51
|
Xu J, Wang J, Ye J, Jiao J, Liu Z, Zhao C, Li B, Fu Y. Metal-Coordinated Supramolecular Self-Assemblies for Cancer Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101101. [PMID: 34145984 PMCID: PMC8373122 DOI: 10.1002/advs.202101101] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/25/2021] [Indexed: 05/07/2023]
Abstract
Metal-coordinated supramolecular nanoassemblies have recently attracted extensive attention as materials for cancer theranostics. Owing to their unique physicochemical properties, metal-coordinated supramolecular self-assemblies can bridge the boundary between traditional inorganic and organic materials. By tailoring the structural components of the metal ions and binding ligands, numerous multifunctional theranostic nanomedicines can be constructed. Metal-coordinated supramolecular nanoassemblies can modulate the tumor microenvironment (TME), thus facilitating the development of TME-responsive nanomedicines. More importantly, TME-responsive organic-inorganic hybrid nanomaterials can be constructed in vivo by exploiting the metal-coordinated self-assembly of a variety of functional ligands, which is a promising strategy for enhancing the tumor accumulation of theranostic molecules. In this review, recent advancements in the design and fabrication of metal-coordinated supramolecular nanomedicines for cancer theranostics are highlighted. These supramolecular compounds are classified according to the order in which the coordinated metal ions appear in the periodic table. Furthermore, the prospects and challenges of metal-coordinated supramolecular self-assemblies for both technical advances and clinical translation are discussed. In particular, the superiority of TME-responsive nanomedicines for in vivo coordinated self-assembly is elaborated, with an emphasis on strategies that enhance the accumulation of functional components in tumors for an ideal theranostic outcome.
Collapse
Affiliation(s)
- Jiating Xu
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Jun Wang
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Jin Ye
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Jiao Jiao
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Zhiguo Liu
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Chunjian Zhao
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Bin Li
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Yujie Fu
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| |
Collapse
|
52
|
Fu X, Yin W, Shi D, Yang Y, He S, Hai J, Hou Z, Fan Z, Zhang D. Shuttle-Shape Carrier-Free Platinum-Coordinated Nanoreactors with O 2 Self-Supply and ROS Augment for Enhanced Phototherapy of Hypoxic Tumor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32690-32702. [PMID: 34229434 DOI: 10.1021/acsami.1c06668] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The synergistic nanotheranostics of reactive oxygen species (ROS) augment or phototherapy has been a promising method within synergistic oncotherapy. However, it is still hindered by sophisticated design and fabrication, lack of a multimodal synergistic effect, and hypoxia-associated poor photodynamic therapy (PDT) efficacy. Herein, a kind of porous shuttle-shape platinum (IV) methylene blue (Mb) coordination polymer nanotheranostics-loaded 10-hydroxycamptothecin (CPT) is fabricated to address the abovementioned limitations. Our nanoreactors possess spatiotemporally controlled O2 self-supply, self-sufficient singlet oxygen (1O2), and outstanding photothermal effect. Once they are taken up by tumor cells, nanoreactors as a cascade catalyst can efficiently catalyze degradation of the endogenous hydrogen peroxide (H2O2) into O2 to alleviate tumor hypoxia. The production of O2 can ensure enhanced PDT. Subsequently, under both stimuli of external red light irradiation and internal lysosomal acidity, nanoreactors can achieve the on-demand release of CPT to augment in situ mitochondrial ROS and highly efficient tumor ablation via phototherapy. Moreover, under the guidance of near-infrared (NIR) fluorescent imaging, our nanoreactors exhibit strongly synergistic potency for treatment of hypoxic tumors while reducing damages against normal tissues and organs. Collectively, shuttle-shape platinum-coordinated nanoreactors with augmented ROS capacity and enhanced phototherapy efficiency can be regarded as a novel tumor theranostic agent and further promote the research of synergistic oncotherapy.
