51
|
Chen SP, Blakney AK. Immune response to the components of lipid nanoparticles for ribonucleic acid therapeutics. Curr Opin Biotechnol 2024; 85:103049. [PMID: 38118363 DOI: 10.1016/j.copbio.2023.103049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 12/22/2023]
Abstract
Ribonucleic acid therapeutics have advantages over biologics and small molecules, including lower safety risks, cheaper costs, and extensive targeting flexibility, which is rapidly fueling the expansion of the field. This is made possible by breakthroughs in the field of drug delivery, wherein lipid nanoparticles (LNPs) are one of the most clinically advanced systems. LNP formulations that are currently approved for clinical use typically contain an ionizable cationic lipid, a phospholipid, cholesterol, and a polyethylene glycol-lipid; each contributes to the stability and/or effectiveness of LNPs. In this review, we discuss the immunomodulatory effects associated with each of the lipid components. We highlight several studies in which the components of LNPs have been implicated in cellular sensing and explore the pathways involved.
Collapse
Affiliation(s)
- Sunny P Chen
- School of Biomedical Engineering, University of British Columbia, Vancouver V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Anna K Blakney
- School of Biomedical Engineering, University of British Columbia, Vancouver V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada.
| |
Collapse
|
52
|
Li Z, Ma A, Miller I, Starnes R, Talkington A, Stone CA, Phillips EJ, Choudhary SK, Commins SP, Lai SK. Development of anti-PEG IgG/IgM/IgE ELISA assays for profiling anti-PEG immunoglobulin response in PEG-sensitized individuals and patients with alpha-gal allergy. J Control Release 2024; 366:342-348. [PMID: 38182056 PMCID: PMC11182197 DOI: 10.1016/j.jconrel.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Polyethylene glycol (PEG) is frequently used in various protein and nanomedicine therapeutics. However, various studies have shown that select PEGylated therapeutics can induce production of anti-PEG antibodies (APA), potentially culminating in rapid clearance from the systemic circulation, loss of efficacy and possibly increased risks of allergic reactions. Although IgE is a frequent cause of immediate hypersensitivity reactions (IHR), the role of IgE APA in PEG-related IHR is not well understood, due in part to a lack of standardized assays for measuring IgE APA. Here, we developed a rigorous competitive ELISA method to measure the concentrations of various APA isotypes, including IgE, with picomolar sensitivities. In a small number of serum samples from patients with known PEG allergy, the assay allowed us to detect a strong correlation between IgG and IgE APA in individuals with history of allergic reactions to PEG or PEGylated drugs, but not between IgM and IgE APA. We detected appreciable levels of IgG and IgM APA in individuals with history of alpha-gal allergy, however, they were not elevated relative to those detected in other healthy controls, and we found no pre-existing IgE APA. While preliminary and should be further investigated, these results suggest that differences in the route and mechanism of PEG exposure may drive variability in APA response.
Collapse
Affiliation(s)
- Zhongbo Li
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Alice Ma
- Department of Biomedical Engineering, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Ian Miller
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Rachel Starnes
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Anne Talkington
- Program in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Cosby A Stone
- Center for Drug Safety and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth J Phillips
- Center for Drug Safety and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shailesh K Choudhary
- Division of Allergy and Immunology, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Scott P Commins
- Division of Allergy and Immunology, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA; Department of Immunology and Microbiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
53
|
Sun J, Chen J, Sun Y, Hou Y, Liu Z, Lu H. On the origin of the low immunogenicity and biosafety of a neutral α-helical polypeptide as an alternative to polyethylene glycol. Bioact Mater 2024; 32:333-343. [PMID: 37927900 PMCID: PMC10622589 DOI: 10.1016/j.bioactmat.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Poly(ethylene glycol) (PEG) is a prominent synthetic polymer widely used in biomedicine. Despite its notable success, recent clinical evidence highlights concerns regarding the immunogenicity and adverse effects associated with PEG in PEGylated proteins and lipid nanoparticles. Previous studies have found a neutral helical polypeptide poly(γ-(2-(2-(2-methoxyethoxy)ethoxy)ethyl l-glutamate), namely L-P(EG3Glu), as a potential alternative to PEG, displaying lower immunogenicity. To comprehensively assess the immunogenicity, distribution, degradation, and biosafety of L-P(EG3Glu), herein, we employ assays including enzyme-linked immunosorbent assay, positron emission tomography-computed tomography, and fluorescent resonance energy transfer. Our investigations involve in vivo immune responses, biodistribution, and macrophage activation of interferon (IFN) conjugates tethered with helical L-P(EG3Glu) (L20k-IFN), random-coiled DL-P(EG3Glu) (DL20k-IFN), and PEG (PEG20k-IFN). Key findings encompass: minimal anti-IFN and anti-polymer antibodies elicited by L20k-IFN; length-dependent affinity of PEG to anti-PEG antibodies; accelerated clearance of DL20k-IFN and PEG20k-IFN linked to anti-IFN and anti-polymer IgG; complement activation for DL20k-IFN and PEG20k-IFN but not L20k-IFN; differential clearance with L20k-IFN kidney-based, and DL20k-IFN/PEG20k-IFN accumulation mainly in liver/spleen; enhanced macrophage activation by DL20k-IFN and PEG20k-IFN; L-P(EG3Glu) resistance to proteolysis; and safer repeated administrations of L-P(EG3Glu) in rats. Overall, this study offers comprehensive insights into the lower immunogenicity of L-P(EG3Glu) compared to DL-P(EG3Glu) and PEG, supporting its potential clinical use in protein conjugation and nanomedicines.
Collapse
Affiliation(s)
- Jialing Sun
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Junyi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yiming Sun
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yingqin Hou
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Peking University–Tsinghua University Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
54
|
Yang M, Zhang Z, Jin P, Jiang K, Xu Y, Pan F, Tian K, Yuan Z, Liu XE, Fu J, Wang B, Yan H, Zhan C, Zhang Z. Effects of PEG antibodies on in vivo performance of LNP-mRNA vaccines. Int J Pharm 2024; 650:123695. [PMID: 38081560 DOI: 10.1016/j.ijpharm.2023.123695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/22/2023]
Abstract
Polyethylene glycol (PEG) plays important roles in stabilizing and lengthening circulation time of lipid nanoparticle (LNP) vaccines. Nowadays various levels of PEG antibodies have been detected in human blood, but the impact and mechanism of PEG antibodies on the in vivo performance of LNP vaccines has not been clarified thoroughly. By illustrating the distribution characteristics of PEG antibodies in human, the present study focused on the influence of PEG antibodies on the safety and efficacy of LNP-mRNA vaccine against COVID-19 in animal models. It was found that PEG antibodies led to shortened blood circulation duration, elevated accumulation and mRNA expression in liver and spleen, enhanced expression in macrophage and dendritic cells, while without affecting the production of anti-Spike protein antibodies of COVID-19 LNP vaccine. Noteworthily, PEG antibodies binding on the LNP vaccine increased probability of complement activation in animal as well as in human serum and led to lethal side effect in large dosage via intravenous injection of mice. Our data suggested that PEG antibodies in human was a risky factor of LNP-based vaccines for biosafety concerns but not efficacy.
Collapse
Affiliation(s)
- Min Yang
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai 200032, PR China
| | - Zengyu Zhang
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai 200032, PR China
| | - Pengpeng Jin
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai 200032, PR China; Department of Chronic Disease Management, Shanghai Pudong Hospital, Fudan University, Shanghai 201399, PR China
| | - Kuan Jiang
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai 200032, PR China; Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai 200031, PR China
| | - Yifei Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 PR China
| | - Feng Pan
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, PR China
| | - Kaisong Tian
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai 200032, PR China
| | - Zhou Yuan
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai 200032, PR China
| | | | - Jiaru Fu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200032, PR China
| | - Bin Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200032, PR China
| | - Huafang Yan
- Department of Health Management, Pudong Hospital, Fudan University, Shanghai 201399, PR China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai 200032, PR China; State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 PR China; Shanghai Engineering Research Center for Synthetic Immunology, Fudan University, Shanghai 200032, PR China.
| | - Zui Zhang
- Department of Pharmacology, School of Basic Medical Sciences & Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
55
|
Zhang H, Vandesompele J, Braeckmans K, De Smedt SC, Remaut K. Nucleic acid degradation as barrier to gene delivery: a guide to understand and overcome nuclease activity. Chem Soc Rev 2024; 53:317-360. [PMID: 38073448 DOI: 10.1039/d3cs00194f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Gene therapy is on its way to revolutionize the treatment of both inherited and acquired diseases, by transferring nucleic acids to correct a disease-causing gene in the target cells of patients. In the fight against infectious diseases, mRNA-based therapeutics have proven to be a viable strategy in the recent Covid-19 pandemic. Although a growing number of gene therapies have been approved, the success rate is limited when compared to the large number of preclinical and clinical trials that have been/are being performed. In this review, we highlight some of the hurdles which gene therapies encounter after administration into the human body, with a focus on nucleic acid degradation by nucleases that are extremely abundant in mammalian organs, biological fluids as well as in subcellular compartments. We overview the available strategies to reduce the biodegradation of gene therapeutics after administration, including chemical modifications of the nucleic acids, encapsulation into vectors and co-administration with nuclease inhibitors and discuss which strategies are applied for clinically approved nucleic acid therapeutics. In the final part, we discuss the currently available methods and techniques to qualify and quantify the integrity of nucleic acids, with their own strengths and limitations.
Collapse
Affiliation(s)
- Heyang Zhang
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jo Vandesompele
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Centre for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Centre for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Katrien Remaut
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
56
|
Shimizu T, Lila ASA, Kitayama Y, Abe R, Takata H, Ando H, Ishima Y, Ishida T. Peritoneal B Cells Play a Role in the Production of Anti-polyethylene Glycol (PEG) IgM against Intravenously Injected siRNA-PEGylated Liposome Complexes. Biol Pharm Bull 2024; 47:469-477. [PMID: 38383000 DOI: 10.1248/bpb.b23-00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Polyethylene glycol (PEG)-modified (PEGylated) cationic liposomes are frequently used as delivery vehicles for small interfering RNA (siRNA)-based drugs because of their ability to encapsulate/complex with siRNA and prolong the circulation half-life in vivo. Nevertheless, we have reported that subsequent intravenous (IV) injections of siRNA complexed with PEGylated cationic liposomes (PLpx) induces the production of anti-PEG immunoglobulin M (IgM), which accelerates the blood clearance of subsequent doses of PLpx and other PEGylated products. In this study, it is interesting that splenectomy (removal of spleen) did not prevent anti-PEG IgM induction by IV injection of PLpx. This indicates that B cells other than the splenic version are involved in anti-PEG IgM production under these conditions. In vitro and in vivo studies have shown that peritoneal cells also secrete anti-PEG IgM in response to the administration of PLpx. Interleukin-6 (IL-6) is a glycoprotein that is secreted by peritoneal immune cells and has been detected in response to the in vivo administration of PLpx. These observations indicate that IV injection of PLpx stimulates the proliferation/differentiation of peritoneal PEG-specific B cells into plasma cells via IL-6 induction, which results in the production of anti-PEG IgM from the peritoneal cavity of mice. Our results suggest the mutual contribution of peritoneal B cells as a potent anti-PEG immune response against PLpx.
