51
|
Salvati A, Poelstra K. Drug Targeting and Nanomedicine: Lessons Learned from Liver Targeting and Opportunities for Drug Innovation. Pharmaceutics 2022; 14:217. [PMID: 35057111 PMCID: PMC8777931 DOI: 10.3390/pharmaceutics14010217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/08/2023] Open
Abstract
Drug targeting and nanomedicine are different strategies for improving the delivery of drugs to their target. Several antibodies, immuno-drug conjugates and nanomedicines are already approved and used in clinics, demonstrating the potential of such approaches, including the recent examples of the DNA- and RNA-based vaccines against COVID-19 infections. Nevertheless, targeting remains a major challenge in drug delivery and different aspects of how these objects are processed at organism and cell level still remain unclear, hampering the further development of efficient targeted drugs. In this review, we compare properties and advantages of smaller targeted drug constructs on the one hand, and larger nanomedicines carrying higher drug payload on the other hand. With examples from ongoing research in our Department and experiences from drug delivery to liver fibrosis, we illustrate opportunities in drug targeting and nanomedicine and current challenges that the field needs to address in order to further improve their success.
Collapse
Affiliation(s)
- Anna Salvati
- Correspondence: (A.S.); (K.P.); Tel.: +31-503639831 (A.S.); +31-503633287 (K.P.)
| | - Klaas Poelstra
- Correspondence: (A.S.); (K.P.); Tel.: +31-503639831 (A.S.); +31-503633287 (K.P.)
| |
Collapse
|
52
|
On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc Natl Acad Sci U S A 2021; 118:2109256118. [PMID: 34933999 DOI: 10.1073/pnas.2109256118] [Citation(s) in RCA: 355] [Impact Index Per Article: 118.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 01/17/2023] Open
Abstract
Lipid nanoparticles (LNPs) are a clinically mature technology for the delivery of genetic medicines but have limited therapeutic applications due to liver accumulation. Recently, our laboratory developed selective organ targeting (SORT) nanoparticles that expand the therapeutic applications of genetic medicines by enabling delivery of messenger RNA (mRNA) and gene editing systems to non-liver tissues. SORT nanoparticles include a supplemental SORT molecule whose chemical structure determines the LNP's tissue-specific activity. To understand how SORT nanoparticles surpass the delivery barrier of liver hepatocyte accumulation, we studied the mechanistic factors which define their organ-targeting properties. We discovered that the chemical nature of the added SORT molecule controlled biodistribution, global/apparent pKa, and serum protein interactions of SORT nanoparticles. Additionally, we provide evidence for an endogenous targeting mechanism whereby organ targeting occurs via 1) desorption of poly(ethylene glycol) lipids from the LNP surface, 2) binding of distinct proteins to the nanoparticle surface because of recognition of exposed SORT molecules, and 3) subsequent interactions between surface-bound proteins and cognate receptors highly expressed in specific tissues. These findings establish a crucial link between the molecular composition of SORT nanoparticles and their unique and precise organ-targeting properties and suggest that the recruitment of specific proteins to a nanoparticle's surface can enable drug delivery beyond the liver.
Collapse
|
53
|
Alallam B, Doolaanea AA, Kyaw Oo M, Mohd Nasir MH, Taher M. Influence of nanoparticles surface coating on physicochemical properties for CRISPR gene delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
54
|
Evolution of the protein corona affects macrophage polarization. Int J Biol Macromol 2021; 191:192-200. [PMID: 34547310 DOI: 10.1016/j.ijbiomac.2021.09.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 08/19/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023]
Abstract
When nanoparticles (NPs) come into contact with bioenvironments, a protein corona forms on the NP surface. Previous reports showed that the constituents of the corona change with time. However, how different protein corona compositions influence cells, especially immune cells, has received less attention. Macrophages are important immune cells that can be polarized into a pro-inflammatory (M1) or anti-inflammatory (M2) phenotype. In this study, AuNPs were incubated with human plasma for different periods to obtain time-related AuNP-coronas, and the influences of time-related AuNP-coronas on macrophage polarization were investigated. The macrophage morphology, biomarkers, cytokine secretion studies show that the pristine AuNPs and 4 h-AuNP-corona induced macrophage cells into M2 phenotype, while the co-incubation of 12 h-AuNP-corona and macrophage cells result in M1 phenotype. Further proteomic analysis showed that the compositions of protein corona were changing constantly after AuNPs contacted with plasma. When the incubation time increased to 12 h, the immune proteins in protein corona were increased significantly, which play a key role in modulation of the different macrophages polarization. Our findings demonstrated that plasma incubation time is an important parameter that needs to be taken into account in the study of nano-immune interactions and safe use of NPs in biological systems. Moreover, our finding can be a new efficient strategy for activating inflammatory or anti-inflammatory in medical treatment.
Collapse
|
55
|
Liu J, Ma L, Zhang G, Chen Y, Wang Z. Recent Progress of Surface Modified Nanomaterials for Scavenging Reactive Oxygen Species in Organism. Bioconjug Chem 2021; 32:2269-2289. [PMID: 34669378 DOI: 10.1021/acs.bioconjchem.1c00402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reactive oxygen species (ROS) are essential for normal physiological processes and play important roles in signal transduction, immunity, and tissue homeostasis. However, excess ROS may have a negative effect on the normal cells leading to various diseases. Nanomaterials are an attractive therapeutic alternative of antioxidants and possess an intrinsic ability to scavenge ROS. Surface modification for nanomaterials is a critical strategy to improve their comprehensive performances. Herein, we review the different surface modified strategies for nanomaterials to scavenge ROS and their inherent antioxidant capability, mechanisms of action, and biological applications. At last, the primary challenges and future perspectives in this emerging research frontier have also been highlighted. It is believed that this review paper will offer a top understanding and guidance on engineering future high-performance surface modified ROS scavenging nanomaterials for wide biomedical applications.
Collapse
Affiliation(s)
- Jiang Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lijun Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Guoyang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yuzhi Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing 100039, P. R. China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
56
|
Aliyandi A, Reker-Smit C, Bron R, Zuhorn IS, Salvati A. Correlating Corona Composition and Cell Uptake to Identify Proteins Affecting Nanoparticle Entry into Endothelial Cells. ACS Biomater Sci Eng 2021; 7:5573-5584. [PMID: 34761907 PMCID: PMC8672348 DOI: 10.1021/acsbiomaterials.1c00804] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The formation of
the biomolecule corona on the surface of nanoparticles
upon exposure to biological fluids critically influences nanocarrier
performance in drug delivery. It has been shown that in some cases
corona proteins can mediate specific nanoparticle interactions with
cell receptors. Within this context, in order to identify corona proteins
affecting nanoparticle uptake, in this work, correlation analysis
is performed between the corona composition of a panel of silica nanoparticles
of different sizes and surface functionalities and their uptake in
four endothelial cell types derived from different organs. In this
way, proteins that correlate with increased or decreased uptake were
identified, and their effects were validated by studying the uptake
of nanoparticles coated with a single protein corona and competition
studies in brain and liver endothelium. The results showed that precoating
nanoparticles with histidine-rich glycoprotein (HRG) alone strongly
decreased uptake in both liver and brain endothelium. Furthermore,
our results suggested the involvement of the transferrin receptor
in nanoparticle uptake in liver endothelium and redirection of the
nanoparticles to other receptors with higher uptake efficiency when
the transferrin receptor was blocked by free transferrin. These data
suggested that changes in the cell microenvironment can also affect
nanoparticle uptake and may lead to a different interaction site with
nanoparticles, affecting their uptake efficiency. Overall, correlating
the composition of the protein corona and nanoparticle uptake by cells
allows for the identification of corona molecules that can be used
to increase as well as to reduce nanoparticle uptake by cells.
Collapse
Affiliation(s)
- Aldy Aliyandi
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Catharina Reker-Smit
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Reinier Bron
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Inge S Zuhorn
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| |
Collapse
|
57
|
Stater EP, Sonay AY, Hart C, Grimm J. The ancillary effects of nanoparticles and their implications for nanomedicine. NATURE NANOTECHNOLOGY 2021; 16:1180-1194. [PMID: 34759355 PMCID: PMC9031277 DOI: 10.1038/s41565-021-01017-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/22/2021] [Indexed: 05/12/2023]
Abstract
Nanoparticles are often engineered as a scaffolding system to combine targeting, imaging and/or therapeutic moieties into a unitary agent. However, mostly overlooked, the nanomaterial itself interacts with biological systems exclusive of application-specific particle functionalization. This nanoparticle biointerface has been found to elicit specific biological effects, which we term 'ancillary effects'. In this Review, we describe the current state of knowledge of nanobiology gleaned from existing studies of ancillary effects with the objectives to describe the potential of nanoparticles to modulate biological effects independently of any engineered function; evaluate how these effects might be relevant for nanomedicine design and functional considerations, particularly how they might be useful to inform clinical decision-making; identify potential clinical harm that arises from adverse nanoparticle interactions with biology; and, finally, highlight the current lack of knowledge in this area as both a barrier and an incentive to the further development of nanomedicine.
Collapse
Affiliation(s)
- Evan P Stater
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Ali Y Sonay
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cassidy Hart
- Department of General Surgery, Lankenau Medical Center, Wynnewood, PA, USA
| | - Jan Grimm
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
58
|
Akhter MH, Khalilullah H, Gupta M, Alfaleh MA, Alhakamy NA, Riadi Y, Md S. Impact of Protein Corona on the Biological Identity of Nanomedicine: Understanding the Fate of Nanomaterials in the Biological Milieu. Biomedicines 2021; 9:1496. [PMID: 34680613 PMCID: PMC8533425 DOI: 10.3390/biomedicines9101496] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022] Open
Abstract
Nanoparticles (NPs) in contact with a biological medium are rapidly comprehended by a number of protein molecules resulting in the formation of an NP-protein complex called protein corona (PC). The cell sees the protein-coated NPs as the synthetic identity is masked by protein surfacing. The PC formation ultimately has a substantial impact on various biological processes including drug release, drug targeting, cell recognition, biodistribution, cellular uptake, and therapeutic efficacy. Further, the composition of PC is largely influenced by the physico-chemical properties of NPs viz. the size, shape, surface charge, and surface chemistry in the biological milieu. However, the change in the biological responses of the new substrate depends on the quantity of protein access by the NPs. The PC-layered NPs act as new biological entities and are recognized as different targeting agents for the receptor-mediated ingress of therapeutics in the biological cells. The corona-enveloped NPs have both pros and cons in the biological system. The review provides a brief insight into the impact of biomolecules on nanomaterials carrying cargos and their ultimate fate in the biological milieu.