Collapse
Affiliation(s)
| | | | - Dao Shi
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Yifan Yang
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Suisui He
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jun Hai
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Zhenqing Hou
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Zhongxiong Fan
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | | |
Collapse
|
53
|
Gao C, Guo W, Guo X, Ding Z, Ding Y, Shen XC. Black SnO 2-x based nanotheranostic for imaging-guided photodynamic/photothermal synergistic therapy in the second near-infrared window. Acta Biomater 2021; 129:220-234. [PMID: 34082106 DOI: 10.1016/j.actbio.2021.05.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 01/10/2023]
Abstract
The shallow penetration depth of photothermal agents in the first near-infrared (NIR-I) window significantly limits their therapeutic efficiency. Multifunctional nanotheranostic agents in the second near-infrared (NIR-II) window have drawn extensive attention for their combined treatment of tumors. Here, for the first time, we created oxygen-deficient black SnO2-x with strong NIR (700-1200 nm) light absorption with NaBH4 reduction from white SnO2. Hyaluronic acid (HA) could selectively target cancer cells overexpressed CD44 protein. After modification with HA, the obtained nanotheranostic SnO2-x@SiO2-HA showed high dispersity in aqueous solution and good biocompatibility. SnO2-x@SiO2-HA was confirmed to simultaneously generate enough hyperthermia and reactive oxygen species with single NIR-II (1064 nm) light irradiation. Because HA is highly affined to CD44 protein, SnO2-x@SiO2-HA has specific uptake by overexpressed CD44 cells and can be accurately transferred to the tumor site. Furthermore, tumor growth was significantly inhibited following synergistic photodynamic therapy (PDT) and photothermal therapy (PTT) with targeted specificity under the guidance of photoacoustic (PA) imaging using 1064 nm laser irradiation in vivo. Moreover, SnO2-x@SiO2-HA accelerated wound healing. This work prominently extends the therapeutic utilization of semiconductor nanomaterials by changing their nanostructures and demonstrates for the first time that SnO2-x based therapeutic agents can accelerate wound healing. STATEMENT OF SIGNIFICANCE: The phototherapeutic efficacy of nanotheranostics by NIR-I lightirradiation was restricted owing to the limitation of tissue penetration and maximum permissible exposure. To overcome these limitations, we hereby fabricated a NIR-IIlight-mediated multifunctional nanotheranostic based on SnO2-x. The introduction of oxygen vacancy strategy was employed to construct full spectrum responsive oxygen-deficient SnO2-x, endowing outstanding photothermal conversion, and remarkable production activity of reactive oxygen species under NIR-II light activation. Tumor growth was significantly inhibited following synergistic PDT/PTT with targeted specificity under the guidance of photoacoustic imaging using 1064 nm laser irradiation in vivo. Our strategy not only expands the biomedical application of SnO2, but also providea method to develop other inorganic metal oxide-based nanosystems for NIR-II light-activated phototheranostic of cancers.
Collapse
|
54
|
Wang Z, Sun Q, Liu B, Kuang Y, Gulzar A, He F, Gai S, Yang P, Lin J. Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213945] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
55
|
Hu W, Xiao T, Li D, Fan Y, Xing L, Wang X, Li Y, Shi X, Shen M. Intelligent Molybdenum Disulfide Complexes as a Platform for Cooperative Imaging-Guided Tri-Mode Chemo-Photothermo-Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100165. [PMID: 34145978 PMCID: PMC8292874 DOI: 10.1002/advs.202100165] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/27/2021] [Indexed: 05/27/2023]
Abstract
Design of new nanoplatforms that integrates multiple imaging and therapeutic components for precision cancer nanomedicine remains to be challenging. Here, a facile strategy is reported to prepare polydopamine (PDA)-coated molybdenum disulfide (MoS2 ) nanoflakes as a nanocarrier to load dual drug cisplatin (Pt) and 1-methyl-tryptophan (1-MT) for precision tumor theranostics. Preformed MoS2 nanoflakes are coated with PDA, modified with methoxy-polyethylene glycol (PEG)-amine, and loaded with 1-MT and Pt. The formed functional 1-MT-Pt-PPDA@MoS2 (the second P stands for PEG) complexes exhibit good colloidal stability and photothermal conversion efficiency (47.9%), dual pH-, and photothermal-sensitive drug release profile, and multimodal thermal, computed tomography and photoacoustic imaging capability. Due to the respective components of Pt, MoS2 , and 1-MT that can block the immune checkpoint associated to tumoral indoleamine 2,3-dioxygenase-induced tryptophan metabolism, tri-mode chemo-photothermo-immunotherapy of tumors can be realized. In particular, under the near infrared laser irradiation, fast release of both drugs can be facilitated to achieve cooperative tumor therapy effect, and the combined immunogenic cell death induced by the dual-mode chemo-photothermo treatment and the 1-MT-induced immune checkpoint blockade can boost enhanced antitumor immune response to generate significant cytotoxic T cells for tumor killing. The developed 1-MT-Pt-PPDA@MoS2 complexes may be used as an intelligent nanoplatform for cooperative precision imaging-guided combinational tumor therapy.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghai201620P. R. China