Collapse
Affiliation(s)
- Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Amr S Abu Lila
- Department of Pharmaceutics, College of Pharmacy, Hail University
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University
| | - Yuka Kitayama
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Ryo Abe
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| |
Collapse
|
57
|
Bausch-Jurken M, Dawson RS, Ceddia F, Urdaneta V, Marks MA, Doi Y. A descriptive review on the real-world impact of Moderna, Inc. COVID-19 vaccines. Expert Rev Vaccines 2024; 23:914-943. [PMID: 39269429 DOI: 10.1080/14760584.2024.2402955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
INTRODUCTION Since the original COVID-19 vaccines were developed, abundant clinical trial and real-world evidence evaluating the efficacy, effectiveness, and safety of COVID-19 vaccines has been collected. Knowledge of the relative benefits and risks of COVID-19 vaccines is essential for building trust within target populations, ensuring they remain effectively and safely protected against an enduring infectious threat. AREAS COVERED This descriptive review discusses the benefits and risks associated with marketed Moderna, Inc. mRNA-based COVID-19 vaccines, focusing on their real-world effectiveness and safety profiles in various age groups. Adverse events of interest and potential benefits of vaccination are reviewed, including reduced risk for severe COVID-19 and long-term health outcomes, reduced economic and societal costs, and reduced risk for SARS-CoV-2 transmission. EXPERT OPINION Post-marketing safety and real-world data for Moderna, Inc. COVID-19 mRNA vaccines strongly support a positive benefit - risk profile favoring vaccination across all age groups. Although COVID-19 is no longer considered a global health pandemic, health risks associated with SARS-CoV-2 infection remain high. Concerted efforts are required to engage communities and maintain protection through vaccination. Continued surveillance of emerging variants and monitoring of vaccine safety and effectiveness are crucial for ensuring sustained protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Mary Bausch-Jurken
- Medical Affairs - Scientific Communication, Moderna, Inc, Cambridge, MA, USA
| | - Rachel S Dawson
- Medical Affairs - Scientific Communication, Moderna, Inc, Cambridge, MA, USA
| | - Francesca Ceddia
- Medical Affairs - Scientific Communication, Moderna, Inc, Cambridge, MA, USA
| | - Veronica Urdaneta
- Clinical Safety and Risk Management, Moderna, Inc, Cambridge, MA, USA
| | - Morgan A Marks
- Medical Affairs - Scientific Communication, Moderna, Inc, Cambridge, MA, USA
| | - Yohei Doi
- Departments of Microbiology and Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Japan
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
58
|
Gao Y, Joshi M, Zhao Z, Mitragotri S. PEGylated therapeutics in the clinic. Bioeng Transl Med 2024; 9:e10600. [PMID: 38193121 PMCID: PMC10771556 DOI: 10.1002/btm2.10600] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 01/10/2024] Open
Abstract
The covalent attachment of polyethylene glycol (PEG) to therapeutic agents, termed PEGylation, is a well-established and clinically proven drug delivery approach to improve the pharmacokinetics and pharmacodynamics of drugs. Specifically, PEGylation can improve the parent drug's solubility, extend its circulation time, and reduce its immunogenicity, with minimal undesirable properties. PEGylation technology has been applied to various therapeutic modalities including small molecules, aptamers, peptides, and proteins, leading to over 30 PEGylated drugs currently used in the clinic and many investigational PEGylated agents under clinical trials. Here, we summarize the diverse types of PEGylation strategies, the key advantages of PEGylated therapeutics over their parent drugs, and the broad applications and impacts of PEGylation in clinical settings. A particular focus has been given to the size, topology, and functionalities of PEG molecules utilized in clinically used PEGylated drugs, as well as those under clinical trials. An additional section has been dedicated to analyzing some representative PEGylated drugs that were discontinued at different stages of clinical studies. Finally, we critically discuss the current challenges faced in the development and clinical translation of PEGylated agents.
Collapse
Affiliation(s)
- Yongsheng Gao
- John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityAllstonMassachusettsUSA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMassachusettsUSA
- Present address:
Department of BioengineeringThe University of Texas at DallasRichardsonTXUSA
| | - Maithili Joshi
- John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityAllstonMassachusettsUSA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMassachusettsUSA
| | - Zongmin Zhao
- Department of Pharmaceutical SciencesCollege of Pharmacy, University of Illinois at ChicagoChicagoIllinoisUSA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityAllstonMassachusettsUSA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMassachusettsUSA
| |
Collapse
|
59
|
Zorin IM, Fetin PA, Mikusheva NG, Lezov AA, Perevyazko I, Gubarev AS, Podsevalnikova AN, Polushin SG, Tsvetkov NV. Pullulan-Graft-Polyoxazoline: Approaches from Chemistry and Physics. Molecules 2023; 29:26. [PMID: 38202609 PMCID: PMC10780122 DOI: 10.3390/molecules29010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
An approach to the preparation of pullulan-graft-poly(2-methyl-2-oxazoline)s based on Cu-catalyzed azide-alkyne cycloaddition with polyoxazoline-azide was applied. All of the obtained polymers were characterized through classical molecular hydrodynamic methods and NMR. The formation of graft copolymers was accomplished by oxidative degradation of pullulan chains. Nevertheless, graft copolymers were obtained as uniform products with varied side chain lengths and degrees of substitution.
Collapse
Affiliation(s)
- Ivan M. Zorin
- Institute of Chemistry, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia;
| | - Petr A. Fetin
- Institute of Chemistry, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia;
| | - Nina G. Mikusheva
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| | - Alexey A. Lezov
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| | - Igor Perevyazko
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| | - Alexander S. Gubarev
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| | - Anna N. Podsevalnikova
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| | - Sergey G. Polushin
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| | - Nikolai V. Tsvetkov
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| |
Collapse
|
60
|
Yu X, Li H, Dong C, Qi S, Yang K, Bai B, Peng K, Buljan M, Lin X, Liu Z, Yu G. Poly(ethyl ethylene phosphate): Overcoming the "Polyethylene Glycol Dilemma" for Cancer Immunotherapy and mRNA Vaccination. ACS NANO 2023; 17:23814-23828. [PMID: 38038679 DOI: 10.1021/acsnano.3c07932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Polyethylene glycol conjugation (PEGylation) is the most successful strategy to promote the stability, pharmacokinetics, and efficacy of therapeutics; however, anti-PEG antibodies induced by repeated treatments raise serious concerns about the future of PEGylated therapeutics. In order to solve the "PEG dilemma", polymers with excellent water solubility and biocompatibility are urgently desired to attenuate the generation of anti-PEG antibodies. Here, poly(ethyl ethylene phosphate) (PEEP) with excellent degradability and stealth effects is used as an alternative to PEG to overcome the "PEG dilemma". PEEPylated liposomes exhibit lower immunogenicity and generate negligible anti-PEEP antibodies (IgM and IgG) after repeated treatments. In vivo studies confirm that PEEPylated liposomes loaded with oxaliplatin (PEEPlipo@OxPt) show better pharmacokinetics compared to PEGlipo@OxPt, and they exhibit potent antitumor performances, which can be further promoted with checkpoint blockade immunotherapy. In addition, PEEPylated lipid nanoparticle is also used to develop an mRNA vaccine with the ability to evoke a potent antigen-specific T cell response and achieve excellent antitumor efficacy. PEEP shows promising potentials in the development of next-generation nanomedicines and vaccines with higher safety and efficacy.
Collapse
Affiliation(s)
- Xinyang Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Hongjian Li
- School of Medicine, Tsinghua University, Beijing 100084, P. R. China
| | - Chunbo Dong
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, P. R. China
| | - Shaolong Qi
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Kai Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Bing Bai
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Kun Peng
- School of Medicine, Tsinghua University, Beijing 100084, P. R. China
| | - Marija Buljan
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Xin Lin
- School of Medicine, Tsinghua University, Beijing 100084, P. R. China
| | - Zhida Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, P. R. China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- School of Medicine, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
61
|
Tang X, Zhang J, Sui D, Yang Q, Wang T, Xu Z, Li X, Gao X, Yan X, Liu X, Song Y, Deng Y. Simultaneous dendritic cells targeting and effective endosomal escape enhance sialic acid-modified mRNA vaccine efficacy and reduce side effects. J Control Release 2023; 364:529-545. [PMID: 37949317 DOI: 10.1016/j.jconrel.2023.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/20/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
mRNA vaccines are attractive prospects for the development of DC-targeted vaccines; however, no clinical success has been realized because, currently, it is difficult to simultaneously achieve DC targeting and efficient endosomal/lysosomal escape. Herein, we developed a sialic acid (SA)-modified mRNA vaccine that simultaneously achieved both. The SA modification promoted DCs uptake of lipid nanoparticles (LNPs) by 2 times, >90% of SA-modified LNPs rapidly escaped from early endosomes (EEs), avoided entering lysosomes, achieved mRNA simultaneously translated in ribosomes distributed in the cytoplasm and endoplasmic reticulum (ER), significantly improved the transfection efficiency of mRNA LNPs in DCs. Additionally, we applied cleavable PEG-lipids in mRNA vaccines for the first time and found this conducive to cellular uptake and DC targeting. In summary, SA-modified mRNA vaccines targeted DCs efficiently, and showed significantly higher EEs/lysosomal escape efficiency (90% vs 50%), superior tumor treatment effect, and lower side effects than commercially formulated mRNA vaccines.
Collapse
Affiliation(s)
- Xueying Tang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jiashuo Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Dezhi Sui
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qiongfen Yang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Tianyu Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zihan Xu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiaoya Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xin Gao
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xinyang Yan
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
62
|
Zong Y, Lin Y, Wei T, Cheng Q. Lipid Nanoparticle (LNP) Enables mRNA Delivery for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303261. [PMID: 37196221 DOI: 10.1002/adma.202303261] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Messenger RNA (mRNA) has received great attention in the prevention and treatment of various diseases due to the success of coronavirus disease 2019 (COVID-19) mRNA vaccines (Comirnaty and Spikevax). To meet the therapeutic purpose, it is required that mRNA must enter the target cells and express sufficient proteins. Therefore, the development of effective delivery systems is necessary and crucial. Lipid nanoparticle (LNP) represents a remarkable vehicle that has indeed accelerated mRNA applications in humans, as several mRNA-based therapies have already been approved or are in clinical trials. In this review, the focus is on mRNA-LNP-mediated anticancer therapy. It summarizes the main development strategies of mRNA-LNP formulations, discusses representative therapeutic approaches in cancer, and points out current challenges and possible future directions of this research field. It is hoped that these delivered messages can help further improve the application of mRNA-LNP technology in cancer therapy.
Collapse
Affiliation(s)
- Yan Zong
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Yi Lin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Tuo Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| |
Collapse
|
63
|
Tran TT, Roffler SR. Interactions between nanoparticle corona proteins and the immune system. Curr Opin Biotechnol 2023; 84:103010. [PMID: 37852029 DOI: 10.1016/j.copbio.2023.103010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023]
Abstract
The corona surrounding nanoparticles (NPs) in serum contains proteins such as complement, immunoglobulins, and apolipoproteins that can interact with the immune system. This review article describes the impact of these interactions on nanomedicine stability, biodistribution, efficacy, and safety. Notably, it highlights the latest findings on the generation of antibody responses to the polyethylene glycol (PEG) component of SARS-CoV-2 mRNA vaccines and possible mechanisms of hypersensitivity reactions induced by antibodies that bind to NPs. Finally, we briefly outline how the NP interactions with immune cells can be harnessed to enhance targeted delivery of nanocargos to disease sites.
Collapse
Affiliation(s)
- Trieu Tm Tran
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
64
|
Pozzi D, Caracciolo G. Looking Back, Moving Forward: Lipid Nanoparticles as a Promising Frontier in Gene Delivery. ACS Pharmacol Transl Sci 2023; 6:1561-1573. [PMID: 37974625 PMCID: PMC10644400 DOI: 10.1021/acsptsci.3c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Indexed: 11/19/2023]
Abstract
Lipid nanoparticles (LNPs) have shown remarkable success in delivering genetic materials like COVID-19 LNP vaccines, such as mRNA-1273/SpikeVax by Moderna and BNT162b2/Comirnaty by BioNTech/Pfizer, as well as siRNA for rare inherited diseases, such as Onpattro from Alnylam Pharmaceuticals. These LNPs are advantageous since they minimize side effects, target specific cells, and regulate payload delivery. There has been a surge of interest in these particles due to their success stories; however, we still do not know much about how they work. This perspective will recapitulate the evolution of lipid-based gene delivery, starting with Felgner's pioneering 1987 PNAS paper, which introduced the initial DNA-transfection method utilizing a synthetic cationic lipid. Our journey takes us to the early 2020s, a time when advancements in bionano interactions enabled us to create biomimetic lipoplexes characterized by a remarkable ability to evade capture by immune cells in vivo. Through this overview, we propose leveraging previous achievements to assist us in formulating improved research goals when optimizing LNPs for medical conditions such as infectious diseases, cancer, and heritable disorders.