Collapse
Affiliation(s)
- Md Habban Akhter
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Manish Gupta
- Department of Pharmaceutical Sciences, School of Health Sciences, University of Petroleum and Energy Studies (UPES), Dehradun 248007, India;
| | - Mohamed A. Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.A.); (N.A.A.)
- King Fahd Medical Research Center, Vaccines and Immunotherapy Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.A.); (N.A.A.)
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.A.); (N.A.A.)
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
59
|
Onishchenko N, Tretiakova D, Vodovozova E. Spotlight on the protein corona of liposomes. Acta Biomater 2021; 134:57-78. [PMID: 34364016 DOI: 10.1016/j.actbio.2021.07.074] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/19/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
Although an established drug delivery platform, liposomes have not fulfilled their true potential. In the body, interactions of liposomes are mediated by the layer of plasma proteins adsorbed on the surface, the protein corona. The review aims to collect the data of the last decade on liposome protein corona, tracing the path from interactions of individual proteins to the effects mediated by the protein corona in vivo. It offers a classification of the approaches to exploitation of the protein corona-rather than elimination thereof-based on the bilayer composition-corona composition-molecular interactions-biological performance framework. The multitude of factors that affect each level of this relationship urge to the widest implementation of bioinformatics tools to predict the most effective liposome compositions relying on the data on protein corona. Supplementing the picture with new pieces of accurately reported experimental data will contribute to the accuracy and efficiency of the predictions. STATEMENT OF SIGNIFICANCE: The review focuses on liposomes as an established nanomedicine platform and analyzes the available data on how the protein corona formed on liposome surface in biological fluids affects performance of the liposomes. The review offers a rigorous account of existing literature and critical analysis of methodology currently applied to the assessment of liposome-plasma protein interactions. It introduces a classification of the approaches to exploitation of the protein corona and tailoring liposome carriers to advance the field of nanoparticulate drug delivery systems for the benefit of patients.
Collapse
|
60
|
Cursi L, Vercellino S, McCafferty MM, Sheridan E, Petseva V, Adumeau L, Dawson KA. Multifunctional superparamagnetic nanoparticles with a fluorescent silica shell for the in vitro study of bio-nano interactions at the subcellular scale. NANOSCALE 2021; 13:16324-16338. [PMID: 34570135 DOI: 10.1039/d1nr04582b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite the high level of interest in bio-nano interactions, detailed intracellular mechanisms that govern nanoscale recognition and signalling still need to be unravelled. Magnetic nanoparticles (NPs) are valuable tools for elucidating complex intracellular bio-nano interactions. Using magnetic NPs, it is possible to isolate cell compartments that the particles interact with during intracellular trafficking. Studies at the subcellular scale rely heavily on optical microscopy; therefore, combining the advantages of magnetic recovery with excellent imaging properties to allow intracellular NP tracking is of utmost interest for the nanoscience field. However, it is a challenge to prepare highly magnetic NPs with a suitable fluorescence for the fluorescence imaging techniques typically used for biological studies. Here we present the synthesis of biocompatible multifunctional superparamagnetic multicore NPs with a bright fluorescent silica shell. The incorporation of an organic fluorophore in the silica surrounding the magnetic multicore was optimised to enable the particles to be tracked with the most common imaging techniques. To prevent dye loss resulting from silica dissolution in biological environments, which would reduce the time that the particles could be tracked, we added a thin dense encapsulating silica layer to the NPs which is highly stable in biological media. The synthesised multifunctional nanoparticles were evaluated in cell uptake experiments in which their intracellular location could be clearly identified using fluorescence imaging microscopy, even after 3 days. The magnetic properties of the iron oxide core enabled both efficient recovery of the NPs from the intracellular environment and the extraction of cell compartments involved in their intracellular trafficking. Thus, the NPs reported here provide a promising tool for the study of the processes regulating bio-nano interactions.
Collapse
Affiliation(s)
- Lorenzo Cursi
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Silvia Vercellino
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Mura M McCafferty
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Emily Sheridan
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Vanya Petseva
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Laurent Adumeau
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Kenneth A Dawson
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
61
|
Tan X, Welsher K. Particle‐by‐Particle In Situ Characterization of the Protein Corona via Real‐Time 3D Single‐Particle‐Tracking Spectroscopy**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaochen Tan
- Department of Chemistry Duke University Durham NC 27708 USA
| | - Kevin Welsher
- Department of Chemistry Duke University Durham NC 27708 USA
| |
Collapse
|
62
|
Tan X, Welsher K. Particle-by-Particle In Situ Characterization of the Protein Corona via Real-Time 3D Single-Particle-Tracking Spectroscopy*. Angew Chem Int Ed Engl 2021; 60:22359-22367. [PMID: 34015174 PMCID: PMC8763617 DOI: 10.1002/anie.202105741] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 11/05/2022]
Abstract
Nanoparticles (NPs) adsorb proteins when exposed to biological fluids, forming a dynamic protein corona that affects their fate in biological environments. A comprehensive understanding of the protein corona is lacking due to the inability of current techniques to precisely measure the full corona in situ at the single-particle level. Herein, we introduce a 3D real-time single-particle tracking spectroscopy to "lock-on" to single freely diffusing polystyrene NPs and probe their individual protein coronas, primarily using bovine serum albumin (BSA) as a model system. The fluorescence signals and diffusive motions of the tracked NPs enable quantification of the "hard corona" using mean-squared displacement analysis. Critically, this method's particle-by-particle nature enabled a lock-in-type frequency filtering approach to extract the full protein corona, despite the typically confounding effect of high background signal from unbound proteins. From these results, the dynamic in situ full protein corona is observed to contain twice the number of proteins compared to the ex situ-measured "hard" protein corona.
Collapse
Affiliation(s)
- Xiaochen Tan
- Department of Chemistry, Duke University, Durham, North Carolina, 27708, USA
| | - Kevin Welsher
- Department of Chemistry, Duke University, Durham, North Carolina, 27708, USA
| |
Collapse
|
63
|
Liu YY, Chang Q, Sun ZX, Liu J, Deng X, Liu Y, Cao A, Wang H. Fate of CdSe/ZnS quantum dots in cells: Endocytosis, translocation and exocytosis. Colloids Surf B Biointerfaces 2021; 208:112140. [PMID: 34597939 DOI: 10.1016/j.colsurfb.2021.112140] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/08/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022]
Abstract
Semiconductor quantum dots (QDs) have been extensively explored for extensive bioapplications, yet their cellular fate, especially exocytosis, has not been thoroughly investigated. Herein, we systematically investigated the whole cellular process from the endocytosis, intercellular trafficking, to the exocytosis of a typical QD, core/shell CdSe/ZnS QD. Using confocal laser scanning microscopy and flow cytometry, and after carefully eliminating the effect of cell division, we found that the QDs were internalized by HeLa cells with a time-, dose-, and serum-dependent manner. The cellular uptake was inhibited by serum, but eventually peaked after 4-6 h incubation with or without serum. The primary endocytosis pathway was clathrin-mediated, and actin- and microtubule-dependent in the medium with serum, while the caveolae-mediated endocytosis and macropinocytosis were more important for the QDs in the serum-free medium. Inside cells, most QDs distributed in lysosomes, and some entered mitochondria, endoplasmic reticulum, and Golgi apparatus. The translocation of the QDs from other organelles to Golgi apparatus was observed. The exocytosis of QDs was faster than the endocytosis, reaching the maximum in about one hour after cultured in fresh culture medium, with around 60% of the internalized QDs remained undischarged. The exocytosis process was energy- and actin-dependent, and the lysosome exocytosis and endoplasmic reticulum/Golgi pathway were the main routes. This study provides a full picture of behavior and fate of QDs in cells, which may facilitate the design of ideal QDs applied in biomedical and other fields.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Zao-Xia Sun
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Jie Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuanfang Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China; Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
64
|
Jang GJ, Jeong JY, Kang J, Cho W, Han SY. Size Dependence Unveiling the Adsorption Interaction of High-Density Lipoprotein Particles with PEGylated Gold Nanoparticles in Biomolecular Corona Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9755-9763. [PMID: 34347501 DOI: 10.1021/acs.langmuir.1c01182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Apolipoproteins have been often found to be highly enriched in the serum protein coronas produced on various engineered nanoparticles (NPs), which is also known to greatly influence the behaviors of protein corona NPs in the biological systems. As most of the apolipoproteins in blood are associated with lipoproteins, it suggests the active involvement of lipoproteins in the formation of biomolecular coronas on NPs. However, the interactions of lipoprotein complexes with NPs in the corona formation have been rarely understood. In this study, to obtain insights into the interactions, the formation of biomolecular coronas of high-density lipoproteins (HDLs) on the PEGylated gold NPs (PEG-AuNPs) of various sizes (20-150 nm dia.) was investigated as a model system. The results of this study revealed a noticeable size dependence, which is a drastic increase in the affinity of HDL for larger NPs and thus less-curved NP surfaces. For example, only a few HDLs per NP, which correspond to 5% surface coverage, were found to constitute the hard coronas of HDLs on 20 nm PEG-AuNPs, whereas 73% surface coverage was assessed for larger 150 nm PEG-AuNPs. However, the relative affinities of HDL and apolipoprotein A-1 (APOA1) examined in competition with human serum albumin exhibited the opposite size dependences, which suggests that the adsorption of HDLs is not driven by the constituent protein, APOA1. In fact, the total strength of non-covalent intermolecular interactions between a HDL particle and a NP relies on the physical contact between the two particles, which thus depends on the varying curvatures of spherical NPs in this case. Therefore, it was concluded that it is whole HDL complex that interacts with the spherical PEG-AuNPs in the initial stage of adsorption toward biomolecular coronas, which is unveiled by the distinct size dependence observed in this study.