- Department of Gynecology and ObstetricsXinHua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200092P. R. China
| | - Tingting Xiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghai201620P. R. China
| | - Du Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghai201620P. R. China
| | - Yu Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghai201620P. R. China
| | - Lingxi Xing
- Department of Gynecology and ObstetricsXinHua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200092P. R. China
| | - Xipeng Wang
- Department of Gynecology and ObstetricsXinHua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200092P. R. China
| | - Yulin Li
- The Key Laboratory for Ultrafine Materials of Ministry of EducationState Key Laboratory of Bioreactor EngineeringEngineering Research Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghai201620P. R. China
- CQM‐Centro de Quimica da MadeiraUniversidade da MadeiraFunchal9020‐105Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghai201620P. R. China
| |
Collapse
|
56
|
Hong Y, Ju Y, Chen W, Liu Y, Zhang M, Zhao H. Fabrication of PεCL-AuNP-BSA core-shell-corona nanoparticles for flexible spatiotemporal drug delivery and SERS detection. Biomater Sci 2021; 9:4440-4447. [PMID: 33989374 DOI: 10.1039/d1bm00388g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanoparticles with protein coronae can be used as promising multifunctional platforms for nanomedicine due to the possibility of performing surface functionalization on protein molecules and the achievement of biomedical properties. In this research, nanoparticles (NPs) with poly(ε-caprolactone) (PεCL) cores, gold NP (AuNP) shells and BSA coronae were fabricated by a self-assembly approach. The hydrophobic PεCL cores were used to encapsulate curcumin (CUR), the AuNP shells were decorated with a Raman probe, and the protein molecules in the coronae were functionalized with folic acid (FA). The self-assembly behaviors, drug delivery and the surface-enhanced Raman scattering (SERS) effect of the hybrid NPs were investigated in this research. The sizes of the core-shell-corona NPs (CSCNPs) are dependent on the initial concentrations of PεCL and AuNPs. The CUR in CSCNPs show enzyme-triggered release properties. The added lipase or trypsin can facilitate the CUR release from the hybrid NPs. The functionalization of CSCNPs with FA can significantly improve the internalization of NPs into 4T1 tumor cells due to the overexpressed folate receptors on the cells. In addition, the SERS effect of CSCNPs can be achieved when the AuNPs are decorated with 2-naphthalenethiol. The hybrid CSCNPs can be used as a promising platform for spatiotemporal drug delivery, cell imaging, and theranostics. Based on the same CSCNP platform, flexible functions can be adjusted according to the application needs.
Collapse
Affiliation(s)
- Yanhang Hong
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, weijing road #94, Tianjin 300071, China.
| | - Yuanyuan Ju
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, weijing road #94, Tianjin 300071, China.
| | - Wenjuan Chen
- Tianjin Key laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Yingze Liu
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, weijing road #94, Tianjin 300071, China.
| | - Mingming Zhang
- Tianjin Key laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, weijing road #94, Tianjin 300071, China.
| |
Collapse
|
57
|
Self-targeting nanotherapy based on functionalized graphene oxide for synergistic thermochemotherapy. J Colloid Interface Sci 2021; 603:70-84. [PMID: 34186412 DOI: 10.1016/j.jcis.2021.06.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 01/31/2023]
Abstract
Nanotherapy based on thermochemotherapy has boomed as a promising alternative for oncotherapy due to the enhanced permeability and retention (EPR) effect. However, a lack of self-targeting capacity prevents nanotherapy from efficiently accumulating in tumor tissue and internalizing into tumor cells, resulting in a suboptimal therapeutic effect. To overcome these bottlenecks, a kind of methotrexate (MTX)-soybean phospholipid (SPC) inclusion complex (MTX-SPC)-modified graphene oxide (CGO) nanotherapy (CGO-MTX-SPC) is constructed by CGO nanosheets as a supporter for MTX-SPC, thereby realizing active-targeting and synergistic thermochemotherapy. As an FDA-approved chemotherapeutic drug, MTX can be regarded as a tumor-targeting enhancer against the folate receptor on account of its similar structure to folic acid (FA). The fabricated CGO-MTX-SPC has a sheet shape with a size of ca. 109 nm and tumor microenvironment-responsive on-demand drug release. It is worth noting that the physiological stability of CGO-MTX-SPC is better than that of CGO while displaying an improved photothermal effect. In addition, CGO-MTX-SPC can specifically recognize tumor cells and then achieve on-demand drug burst release by dual stimuli of internal lysosomal acidity and an external laser. Moreover, in vivo experimental results further demonstrate that CGO-MTX-SPC displays significant enrichment at the tumor location by active targeting mechanisms due to the introduction of MTX-SPC, endowing the synergistic thermochemotherapy effect upon 808 nm laser irradiation and almost thorough tumor elimination while significantly erasing undesirable side effects. Taken together, the design idea of our nanotherapy not only provides a potential tumor-targeting therapeutic strategy but also broadens the drug payload method of two-dimensional nanomaterials.