Collapse
Affiliation(s)
- Daniela Pozzi
- NanoDelivery Lab, Department
of Molecular Medicine, Sapienza University
of Rome, Viale Regina
Elena 291, 00161 Rome, Italy
| | - Giulio Caracciolo
- NanoDelivery Lab, Department
of Molecular Medicine, Sapienza University
of Rome, Viale Regina
Elena 291, 00161 Rome, Italy
| |
Collapse
|
65
|
Amici A, Pozzi D, Marchini C, Caracciolo G. The Transformative Potential of Lipid Nanoparticle-Protein Corona for Next-Generation Vaccines and Therapeutics. Mol Pharm 2023; 20:5247-5253. [PMID: 37782816 PMCID: PMC10630956 DOI: 10.1021/acs.molpharmaceut.3c00479] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
The integration of the lipid nanoparticle (LNP)-protein corona as a pioneering approach for the development of vaccines against the present and future SARS-CoV-2 variants of concern marks a significant shift in the field. This concept holds great promise, offering a universal platform that can be adaptable to combat future pandemics caused by unknown viruses. Understanding the complex interactions among the protein corona, LNPs, and receptors is crucial for harnessing its potential. This knowledge will allow optimal vaccine formulations and improve their effectiveness. Safety assessments are essential to ensure suitability for human use, compliance with regulatory standards, and rigorous quality control in manufacturing. This transformative workflow requires collaborative efforts, expanding our foundational knowledge and translating advancements from the laboratory to clinical reality. The LNP-protein corona approach represents a paradigmatic shift with far-reaching implications. Its principles and insights can be leveraged beyond specific applications against SARS-CoV-2, enabling a universal platform for addressing viral threats, cancer, and genetic diseases.
Collapse
Affiliation(s)
- Augusto Amici
- School
of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Daniela Pozzi
- NanoDelivery
Lab, Department of Molecular Medicine, Sapienza
University of Rome, Viale
Regina Elena 291, 00161 Rome, Italy
| | - Cristina Marchini
- School
of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Giulio Caracciolo
- NanoDelivery
Lab, Department of Molecular Medicine, Sapienza
University of Rome, Viale
Regina Elena 291, 00161 Rome, Italy
| |
Collapse
|
66
|
Wang H, Wang Y, Yuan C, Xu X, Zhou W, Huang Y, Lu H, Zheng Y, Luo G, Shang J, Sui M. Polyethylene glycol (PEG)-associated immune responses triggered by clinically relevant lipid nanoparticles in rats. NPJ Vaccines 2023; 8:169. [PMID: 37919316 PMCID: PMC10622525 DOI: 10.1038/s41541-023-00766-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023] Open
Abstract
With the large-scale vaccination of lipid nanoparticles (LNP)-based COVID-19 mRNA vaccines, elucidating the potential polyethylene glycol (PEG)-associated immune responses triggered by clinically relevant LNP has become imminent. However, inconsistent findings were observed across very limited population-based studies. Herein we initiated a study using LNP carrier of Comirnaty® as a representative, and simulated real-world clinical practice covering a series of time points and various doses correlated with approved LNP-delivered drugs in a rat model. We demonstrated the time- and dose-dependency of LNP-induced anti-PEG antibodies in rats. As a thymus-independent antigen, LNP unexpectedly induced isotype switch and immune memory, leading to rapid enhancement and longer lasting time of anti-PEG IgM and IgG upon re-injection in rats. Importantly, initial LNP injection accelerated the blood clearance of subsequent dosing in rats. These findings refine our understandings on LNP and possibly other PEG derivatives, and may promote optimization of related premarket guidelines and clinical protocols.
Collapse
Affiliation(s)
- Haiyang Wang
- School of Basic Medical Sciences and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yisha Wang
- School of Basic Medical Sciences and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Changzheng Yuan
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Wenbin Zhou
- School of Basic Medical Sciences and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yuhui Huang
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Huan Lu
- School of Basic Medical Sciences and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yue Zheng
- School of Basic Medical Sciences and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Gan Luo
- School of Basic Medical Sciences and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jia Shang
- Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Meihua Sui
- School of Basic Medical Sciences and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
67
|
Miao G, He Y, Lai K, Zhao Y, He P, Tan G, Wang X. Accelerated blood clearance of PEGylated nanoparticles induced by PEG-based pharmaceutical excipients. J Control Release 2023; 363:12-26. [PMID: 37717659 DOI: 10.1016/j.jconrel.2023.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
PEGylated nanomedicines have been extensively developed and applied to cancer therapy. However, the antitumor efficacy of these nanoparticles is hampered by the accelerated blood clearance (ABC) effect caused by anti-PEG antibodies in vivo. There is still limited understanding about the cause of pre-existing anti-PEG antibodies in the human body. Herein, we discovered that PEG-based pharmaceutical excipients, commonly used in clinical and daily settings, could induce anti-PEG antibodies in vivo and lead to considerable potential clinical impacts on pharmacokinetics and pharmacodynamics of PEGylated nanoparticles. Specifically, we investigated the ability of poloxamer 188 (F68) and poloxamer 407 (F127), the two most frequently used PEG-based pharmaceutical excipients, to elicit the production of anti-PEG antibodies and influence the pharmacokinetics of PEGylated nanoparticles, with PEGylated liposome nanoparticles (L-NPs) as a model. Anti-PEG IgG and IgM levels were significantly boosted 3.8- and 32.2-fold, respectively, after pre-injection with F68, leading to rapid clearance of subsequently injected L-NPs from circulation due to the capture by neutrophils and monocytes. However, pre-injection of F127 did not induce the production of anti-PEG IgG, although there was a 7.7-fold increase in IgM level, which resulted in minimal effect on circulation time of L-NPs. Furthermore, the potential clinical impacts of F68 and F127 were further inspected for PEGylated liposomal doxorubicin (PLD). It was found that administering F68 prior to treatment led to over a one-third decrease in the antitumor effectiveness of PLD, while F127 had a negligible impact. Our study elucidates the mechanism by which PEG-based pharmaceutical excipients influence the effectiveness of PEGylated nanomedicines. It also highlights the significance of considering the potential for an ABC effect induced by PEG-based pharmaceutical excipients in patients.
Collapse
Affiliation(s)
- Guifeng Miao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China
| | - Yuejian He
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China
| | - Keren Lai
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China
| | - Yan Zhao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China
| | - Peiyi He
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China
| | - Guozhu Tan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China
| | - Xiaorui Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China.
| |
Collapse
|
68
|
Oldenburg J, Benson G, Chowdary P, Halimeh S, Matsushita T, Nørland A, Wahid MN, Nemes L. Cases of less-than-expected FVIII activity in previously treated patients during post-marketing surveillance of N8-GP. Haemophilia 2023; 29:1475-1482. [PMID: 37729439 DOI: 10.1111/hae.14864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
INTRODUCTION Turoctocog alfa pegol (N8-GP) is a glycoPEGylated, extended half-life (EHL), human recombinant factor VIII (FVIII) approved for the treatment and prevention of bleeding episodes in patients with haemophilia A. Since its launch in August 2019, > 800 patients have been treated worldwide. AIM To present data from identified post-marketing cases of less-than-expected FVIII activity in previously treated patients (PTPs) without inhibitors after switching to N8-GP. METHODS The post-marketing safety database was searched using keywords such as 'coagulation FVIII level decreased'. Identified cases reported prior to 13 October 2021 were included in this report. Cases in which patients had FVIII inhibitors were excluded. RESULTS Here we report 14 cases of less-than-expected FVIII activity. Details varied greatly amongst the cases. At presentation, FVIII activity ranged from 1% (15 min post-dose) to 51% (2 days post-dose). Seven patients experienced bleeding episodes after switching to N8-GP with heterogeneity in bleeding presentations. Six out of seven patients who were tested for anti-PEG IgG and/or IgM antibodies were positive. In all known cases, FVIII activity returned to the expected range when switched to an alternative FVIII replacement product. CONCLUSION In conclusion, the 14 reported cases of less-than-expected FVIII activity, without presence of detectable FVIII inhibitors, presented with heterogenous characteristics, and wide variations in FVIII activity and anti-PEG antibody titre. FVIII activity returned to the expected range after switching to alternative FVIII products. In line with WFH guidelines, monitoring of FVIII activity can ensure FVIII activity in the expected range. The safety surveillance of N8-GP continues.
Collapse
Affiliation(s)
- Johannes Oldenburg
- Institute for Experimental Haematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Gary Benson
- Department of Haematology, Belfast City Hospital, Belfast, UK
| | - Pratima Chowdary
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free Hospital, London, UK
| | | | - Tadashi Matsushita
- Nagoya University Hospital, Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan
| | | | | | - Laszlo Nemes
- DepartmentMedical Center of the Hungarian Defence Forces, National Hemophilia Center and Hemostasis, Budapest, Hungary
| |
Collapse
|
69
|
Chan WCW, Artzi N, Chen C, Chen X, Ho D, Hu T, Kataoka K, Liz-Marzán LM, Oklu R, Parak WJ. Noble Nanomedicine: Celebrating Groundbreaking mRNA Vaccine Innovations. ACS NANO 2023; 17:19476-19477. [PMID: 37819863 DOI: 10.1021/acsnano.3c09781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
|
70
|
Li Z, Shen L, Ma A, Talkington A, Li Z, Nyborg AC, Bowers MS, LaMoreaux B, Livingston EW, Frank JE, Yuan H, Lai SK. Pegloticase co-administered with high MW polyethylene glycol effectively reduces PEG-immunogenicity and restores prolonged circulation in mouse. Acta Biomater 2023; 170:250-259. [PMID: 37659730 PMCID: PMC10619887 DOI: 10.1016/j.actbio.2023.08.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
The interactions between polymers and the immune system remains poorly controlled. In some instances, the immune system can produce antibodies specific to polymer constituents. Indeed, roughly half of pegloticase patients without immunomodulation develop high titers of anti-PEG antibodies (APA) to the PEG polymers on pegloticase, which then quickly clear the drug from circulation and render the gout treatment ineffective. Here, using pegloticase as a model drug, we show that addition of high molecular weight (MW) free (unconjugated) PEG to pegloticase allows us to control the immunogenicity and mitigates APA induction in mice. Compared to pegloticase mixed with saline, mice repeatedly dosed with pegloticase containing different MW or amount of free PEG possessed 4- to 12- fold lower anti-PEG IgG, and 6- to 10- fold lower anti-PEG IgM, after 3 rounds of pegloticase dosed every 2 weeks. The markedly reduced APA levels, together with competitive inhibition by free PEG, restored the prolonged circulation of pegloticase to levels observed in APA-naïve animals. In contrast, mice with pegloticase-induced APA eliminated nearly all pegloticase from the circulation within just four hours post-injection. These results support the growing literature demonstrating free PEG may effectively suppress drug-induced APA, which in turn may offer sustained therapeutic benefits without requiring broad immunomodulation. We also showed free PEG effectively blocked the PEGylated protein from binding with cells expressing PEG-specific B cell receptors. It provides a template of how we may be able to tune the interactions and immunogenicity of other polymer-modified therapeutics. STATEMENT OF SIGNIFICANCE: A major challenge with engineering materials for drug delivery is their interactions with the immune system. For instance, our body can produce high levels of anti-PEG antibodies (APA). Unfortunately, the field currently lack tools to limit immunostimulation or overcome pre-existing anti-PEG antibodies, without using broad immunosuppression. Here, we showed that simply introducing free PEG into a clinical formulation of PEG-uricase can effectively limit induction of anti-PEG antibodies, and restore their prolonged circulation upon repeated dosing. Our work offers a readily translatable method to safely and effectively restore the use PEG-drugs in patients with PEG-immunity, and provides a template to use unconjugated polymers with low immunogenicity to regulate interactions with the immune system for other polymer-modified therapeutics.
Collapse
Affiliation(s)
- Zhongbo Li
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA
| | - Limei Shen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA
| | - Alice Ma
- Department of Biomedical Engineering, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA
| | - Anne Talkington
- Program in Bioinformatics and Computational Biology, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA
| | - Zibo Li
- Department of Radiology, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | - Eric W Livingston
- Biomedical Research Imaging Center, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan E Frank
- Biomedical Research Imaging Center, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA
| | - Hong Yuan
- Biomedical Research Imaging Center, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA; Program in Bioinformatics and Computational Biology, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA.; Department of Immunology and Microbiology, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
71
|
Eng YJ, Nguyen TM, Luo HK, Chan JMW. Antifouling polymers for nanomedicine and surfaces: recent advances. NANOSCALE 2023; 15:15472-15512. [PMID: 37740391 DOI: 10.1039/d3nr03164k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Antifouling polymers are materials that can resist nonspecific interactions with cells, proteins, and other biomolecules. Typically, they are hydrophilic polymers with polar or charged moieties that are capable of strong nonbonding interactions with water molecules. This propensity to bind water generates a surface hydration layer that reduces nonspecific interactions with other molecules and is paramount to the antifouling behavior. This property is especially useful for nanoscale applications such as nanomedicine and surface modifications at the molecular level. In nanomedicine, antifouling polymers such as poly(ethylene glycol) and its alternatives play a key role in shielding drug molecules and therapeutic proteins/genes from the immune system within nanoassemblies, thereby enabling effective delivery to target tissues. For coatings, antifouling polymers help to prevent adhesion of cells and molecules to surfaces and are thus valued in marine and biomedical device applications. In this Review, we survey recent advances in antifouling polymers in the context of nanomedicine and coatings, while shining the spotlight on the major polymer classes such as PEG, polyzwitterions, poly(oxazoline)s, and other nonionic hydrophilic polymers.