Collapse
Affiliation(s)
- Gwi Ju Jang
- Department of Chemistry, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Ji Yeon Jeong
- Department of Chemistry, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Junghoon Kang
- Department of Chemistry, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Wonryeon Cho
- Department of Chemistry, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sang Yun Han
- Department of Chemistry, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| |
Collapse
|
65
|
Sully RE, Moore CJ, Garelick H, Loizidou E, Podoleanu AG, Gubala V. Nanomedicines and microneedles: a guide to their analysis and application. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3326-3347. [PMID: 34313266 DOI: 10.1039/d1ay00954k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The fast-advancing progress in the research of nanomedicine and microneedle applications in the past two decades has suggested that the combination of the two concepts could help to overcome some of the challenges we are facing in healthcare. They include poor patient compliance with medication and the lack of appropriate administration forms that enable the optimal dose to reach the target site. Nanoparticles as drug vesicles can protect their cargo and deliver it to the target site, while evading the body's defence mechanisms. Unfortunately, despite intense research on nanomedicine in the past 20 years, we still haven't answered some crucial questions, e.g. about their colloidal stability in solution and their optimal formulation, which makes the translation of this exciting technology from the lab bench to a viable product difficult. Dissolvable microneedles could be an effective way to maintain and stabilise nano-sized formulations, whilst enhancing the ability of nanoparticles to penetrate the stratum corneum barrier. Both concepts have been individually investigated fairly well and many analytical techniques for tracking the fate of nanomaterials with their precious cargo, both in vitro and in vivo, have been established. Yet, to the best of our knowledge, a comprehensive overview of the analytical tools encompassing the concepts of microneedles and nanoparticles with specific and successful examples is missing. In this review, we have attempted to briefly analyse the challenges associated with nanomedicine itself, but crucially we provide an easy-to-navigate scheme of methods, suitable for characterisation and imaging the physico-chemical properties of the material matrix.
Collapse
Affiliation(s)
- Rachel E Sully
- Medway School of Pharmacy, Universities of Greenwich and Kent, Anson Building, Central Avenue, Chatham, ME4 4TB, UK.
| | | | | | | | | | | |
Collapse
|
66
|
Magnetothermal regulation of in vivo protein corona formation on magnetic nanoparticles for improved cancer nanotherapy. Biomaterials 2021; 276:121021. [PMID: 34274776 DOI: 10.1016/j.biomaterials.2021.121021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 11/20/2022]
Abstract
Engineering the protein corona (PC) on nanodrugs is emerging as an effective approach to improve their pharmacokinetics and therapeutic efficacy, but conventional in vitro pre-programmed methods have shown great limitation for regulation of the PC in the complex and dynamic in vivo physiological environment. Here, we demonstrate an magnetothermal regulation approach that allows us to in situ modulate the in vivo PC composition on iron oxide nanoparticles for improved cancer nanotherapy. Experimental results revealed that the relative levels of major opsonins and dysopsonins in the PC can be tuned quantitatively by means of heat induction mediated by the nanoparticles under an alternating magnetic field. When the PC was magnetically optimized in vivo, the nanoparticles exhibited prolonged circulation and enhanced tumor delivery efficiency in mice, 2.53-fold and 2.02-fold higher respectively than the control. This led to a superior thermotherapeutic efficacy of systemically delivered nanoparticles. In vivo magnetothermal regulation of the PC on nanodrugs will find wide applications in biomedicine.
Collapse
|
67
|
Yang K, Reker‐Smit C, Stuart MCA, Salvati A. Effects of Protein Source on Liposome Uptake by Cells: Corona Composition and Impact of the Excess Free Proteins. Adv Healthc Mater 2021; 10:e2100370. [PMID: 34050634 PMCID: PMC11469121 DOI: 10.1002/adhm.202100370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Corona formation in biological fluids strongly affects nanomedicine interactions with cells. However, relatively less is known on additional effects from the free proteins in solution. Within this context, this study aims to gain a better understanding of nanomaterial-cell interactions in different biological fluids and, more specifically, to disentangle effects due to corona composition and those from the free proteins in solution. To this aim, the uptake of liposomes in medium with bovine and human serum are compared. Uptake efficiency in the two media differs strongly, as also corona composition. However, in contrast with similar studies on other nanomaterials, despite the very different corona, when the two corona-coated liposomes are exposed to cells in serum free medium, their uptake is comparable. Thus, in this case, the observed differences in uptake depend primarily on the presence and source of the free proteins. Similar results are obtained when testing the liposomes on different human cells, as well as in murine cells and in the presence of murine serum. Overall, these results show that the protein source affects nanomedicine uptake not only due to effects on corona composition, but also due to the presence and composition of the free proteins in solution.
Collapse
Affiliation(s)
- Keni Yang
- Department of Nanomedicine and Drug TargetingGroningen Research Institute of PharmacyUniversity of GroningenA. Deusinglaan 1Groningen9713 AVThe Netherlands
- Present address:
Key Laboratory for Nano‐Bio Interface ResearchDivision of NanobiomedicineSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Catharina Reker‐Smit
- Department of Nanomedicine and Drug TargetingGroningen Research Institute of PharmacyUniversity of GroningenA. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Marc C. A. Stuart
- Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 74Groningen9747 AGThe Netherlands
| | - Anna Salvati
- Department of Nanomedicine and Drug TargetingGroningen Research Institute of PharmacyUniversity of GroningenA. Deusinglaan 1Groningen9713 AVThe Netherlands
| |
Collapse
|
68
|
Artificial Protein Coronas Enable Controlled Interaction with Corneal Epithelial Cells: New Opportunities for Ocular Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13060867. [PMID: 34204664 PMCID: PMC8231102 DOI: 10.3390/pharmaceutics13060867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Topical administration is the most convenient route for ocular drug delivery, but only a minor fraction is retained in the precorneal pocket. To overcome this limitation, numerous drug delivery systems (DDS) have been developed. The protein corona (PC) is the layer of biomolecules (e.g., proteins, sugars, lipids, etc.) that forms around DDS in physiological environments by non-covalent interaction. The PC changes the DDS physical-chemical properties, providing them with a completely novel biological identity. The specific involvement of PC in ocular drug delivery has not been addressed so far. To fulfill this gap, here we explored the interaction between a library of four cationic liposome-DNA complexes (lipoplexes) and mucin (MUC), one of the main components of the tear film. We demonstrate that MUC binds to the lipoplex surface shifting both their size and surface charge and reducing their absorption by primary corneal epithelial cells. To surpass such restrictions, we coated lipoplexes with two different artificial PCs made of Fibronectin (FBN) and Val-Gly-Asp (VGA) tripeptide that are recognized by receptors expressed on the ocular surface. Both these functionalizations remarkedly boosted internalization in corneal epithelial cells with respect to pristine (i.e., uncoated) lipoplexes. This opens the gateway for the exploitation of artificial protein corona in targeted ocular delivery, which will significantly influence the development of novel nanomaterials.
Collapse
|
69
|
Santacruz-Márquez R, González-De Los Santos M, Hernández-Ochoa I. Ovarian toxicity of nanoparticles. Reprod Toxicol 2021; 103:79-95. [PMID: 34098047 DOI: 10.1016/j.reprotox.2021.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
The ovary is a highly important organ for female reproduction. The main functions include sex steroid hormone synthesis, follicular development, and achievement of oocyte meiotic and development competence for proper fertilization. Nanoparticle (NP) exposure is becoming unavoidable because of its wide use in different products, including cosmetics, food, health, and personal care products. Studies examining different nonreproductive tissues or systems have shown that characteristics such as the size, shape, core material, agglomeration, and dissolution influence the effects of NPs. However, most studies evaluating NP-mediated reproductive toxicity have paid little or no attention to the influence of the physicochemical characteristics of NP on the observed effects. As accumulating evidence indicates that NP may reach the ovary to impair proper functions, this review summarizes the available data on NP accumulation in ovarian tissue, as well as data describing toxicity to ovarian functions, including sex steroid hormone production, follicular development, oocyte quality, and fertility. Due to their toxicological relevance, this review also describes the main physicochemical characteristics involved in NP toxicity and the importance of considering NP physicochemical characteristics as factors influencing the ovarian toxicity of NPs. Finally, this review summarizes the main mechanisms of toxicity described in ovarian cells.
Collapse
Affiliation(s)
- Ramsés Santacruz-Márquez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico
| | - Marijose González-De Los Santos
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico
| | - Isabel Hernández-Ochoa
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico.
| |
Collapse
|
70
|
Kianfar E. Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. J Nanobiotechnology 2021; 19:159. [PMID: 34051806 PMCID: PMC8164776 DOI: 10.1186/s12951-021-00896-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
In this article, we will describe the properties of albumin and its biological functions, types of sources that can be used to produce albumin nanoparticles, methods of producing albumin nanoparticles, its therapeutic applications and the importance of albumin nanoparticles in the production of pharmaceutical formulations. In view of the increasing use of Abraxane and its approval for use in the treatment of several types of cancer and during the final stages of clinical trials for other cancers, to evaluate it and compare its effectiveness with conventional non formulations of chemotherapy Paclitaxel is paid. In this article, we will examine the role and importance of animal proteins in Nano medicine and the various benefits of these biomolecules for the preparation of drug delivery carriers and the characteristics of plant protein Nano carriers and protein Nano cages and their potentials in diagnosis and treatment. Finally, the advantages and disadvantages of protein nanoparticles are mentioned, as well as the methods of production of albumin nanoparticles, its therapeutic applications and the importance of albumin nanoparticles in the production of pharmaceutical formulations.
Collapse
Affiliation(s)
- Ehsan Kianfar
- ERNAM-Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey.
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey.
| |
Collapse
|
71
|
Abstract
Calcium phosphate nanoparticles have a high biocompatibility and biodegradability due to their chemical similarity to human hard tissue, for example, bone and teeth. They can be used as efficient carriers for different kinds of biomolecules such as nucleic acids, proteins, peptides, antibodies, or drugs, which alone are not able to enter cells where their biological effect is required. They can be loaded with cargo molecules by incorporating them, unlike solid nanoparticles, and also by surface functionalization. This offers protection, for example, against nucleases, and the possibility for cell targeting. If such nanoparticles are functionalized with fluorescing dyes, they can be applied for imaging in vitro and in vivo. Synthesis, functionalization and cell uptake mechanisms of calcium phosphate nanoparticles are discussed together with applications in transfection, gene silencing, imaging, immunization, and bone substitution. Biodistribution data of calcium phosphate nanoparticles in vivo are reviewed.
