 PMCID: PMC8382161 DOI: 10.1016/j.cell.2021.06.033] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/13/2021] [Accepted: 06/29/2021] [Indexed: 01/09/2023]
Abstract
Antibacterial agents target the products of essential genes but rarely achieve complete target inhibition. Thus, the all-or-none definition of essentiality afforded by traditional genetic approaches fails to discern the most attractive bacterial targets: those whose incomplete inhibition results in major fitness costs. In contrast, gene "vulnerability" is a continuous, quantifiable trait that relates the magnitude of gene inhibition to the effect on bacterial fitness. We developed a CRISPR interference-based functional genomics method to systematically titrate gene expression in Mycobacterium tuberculosis (Mtb) and monitor fitness outcomes. We identified highly vulnerable genes in various processes, including novel targets unexplored for drug discovery. Equally important, we identified invulnerable essential genes, potentially explaining failed drug discovery efforts. Comparison of vulnerability between the reference and a hypervirulent Mtb isolate revealed incomplete conservation of vulnerability and that differential vulnerability can predict differential antibacterial susceptibility. Our results quantitatively redefine essential bacterial processes and identify high-value targets for drug development.
Collapse
Affiliation(s)
- Barbara Bosch
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY 10065, USA
| | - Michael A DeJesus
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY 10065, USA
| | - Nicholas C Poulton
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY 10065, USA
| | - Wenzhu Zhang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Curtis A Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anisha Zaveri
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sophie Lavalette
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nadine Ruecker
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Carolina Trujillo
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua B Wallach
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shuqi Li
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY 10065, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Jeremy M Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
96
|
Chemical tools for epichaperome-mediated interactome dysfunctions of the central nervous system. Nat Commun 2021; 12:4669. [PMID: 34344873 PMCID: PMC8333062 DOI: 10.1038/s41467-021-24821-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Diseases are a manifestation of how thousands of proteins interact. In several diseases, such as cancer and Alzheimer’s disease, proteome-wide disturbances in protein-protein interactions are caused by alterations to chaperome scaffolds termed epichaperomes. Epichaperome-directed chemical probes may be useful for detecting and reversing defective chaperomes. Here we provide structural, biochemical, and functional insights into the discovery of epichaperome probes, with a focus on their use in central nervous system diseases. We demonstrate on-target activity and kinetic selectivity of a radiolabeled epichaperome probe in both cells and mice, together with a proof-of-principle in human patients in an exploratory single group assignment diagnostic study (ClinicalTrials.gov Identifier: NCT03371420). The clinical study is designed to determine the pharmacokinetic parameters and the incidence of adverse events in patients receiving a single microdose of the radiolabeled probe administered by intravenous injection. In sum, we introduce a discovery platform for brain-directed chemical probes that specifically modulate epichaperomes and provide proof-of-principle applications in their use in the detection, quantification, and modulation of the target in complex biological systems. Here, the authors show structural, biochemical, and functional insights into the discovery of epichaperome‐ directed chemical probes for use in central nervous system diseases. Probes emerging from this work have translated to human clinical studies in Alzheimer’s disease and cancer.
Collapse
|
97
|
Datta S. Learnings from past failures: Future routes of antimicrobial drug discovery. Drug Discov Today 2021; 26:2105-2107. [PMID: 34314882 DOI: 10.1016/j.drudis.2021.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 01/29/2023]
Abstract
Despite the unprecedented unmet need to discover new antibiotics, only a few molecules have been registered for clinical use. This shortage is primarily based on the scientific failure in the postgenomic era of drug discovery. It appears counterintuitive that knowledge of the bacterial genome was followed by the failure to produce new antibiotics using the paradigm of target-driven drug discovery. Here, I discuss the causes of the failures and also describe how small biotech is mitigating these risks and moving forward using new strategies to identify new antibiotics.