Collapse
Affiliation(s)
- Yi Jie Eng
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Tuan Minh Nguyen
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - He-Kuan Luo
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Julian M W Chan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| |
Collapse
|
72
|
Lee Y, Jeong M, Park J, Jung H, Lee H. Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics. Exp Mol Med 2023; 55:2085-2096. [PMID: 37779140 PMCID: PMC10618257 DOI: 10.1038/s12276-023-01086-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 10/03/2023] Open
Abstract
Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these nanoparticles are recognized as foreign materials by the body and stimulate innate immunity, which in turn impacts adaptive immunity. Therefore, it is crucial to understand the specific type of innate immune response triggered by lipid nanoparticles. This article provides an overview of the immunological response in the body, explores how lipid nanoparticles activate the innate immune system, and examines the adverse effects and immunogenicity-related development pathways associated with these nanoparticles. Finally, we highlight and explore strategies for regulating the immunogenicity of lipid nanoparticles.
Collapse
Affiliation(s)
- Yeji Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea
| | - Michaela Jeong
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea
| | - Jeongeun Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea
| | - Hyein Jung
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea.
| |
Collapse
|
73
|
Deuker MFS, Mailänder V, Morsbach S, Landfester K. Anti-PEG antibodies enriched in the protein corona of PEGylated nanocarriers impact the cell uptake. NANOSCALE HORIZONS 2023; 8:1377-1385. [PMID: 37591816 DOI: 10.1039/d3nh00198a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Poly(ethylene glycol) (PEG) is the gold standard used to reduce unspecific protein adsorption and prolong nanocarrier circulation time. However, this stealth effect could be counteracted by the increasing prevalence of anti-PEG antibodies in the bloodstream. Up to now, the presence of anti-PEG antibodies in the protein corona and their effect on cell uptake has not been investigated yet. Our results showed a high concentration and prevalence of anti-PEG antibodies in the German population. PEGylated nanocarriers exhibited a higher level of anti-PEG antibodies in the protein corona compared to non-PEGylated, which lead to higher uptake in macrophages. Consequently, the anti-PEG antibodies in the protein corona could mitigate the stealth effect of PEG, leading to accelerated blood clearance and unwanted side effects.
Collapse
Affiliation(s)
- Mareike F S Deuker
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Volker Mailänder
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
74
|
Lenders M, Feidicker LM, Brand SM, Brand E. Characterization of pre-existing anti-PEG and anti-AGAL antibodies towards PRX-102 in patients with Fabry disease. Front Immunol 2023; 14:1266082. [PMID: 37818380 PMCID: PMC10561604 DOI: 10.3389/fimmu.2023.1266082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Polyethylene glycol (PEG)ylated drugs are used for medical treatment, since PEGylation either decreases drug clearance or/and shields the protein from undesirable immunogenicity. PEGylation was implemented in a new enzyme replacement therapy for Fabry disease (FD), pegunigalsidase-alfa (PRX-102). However, exposure to PEG via life-style products and vaccination can result in the formation of anti-PEG antibodies. We demonstrate the de novo formation of functional anti-PEG antibodies in a healthy male after the second mRNA-based vaccination against SARS-CoV-2. Consequently, we analyzed the frequency and inhibitory function of anti-PEG and anti-α-Galactosidase A (AGAL) antibodies in 102 FD patients (46.9% males). We identified 29 out of 87 (33.3%) patients with low anti-PEG titers. Sera from patients without anti-AGAL antibodies [n=70] showed a higher rescued AGAL activity of agalsidase-beta and PRX-102 [both p<0.0001] compared to those with anti-AGAL antibodies [n=15]. Sera from anti-AGAL antibody-negative and -positive patients had less inhibitory effects on PRX-102 (rescued activity: 89 ± 6% versus 85 ± 7% and 49 ± 26% versus 25 ± 32%; both p<0.0001). Enzyme stability assays demonstrated that AUCs in anti-AGAL-negative sera (n=20) were 7.6-fold higher for PRX-102, while AUCs of both enzymes in anti-AGAL-positive sera (n=6) were decreased. However, AUC for PRX-102 was 33% of non-anti-AGAL-positive sera treated PRX-102 and 5-fold higher compared to agalsidase-beta. Anti-PEG antibodies had no significant effects on serum half-life of PRX-102, probably due to low titers. Conceivably, therapy efficacy may be superior under next-generation PRX-102 therapy compared to current enzyme replacement therapies in terms of reduced inhibitory effects of anti-AGAL and minor inhibitory effects of anti-PEG antibodies.
Collapse
Affiliation(s)
- Malte Lenders
- Department of Internal Medicine D, and Interdisciplinary Fabry Center (IFAZ), University Hospital Muenster, Muenster, Germany
| | - Lina Marleen Feidicker
- Department of Internal Medicine D, and Interdisciplinary Fabry Center (IFAZ), University Hospital Muenster, Muenster, Germany
| | - Stefan-Martin Brand
- Institute of Sports Medicine, Interdisciplinary Fabry Center (IFAZ), University Hospital Muenster, Muenster, Germany
| | - Eva Brand
- Department of Internal Medicine D, and Interdisciplinary Fabry Center (IFAZ), University Hospital Muenster, Muenster, Germany
| |
Collapse
|
75
|
Subasic CN, Butcher NJ, Simpson F, Minchin RF, Kaminskas LM. Dose-Dependent Effect of Phenothiazines as Dynamin II Inhibitors on the Uptake of PEGylated Liposomes by Endocytic Cells and In Vivo Pharmacokinetics of PEGylated Liposomal Doxorubicin in Rats. Mol Pharm 2023; 20:4468-4477. [PMID: 37548597 DOI: 10.1021/acs.molpharmaceut.3c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Dynamin II (dynII) plays a significant role in the internalization pathways of endocytic cells, by allowing membrane invaginations to "bud off". An important class of dynII inhibitors that are used clinically are phenothiazines, such as prochlorperazine (PCZ). PCZ is an antipsychotic drug but is also currently in clinical trials at higher concentrations as an adjuvant in cancer patients that increases the efficacy of monoclonal antibodies at high intravenous doses. It is unknown, however, whether high-dose dynII inhibitors have the potential to alter the pharmacokinetics of co-administered chemotherapeutic nanomedicines that are largely cleared via the mononuclear phagocyte system. This work therefore sought to investigate the impact of clinically relevant concentrations of phenothiazines, PCZ and thioridazine, on in vitro liposome endocytosis and in vivo liposome pharmacokinetics after PCZ infusion in rats. The uptake of fluorescently labeled PEGylated liposomes into differentiated and undifferentiated THP-1 and RAW246.7 cells, and primary human peripheral white blood cells, was investigated via flow cytometry after co-incubation with dynII inhibitors. The IV pharmacokinetics of PEGylated liposomes were also investigated in rats after a 20 min infusion with PCZ. Phenothiazines and dyngo4a reduced the uptake of PEGylated liposomes by THP-1 and RAW264.7 cells in a concentration-dependent manner in vitro. However, dynII inhibitors did not alter the mean uptake of liposomes by human peripheral white blood cells, but endocytic white cells from some donors exhibited sensitivity to phenothiazine exposure. When a clinically relevant dose of PCZ was co-administered with PEGylated liposomal doxorubicin (Caelyx/Doxil) in rats, the pharmacokinetics and biodistribution of liposomes were unaltered. These data suggest that while clinically relevant doses of dynII inhibitors can inhibit the uptake of liposomes by endocytic cells in vitro, they are unlikely to significantly affect the pharmacokinetics of long-circulating, co-administered liposomes.
Collapse
Affiliation(s)
- Christopher N Subasic
- School of Biomedical Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Neville J Butcher
- School of Biomedical Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Fiona Simpson
- Frazer Institute, The University of Queensland, St Lucia QLD 4072, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Lisa M Kaminskas
- School of Biomedical Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| |
Collapse
|
76
|
Kim H, Kim KS, Na K. Nanoparticle platform comprising lipid-tailed pH-sensitive carbon dots with minimal drug loss. J Control Release 2023; 361:373-384. [PMID: 37558052 DOI: 10.1016/j.jconrel.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/17/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023]
Abstract
Herein, we synthesized a lipid-mimicking organic material (PCD_FA) that can surpass the efficacy of lipid-based nanoparticles and demonstrated its potential as a delivery vehicle for various hydrophilic drugs. PCD_FA is a conjugate of pH-sensitive carbon dots (PCDs) and fatty acids (FAs) and has potential applications in several fields owing to various combinations of carbon dots (CDs) and FAs. Similar to phospholipids, PCD-FAs have hydrophilic heads and hydrophobic tails that allow them to self-form nanoparticles (Coposomes) in the aqueous phase. Coposomes can easily combine various hydrophilic head and hydrophobic tail combinations, and several drugs can be encapsulated, or drug release patterns can be controlled according to each property. We analyzed the differences in size, drug loading efficiency, and drug release patterns of Coposomes depending on the type of FAs and characteristics of the encapsulated drugs. Additionally, cell entry and intracellular drug release mechanisms of the Coposomes were identified. The applicability of Coposomes as drug delivery carriers for tumor treatment has been demonstrated in comparison with that of liposomes formulation in tumor-bearing mouse models. Consequently, this study presents possibilities for the synthesis and application of various amphiphilic lipid-mimicking organic materials via the combination of CDs and FAs with various functions.
Collapse
Affiliation(s)
- Hongjae Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of BioMedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kyoung Sub Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kun Na
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of BioMedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
77
|
Reusch J, Wagenhäuser I, Gabel A, Höhn A, Lâm TT, Krone LB, Frey A, Schubert-Unkmeir A, Dölken L, Frantz S, Kurzai O, Vogel U, Krone M, Petri N. Inability to work following COVID-19 vaccination-a relevant aspect for future booster vaccinations. Public Health 2023; 222:186-195. [PMID: 37562083 DOI: 10.1016/j.puhe.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023]
Abstract
OBJECTIVES COVID-19 vaccination is a key prevention strategy to reduce the spread and severity of SARS-CoV-2 infections. However, vaccine-related inability to work among healthcare workers (HCWs) could overstrain healthcare systems. STUDY DESIGN The study presented was conducted as part of the prospective CoVacSer cohort study. METHODS This study examined sick leave and intake of pro re nata medication after the first, second, and third COVID-19 vaccination in HCWs. Data were collected by using an electronic questionnaire. RESULTS Among 1704 HCWs enrolled, 595 (34.9%) HCWs were on sick leave following at least one COVID-19 vaccination, leading to a total number of 1550 sick days. Both the absolute sick days and the rate of HCWs on sick leave significantly increased with each subsequent vaccination. Comparing BNT162b2mRNA and mRNA-1273, the difference in sick leave was not significant after the second dose, but mRNA-1273 induced a significantly longer and more frequent sick leave after the third. CONCLUSION In the light of further COVID-19 infection waves and booster vaccinations, there is a risk of additional staff shortages due to postvaccination inability to work, which could negatively impact the already strained healthcare system and jeopardise patient care. These findings will aid further vaccination campaigns to minimise the impact of staff absences on the healthcare system.