Collapse
Affiliation(s)
- Viktoriya Sokolova
- Inorganic chemistryUniversity of Duisburg-EssenUniversitaetsstr. 5–745117EssenGermany
| | - Matthias Epple
- Inorganic chemistryUniversity of Duisburg-EssenUniversitaetsstr. 5–745117EssenGermany
| |
Collapse
|
72
|
Sheridan E, Vercellino S, Cursi L, Adumeau L, Behan JA, Dawson KA. Understanding intracellular nanoparticle trafficking fates through spatiotemporally resolved magnetic nanoparticle recovery. NANOSCALE ADVANCES 2021; 3:2397-2410. [PMID: 36134166 PMCID: PMC9419038 DOI: 10.1039/d0na01035a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/21/2021] [Indexed: 05/08/2023]
Abstract
The field of nanomedicine has the potential to be a game-changer in global health, with possible applications in prevention, diagnostics, and therapeutics. However, despite extensive research focus and funding, the forecasted explosion of novel nanomedicines is yet to materialize. We believe that clinical translation is ultimately hampered by a lack of understanding of how nanoparticles really interact with biological systems. When placed in a biological environment, nanoparticles adsorb a biomolecular layer that defines their biological identity. The challenge for bionanoscience is therefore to understand the evolution of the interactions of the nanoparticle-biomolecules complex as the nanoparticle is trafficked through the intracellular environment. However, to progress on this route, scientists face major challenges associated with isolation of specific intracellular compartments for analysis, complicated by the diversity of trafficking events happening simultaneously and the lack of synchronization between individual events. In this perspective article, we reflect on how magnetic nanoparticles can help to tackle some of these challenges as part of an overall workflow and act as a useful platform to investigate the bionano interactions within the cell that contribute to this nanoscale decision making. We discuss both established and emerging techniques for the magnetic extraction of nanoparticles and how they can potentially be used as tools to study the intracellular journey of nanomaterials inside the cell, and their potential to probe nanoscale decision-making events. We outline the inherent limitations of these techniques when investigating particular bio-nano interactions along with proposed strategies to improve both specificity and resolution. We conclude by describing how the integration of magnetic nanoparticle recovery with sophisticated analysis at the single-particle level could be applied to resolve key questions for this field in the future.
Collapse
Affiliation(s)
- Emily Sheridan
- Centre for BioNano Interactions, School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Silvia Vercellino
- Centre for BioNano Interactions, School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Biomolecular and Biomedical Science, University College Dublin Belfield Dublin 4 Ireland
| | - Lorenzo Cursi
- Centre for BioNano Interactions, School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Laurent Adumeau
- Centre for BioNano Interactions, School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - James A Behan
- Centre for BioNano Interactions, School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| | - Kenneth A Dawson
- Centre for BioNano Interactions, School of Chemistry, University College Dublin Belfield Dublin 4 Ireland
| |
Collapse
|
73
|
Ghosh G, Panicker L. Protein-nanoparticle interactions and a new insight. SOFT MATTER 2021; 17:3855-3875. [PMID: 33885450 DOI: 10.1039/d0sm02050h] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The study of protein-nanoparticle interactions provides knowledge about the bio-reactivity of nanoparticles, and creates a database of nanoparticles for applications in nanomedicine, nanodiagnosis, and nanotherapy. The problem arises when nanoparticles come in contact with physiological fluids such as plasma or serum, wherein they interact with the proteins (or other biomolecules). This interaction leads to the coating of proteins on the nanoparticle surface, mostly due to the electrostatic interaction, called 'corona'. These proteins are usually partially unfolded. The protein corona can deter nanoparticles from their targeted functionalities, such as drug/DNA delivery at the site and fluorescence tagging of diseased tissues. The protein corona also has many repercussions on cellular intake, inflammation, accumulation, degradation, and clearance of the nanoparticles from the body depending on the exposed part of the proteins. Hence, the protein-nanoparticle interaction and the configuration of the bound-proteins on the nanosurface need thorough investigation and understanding. Several techniques such as DLS and zeta potential measurement, UV-vis spectroscopy, fluorescence spectroscopy, circular dichroism, FTIR, and DSC provide valuable information in the protein-nanoparticle interaction study. Besides, theoretical simulations also provide additional understanding. Despite a lot of research publications, the fundamental question remained unresolved. Can we aim for the application of functional nanoparticles in medicine? A new insight, given by us, in this article assumes a reasonable solution to this crucial question.
Collapse
Affiliation(s)
- Goutam Ghosh
- UGC-DAE Consortium for Scientific Research, Mumbai Centre, Mumbai 400 085, India.
| | | |
Collapse
|
74
|
Wang Y, Zhang H, Xiao W, Liu Y, Zhou Y, He X, Xia X, Gong T, Wang L, Gao H. Unmasking CSF protein corona: Effect on targeting capacity of nanoparticles. J Control Release 2021; 333:352-361. [PMID: 33823221 DOI: 10.1016/j.jconrel.2021.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
Among biological fluids, cerebrospinal fluid (CSF) not only protects and support brain, but also plays a pivotal role in intracerebral interaction of various nano-drug carriers. However, it is still uncertain how protein corona from CSF affects the targeting capability of functionalized nanoparticles (NPs). So, two types of polystyrene NPs, including PEGylated polystyrene NPs (PN) and transferrin (Tf)-modified PN (PT), were used to obtain protein corona-coated NPs, by incubating with CSF in vivo and in vitro. Strikingly, both the corona-coated NPs recovered in vivo and in vitro completely lost their active targeting characteristics towards bEnd.3 and C6 cells. Charge-, clathrin- and energy-mediated endocytosis contributed to the improved uptake efficiency of PT, whereas this enhancement in uptake of PT was disappeared after the formation of CSF protein corona. Moreover, serum albumin, which were found both in vivo and in vitro CSF corona, could mediate and facilitate the internalization of corona-coated NPs. Overall, these results have distinctly confirmed that the formation of CSF protein corona could cause the loss of active targeting specificity by shielding the targeting groups on the surface of polystyrene NPs and alter their cellular uptake by other non-specific internalization pathways.
Collapse
Affiliation(s)
- Yazhen Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Huilin Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Wei Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Yuwei Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Xueqin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Ling Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
75
|
Hao F, Geng F, Zhao X, Liu R, Liu QS, Zhou Q, Jiang G. Chirality of gold nanocluster affects its interaction with coagulation factor XII. NANOIMPACT 2021; 22:100321. [PMID: 35559978 DOI: 10.1016/j.impact.2021.100321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/02/2021] [Accepted: 04/29/2021] [Indexed: 06/15/2023]
Abstract
Probing the interaction of nanomaterials (NMs) with proteins is the basic step for biological safety assessment. Many physiochemical factors of NMs play important roles in binding with proteins as they determine the binding process. Among them, the chirality-related biological effects and nanotoxicology have not been fully understood. As NMs are mainly exposed to human circulatory system with intentional or unintentional exposure, understanding the interaction mechanism of plasma functional proteins with chiral NMs is of great importance. Herein, we show the interaction of chiral gold nanoclusters (AuNCs), L- and D-cysteine coated AuNC (i.e., L-AuNC and D-AuNC, respectively) with human coagulation factor XII (FXII, an important plasma zymogen initiating the inner coagulation system). D-AuNC exhibited weak binding affinity for FXII, induced FXII aggregation due to significant conformational change, which then activated the FXII for further cleavage. In contrast to D-AuNC, the binding affinity of L-AuNC for FXII was strong and their bioconjugate was quite stable without aggregation. L-AuNC induced the structural change and autoactivation of FXII to a lower extent. Moreover, the enzymatic activity of FXIIa (the activated form of FXII) was influenced upon incubation with L- AuNCs and D-AuNCs with different molecular mechanisms. The finding will expand the understanding of the nanobiological effects of chiral NMs and suggest the potential application in nanomedicine.
Collapse
Affiliation(s)
- Fang Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanglan Geng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xingchen Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| |
Collapse
|
76
|
Perez-Potti A, Lopez H, Pelaz B, Abdelmonem A, Soliman MG, Schoen I, Kelly PM, Dawson KA, Parak WJ, Krpetic Z, Monopoli MP. In depth characterisation of the biomolecular coronas of polymer coated inorganic nanoparticles with differential centrifugal sedimentation. Sci Rep 2021; 11:6443. [PMID: 33742032 PMCID: PMC7979877 DOI: 10.1038/s41598-021-84029-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
Advances in nanofabrication methods have enabled the tailoring of new strategies towards the controlled production of nanoparticles with attractive applications in healthcare. In many cases, their characterisation remains a big challenge, particularly for small-sized functional nanoparticles of 5 nm diameter or smaller, where current particle sizing techniques struggle to provide the required sensitivity and accuracy. There is a clear need for the development of new reliable characterisation approaches for the physico-chemical characterisation of nanoparticles with significant accuracy, particularly for the analysis of the particles in the presence of complex biological fluids. Herein, we show that the Differential Centrifugal Sedimentation can be utilised as a high-precision tool for the reliable characterisation of functional nanoparticles of different materials. We report a method to correlate the sedimentation shift with the polymer and biomolecule adsorption on the nanoparticle surface, validating the developed core–shell model. We also highlight its limit when measuring nanoparticles of smaller size and the need to use several complementary methods when characterising nanoparticle corona complexes.
Collapse
Affiliation(s)
- André Perez-Potti
- Centre for Bionano Interactions, University College Dublin, Dublin, Ireland.,Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hender Lopez
- Centre for Bionano Interactions, University College Dublin, Dublin, Ireland.,School of Physics and Optometric & Clinical Sciences, Technological University Dublin, City Campus, Kevin Street, Dublin 8, Ireland
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782, Santiago, Spain.,Departamento de Química Inorgánica, Grupo de Física de Coloides y Polímeros, Universidade de Santiago de Compostela, 15782, Santiago, Spain
| | - Abuelmagd Abdelmonem
- Fachbereich Physik, CHyN, University of Hamburg, Hamburg, Germany.,Food Technology Research Institute, Agricultural Research Center, Cairo, Egypt.,Institut für Physikalische Chemie und Elektrochemie, Leibniz Universität Hannover, Hannover, Germany
| | - Mahmoud G Soliman
- Fachbereich Physik, CHyN, University of Hamburg, Hamburg, Germany.,Chemistry Department, RCSI (Royal College of Surgeons in Ireland), 123 St Stephen Green, Dublin 2, Ireland.,Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ingmar Schoen
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St Stephen Green, Dublin 2, Ireland
| | - Philip M Kelly
- Centre for Bionano Interactions, University College Dublin, Dublin, Ireland
| | - Kenneth A Dawson
- Centre for Bionano Interactions, University College Dublin, Dublin, Ireland
| | - Wolfgang J Parak
- Fachbereich Physik, CHyN, University of Hamburg, Hamburg, Germany
| | - Zeljka Krpetic
- Centre for Bionano Interactions, University College Dublin, Dublin, Ireland. .,Biomedical Research Centre, School of Science Engineering and Environment, University of Salford, Salford, M5 4WT, UK.