Collapse
Affiliation(s)
- Santanu Datta
- Bugworks Research, Bellary Road, NCBS Campus, Hebbal, Bangalore 560065, India.
| |
Collapse
|
98
|
Tian G, Suarez J, Zhang Z, Connolly P, Ahn K. Potent Phenylpyridine and Oxodihydrofuran Inhibitors of Cyclooxygenase-2: Optimization toward a Long Residence Time with Balanced Internal Energetics. Biochemistry 2021; 60:2407-2418. [PMID: 34293856 DOI: 10.1021/acs.biochem.1c00294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Long residence time enzyme inhibitors with a two-step binding mechanism are characterized by a high internal energy barrier for target association. This raises the question of whether optimizing residence time via further increasing this internal energy barrier would inevitably lead to insufficient target occupancy in vivo due to slow, time-dependent binding. We attempted to address this question during optimization of cyclooxygenase-2 (COX-2) inhibitors. Defining long residence time drugs with acceptable association and dissociation rate constants required for sufficient target occupancy and sustained efficacy, which we termed "balanced internal energetics", provides an important criterion for successful progression during lead optimization. Despite the advancement of several COX-2 inhibitors to marketed drugs, their detailed inhibition kinetics have been surprisingly limiting especially during the structure-activity relationship process mainly due to the lack of robust kinetic assays. Herein, we describe a reoptimized COX enzymatic assay and a novel MS-based assay enabling detailed mechanistic studies for identifying long residence time COX-2 inhibitors with balanced internal energetics. These efforts led to the discovery of promising leads possessing dissociation half-lives of ≤40 h, much greater than the values of 6 and 0.71 h for two marketed drugs, etoricoxib and celecoxib, respectively. Importantly, the inhibition rate constants remain comparable to those of the marketed drugs and above the lower limits set by the criteria of balanced internal energetics, predicting sufficient target occupancy required for efficacy. Taken together, this study demonstrates the feasibility of increasing the internal energy barrier as a viable approach for lead optimization toward discovering long residence time drug candidates.
Collapse
|
99
|
Copeland RA. Chance Favors the Perplexed Mind: The Critical Role of Mechanistic Biochemistry in Drug Discovery. Biochemistry 2021; 60:2275-2284. [PMID: 34259514 DOI: 10.1021/acs.biochem.1c00345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Scientific discoveries often start with an observation that does not quite make sense, within the framework of a well-established hypothesis. It is when researchers delve deeply to understand such perplexing data that established hypotheses are modified or replaced, and new and expanded knowledge of the system can be gained. This is often the case in the field of drug discovery. In this Perspective, case studies demonstrate how an understanding of perplexing data can lead to novel discoveries regarding the biological function of drug targets, or the mechanisms of compound-target interactions, that can ultimately result in new drugs entering the clinic. These case studies reinforce two interdependent themes: (1) that understanding the pathophysiological context in which drug targets function and the mechanistic details of drug-target interactions are critical to efficient and effective drug discovery and (2) that investing time and energy into following up on perplexing data can lead to novel discoveries that can drive the development of new and improved medicines.
Collapse
Affiliation(s)
- Robert A Copeland
- Accent Therapeutics, Inc., 65 Hayden Avenue, Lexington, Massachusetts 02421, United States
| |
Collapse
|
100
|
Abstract
IntroductionThe pharmacological action of a drug is linked to its affinity for a specific molecular target as quantified by in vitro equilibrium measurements. However, it is clear that for many highly effective drugs, interactions with their molecular targets do not conform to simple, equilibrium conditions in vivo and this results in a temporal discordance between pharmacokinetics and pharmacodynamics. The drug-target residence time model was developed to provide a theoretical framework with which to understand cases in which very slow dissociation of the drug-target complex in vivo results in durable PD effects even after systemic concentrations of drug have waned.Area coveredIn this article, the author provides a brief description of the drug-target residence time model and focuses on the refinements that have been made to the original model to incorporate the influences of compound rebinding in cells and pharmacokinetic properties of drug molecules.Expert opinionThere is now overwhelming evidence for the utility of the drug-target residence time model as a framework for understanding in vivo drug action. The in vitro measured residence time (τR) must be used in concert with equilibrium measures of drug-target affinity (e.g. IC50) and with in vivo measures of pharmacokinetic half-life, to afford the researcher a powerful approach to compound optimization for clinical effect. Despite the significant use and refinement of this model, continued studies are required to better understand the dynamic interplay between residence time, target pathobiology, drug distribution and drug pharmacokinetics.
Collapse
|