Collapse
Affiliation(s)
- J Reusch
- Infection Control and Antimicrobial Stewardship Unit, University Hospital Wuerzburg, Wuerzburg, Germany; Department of Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany
| | - I Wagenhäuser
- Infection Control and Antimicrobial Stewardship Unit, University Hospital Wuerzburg, Wuerzburg, Germany; Department of Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany
| | - A Gabel
- Infection Control and Antimicrobial Stewardship Unit, University Hospital Wuerzburg, Wuerzburg, Germany
| | - A Höhn
- Infection Control and Antimicrobial Stewardship Unit, University Hospital Wuerzburg, Wuerzburg, Germany
| | - T-T Lâm
- Institute for Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany
| | - L B Krone
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - A Frey
- Department of Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany
| | - A Schubert-Unkmeir
- Institute for Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany
| | - L Dölken
- Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | - S Frantz
- Department of Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany
| | - O Kurzai
- Institute for Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany; Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Jena, Germany
| | - U Vogel
- Infection Control and Antimicrobial Stewardship Unit, University Hospital Wuerzburg, Wuerzburg, Germany; Institute for Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany
| | - M Krone
- Infection Control and Antimicrobial Stewardship Unit, University Hospital Wuerzburg, Wuerzburg, Germany; Institute for Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany
| | - N Petri
- Department of Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
78
|
Kan AKC, Chiang V, Ip WK, Au EYL, Li PH. Anti-polyethylene glycol (PEG) antibody isotypes may predict PEG-associated allergy and COVID-19 protection among patients with history of suspected COVID-19 vaccine allergy. Clin Transl Allergy 2023; 13:e12284. [PMID: 37746797 PMCID: PMC10472983 DOI: 10.1002/clt2.12284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Affiliation(s)
- Andy Ka Chun Kan
- Division of Rheumatology and Clinical ImmunologyDepartment of MedicineQueen Mary HospitalThe University of Hong KongHong KongHong Kong
| | - Valerie Chiang
- Division of Clinical ImmunologyDepartment of PathologyQueen Mary HospitalHong KongHong Kong
| | - Wai Ki Ip
- Division of Clinical ImmunologyDepartment of PathologyQueen Mary HospitalHong KongHong Kong
| | - Elaine Y. L. Au
- Division of Clinical ImmunologyDepartment of PathologyQueen Mary HospitalHong KongHong Kong
| | - Philip H. Li
- Division of Rheumatology and Clinical ImmunologyDepartment of MedicineQueen Mary HospitalThe University of Hong KongHong KongHong Kong
| |
Collapse
|
79
|
Toyama K, Eto T, Takazawa K, Shimizu S, Nakayama T, Furihata K, Sogawa Y, Kumazaki M, Jonai N, Matsunaga S, Takeshita F, Yoshihara K, Ishizuka H. DS-5670a, a novel mRNA-encapsulated lipid nanoparticle vaccine against severe acute respiratory syndrome coronavirus 2: Results from a phase 2 clinical study. Vaccine 2023; 41:5525-5534. [PMID: 37586958 DOI: 10.1016/j.vaccine.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND DS-5670a is a vaccine candidate for coronavirus disease 2019 (COVID-19) harnessing a novel modality composed of messenger ribonucleic acid (mRNA) encoding the receptor-binding domain (RBD) from the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encapsulated in lipid nanoparticles. Here, we report the safety, immunogenicity, and pharmacokinetic profile of DS-5670a from a phase 2 clinical trial in healthy adults who were immunologically naïve to SARS-CoV-2. METHODS The study consisted of an open-label, uncontrolled, dose-escalation part and a double-blind, randomized, uncontrolled, 2-arm, parallel-group part. A total of 80 Japanese participants were assigned to receive intramuscular DS-5670a, containing either 30 or 60 µg of mRNA, as two injections administered 4 weeks apart. Safety was assessed by characterization of treatment-emergent adverse events (TEAEs). Immunogenicity was assessed by neutralization titers against SARS-CoV-2, anti-RBD immunoglobulin (Ig)G levels, and SARS-CoV-2 spike-specific T cell responses. Plasma pharmacokinetic parameters of DS-5670a were also evaluated. RESULTS Most solicited TEAEs were mild or moderate with both the 30 and 60 µg mRNA doses. Four participants (10 %) in the 60 µg mRNA group developed severe redness at the injection site, but all cases resolved without treatment. There were no serious TEAEs and no TEAEs leading to discontinuation. Humoral immune responses in both dose groups were greater than those observed in human convalescent serum; the 60 µg mRNA dose produced better responses. Neutralization titers were found to be correlated with anti-RBD IgG levels (specifically IgG1). DS-5670a elicited antigen-specific T helper 1-polarized cellular immune responses. CONCLUSIONS The novel mRNA-based vaccine candidate DS-5670a provided favorable immune responses against SARS-CoV-2 with a clinically acceptable safety profile. Confirmatory trials are currently ongoing to evaluate the safety and immunogenicity of DS-5670a as the primary vaccine and to assess the immunogenicity when administered as a heterologous or homologous booster. TRIAL REGISTRY https://jrct.niph.go.jp/latest-detail/jRCT2071210086.
Collapse
Affiliation(s)
- Kaoru Toyama
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Takashi Eto
- Souseikai Hakata Clinic, Random Square 5F, 6-18, Tenyamachi, Hakata-ku, Fukuoka 812-0025, Japan
| | - Kenji Takazawa
- Shinanozaka Clinic, Medical Corporation Shinanokai, Yotsuya Medical Building 3F, 20 Samon-cho, Shinjyu-ku, Tokyo 160-0017, Japan
| | - Shinji Shimizu
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tetsuo Nakayama
- Kitasato University Ömura Satoshi Memorial Institute, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kei Furihata
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yoshitaka Sogawa
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Masafumi Kumazaki
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Nao Jonai
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Satoko Matsunaga
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Fumihiko Takeshita
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kazutaka Yoshihara
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hitoshi Ishizuka
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| |
Collapse
|
80
|
Ye Z, Harmon J, Ni W, Li Y, Wich D, Xu Q. The mRNA Vaccine Revolution: COVID-19 Has Launched the Future of Vaccinology. ACS NANO 2023; 17:15231-15253. [PMID: 37535899 DOI: 10.1021/acsnano.2c12584] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
During the COVID-19 pandemic, mRNA (mRNA) vaccines emerged as leading vaccine candidates in a record time. Nonreplicating mRNA (NRM) and self-amplifying mRNA (SAM) technologies have been developed into high-performing and clinically viable vaccines against a range of infectious agents, notably SARS-CoV-2. mRNA vaccines demonstrate efficient in vivo delivery, long-lasting stability, and nonexistent risk of infection. The stability and translational efficiency of in vitro transcription (IVT)-mRNA can be further increased by modulating its structural elements. In this review, we present a comprehensive overview of the recent advances, key applications, and future challenges in the field of mRNA-based vaccinology.
Collapse
Affiliation(s)
- Zhongfeng Ye
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Joseph Harmon
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Wei Ni
- Department of Medical Oncology, Dana-Farber Cancer Institute at Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Yamin Li
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210, United States
| | - Douglas Wich
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
81
|
Takata H, Shimizu T, Yamade R, Elsadek NE, Emam SE, Ando H, Ishima Y, Ishida T. Anti-PEG IgM production induced by PEGylated liposomes as a function of administration route. J Control Release 2023; 360:285-292. [PMID: 37355210 DOI: 10.1016/j.jconrel.2023.06.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/04/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
Modifying the surface of nanoparticles with polyethylene glycol (PEG) is a commonly used approach for improving the in vitro stability of nanoparticles such as liposomes and increasing their circulation half-lives. We have demonstrated that, in certain conditions, an intravenous (i.v.) injection of PEGylated liposomes (PEG-Lip) induced anti-PEG IgM antibodies, which led to rapid clearance of second doses in mice. SARS-CoV-2 vaccines, composed of mRNA-containing PEGylated lipid nanoparticles, have been widely administered as intramuscular (i.m.) injections, so it is important to determine if PEGylated formulations can induce anti-PEG antibodies. If the favorable properties that PEGylation imparts to therapeutic nanoparticles are to be widely applicable this should apply to various routes of administration. However, there are few reports on the effect of different administration routes on the in vivo production of anti-PEG IgM. In this study, we investigated anti-PEG IgM production in mice following i.m., intraperitoneal (i.p.) and subcutaneous (s.c.) administration of PEG-Lip. PEG-Lip appeared to induce anti-PEG IgM by all the tested routes of administration, although the lipid dose causing maximum responses varied. Splenectomy attenuated the anti-PEG IgM production for all routes of administration, suggesting that splenic immune cells may have contributed to anti-PEG IgM production. Interestingly, in vitro experiments indicated that not only splenic cells but also cells in the peritoneal cavity induced anti-PEG IgM following incubation with PEG-Lip. These observations confirm previous experiments that have shown that measurable amounts of PEG-Lip administered i.p., i.m. or s.c. are absorbed to some extent into the blood circulation, where they can be distributed to the spleen and/or peritoneal cavity, and are recognized by B cells, triggering anti-PEG IgM production. The results obtained in this study have important implications for developing efficient PEGylated nanoparticular delivery system.
Collapse
Affiliation(s)
- Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Rina Yamade
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Nehal E Elsadek
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Sherif E Emam
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan.
| |
Collapse
|
82
|
Wilhelmy C, Keil IS, Uebbing L, Schroer MA, Franke D, Nawroth T, Barz M, Sahin U, Haas H, Diken M, Langguth P. Polysarcosine-Functionalized mRNA Lipid Nanoparticles Tailored for Immunotherapy. Pharmaceutics 2023; 15:2068. [PMID: 37631282 PMCID: PMC10458461 DOI: 10.3390/pharmaceutics15082068] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Lipid nanoparticles (LNPs) have gained great attention as carriers for mRNA-based therapeutics, finding applications in various indications, extending beyond their recent use in vaccines for infectious diseases. However, many aspects of LNP structure and their effects on efficacy are not well characterized. To further exploit the potential of mRNA therapeutics, better control of the relationship between LNP formulation composition with internal structure and transfection efficiency in vitro is necessary. We compared two well-established ionizable lipids, namely DODMA and MC3, in combination with two helper lipids, DOPE and DOPC, and two polymer-grafted lipids, either with polysarcosine (pSar) or polyethylene glycol (PEG). In addition to standard physicochemical characterization (size, zeta potential, RNA accessibility), small-angle X-ray scattering (SAXS) was used to analyze the structure of the LNPs. To assess biological activity, we performed transfection and cell-binding assays in human peripheral blood mononuclear cells (hPBMCs) using Thy1.1 reporter mRNA and Cy5-labeled mRNA, respectively. With the SAXS measurements, we were able to clearly reveal the effects of substituting the ionizable and helper lipid on the internal structure of the LNPs. In contrast, pSar as stealth moieties affected the LNPs in a different manner, by changing the surface morphology towards higher roughness. pSar LNPs were generally more active, where the highest transfection efficiency was achieved with the LNP formulation composition of MC3/DOPE/pSar. Our study highlights the utility of pSar for improved mRNA LNP products and the importance of pSar as a novel stealth moiety enhancing efficiency in future LNP formulation development. SAXS can provide valuable information for the rational development of such novel formulations by elucidating structural features in different LNP compositions.
Collapse
Affiliation(s)
- Christoph Wilhelmy
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (C.W.)
| | - Isabell Sofia Keil
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, 55131 Mainz, Germany;
| | - Lukas Uebbing
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (C.W.)
| | - Martin A. Schroer
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o DESY, 22607 Hamburg, Germany
- Nanoparticle Process Technology (NPPT), Faculty of Engineering, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Daniel Franke
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o DESY, 22607 Hamburg, Germany
- BIOSAXS GmbH, 22607 Hamburg, Germany
| | - Thomas Nawroth
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (C.W.)
| | - Matthias Barz
- LACDR—Leiden Academic Centre for Drug Research, Leiden University, 2333 Leiden, The Netherlands
- Department of Dermatology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Ugur Sahin
- Department of Immunology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Heinrich Haas
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (C.W.)
- BioNTech SE, 55131 Mainz, Germany
| | - Mustafa Diken
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, 55131 Mainz, Germany;
| | - Peter Langguth
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (C.W.)
| |
Collapse
|
83
|
Korzun T, Moses AS, Diba P, Sattler AL, Taratula OR, Sahay G, Taratula O, Marks DL. From Bench to Bedside: Implications of Lipid Nanoparticle Carrier Reactogenicity for Advancing Nucleic Acid Therapeutics. Pharmaceuticals (Basel) 2023; 16:1088. [PMID: 37631003 PMCID: PMC10459564 DOI: 10.3390/ph16081088] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
In biomedical applications, nanomaterial-based delivery vehicles, such as lipid nanoparticles, have emerged as promising instruments for improving the solubility, stability, and encapsulation of various payloads. This article provides a formal review focusing on the reactogenicity of empty lipid nanoparticles used as delivery vehicles, specifically emphasizing their application in mRNA-based therapies. Reactogenicity refers to the adverse immune responses triggered by xenobiotics, including administered lipid nanoparticles, which can lead to undesirable therapeutic outcomes. The key components of lipid nanoparticles, which include ionizable lipids and PEG-lipids, have been identified as significant contributors to their reactogenicity. Therefore, understanding the relationship between lipid nanoparticles, their structural constituents, cytokine production, and resultant reactogenic outcomes is essential to ensure the safe and effective application of lipid nanoparticles in mRNA-based therapies. Although efforts have been made to minimize these adverse reactions, further research and standardization are imperative. By closely monitoring cytokine profiles and assessing reactogenic manifestations through preclinical and clinical studies, researchers can gain valuable insights into the reactogenic effects of lipid nanoparticles and develop strategies to mitigate undesirable reactions. This comprehensive review underscores the importance of investigating lipid nanoparticle reactogenicity and its implications for the development of mRNA-lipid nanoparticle therapeutics in various applications beyond vaccine development.