| | - Marco P Monopoli
- Centre for Bionano Interactions, University College Dublin, Dublin, Ireland. .,Chemistry Department, RCSI (Royal College of Surgeons in Ireland), 123 St Stephen Green, Dublin 2, Ireland.
| |
Collapse
|
77
|
Hristov DR, Lopez H, Ortin Y, O'Sullivan K, Dawson KA, Brougham DF. Impact of dynamic sub-populations within grafted chains on the protein binding and colloidal stability of PEGylated nanoparticles. NANOSCALE 2021; 13:5344-5355. [PMID: 33660726 DOI: 10.1039/d0nr08294e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Polyethylene glycol grafting has played a central role in preparing the surfaces of nano-probes for biological interaction, to extend blood circulation times and to modulate protein recognition and cellular uptake. However, the role of PEG graft dynamics and conformation in determining surface recognition processes is poorly understood primarily due to the absence of a microscopic picture of the surface presentation of the polymer. Here a detailed NMR analysis reveals three types of dynamic ethylene glycol units on PEG-grafted SiO2 nanoparticles (NPs) of the type commonly evaluated as long-circulating theranostic nano-probes; a narrow fraction with fast dynamics associated with the chain ends; a broadened fraction spectrally overlapped with the former arising from those parts of the chain experiencing some dynamic restriction; and a fraction too broad to be observed in the spectrum arising from units closer to the surface/graft which undergo slow motion on the NMR timescale. We demonstrate that ethylene glycol units transition between fractions as a function of temperature, core size, PEG chain length and surface coverage and demonstrate how this distribution affects colloidal stability and protein uptake. The implications of the findings for biological application of grafted nanoparticles are discussed in the context of accepted models for surface ligand conformation.
Collapse
Affiliation(s)
- Delyan R Hristov
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Dublin, Republic of Ireland
| | - Hender Lopez
- School of Physics & Optometric & Clinical Sciences, Technological University Dublin, City Campus, Kevin Street, Dublin 8, Republic of Ireland
| | - Yannick Ortin
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Republic of Ireland.
| | - Kate O'Sullivan
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Republic of Ireland.
| | - Kenneth A Dawson
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Dublin, Republic of Ireland
| | - Dermot F Brougham
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Republic of Ireland.
| |
Collapse
|
78
|
Perini G, Giulimondi F, Palmieri V, Augello A, Digiacomo L, Quagliarini E, Pozzi D, Papi M, Caracciolo G. Inhibiting the Growth of 3D Brain Cancer Models with Bio-Coronated Liposomal Temozolomide. Pharmaceutics 2021; 13:pharmaceutics13030378. [PMID: 33809262 PMCID: PMC7999290 DOI: 10.3390/pharmaceutics13030378] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/16/2023] Open
Abstract
Nanoparticles (NPs) have emerged as an effective means to deliver anticancer drugs into the brain. Among various forms of NPs, liposomal temozolomide (TMZ) is the drug-of-choice for the treatment and management of brain tumours, but its therapeutic benefit is suboptimal. Although many possible reasons may account for the compromised therapeutic efficacy, the inefficient tumour penetration of liposomal TMZ can be a vital obstacle. Recently, the protein corona, i.e., the layer of plasma proteins that surround NPs after exposure to human plasma, has emerged as an endogenous trigger that mostly controls their anticancer efficacy. Exposition of particular biomolecules from the corona referred to as protein corona fingerprints (PCFs) may facilitate interactions with specific receptors of target cells, thus, promoting efficient internalization. In this work, we have synthesized a set of four TMZ-encapsulating nanomedicines made of four cationic liposome (CL) formulations with systematic changes in lipid composition and physical−chemical properties. We have demonstrated that precoating liposomal TMZ with a protein corona made of human plasma proteins can increase drug penetration in a 3D brain cancer model derived from U87 human glioblastoma multiforme cell line leading to marked inhibition of tumour growth. On the other side, by fine-tuning corona composition we have also provided experimental evidence of a non-unique effect of the corona on the tumour growth for all the complexes investigated, thus, clarifying that certain PCFs (i.e., APO-B and APO-E) enable favoured interactions with specific receptors of brain cancer cells. Reported results open new perspectives into the development of corona-coated liposomal drugs with enhanced tumour penetration and antitumour efficacy.
Collapse
Affiliation(s)
- Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (V.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy;
| | - Francesca Giulimondi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy; (F.G.); (L.D.); (D.P.)
| | - Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (V.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy;
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - Alberto Augello
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy;
| | - Luca Digiacomo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy; (F.G.); (L.D.); (D.P.)
| | - Erica Quagliarini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy;
| | - Daniela Pozzi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy; (F.G.); (L.D.); (D.P.)
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (V.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy;
- Correspondence: (M.P.); (G.C.)
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy; (F.G.); (L.D.); (D.P.)
- Correspondence: (M.P.); (G.C.)
| |
Collapse
|
79
|
Chu Y, Tang W, Zhang Z, Li C, Qian J, Wei X, Ying T, Lu W, Zhan C. Deciphering Protein Corona by scFv-Based Affinity Chromatography. NANO LETTERS 2021; 21:2124-2131. [PMID: 33617264 DOI: 10.1021/acs.nanolett.0c04806] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It remains challenging to precisely decipher the structural and functional characteristics of protein coronas. To overcome the drawbacks frequently occurring in the traditional separation methods, an anti-PEG single-chain variable fragment (PEG-scFv) based affinity chromatography (AfC) was developed to achieve precise and efficient separation of protein coronas on PEGylated liposomes (sLip). His-tagged PEG-scFv could readily capture sLip without affecting protein corona compositions, and separate sLip/protein complex from plasma protein aggregates and endogenous vesicles through the Ni-NTA column. AfC demonstrated 43-fold higher protein corona collecting efficiency than centrifugation, which was extremely crucial for separation of in vivo protein coronas due to the limitation of sample size. AfC evaded contamination by endogenous vesicles and protein aggregates occurring in centrifugation, and reserved the loosely bound proteins, providing an unprecedented approach to deeply decipher protein coronas. The scFv-based AfC also paves new avenues for the separation of protein coronas formed on other nanomedicines.
Collapse
Affiliation(s)
- Yuxiu Chu
- Department of Pharmacology, School of Basic Medical Sciences, and Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Wenjing Tang
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, P.R. China
| | - Zui Zhang
- Department of Pharmacology, School of Basic Medical Sciences, and Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Cheng Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, P.R. China
| | - Jun Qian
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, P.R. China
| | - Xiaoli Wei
- Department of Pharmacology, School of Basic Medical Sciences, and Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, P.R. China
| | - Weiyue Lu
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, P.R. China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences, and Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, 200032, P.R. China
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, P.R. China
| |
Collapse
|
80
|
Dawson KA, Yan Y. Current understanding of biological identity at the nanoscale and future prospects. NATURE NANOTECHNOLOGY 2021; 16:229-242. [PMID: 33597736 DOI: 10.1038/s41565-021-00860-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Nanoscale objects are processed by living organisms using highly evolved and sophisticated endogenous cellular networks, specifically designed to manage objects of this size. While these processes potentially allow nanostructures unique access to and control over key biological machineries, they are also highly protected by cell or host defence mechanisms at all levels. A thorough understanding of bionanoscale recognition events, including the molecules involved in the cell recognition machinery, the nature of information transferred during recognition processes and the coupled downstream cellular processing, would allow us to achieve a qualitatively novel form of biological control and advanced therapeutics. Here we discuss evolving fundamental microscopic and mechanistic understanding of biological nanoscale recognition. We consider the interface between a nanostructure and a target cell membrane, outlining the categories of nanostructure properties that are recognized, and the associated nanoscale signal transduction and cellular programming mechanisms that constitute biological recognition.
Collapse
Affiliation(s)
- Kenneth A Dawson
- Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Dublin, Ireland.
| | - Yan Yan
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Dublin, Ireland.
- School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
81
|
A quantitative view on multivalent nanomedicine targeting. Adv Drug Deliv Rev 2021; 169:1-21. [PMID: 33264593 DOI: 10.1016/j.addr.2020.11.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/11/2020] [Accepted: 11/21/2020] [Indexed: 12/17/2022]
Abstract
Although the concept of selective delivery has been postulated over 100 years ago, no targeted nanomedicine has been clinically approved so far. Nanoparticles modified with targeting ligands to promote the selective delivery of therapeutics towards a specific cell population have been extensively reported. However, the rational design of selective particles is still challenging. One of the main reasons for this is the lack of quantitative theoretical and experimental understanding of the interactions involved in cell targeting. In this review, we discuss new theoretical models and experimental methods that provide a quantitative view of targeting. We show the new advancements in multivalency theory enabling the rational design of super-selective nanoparticles. Furthermore, we present the innovative approaches to obtain key targeting parameters at the single-cell and single molecule level and their role in the design of targeting nanoparticles. We believe that the combination of new theoretical multivalent design and experimental methods to quantify receptors and ligands aids in the rational design and clinical translation of targeted nanomedicines.
Collapse
|
82
|
Aliyandi A, Zuhorn IS, Salvati A. Disentangling Biomolecular Corona Interactions With Cell Receptors and Implications for Targeting of Nanomedicines. Front Bioeng Biotechnol 2020; 8:599454. [PMID: 33363128 PMCID: PMC7758247 DOI: 10.3389/fbioe.2020.599454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles are promising tools for nanomedicine in a wide array of therapeutic and diagnostic applications. Yet, despite the advances in the biomedical applications of nanomaterials, relatively few nanomedicines made it to the clinics. The formation of the biomolecular corona on the surface of nanoparticles has been known as one of the challenges toward successful targeting of nanomedicines. This adsorbed protein layer can mask targeting moieties and creates a new biological identity that critically affects the subsequent biological interactions of nanomedicines with cells. Extensive studies have been directed toward understanding the characteristics of this layer of biomolecules and its implications for nanomedicine outcomes at cell and organism levels, yet several aspects are still poorly understood. One aspect that still requires further insights is how the biomolecular corona interacts with and is “read” by the cellular machinery. Within this context, this review is focused on the current understanding of the interactions of the biomolecular corona with cell receptors. First, we address the importance and the role of receptors in the uptake of nanoparticles. Second, we discuss the recent advances and techniques in characterizing and identifying biomolecular corona-receptor interactions. Additionally, we present how we can exploit the knowledge of corona-cell receptor interactions to discover novel receptors for targeting of nanocarriers. Finally, we conclude this review with an outlook on possible future perspectives in the field. A better understanding of the first interactions of nanomaterials with cells, and -in particular -the receptors interacting with the biomolecular corona and involved in nanoparticle uptake, will help for the successful design of nanomedicines for targeted delivery.