Collapse
Affiliation(s)
- Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR 97201, USA; (T.K.)
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Avenue, Portland, OR 97239, USA
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Abraham S. Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR 97201, USA; (T.K.)
| | - Parham Diba
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Ariana L. Sattler
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Avenue, Portland, OR 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 2730 S Moody Avenue, Portland, OR 97201, USA
| | - Olena R. Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR 97201, USA; (T.K.)
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR 97201, USA; (T.K.)
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR 97201, USA; (T.K.)
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Avenue, Portland, OR 97239, USA
| | - Daniel L. Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Avenue, Portland, OR 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 2730 S Moody Avenue, Portland, OR 97201, USA
| |
Collapse
|
84
|
Kozma GT, Mészáros T, Berényi P, Facskó R, Patkó Z, Oláh CZ, Nagy A, Fülöp TG, Glatter KA, Radovits T, Merkely B, Szebeni J. Role of anti-polyethylene glycol (PEG) antibodies in the allergic reactions to PEG-containing Covid-19 vaccines: Evidence for immunogenicity of PEG. Vaccine 2023; 41:4561-4570. [PMID: 37330369 PMCID: PMC10239905 DOI: 10.1016/j.vaccine.2023.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/19/2023]
Abstract
A small fraction of recipients who receive polyethylene-glycol (PEG)-containing COVID-19 mRNA-LNP vaccines (Comirnaty and Spikevax) develop hypersensitivity reactions (HSRs) or anaphylaxis. A causal role of anti-PEG antibodies (Abs) has been proposed, but not yet been proven in humans.We used ELISA for serial measurements of SARS-CoV-2 neutralizing Ab (anti-S) and anti-PEG IgG/IgM Ab levels before and after the first and subsequent booster vaccinations with mRNA-LNP vaccines in a total of 291 blood donors. The HSRs in 15 subjects were graded and correlated with anti-PEG IgG/IgM, just as the anti-S and anti-PEG Ab levels with each other. The impacts of gender, allergy, mastocytosis and use of cosmetics were also analyzed. Serial testing of two or more plasma samples showed substantial individual variation of anti-S Ab levels after repeated vaccinations, just as the levels of anti-PEG IgG and IgM, which were over baseline in 98-99 % of unvaccinated individuals. About 3-4 % of subjects in the strongly left-skewed distribution had 15-45-fold higher values than the median, referred to as anti-PEG Ab supercarriers. Both vaccines caused significant rises of anti-PEG IgG/IgM with >10-fold rises in about ∼10 % of Comirnaty, and all Spikevax recipients. The anti-PEG IgG and/or IgM levels in the 15 vaccine reactors (3 anaphylaxis) were significantly higher compared to nonreactors. Serial testing of plasma showed significant correlation between the booster injection-induced rises of anti-S and anti-PEG IgGs, suggesting coupled anti-S and anti-PEG immunogenicity.Conclusions: The small percentage of people who have extremelevels of anti-PEG Ab in their blood may be at increased risk for HSRs/anaphylaxis to PEGylated vaccines and other PEGylated injectables. This risk might be further increased by the anti-PEG immunogenicity of these vaccines. Screening for anti-PEG Ab "supercarriers" may help predicting reactors and thus preventing these adverse phenomena.
Collapse
Affiliation(s)
- Gergely Tibor Kozma
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, Budapest, Hungary; SeroScience LLC, Budapest, Hungary
| | - Tamás Mészáros
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, Budapest, Hungary; SeroScience LLC, Budapest, Hungary
| | - Petra Berényi
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, Budapest, Hungary; SeroScience LLC, Budapest, Hungary
| | - Réka Facskó
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, Budapest, Hungary; SeroScience LLC, Budapest, Hungary
| | - Zsófia Patkó
- Department of Radiology, BAZ County Central Hospital and Borsod County University Teaching Hospital and Miskolc University, Miskolc, Hungary
| | - Csaba Zs Oláh
- Department of Neurosurgery, BAZ County Central Hospital and Borsod County University Teaching Hospital, Miskolc, Hungary
| | - Adrienne Nagy
- Department of Allergy, Heim Pál Children's Hospital, Budapest, Hungary
| | | | | | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - János Szebeni
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, Budapest, Hungary; SeroScience LLC, Budapest, Hungary; Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health Sciences, Miskolc University, Miskolc, Hungary; Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
85
|
Subasic CN, Butcher NJ, Minchin RF, Kaminskas LM. Dose-Dependent Production of Anti-PEG IgM after Intramuscular PEGylated-Hydrogenated Soy Phosphatidylcholine Liposomes, but Not Lipid Nanoparticle Formulations of DNA, Correlates with the Plasma Clearance of PEGylated Liposomal Doxorubicin in Rats. Mol Pharm 2023; 20:3494-3504. [PMID: 37256791 DOI: 10.1021/acs.molpharmaceut.3c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PEGylated lipid nanoparticle-based Covid-19 vaccines, including Pfizer's BNT162b2 and Moderna's mRNA-1273, have been shown to stimulate variable anti-PEG antibody production in humans. Anti-PEG antibodies have the potential to accelerate the plasma clearance of PEGylated therapeutics, such as PEGylated liposomes and proteins, and compromise their therapeutic efficacy. However, it is not yet clear whether antibody titers produced by PEGylated Covid-19 vaccines significantly affect the clearance of PEGylated therapeutics. This study examined how anti-PEG IgM levels affect the pharmacokinetics of PEGylated liposomal doxorubicin (PLD) and compared the immunogenicity of a lipid nanoparticle formulation of linear DNA (DNA-LNP) to standard PEG-HSPC liposomes. DNA-LNP was prepared using the same composition and approach as Pfizer's BNT162b2, except linear double-stranded DNA was used as the genetic material. PEGylated HSPC-based liposomes were formulated using the lipid rehydration and extrusion method. Nanoparticles were dosed IM to rats at 0.005-0.5 mg lipid/kg body weight 1 week before evaluating the plasma pharmacokinetics of clinically relevant doses of PLD (1 mg/kg, IV) or PEGylated interferon α2a (Pegasys, 5 μg/kg, SC). Plasma PEG IgM was compared between pre- and 1-week post-dose blood samples. The results showed that anti-PEG IgM production increased with increasing PEG-HSPC liposome dose and that IgM significantly correlated with the plasma half-life, clearance, volume of distribution, and area under the curve of a subsequent dose of PLD. The plasma exposure of Pegasys was also significantly reduced after initial delivery of 0.005 mg/ml PEG-HSPC liposome. However, a single 0.05 mg/kg IM dose of DNA-LNP did not significantly elevate PEG IgM and did not alter the IV pharmacokinetics of PLD. These data showed that PEGylated Covid-19 vaccines are less immunogenic compared to standard PEGylated HSPC liposomes and that there is an antibody threshold for accelerating the clearance of PEGylated therapeutics.
Collapse
Affiliation(s)
- Christopher N Subasic
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Neville J Butcher
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Lisa M Kaminskas
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
86
|
Parsons NB, Annamalai B, Rohrer B. Regulatable Complement Inhibition of the Alternative Pathway Mitigates Wet Age-Related Macular Degeneration Pathology in a Mouse Model. Transl Vis Sci Technol 2023; 12:17. [PMID: 37462980 PMCID: PMC10362922 DOI: 10.1167/tvst.12.7.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Purpose Risk for developing age-related macular degeneration (AMD) is linked to an overactive complement system. In the mouse model of laser-induced choroidal neovascularization (CNV), elevated levels of complement effector molecules, including complement C3, have been identified, and the alternative pathway (AP) is required for pathology. The main soluble AP regular is complement factor H (fH). We have previously shown that AP inhibition via subretinal AAV-mediated delivery of CR2-fH using a constitutive promoter is efficacious in reducing CNV. Here we ask whether the C3 promoter (pC3) effectively drives CR2-fH bioavailability for gene therapy. Methods Truncated pC3 was used to generate plasmids pC3-mCherry/CR2-fH followed by production of corresponding AAV5 vectors. pC3 activation was determined in transiently transfected ARPE-19 cells stimulated with H2O2 or normal human serum (+/- antioxidant or humanized CR2-fH, respectively). CNV was analyzed in C57BL/6J mice treated subretinally with AAV5-pC3-mCherry/CR2-fH using imaging (optical coherence tomography [OCT] and fundus imaging), functional (electroretinography [ERG]), and molecular (protein expression) readouts. Results Modulation of pC3 in vitro is complement and oxidative stress dependent, as shown by mCherry fluorescence. AAV5-pC3-CR2-fH were identified as safe and effective using OCT and ERG. CR2-fH expression significantly reduced CNV compared to mCherry and was correlated with reduced levels of C3dg/C3d in the retinal pigment epithelium/choroid fraction. Conclusions We conclude that complement-dependent regulation of AP inhibition ameliorates AMD pathology as effectively as using a constitutive promoter. Translational Relevance The goal of anticomplement therapy is to restore homeostatic levels of complement activation, which might be more easily achievable using a self-regulating system.
Collapse
Affiliation(s)
- Nathaniel B. Parsons
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, USA
| |
Collapse
|
87
|
Lee J, Woodruff MC, Kim EH, Nam JH. Knife's edge: Balancing immunogenicity and reactogenicity in mRNA vaccines. Exp Mol Med 2023; 55:1305-1313. [PMID: 37430088 PMCID: PMC10394010 DOI: 10.1038/s12276-023-00999-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/26/2023] [Accepted: 03/27/2023] [Indexed: 07/12/2023] Open
Abstract
Since the discovery of messenger RNA (mRNA), there have been tremendous efforts to wield them in the development of therapeutics and vaccines. During the COVID-19 pandemic, two mRNA vaccines were developed and approved in record-breaking time, revolutionizing the vaccine development landscape. Although first-generation COVID-19 mRNA vaccines have demonstrated over 90% efficacy, alongside strong immunogenicity in humoral and cell-mediated immune responses, their durability has lagged compared to long-lived vaccines, such as the yellow fever vaccine. Although worldwide vaccination campaigns have saved lives estimated in the tens of millions, side effects, ranging from mild reactogenicity to rare severe diseases, have been reported. This review provides an overview and mechanistic insights into immune responses and adverse effects documented primarily for COVID-19 mRNA vaccines. Furthermore, we discuss the perspectives of this promising vaccine platform and the challenges in balancing immunogenicity and adverse effects.
Collapse
Affiliation(s)
- Jisun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Matthew C Woodruff
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Eui Ho Kim
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam, 13488, Republic of Korea.
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
- BK Plus Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
88
|
Tursi NJ, Xu Z, Kulp DW, Weiner DB. Gene-encoded nanoparticle vaccine platforms for in vivo assembly of multimeric antigen to promote adaptive immunity. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1880. [PMID: 36807845 PMCID: PMC10665986 DOI: 10.1002/wnan.1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 02/23/2023]
Abstract
Nanoparticle vaccines are a diverse category of vaccines for the prophylaxis or treatment of various diseases. Several strategies have been employed for their optimization, especially to enhance vaccine immunogenicity and generate potent B-cell responses. Two major modalities utilized for particulate antigen vaccines include using nanoscale structures for antigen delivery and nanoparticles that are themselves vaccines due to antigen display or scaffolding-the latter of which we will define as "nanovaccines." Multimeric antigen display has a variety of immunological benefits compared to monomeric vaccines mediated through potentiating antigen-presenting cell presentation and enhancing antigen-specific B-cell responses through B-cell activation. The majority of nanovaccine assembly is done in vitro using cell lines. However, in vivo assembly of scaffolded vaccines potentiated using nucleic acids or viral vectors is a burgeoning modality of nanovaccine delivery. Several advantages to in vivo assembly exist, including lower costs of production, fewer production barriers, as well as more rapid development of novel vaccine candidates for emerging diseases such as SARS-CoV-2. This review will characterize the methods for de novo assembly of nanovaccines in the host using methods of gene delivery including nucleic acid and viral vectored vaccines. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Nicholas J. Tursi
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ziyang Xu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel W. Kulp
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - David B. Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
89
|
Pignatti P, Ramirez GA, Russo M, Marraccini P, Nannipieri S, Asperti C, Torre FD, Tiri A, Gatti BM, Gurrado A, Meriggi A, Benanti G, Cilona MB, Pigatto P, Burastero SE, Dagna L, Yacoub MR. Hypersensitivity reactions to anti-SARS-CoV-2 vaccines: Basophil reactivity to excipients. Vaccine 2023:S0264-410X(23)00714-4. [PMID: 37349223 DOI: 10.1016/j.vaccine.2023.06.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023]
Abstract
Basophil activation test (BAT) can tackle multiple mechanisms underlying acute and delayed hypersensitivity to drugs and vaccines and might complement conventional allergy diagnostics but its role in anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine-related hypersensitivity is ill-defined. Therefore, 89 patients with possible hypersensitivity (56 % with delayed mucocutaneous manifestations) to anti-SARS-CoV-2 vaccines were tested with BAT for Macrogol 3350, DMG-PEG 2000, PEG 20000, polysorbate-80 and trometamol and compared to 156 subjects undergoing pre-vaccine BAT. A positive BAT was associated with delayed reaction onset (p = 0.010) and resolution (p = 0.011). BAT was more frequently positive to DMG-PEG 2000 than to other excipients in both groups (p < 0.001). DMG-PEG 2000 reactivity was less frequent in vaccine-naïve (6 %) than vaccinated subjects (35 %, p < 0.001) and associated with mRNA-1273 vaccination. DMG-PEG 2000 BAT might therefore have a diagnostic role in subjects with delayed hypersensitivity reactions. Natural immunity might be a key player in basophil activation.