Collapse
Affiliation(s)
- Aldy Aliyandi
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Inge S Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
83
|
Jung BT, Jung K, Lim M, Li M, Santos R, Ozawa T, Xu T. Design of 18 nm Doxorubicin-Loaded 3-Helix Micelles: Cellular Uptake and Cytotoxicity in Patient-Derived GBM6 Cells. ACS Biomater Sci Eng 2020; 7:196-206. [PMID: 33338381 DOI: 10.1021/acsbiomaterials.0c01639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The fate of nanocarrier materials at the cellular level constitutes a critical checkpoint in the development of effective nanomedicines, determining whether tissue level accumulation results in therapeutic benefit. The cytotoxicity and cell internalization of ∼18 nm 3-helix micelle (3HM) loaded with doxorubicin (DOX) were analyzed in patient-derived glioblastoma (GBM) cells in vitro. The half-maximal inhibitory concentration (IC50) of 3HM-DOX increased to 6.2 μg/mL from <0.5 μg/mL for free DOX in patient-derived GBM6 cells, to 15.0 μg/mL from 6.5 μg/mL in U87MG cells, and to 21.5 μg/mL from ∼0.5 μg/mL in LN229 cells. Modeling analysis of previous 3HM biodistribution results predicts that these cytotoxic concentrations are achievable with intravenous injection in rodent GBM models. 3HM-DOX formulations were internalized intact and underwent intracellular trafficking distinct from free DOX. 3HM was quantified to have an internalization half-life of 12.6 h in GBM6 cells, significantly longer than that reported for some liposome and polymer systems. 3HM was found to traffic through active endocytic processes, with clathrin-mediated endocytosis being the most involved of the pathways studied. Inhibition studies suggest substantial involvement of receptor recognition in 3HM uptake. As the 3HM surface is PEG-ylated with no targeting functionalities, protein corona-cell surface interactions, such as the apolipoprotein-low-density lipoprotein receptor, are expected to initiate internalization. The present work gives insights into the cytotoxicity, pharmacodynamics, and cellular interactions of 3HM and 3HM-DOX relevant for ongoing preclinical studies. This work also contributes to efforts to develop predictive mathematical models tracking the accumulation and biodistribution kinetics at a systemic level.
Collapse
Affiliation(s)
- Benson T Jung
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Katherine Jung
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Marc Lim
- UCB-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Michael Li
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Raquel Santos
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California 94158, United States
| | - Tomoko Ozawa
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California 94158, United States
| | - Ting Xu
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.,Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
84
|
Liessi N, Maragliano L, Castagnola V, Bramini M, Benfenati F, Armirotti A. Isobaric Labeling Proteomics Allows a High-Throughput Investigation of Protein Corona Orientation. Anal Chem 2020; 93:784-791. [PMID: 33285070 PMCID: PMC7818227 DOI: 10.1021/acs.analchem.0c03134] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
The
formation of the biomolecular corona represents a crucial factor
in controlling the biological interactions and trafficking of nanomaterials.
In this context, the availability of key epitopes exposed on the surface
of the corona, and able to engage the biological machinery, is important
to define the biological fate of the material. While the full biomolecular
corona composition can be investigated by conventional bottom-up proteomics,
the assessment of the spatial orientation of proteins in the corona
in a high-throughput fashion is still challenging. In this work, we
show that labeling corona proteins with isobaric tags in their native
conditions and analyzing the MS/MS spectra of tryptic peptides allow
an easy and high-throughput assessment of the inner/outer orientation
of the corresponding proteins in the original corona. We put our results
in the context of what is currently known of the protein corona of
graphene-based nanomaterials. Our conclusions are in line with previous
data and were confirmed by in silico calculations.
Collapse
Affiliation(s)
- Nara Liessi
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.,Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Valentina Castagnola
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Mattia Bramini
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.,Department of Applied Physics, Faculty of Sciences, University of Granada, Fuente Nueva s/n, 18071 Granada, Spain
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
85
|
Kumar M, Wangoo N, Gondil VS, Pandey SK, Lalhall A, Sharma RK, Chhibber S. Glycolic acid functionalized silver nanoparticles: A novel approach towards generation of effective antibacterial agent against skin infections. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
86
|
Akhter MH, Beg S, Tarique M, Malik A, Afaq S, Choudhry H, Hosawi S. Receptor-based targeting of engineered nanocarrier against solid tumors: Recent progress and challenges ahead. Biochim Biophys Acta Gen Subj 2020; 1865:129777. [PMID: 33130062 DOI: 10.1016/j.bbagen.2020.129777] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Background In past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of drug molecules on the diseased cells thereby preventing unwanted uptake into healthy cells to cause toxicity. Scope of review The applicability of enhanced permeability and retention (EPR) effect for the delivery of nanomedicines in cancer therapy has gained limited success due to poor accessibility of the drugs to the target cells where non-specific payload delivery to the off target region lack substantial reward over the conventional therapeutic systems. Major conclusions In spite of the fact, nanomedicines fabricated from the biocompatible nanocarriers have reduced targeting potential for meaningful clinical benefits. However, over expression of receptors on the tumor cells provides opportunity to design functional nanomedicine to bind substantially and deliver therapeutics to the cells or tissues of interest by alleviating the bio-toxicity and unwanted effects. This critique will give insight into the over expressed receptor in various tumor and targeting potential of functional nanomedicine as new therapeutic avenues for effective treatment. General significance This review shortly shed light on EPR-based drug targeting using nanomedicinal strategies, their limitation, and advances in therapeutic targeting to the tumor cells.
Collapse
Affiliation(s)
- Md Habban Akhter
- Department of Pharmaceutics, Faculty of Pharmacy, DIT University, Dehradun, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| | - Mohammed Tarique
- Center for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Arshi Malik
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Sarah Afaq
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
87
|
Pustulka SM, Ling K, Pish SL, Champion JA. Protein Nanoparticle Charge and Hydrophobicity Govern Protein Corona and Macrophage Uptake. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48284-48295. [PMID: 33054178 DOI: 10.1021/acsami.0c12341] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protein nanoparticles are biomaterials composed entirely of proteins, with the protein sequence and structure determining the nanoparticle physicochemical properties. Upon exposure to physiological or environmental fluids, it is likely that protein nanoparticles, like synthetic nanoparticles, will adsorb proteins and this protein corona will be dependent on the surface properties of the protein nanoparticles. As there is little understanding of this phenomenon for engineered protein nanoparticles, the purpose of this work was to create protein nanoparticles with variable surface hydrophobicity and surface charge and establish the effect of these properties on the mass and composition of the adsorbed corona, using the fetal bovine serum as a model physiological solution. Albumin, cationic albumin, and ovalbumin cross-linked nanoparticles were developed for this investigation and their adsorbed protein coronas were isolated and characterized by gel electrophoresis and nanoliquid chromatography mass spectrometry. Distinct trends in corona mass and composition were identified for protein nanoparticles based on surface charge and surface hydrophobicity. Proteomic analyses revealed unique protein corona patterns and identified distinct proteins that are known to affect nanoparticle clearance in vivo. Further, the protein corona influenced nanoparticle internalization in vitro in a macrophage cell line. Altogether, these results demonstrate the strong effect protein identity and properties have on the corona formed on nanoparticles made from that protein. This work builds the foundation for future study of protein coronas on the wide array of protein nanoparticles used in nanomedicine and environmental applications.
Collapse
Affiliation(s)
- Samantha M Pustulka
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Kevin Ling
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Stephanie L Pish
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Julie A Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
88
|
Papini E, Tavano R, Mancin F. Opsonins and Dysopsonins of Nanoparticles: Facts, Concepts, and Methodological Guidelines. Front Immunol 2020; 11:567365. [PMID: 33154748 PMCID: PMC7587406 DOI: 10.3389/fimmu.2020.567365] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/25/2020] [Indexed: 11/13/2022] Open
Abstract
Understanding the effects mediated by a set of nanoparticle (NP)-bound host biomolecules, often indicated with the umbrella term of NP corona, is essential in nanomedicine, nanopharmacology, and nanotoxicology. Among the NP-adsorbed proteome, some factors mediate cell binding, endocytosis, and clearing by macrophages and other phagocytes (opsonins), while some others display few affinities for the cell surface (dysopsonins). The functional mapping of opsonins and dysopsonins is instrumental to design long-circulating and nanotoxicologically safe next-generation nanotheranostics. In this review, we critically analyze functional data identifying specific proteins with opsonin or dysopsonin properties. Special attention is dedicated to the following: (1) the simplicity or complexity of the NP proteome and its modulation, (2) the role of specific host proteins in mediating the stealth properties of uncoated or polymer-coated NPs, and (3) the ability of the innate immune system, and, in particular, of the complement proteins, to mediate NP clearance by phagocytes. Emerging species-specific peculiarities, differentiating humans from preclinical animal models (the murine especially), are highlighted throughout this overview. The operative definition of opsonin and dysopsonin and the measurement schemes to assess their in vitro efficacy is critically re-examined. This provides a shared and unbiased approach useful for NP opsonin and dysopsonin systematic identification.
Collapse
Affiliation(s)
- Emanuele Papini
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Centre for Innovative Biotechnological Research, University of Padua, Padua, Italy
| | - Regina Tavano
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Centre for Innovative Biotechnological Research, University of Padua, Padua, Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
89
|
Coreas R, Cao X, Deloid GM, Demokritou P, Zhong W. Lipid and protein corona of food-grade TiO 2 nanoparticles in simulated gastrointestinal digestion. NANOIMPACT 2020; 20:100272. [PMID: 33344797 PMCID: PMC7742882 DOI: 10.1016/j.impact.2020.100272] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In the presence of biological matrices, engineered nanomaterials, such as TiO2, develop a biomolecular corona composed of lipids, proteins, etc. In this study, we analyzed the biocorona formed on the food grade TiO2 (E171) going through an in vitro simulated gastrointestinal digestion system in either a fasting food model (FFM), a standardized food model (SFM), or a high fat food model (HFFM). Lipids and proteins were extracted from the biocorona and underwent untargeted lipidomic and label-free shotgun proteomic analyses. Our results showed that the biocorona composition was different before and after food digestion. After digestion, more diverse lipids were adsorbed compared to proteins, most of which were the enzymes added to the simulated digestion system. The corona lipid profile was distinct from the digested food model they presented in, although similarity in the lipid profiles between the corona and the food matrix increased with the fat content in the food model. The corona formed in the two low-fat environments of FFM and SFM shared a higher degree of similarity while very different from their corresponding matrix, with some lipid species adsorbed with high enrichment factors, indicating specific interaction with the TiO2 surface outperforming lipid matrix concentration in determination of corona formation. Formation of the biocorona may have contributed to the reduced oxidative stress as well as toxicological impacts observed in cellular studies. The present work is the first to confirm persistent adsorption of biomolecules could occur on ingested nanomaterials in food digestae. More future studies are needed to study the in vivo impacts of the biocorona, and shed lights on how the biocorona affects the biotransformations and fate of the ingested nanomaterials, which may impose impacts on human health.