Collapse
Affiliation(s)
- Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia, 27100 Pavia, Italy
| | - Giuseppe Alvise Ramirez
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| | - Marco Russo
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Marraccini
- Preventive and Occupational Medicine Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Serena Nannipieri
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Chiara Asperti
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | | | | | | | - Antonella Gurrado
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia, 27100 Pavia, Italy
| | | | - Giovanni Benanti
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Bernadette Cilona
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Pigatto
- Section of Clinical Dermatology, Department of Biomedical, Surgical and Dental Sciences, IRCCS Galeazzi Orthopedic Institute, University of Milan, Milan, Italy
| | - Samuele E Burastero
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Mona-Rita Yacoub
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| |
Collapse
|
90
|
Münter R, Christensen E, Andresen TL, Larsen JB. Studying how administration route and dose regulates antibody generation against LNPs for mRNA delivery with single-particle resolution. Mol Ther Methods Clin Dev 2023; 29:450-459. [PMID: 37251983 PMCID: PMC10220314 DOI: 10.1016/j.omtm.2023.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/08/2023] [Indexed: 05/31/2023]
Abstract
Following the recent approval of both siRNA- and mRNA-based therapeutics, nucleic acid therapies are considered a game changer in medicine. Their envisioned widespread use for many therapeutic applications with an array of cellular target sites means that various administration routes will be employed. Concerns exist regarding adverse reactions against the lipid nanoparticles (LNPs) used for mRNA delivery, as PEG coatings on nanoparticles can induce severe antibody-mediated immune reactions, potentially being boosted by the inherently immunogenic nucleic acid cargo. While exhaustive information is available on how physicochemical features of nanoparticles affects immunogenicity, it remains unexplored how the fundamental choice of administration route regulates anti-particle immunity. Here, we directly compared antibody generation against PEGylated mRNA-carrying LNPs administered by the intravenous, intramuscular, or subcutaneous route, using a novel sophisticated assay capable of measuring antibody binding to authentic LNP surfaces with single-particle resolution. Intramuscular injections in mice were found to generate overall low and dose-independent levels of anti-LNP antibodies, while both intravenous and subcutaneous LNP injections generated substantial and highly dose-dependent levels. These findings demonstrate that before LNP-based mRNA medicines can be safely applied to new therapeutic applications, it will be crucial to carefully consider the choice of administration route.
Collapse
Affiliation(s)
- Rasmus Münter
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | - Esben Christensen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | - Thomas L. Andresen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | - Jannik B. Larsen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| |
Collapse
|
91
|
Zhang Y, Chen Y, Ding T, Zhang Y, Yang D, Zhao Y, Liu J, Ma B, Bianco A, Ge S, Li J. Janus porous polylactic acid membranes with versatile metal-phenolic interface for biomimetic periodontal bone regeneration. NPJ Regen Med 2023; 8:28. [PMID: 37270633 DOI: 10.1038/s41536-023-00305-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/23/2023] [Indexed: 06/05/2023] Open
Abstract
Conventional treatment to periodontal and many other bone defects requires the use of barrier membranes to guided tissue regeneration (GTR) and guided bone regeneration (GBR). However, current barrier membranes normally lack of the ability to actively regulate the bone repairing process. Herein, we proposed a biomimetic bone tissue engineering strategy enabled by a new type of Janus porous polylactic acid membrane (PLAM), which was fabricated by combining unidirectional evaporation-induced pore formation with subsequent self-assembly of a bioactive metal-phenolic network (MPN) nanointerface. The prepared PLAM-MPN simultaneously possesses barrier function on the dense side and bone-forming function on the porous side. In vitro, the presence of MPN nanointerface potently alleviated the proinflammatory polarization of mice bone marrow-derived macrophages (BMDMs), induced angiogenesis of human umbilical vein endothelial cells (HUVECs), and enhanced the attachment, migration and osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs). The implantation of PLAM-MPN into rat periodontal bone defects remarkably enhanced bone regeneration. This bioactive MPN nanointerface within a Janus porous membrane possesses versatile capacities to regulate cell physiology favoring bone regeneration, demonstrating great potential as GTR and GBR membranes for clinical applications.
Collapse
Affiliation(s)
- Yaping Zhang
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Department of Orthodontics, The First Affiliated Hospital of Zhengzhou University, (Stomatological Hospital of Henan Province), Zhengzhou, China
| | - Yi Chen
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Tian Ding
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Yandi Zhang
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Daiwei Yang
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Yajun Zhao
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Jin Liu
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Baojin Ma
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Shaohua Ge
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China.
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China.
| |
Collapse
|
92
|
Lim XR, Chan GYL, Tan JWL, Ng CYL, Chua CG, Tan GB, Chan SSW, Ong KH, Tan YZ, Tan SHZ, Teo CML, Lee SSM, Thong BYH, Leung BPL. Anaphylatoxin Complement 5a in Pfizer BNT162b2-Induced Immediate-Type Vaccine Hypersensitivity Reactions. Vaccines (Basel) 2023; 11:1020. [PMID: 37376409 DOI: 10.3390/vaccines11061020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/09/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
The underlying immunological mechanisms of immediate-type hypersensitivity reactions (HSR) to COVID-19 vaccines are poorly understood. We investigate the mechanisms of immediate-type hypersensitivity reactions to the Pfizer BNT162b2 vaccine and the response of antibodies to the polyethylene glycol (PEG)ylated lipid nanoparticle after two doses of vaccination. Sixty-seven participants, median age 35 and 77.3% females who tolerated two doses of the BNT162b2 vaccine (non-reactors), were subjected to various blood-sampling time points. A separate group of vaccine reactors (10 anaphylaxis and 37 anonymised tryptase samples) were recruited for blood sampling. Immunoglobulin (Ig)G, IgM and IgE antibodies to the BNT162b2 vaccine, biomarkers associated with allergic reaction, including tryptase for anaphylaxis, complement 5a(C5a), intercellular adhesion molecule 1 (ICAM-1) for endothelial activation and Interleukin (IL)-4, IL-10, IL-33, tumour necrosis factor (TNF) and monocyte chemoattractant protein (MCP-1), were measured. Basophil activation test (BAT) was performed in BNT162b2-induced anaphylaxis patients by flow cytometry. The majority of patients with immediate-type BNT162b2 vaccine HSR demonstrated raised C5a and Th2-related cytokines but normal tryptase levels during the acute reaction, together with significantly higher levels of IgM antibodies to the BNT162b2 vaccine (IgM 67.2 (median) vs. 23.9 AU/mL, p < 0.001) and ICAM-1 when compared to non-reactor controls. No detectable IgE antibodies to the BNT162b2 vaccine were found in these patients. The basophil activation tests by flow cytometry to the Pfizer vaccine, 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol (DMG-PEG) and PEG-2000 were negative in four anaphylaxis patients. Acute hypersensitivity reactions post BNT162b2 vaccination suggest pseudo-allergic reactions via the activation of anaphylatoxins C5a and are independent of IgE-mechanisms. Vaccine reactors have significantly higher levels of anti-BNT162b2 IgM although its precise role remains unclear.
Collapse
Affiliation(s)
- Xin Rong Lim
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Grace Yin Lai Chan
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Justina Wei Lynn Tan
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Carol Yee Leng Ng
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Choon Guan Chua
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Guat Bee Tan
- Department of Haematology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | | | - Kiat Hoe Ong
- Department of Haematology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Ying Zhi Tan
- Health and Social Sciences, Singapore Institute of Technology, Singapore 138683, Singapore
| | - Sarah Hui Zhen Tan
- Health and Social Sciences, Singapore Institute of Technology, Singapore 138683, Singapore
| | - Claire Min Li Teo
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Samuel Shang Ming Lee
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Bernard Yu Hor Thong
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Bernard Pui Lam Leung
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433, Singapore
- Health and Social Sciences, Singapore Institute of Technology, Singapore 138683, Singapore
| |
Collapse
|
93
|
Chen X. Announcing the 2023 ACS Nano Lectureship and ACS Nano Impact Laureates. ACS NANO 2023. [PMID: 37200106 DOI: 10.1021/acsnano.3c04327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
|
94
|
Zhou ZH, Cortese MM, Fang JL, Wood R, Hummell DS, Risma KA, Norton AE, KuKuruga M, Kirshner S, Rabin RL, Agarabi C, Staat MA, Halasa N, Ware RE, Stahl A, McMahon M, Browning P, Maniatis P, Bolcen S, Edwards KM, Su JR, Dharmarajan S, Forshee R, Broder KR, Anderson S, Kozlowski S. Evaluation of association of anti-PEG antibodies with anaphylaxis after mRNA COVID-19 vaccination. Vaccine 2023:S0264-410X(23)00568-6. [PMID: 37244808 DOI: 10.1016/j.vaccine.2023.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND The mechanism for anaphylaxis following mRNA COVID-19 vaccination has been widely debated; understanding this serious adverse event is important for future vaccines of similar design. A mechanism proposed is type I hypersensitivity (i.e., IgE-mediated mast cell degranulation) to polyethylene glycol (PEG). Using an assay that, uniquely, had been previously assessed in patients with anaphylaxis to PEG, our objective was to compare anti-PEG IgE in serum from mRNA COVID-19 vaccine anaphylaxis case-patients and persons vaccinated without allergic reactions. Secondarily, we compared anti-PEG IgG and IgM to assess alternative mechanisms. METHODS Selected anaphylaxis case-patients reported to U.S. Vaccine Adverse Event Reporting System December 14, 2020-March 25, 2021 were invited to provide a serum sample. mRNA COVID-19 vaccine study participants with residual serum and no allergic reaction post-vaccination ("controls") were frequency matched to cases 3:1 on vaccine and dose number, sex and 10-year age category. Anti-PEG IgE was measured using a dual cytometric bead assay (DCBA). Anti-PEG IgG and IgM were measured using two different assays: DCBA and a PEGylated-polystyrene bead assay. Laboratorians were blinded to case/control status. RESULTS All 20 case-patients were women; 17 had anaphylaxis after dose 1, 3 after dose 2. Thirteen (65 %) were hospitalized and 7 (35 %) were intubated. Time from vaccination to serum collection was longer for case-patients vs controls (post-dose 1: median 105 vs 21 days). Among Moderna recipients, anti-PEG IgE was detected in 1 of 10 (10 %) case-patients vs 8 of 30 (27 %) controls (p = 0.40); among Pfizer-BioNTech recipients, it was detected in 0 of 10 case-patients (0 %) vs 1 of 30 (3 %) controls (p >n 0.99). Anti-PEG IgE quantitative signals followed this same pattern. Neither anti-PEG IgG nor IgM was associated with case status with both assay formats. CONCLUSION Our results support that anti-PEG IgE is not a predominant mechanism for anaphylaxis post-mRNA COVID-19 vaccination.
Collapse
Affiliation(s)
- Zhao-Hua Zhou
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Margaret M Cortese
- Immunization Safety Office, Division of Healthcare Quality and Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jia-Long Fang
- National Center for Toxicological Research, FDA, Jefferson, AR, USA
| | - Robert Wood
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donna S Hummell
- Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, Monroe Carell Jr. Children's Hospital at Vanderbilt, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kimberly A Risma
- Division of Allergy Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Allison E Norton
- Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, Monroe Carell Jr. Children's Hospital at Vanderbilt, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark KuKuruga
- Center for Biologics Evaluation and Research, Food and Drug Administration, USA
| | - Susan Kirshner
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Ronald L Rabin
- Center for Biologics Evaluation and Research, Food and Drug Administration, USA
| | - Cyrus Agarabi
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Mary A Staat
- Division of Infectious Disease, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Natasha Halasa
- Division of Infectious Diseases, Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Russell E Ware
- Division of Hematology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anna Stahl
- Division of Infectious Diseases, Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Maureen McMahon
- Division of Infectious Disease, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Peter Browning
- Microbial Pathogenesis and Immune Response Laboratory, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Panagiotis Maniatis
- Microbial Pathogenesis and Immune Response Laboratory, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shanna Bolcen
- Microbial Pathogenesis and Immune Response Laboratory, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kathryn M Edwards
- Division of Infectious Diseases, Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John R Su
- Immunization Safety Office, Division of Healthcare Quality and Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sai Dharmarajan
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Richard Forshee
- Center for Biologics Evaluation and Research, Food and Drug Administration, USA
| | - Karen R Broder
- Immunization Safety Office, Division of Healthcare Quality and Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Steven Anderson
- Center for Biologics Evaluation and Research, Food and Drug Administration, USA
| | - Steven Kozlowski
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
95
|
Tenchov R, Sasso JM, Zhou QA. PEGylated Lipid Nanoparticle Formulations: Immunological Safety and Efficiency Perspective. Bioconjug Chem 2023. [PMID: 37162501 DOI: 10.1021/acs.bioconjchem.3c00174] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Lipid nanoparticles (LNPs) have been recognized as efficient vehicles to transport a large variety of therapeutics. Currently in the spotlight as important constituents of the COVID-19 mRNA vaccines, LNPs play a significant role in protecting and transporting mRNA to cells. As one of their key constituents, polyethylene glycol (PEG)-lipid conjugates are important in defining LNP physicochemical characteristics and biological activity. PEGylation has proven particularly efficient in conferring longer systemic circulation of LNPs, thus greatly improving their pharmacokinetics and efficiency. Along with revealing the benefits of PEG conjugates, studies have revealed unexpected immune reactions against PEGylated nanocarriers such as accelerated blood clearance (ABC), involving the production of anti-PEG antibodies at initial injection, which initiates accelerated blood clearance upon subsequent injections, as well as a hypersensitivity reaction referred to as complement activation-related pseudoallergy (CARPA). Further, data have been accumulated indicating consistent yet sometimes controversial correlations between various structural parameters of the PEG-lipids, the properties of the PEGylated LNPs, and the magnitude of the observed adverse effects. Detailed knowledge and comprehension of such correlations are of foremost importance in the efforts to diminish and eliminate the undesirable immune reactions and improve the safety and efficiency of the PEGylated medicines. Here, we present an overview based on analysis of data from the CAS Content Collection regarding the PEGylated LNP immunogenicity and overall safety concerns. A comprehensive summary has been compiled outlining how various structural parameters of the PEG-lipids affect the immune responses and activities of the LNPs, with regards to their efficiency in drug delivery. This Review is thus intended to serve as a helpful resource in understanding the current knowledge in the field, in an effort to further solve the remaining challenges and to achieve full potential.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Janet M Sasso
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Qiongqiong Angela Zhou
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
96
|
Shabu A, Nishtala PS. Safety outcomes associated with the Moderna COVID-19 vaccine (mRNA-1273): a literature review. Expert Rev Vaccines 2023; 22:393-409. [PMID: 37133747 DOI: 10.1080/14760584.2023.2209177] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
INTRODUCTION Current safety data from Phase 3 clinical trials have concluded that apart from transient local and systemic reactions, no safety concerns were identified for the Moderna COVID-19 vaccine (mRNA-1273). However, Phase 3 studies are insufficient to detect rare adverse events (AEs), including anaphylactic reactions or myocarditis. A literature search of the two major electronic databases, Embase and Pubmed, was performed to enable the identification and characterization of all relevant articles from December 2020 to November 2022. AREAS COVERED This narrative review aims to summarize the key safety outcomes associated with the mRNA-1273 vaccine to inform healthcare decisions and increase public awareness of mRNA-1273 vaccine safety. The primary adverse events (AEs) reported within a diverse population, including children, adolescents, older adults, pregnant women, and cancer patients receiving the mRNA-1273 vaccine, were; localized injection site pain, fatigue, headache, myalgia, and chills. In addition, the mRNA-1273 vaccine was also associated with; less than a 1-day change in the menstrual cycle, a 10-fold higher risk of myocarditis and pericarditis within young males aged 18-29 years and increased levels of anti-polyethylene glycol (PEG) antibodies. EXPERT OPINION The transient nature of commonly observed AEs and the rare occurrence of severe events within mRNA-1273 recipients show no significant safety concerns which should prevent vaccination. However, large-scale epidemiological studies with longer follow-up periods are required to surveillance rare safety outcomes associated with this vaccine.
Collapse
Affiliation(s)
- Angel Shabu
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Prasad S Nishtala
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, United Kingdom
- Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
97
|
Pritzlaff A, Ferré G, Dargassies E, Williams CO, Gonzalez DD, Eddy MT. Conserved Protein-Polymer Interactions across Structurally Diverse Polymers Underlie Alterations to Protein Thermal Unfolding. ACS CENTRAL SCIENCE 2023; 9:685-695. [PMID: 37122463 PMCID: PMC10146661 DOI: 10.1021/acscentsci.2c01522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Indexed: 05/03/2023]
Abstract
Protein-polymer conjugates are widely used in many clinical and industrial applications, but lack of experimental data relating protein-polymer interactions to improved protein stability prevents their rational design. Advances in synthetic chemistry have expanded the palette of polymer designs, including development of nonlinear architectures, novel monomer chemical scaffolds, and control of hydrophobicity, but more experimental data are needed to transform advances in chemistry into next generation conjugates. Using an integrative biophysical approach, we investigated the molecular basis for polymer-based thermal stabilization of a human galectin protein, Gal3C, conjugated with polymers of linear and nonlinear architectures, different degrees of polymerization, and varying hydrophobicities. Independently varying the degree of polymerization and polymer architecture enabled delineation of specific polymer properties contributing to improved protein stability. Insights from NMR spectroscopy of the polymer-conjugated Gal3C backbone revealed patterns of protein-polymer interactions shared between linear and nonlinear polymer architectures for thermally stabilized conjugates. Despite large differences in polymer chemical scaffolds, protein-polymer interactions resulting in thermal stabilization appear conserved. We observed a clear relation between polymer length and protein-polymer thermal stability shared among chemically different polymers. Our data indicate a wide range of polymers may be useful for engineering conjugate properties and provide conjugate design criteria.
Collapse
|
98
|
Chen WA, Chang DY, Chen BM, Lin YC, Barenholz Y, Roffler SR. Antibodies against Poly(ethylene glycol) Activate Innate Immune Cells and Induce Hypersensitivity Reactions to PEGylated Nanomedicines. ACS NANO 2023; 17:5757-5772. [PMID: 36926834 PMCID: PMC10062034 DOI: 10.1021/acsnano.2c12193] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/03/2023] [Indexed: 06/09/2023]
Abstract
Nanomedicines and macromolecular drugs can induce hypersensitivity reactions (HSRs) with symptoms ranging from flushing and breathing difficulties to hypothermia, hypotension, and death in the most severe cases. Because many normal individuals have pre-existing antibodies that bind to poly(ethylene glycol) (PEG), which is often present on the surface of nanomedicines and macromolecular drugs, we examined if and how anti-PEG antibodies induce HSRs to PEGylated liposomal doxorubicin (PLD). Anti-PEG IgG but not anti-PEG IgM induced symptoms of HSRs including hypothermia, altered lung function, and hypotension after PLD administration in C57BL/6 and nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Hypothermia was significantly reduced by blocking FcγRII/III, by depleting basophils, monocytes, neutrophils, or mast cells, and by inhibiting secretion of histamine and platelet-activating factor. Anti-PEG IgG also induced hypothermia in mice after administration of other PEGylated liposomes, nanoparticles, or proteins. Humanized anti-PEG IgG promoted binding of PEGylated nanoparticles to human immune cells and induced secretion of histamine from human basophils in the presence of PLD. Anti-PEG IgE could also induce hypersensitivity reactions in mice after administration of PLD. Our results demonstrate an important role for IgG antibodies in induction of HSRs to PEGylated nanomedicines through interaction with Fcγ receptors on innate immune cells and provide a deeper understanding of HSRs to PEGylated nanoparticles and macromolecular drugs that may facilitate development of safer nanomedicines.
Collapse
Affiliation(s)
- Wei-An Chen
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Deng-Yuan Chang
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Bing-Mae Chen
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Chen Lin
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Graduate
Institute of Life Sciences, National Defense
Medical Center, Taipei 11529, Taiwan
| | - Yechezekel Barenholz
- Department
of Biochemistry, Faculty of Medicine, The
Hebrew University, Jerusalem 91120, Israel
| | - Steve R. Roffler
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Graduate
Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
99
|
Swetha K, Kotla NG, Tunki L, Jayaraj A, Bhargava SK, Hu H, Bonam SR, Kurapati R. Recent Advances in the Lipid Nanoparticle-Mediated Delivery of mRNA Vaccines. Vaccines (Basel) 2023; 11:658. [PMID: 36992242 PMCID: PMC10059764 DOI: 10.3390/vaccines11030658] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Lipid nanoparticles (LNPs) have recently emerged as one of the most advanced technologies for the highly efficient in vivo delivery of exogenous mRNA, particularly for COVID-19 vaccine delivery. LNPs comprise four different lipids: ionizable lipids, helper or neutral lipids, cholesterol, and lipids attached to polyethylene glycol (PEG). In this review, we present recent the advances and insights for the design of LNPs, as well as their composition and properties, with a subsequent discussion on the development of COVID-19 vaccines. In particular, as ionizable lipids are the most critical drivers for complexing the mRNA and in vivo delivery, the role of ionizable lipids in mRNA vaccines is discussed in detail. Furthermore, the use of LNPs as effective delivery vehicles for vaccination, genome editing, and protein replacement therapy is explained. Finally, expert opinion on LNPs for mRNA vaccines is discussed, which may address future challenges in developing mRNA vaccines using highly efficient LNPs based on a novel set of ionizable lipids. Developing highly efficient mRNA delivery systems for vaccines with improved safety against some severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remains difficult.
Collapse
Affiliation(s)
- K. Swetha
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Niranjan G. Kotla
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| | - Lakshmi Tunki
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Arya Jayaraj
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Suresh K. Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
- Institute for Human Infections & Immunity, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Rajendra Kurapati
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| |
Collapse
|
100
|
Padmaswari MH, Agrawal S, Jia MS, Ivy A, Maxenberger DA, Burcham LA, Nelson CE. Delivery challenges for CRISPR-Cas9 genome editing for Duchenne muscular dystrophy. BIOPHYSICS REVIEWS 2023; 4:011307. [PMID: 36864908 PMCID: PMC9969352 DOI: 10.1063/5.0131452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Duchene muscular dystrophy (DMD) is an X-linked neuromuscular disorder that affects about one in every 5000 live male births. DMD is caused by mutations in the gene that codes for dystrophin, which is required for muscle membrane stabilization. The loss of functional dystrophin causes muscle degradation that leads to weakness, loss of ambulation, cardiac and respiratory complications, and eventually, premature death. Therapies to treat DMD have advanced in the past decade, with treatments in clinical trials and four exon-skipping drugs receiving conditional Food and Drug Administration approval. However, to date, no treatment has provided long-term correction. Gene editing has emerged as a promising approach to treating DMD. There is a wide range of tools, including meganucleases, zinc finger nucleases, transcription activator-like effector nucleases, and, most notably, RNA-guided enzymes from the bacterial adaptive immune system clustered regularly interspaced short palindromic repeats (CRISPR). Although challenges in using CRISPR for gene therapy in humans still abound, including safety and efficiency of delivery, the future for CRISPR gene editing for DMD is promising. This review will summarize the progress in CRISPR gene editing for DMD including key summaries of current approaches, delivery methodologies, and the challenges that gene editing still faces as well as prospective solutions.
Collapse
Affiliation(s)
| | - Shilpi Agrawal
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Mary S. Jia
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Allie Ivy
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Daniel A. Maxenberger
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Landon A. Burcham
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | |
Collapse
|