Collapse
Affiliation(s)
- Roxana Coreas
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Xiaoqiong Cao
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Glen M. Deloid
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Corresponding authors.: Philip Demokritou, , Wenwan Zhong,
| | - Wenwan Zhong
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Corresponding authors.: Philip Demokritou, , Wenwan Zhong,
| |
Collapse
|
90
|
Montizaan D, Yang K, Reker-Smit C, Salvati A. Comparison of the uptake mechanisms of zwitterionic and negatively charged liposomes by HeLa cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 30:102300. [PMID: 32931929 DOI: 10.1016/j.nano.2020.102300] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 11/24/2022]
Abstract
Zwitterionic molecules are used as an alternative to PEGylation to reduce protein adsorption on nanocarriers. Nonetheless, little is known on the effect of zwitterionic modifications on the mechanisms cells use for nanocarrier uptake. In this study, the uptake mechanism of liposomes containing zwitterionic or negatively charged lipids was characterized using pharmacological inhibitors and RNA interference on HeLa cells to block endocytosis. As expected, introducing zwitterionic lipids reduced protein adsorption in serum, as well as uptake efficiency. Blocking clathrin-mediated endocytosis strongly decreased the uptake of the negatively charged liposomes, but not the zwitterionic ones. Additionally, inhibition of macropinocytosis reduced uptake of both liposomes, but blocking actin polymerization had effects only on the negatively charged ones. Overall, the results clearly indicated that the two liposomes were internalized by HeLa cells using different pathways. Thus, introducing zwitterionic lipids affects not only protein adsorption and uptake efficiency, but also the mechanisms of liposome uptake by cells.
Collapse
Affiliation(s)
- Daphne Montizaan
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Keni Yang
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Catharina Reker-Smit
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
91
|
Scheffer FR, Silveira CP, Morais J, Bettini J, Cardoso MB. Tailoring Pseudo-Zwitterionic Bifunctionalized Silica Nanoparticles: From Colloidal Stability to Biological Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10756-10763. [PMID: 32787025 DOI: 10.1021/acs.langmuir.0c01545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Zwitterionic molecules are known to resist nonspecific protein adsorption and have been proposed as an alternative to the widely used polyethylene glycol. Recently, zwitterionic-like nanoparticles were created from the coimmobilization of positive and negative ligands, resulting in surfaces that also prevent protein corona formation while keeping available sites for bioconjugation. However, it is unclear if they are able to keep their original properties when immersed in biological environments while retaining a toxicity-free profile, indispensable features before considering these structures for clinics. Herein, we obtained optimized zwitterionic-like silica nanoparticles from the functionalization with varying ratios of THPMP and DETAPTMS organosilanes and investigated their behavior in realistic biological milieu. The generated zwitterionic-like particle was able to resist single-protein adsorption, while the interaction with a myriad of serum proteins led to significant loss of colloidal stability. Moreover, the zwitterionic particles presented poor hemocompatibility, causing considerable disruption of red blood cells. Our findings suggest that the exposure of ionic groups allows these structures to directly engage with the environment and that electrostatic neutrality is not enough to grant low-fouling and stealth properties.
Collapse
Affiliation(s)
- Francine Ramos Scheffer
- Laboratório Nacional de Luz Sı́ncrotron (LNLS)/Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, CEP 13083-970 São Paulo, Brazil
- Instituto de Quı́mica (IQ), Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6154, Campinas, CEP 13083-970 São Paulo, Brazil
| | - Camila Pedroso Silveira
- Laboratório Nacional de Luz Sı́ncrotron (LNLS)/Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, CEP 13083-970 São Paulo, Brazil
| | - Jonder Morais
- Instituto de Fı́sica (IF), Universidade Federal do Rio Grande do Sul (UFRGS), Caixa Postal 15051, Porto Alegre, CEP 91501-970 Rio Grande do Sul, Brazil
| | - Jefferson Bettini
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, CEP 13083-970 São Paulo, Brazil
| | - Mateus Borba Cardoso
- Laboratório Nacional de Luz Sı́ncrotron (LNLS)/Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, CEP 13083-970 São Paulo, Brazil
- Instituto de Quı́mica (IQ), Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6154, Campinas, CEP 13083-970 São Paulo, Brazil
| |
Collapse
|
92
|
Paliienko K, Pastukhov A, Babič M, Horák D, Vasylchenko O, Borisova T. Transient coating of γ-Fe 2O 3 nanoparticles with glutamate for its delivery to and removal from brain nerve terminals. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1381-1393. [PMID: 32974116 PMCID: PMC7492693 DOI: 10.3762/bjnano.11.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Glutamate is the main excitatory neurotransmitter in the central nervous system and excessive extracellular glutamate concentration is a characteristic feature of stroke, brain trauma, and epilepsy. Also, glutamate is a potential tumor growth factor. Using radiolabeled ʟ-[14C]glutamate and magnetic fields, we developed an approach for monitoring the biomolecular coating (biocoating) with glutamate of the surface of maghemite (γ-Fe2O3) nanoparticles. The nanoparticles decreased the initial rate of ʟ-[14C]glutamate uptake, and increased the ambient level of ʟ-[14C]glutamate in isolated cortex nerve terminals (synaptosomes). The nanoparticles exhibit a high capability to adsorb glutamate/ʟ-[14C]glutamate in water. Some components of the incubation medium of nerve terminals, that is, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and NaH2PO4, decreased the ability of γ-Fe2O3 nanoparticles to form a glutamate biocoating by about 50% and 90%, respectively. Only 15% of the amount of glutamate biocoating obtained in water was obtained in blood plasma. Albumin did not prevent the formation of a glutamate biocoating. It was shown that the glutamate biocoating is a temporal dynamic structure at the surface of γ-Fe2O3 nanoparticles. Also, components of the nerve terminal incubation medium and physiological fluids responsible for the desorption of glutamate were identified. Glutamate-coated γ-Fe2O3 nanoparticles can be used for glutamate delivery to the nervous system or for glutamate adsorption (but with lower effectiveness) in stroke, brain trauma, epilepsy, and cancer treatment following by its subsequent removal using a magnetic field. γ-Fe2O3 nanoparticles with transient glutamate biocoating can be useful for multifunctional theranostics.
Collapse
Affiliation(s)
- Konstantin Paliienko
- Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, Leontovicha Str. 9, Kyiv, 01030, Ukraine
| | - Artem Pastukhov
- Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, Leontovicha Str. 9, Kyiv, 01030, Ukraine
| | - Michal Babič
- Institute of Macromolecular Chemistry AS CR, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry AS CR, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Olga Vasylchenko
- National Aviation University, Liubomyra Huzara ave. 1, Kyiv, 03058, Ukraine
| | - Tatiana Borisova
- Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, Leontovicha Str. 9, Kyiv, 01030, Ukraine
| |
Collapse
|
93
|
Francia V, Schiffelers RM, Cullis PR, Witzigmann D. The Biomolecular Corona of Lipid Nanoparticles for Gene Therapy. Bioconjug Chem 2020; 31:2046-2059. [PMID: 32786370 DOI: 10.1021/acs.bioconjchem.0c00366] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gene therapy holds great potential for treating almost any disease by gene silencing, protein expression, or gene correction. To efficiently deliver the nucleic acid payload to its target tissue, the genetic material needs to be combined with a delivery platform. Lipid nanoparticles (LNPs) have proven to be excellent delivery vectors for gene therapy and are increasingly entering into routine clinical practice. Over the past two decades, the optimization of LNP formulations for nucleic acid delivery has led to a well-established body of knowledge culminating in the first-ever RNA interference therapeutic using LNP technology, i.e., Onpattro, and many more in clinical development to deliver various nucleic acid payloads. Screening a lipid library in vivo for optimal gene silencing potency in hepatocytes resulted in the identification of the Onpattro formulation. Subsequent studies discovered that the key to Onpattro's liver tropism is its ability to form a specific "biomolecular corona". In fact, apolipoprotein E (ApoE), among other proteins, adsorbed to the LNP surface enables specific hepatocyte targeting. This proof-of-principle example demonstrates the use of the biomolecular corona for targeting specific receptors and cells, thereby opening up the road to rationally designing LNPs. To date, however, only a few studies have explored in detail the corona of LNPs, and how to efficiently modulate the corona remains poorly understood. In this review, we summarize recent discoveries about the biomolecular corona, expanding the knowledge gained with other nanoparticles to LNPs for nucleic acid delivery. In particular, we address how particle stability, biodistribution, and targeting of LNPs can be influenced by the biological environment. Onpattro is used as a case study to describe both the successful development of an LNP formulation for gene therapy and the key influence of the biological environment. Moreover, we outline the techniques available to isolate and analyze the corona of LNPs, and we highlight their advantages and drawbacks. Finally, we discuss possible implications of the biomolecular corona for LNP delivery and we examine the potential of exploiting the corona as a targeting strategy beyond the liver to develop next-generation gene therapies.
Collapse
Affiliation(s)
- Valentina Francia
- Department of Biochemistry and Molecular Biology, University of British Columbia, V6T 1Z3, Vancouver, British Columbia, Canada.,Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX, Utrecht, Netherlands
| | - Raymond M Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX, Utrecht, Netherlands
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, V6T 1Z3, Vancouver, British Columbia, Canada.,NanoMedicines Innovation Network (NMIN), University of British Columbia, V6T 1Z3, Vancouver, British Columbia, Canada
| | - Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, V6T 1Z3, Vancouver, British Columbia, Canada.,NanoMedicines Innovation Network (NMIN), University of British Columbia, V6T 1Z3, Vancouver, British Columbia, Canada
| |
Collapse
|
94
|
Wang X, Meng N, Wang S, Lu L, Wang H, Zhan C, Burgess DJ, Lu W. Factors Influencing the Immunogenicity and Immunotoxicity of Cyclic RGD Peptide-Modified Nanodrug Delivery Systems. Mol Pharm 2020; 17:3281-3290. [PMID: 32786957 DOI: 10.1021/acs.molpharmaceut.0c00394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
c(RGDyK)-modified liposomes have been shown to be immunogenic and potentially trigger acute systemic anaphylaxis upon repeated intravenous injection in both BALB/c nude mice and ICR mice. However, questions concerning the potential influence of mouse strains, immunization routes, drug carrier properties, and changes in c(RGDyK) itself on the immunogenicity and resultant immunotoxicity (anaphylaxis) of cyclic RGD peptide-modified nanodrug delivery systems remain unanswered. Here, these potential impact factors were investigated, aiming to better understand the immunological properties of cyclic RGD peptide-based nanodrug delivery systems and seek for solutions for this immunogenicity-associated issue. It was revealed that anaphylaxis caused by intravenous c(RGDyK)-modified drug delivery systems might be avoided by altering the preimmunization route (i.e., subcutaneous injection), introducing positively charged lipids into the liposomes and by using micelles or red blood cell membrane (RBC)-based drug delivery systems as the carrier. Different murine models showed different incidences of anaphylaxis following intravenous c(RGDyK)-liposome stimulation: anaphylaxis was not observed in both SD rats and BALB/c mice and was less frequent in C57BL/6 mice than that in ICR mice. In addition, enlarging the peptide ring of c(RGDyK) by introducing amino sequence serine-glycine-serine reduced the incidence of anaphylaxis post the repeated intravenous c(RGDyKSGS)-liposome stimulation. However, immunogenicity of cyclic RGD-modified drug carriers could not be reversed, although some reduction in IgG antibody production was observed when ICR mice were intravenously stimulated with c(RGDyK)-modified micelles, RBC membrane-based drug delivery systems and c(RGDyKSGS)-liposomes instead of c(RGDyK)-liposomes. This study provides a valuable reference for future application of cyclic RGD peptide-modified drug delivery systems.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China.,School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Nana Meng
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Songli Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Linwei Lu
- The Department of Integrative Medicine, Huashan Hospital, Fudan University, and The Institutes of Integrative Medicine of Fudan University, Fudan University, Shanghai 200041, China
| | - Huan Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Diane J Burgess
- School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China.,The Department of Integrative Medicine, Huashan Hospital, Fudan University, and The Institutes of Integrative Medicine of Fudan University, Fudan University, Shanghai 200041, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.,Minhang Branch, Zhongshan Hospital and Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| |
Collapse
|
95
|
Shin H, Kwak M, Lee TG, Lee JY. Quantifying the level of nanoparticle uptake in mammalian cells using flow cytometry. NANOSCALE 2020; 12:15743-15751. [PMID: 32677657 DOI: 10.1039/d0nr01627f] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Reliable quantification of nanoparticle uptake in mammalian cells is essential to study the effects of nanoparticles in the fields of medicine and environmental science. Most conventional quantification methods, such as electron microscopy or confocal imaging, are laborious and semi-quantitative and therefore not readily applicable to routine analyses. Here, we developed assays to quantify fluorescently labelled nanoparticle uptake in mammalian cells using a flow cytometer. The first approach was to measure the percentage of nanoparticle-containing cells based on a cutoff fluorescence intensity as set from a histogram of control cells, which is a quick and easy way to relatively compare nanoparticle uptake in the same set of experiments. The second approach was to measure the calibrated fluorescence intensity of the nanoparticle-treated cells in molecules of equivalent soluble fluorophore (MESF) values using calibration beads, which allows for comparisons between different sets of experiments. We successfully applied the developed assays to more readily measure fluorescence-labelled silica nanoparticle uptake in A549 lung carcinoma cells in a quantitative rather than semi-quantitative manner. We further tested the assays with nine different types of mammalian cells and investigated the correlation between cell type/size and nanoparticle uptake.
Collapse
Affiliation(s)
- HyeRim Shin
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| | | | | | | |
Collapse
|
96
|
Liu S, Jiang X, Tian X, Wang Z, Xing Z, Chen J, Zhang J, Wang C, Dong L. A method to measure the denatured proteins in the corona of nanoparticles based on the specific adsorption of Hsp90ab1. NANOSCALE 2020; 12:15857-15868. [PMID: 32696774 DOI: 10.1039/d0nr02297g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The protein corona influences and determines the biological function of nanoparticles (NPs) in vivo. Analysis and understanding of the activities of proteins in coronas are crucial for nanobiology and nanomedicine research. Misfolded proteins in the corona of NPs theoretically exist, and a protein denaturation-related cellular response might occur in this process as well as in related diseases. The exact evaluation of protein denaturation in the corona is valuable to assess the bioactivities of NPs. Here, we found that the level of adsorbed heat shock protein 90 kDa α class B member 1 (Hsp90ab1) by the denatured protein in iron-cobalt-nickel alloy NPs (FeCoNi NPs) and iron oxide NPs (Fe3O4 NPs) was correlated with circular dichroism (CD) analysis and 1-anilinonaphthalene-8-sulfonate (ANS) analysis. The content of Hsp90ab1 in the corona could be easily analysed by western blotting (WB). Further analysis suggested that the method could precisely show the time-dependent protein denaturation on Fe3O4 NPs, as well as the influence of the size and the surface modification. More importantly, this method could be applied to other proteins, like lysozyme, other than albumin. Based on the results and the correlation analysis, incubation and detection of Hsp90ab1 in the NP-corona complex can be used as a new and feasible method to evaluate protein denaturation induced by NPs.
Collapse
Affiliation(s)
- Shang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences & Medical School, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Aliyandi A, Satchell S, Unger RE, Bartosch B, Parent R, Zuhorn IS, Salvati A. Effect of endothelial cell heterogeneity on nanoparticle uptake. Int J Pharm 2020; 587:119699. [PMID: 32736019 DOI: 10.1016/j.ijpharm.2020.119699] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023]
Abstract
Endothelial cells exhibit distinct properties in morphology and functions in different organs that can be exploited for nanomedicine targeting. In this work, endothelial cells from different organs, i.e. brain, lung, liver, and kidney, were exposed to plain, carboxylated, and amino-modified silica. As expected, different protein coronas were formed on the different nanoparticle types and these changed when foetal bovine serum (FBS) or human serum were used. Uptake efficiencies differed strongly in the different endothelia, confirming that the cells retained some of their organ-specific differences. However, all endothelia showed higher uptake for the amino-modified silica in FBS, but, interestingly, this changed to the carboxylated silica when human serum was used, confirming that differences in the protein corona affect uptake preferences by cells. Thus, uptake rates of fluid phase markers and transferrin were determined in liver and brain endothelium to compare their endocytic activity. Overall, our results showed that endothelial cells of different organs have very different nanoparticle uptake efficiency, likely due to differences in receptor expression, affinity, and activity. A thorough characterization of phenotypic differences in the endothelia lining different organs is key to the development of targeted nanomedicine.
Collapse
Affiliation(s)
- Aldy Aliyandi
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
| | - Simon Satchell
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, BS1 3NY Bristol, England, United Kingdom.
| | - Ronald E Unger
- Institute of Pathology, REPAIR-Lab, Johannes Gutenberg University, Langenbeckstr. 1, 55101 Mainz, Germany.
| | - Birke Bartosch
- INSERM, Lyon Cancer Research Center, 28 Rue Laennec, 69008 Lyon, France.
| | - Romain Parent
- INSERM, Lyon Cancer Research Center, 28 Rue Laennec, 69008 Lyon, France.
| | - Inge S Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
| |
Collapse
|
98
|
Sanchez-Guzman D, Giraudon-Colas G, Marichal L, Boulard Y, Wien F, Degrouard J, Baeza-Squiban A, Pin S, Renault JP, Devineau S. In Situ Analysis of Weakly Bound Proteins Reveals Molecular Basis of Soft Corona Formation. ACS NANO 2020; 14:9073-9088. [PMID: 32633939 DOI: 10.1021/acsnano.0c04165] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Few experimental techniques allow the analysis of the protein corona in situ. As a result, little is known on the effects of nanoparticles on weakly bound proteins that form the soft corona. Despite its biological importance, our understanding of the molecular bases driving its formation is limited. Here, we show that hemoglobin can form either a hard or a soft corona on silica nanoparticles depending on the pH conditions. Using cryoTEM and synchrotron-radiation circular dichroism, we show that nanoparticles alter the structure and the stability of weakly bound proteins in situ. Molecular dynamics simulation identified the structural elements driving protein-nanoparticle interaction. Based on thermodynamic analysis, we show that nanoparticles stabilize partially unfolded protein conformations by enthalpy-driven molecular interactions. We suggest that nanoparticles alter weakly bound proteins by shifting the equilibrium toward the unfolded states at physiological temperature. We show that the classical approach based on nanoparticle separation from the biological medium fails to detect destabilization of weakly bound proteins, and therefore cannot be used to fully predict the biological effects of nanomaterials in situ.
Collapse
Affiliation(s)
| | | | - Laurent Marichal
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay Cedex, France
| | - Yves Boulard
- Université Paris-Saclay, CEA, CNRS, I2BC, B3S, Gif-sur-Yvette 91190, France
| | - Frank Wien
- Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
| | - Jéril Degrouard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay Cedex, France
| | | | - Serge Pin
- Université Paris-Saclay, CEA, CNRS, NIMBE, Gif-sur-Yvette 91190, France
| | | | | |
Collapse
|
99
|
Chen D, Ganesh S, Wang W, Amiji M. Protein Corona-Enabled Systemic Delivery and Targeting of Nanoparticles. AAPS JOURNAL 2020; 22:83. [DOI: 10.1208/s12248-020-00464-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022]
|
100
|
Muraca F, Boselli L, Castagnola V, Dawson KA. Ultrasmall Gold Nanoparticle Cellular Uptake: Influence of Transient Bionano Interactions. ACS APPLIED BIO MATERIALS 2020; 3:3800-3808. [DOI: 10.1021/acsabm.0c00379] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Francesco Muraca
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield Dublin 4, Ireland
| | - Luca Boselli
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield Dublin 4, Ireland
| | - Valentina Castagnola
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield Dublin 4, Ireland
| | - Kenneth A. Dawson
- Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield Dublin 4, Ireland
| |
Collapse
|