Collapse
|
58
|
Chen Y, Li Y, Liu J, Zhu Q, Ma J, Zhu X. Erythrocyte membrane bioengineered nanoprobes via indocyanine green-directed assembly for single NIR laser-induced efficient photodynamic/photothermal theranostics. J Control Release 2021; 335:345-358. [PMID: 34029633 DOI: 10.1016/j.jconrel.2021.05.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/01/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
Traditional combinational photodynamic therapy (PDT) and photothermal therapy (PTT) were limited in clinical therapy of cancer due to exceptionally low drug payload and activation by light with separate wavelengths. We have accidentally discovered that zinc phthalocyanine (ZNPC, a typical hydrophobic photosensitizer) and indocyanine green (ICG, a clinically approved fluorescence probe) could be co-assembled into carrier-free nanodrugs (almost 100 wt%) for single NIR laser-induced efficient PDT/PTT. Interestingly, ICG could act as "transformers" for modulating the geometric shape of ZNPC/ICG co-assembling structures from needle-like/spindle-like structure via cubic structure finally to spherical structure. Unfortunately, the nanodrugs suffered from rapid immune clearance. The ZNPC-ICG nanoprobes were further embedded into the erythrocyte membrane (RBC)-camouflaged framework. The designed ZNPC-ICG@RBC could be efficiently accumulated within the tumor sites (continue for ~60 h) and rapidly internalized into cancer cells upon laser irradiation rather than macrophage RAW264.7 cells. Compared with the free ZnPC or ICG, the biomimetic ZNPC-ICG@RBC nanoprobes exhibited amplified therapeutic effects by simultaneously producing ROS and hyperthermia, thereby synergistically improving antitumor efficiency and eliminating the tumors without any regrowth under the guidance of fluorescence imaging. The co-delivery of ZnPC and ICG via a biomimetic carrier-free system might be a promising strategy for bimodal phototherapy of cancer.
Collapse
Affiliation(s)
- Yilin Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Yang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, PR China.
| | - Jinxue Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Qixin Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China
| | - Jinyuan Ma
- Department of Pharmacy, Shanghai Skin Diseases Hospital, Tongji University School of Medicine, Shanghai 200443, PR China
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
59
|
Tu L, Fan Z, Zhu F, Zhang Q, Zeng S, Chen Z, Ren L, Hou Z, Ye S, Li Y. Self-recognizing and stimulus-responsive carrier-free metal-coordinated nanotheranostics for magnetic resonance/photoacoustic/fluorescence imaging-guided synergistic photo-chemotherapy. J Mater Chem B 2021; 8:5667-5681. [PMID: 32500886 DOI: 10.1039/d0tb00850h] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Carrier-free nanotheranostics directly assembled by using clinically used photosensitizers and chemotherapeutic drugs are a promising alternative to tumor theranostics. However, the weak interaction-driven assembly still suffers from low structural stability against disintegration, lack of targeting specificity, and poor stimulus-responsive property. Moreover, almost all exogenous ligands possess no therapeutic effect. Enlightened by the concept of metal-organic frameworks, we developed a novel self-recognizing metal-coordinated nanotheranostic agent by the coordination-driven co-assembly of photosensitizer indocyanine green (ICG) and chemo-drug methotrexate (MTX, also served as a specific "targeting ligand" towards folate receptors), in which ferric (FeIII) ions acted as a bridge to tightly associate ICG with MTX. Such carrier-free metal-coordinated nanotheranostics with high dual-drug payload (∼94 wt%) not only possessed excellent structural and physiological stability, but also exhibited prolonged blood circulation. In addition, the nanotheranostics could achieve the targeted on-demand drug release by both stimuli of internal lysosomal acidity and external near-infrared laser. More importantly, the nanotheranostics could self-recognize the cancer cells and selectively target the tumors, and therefore they decreased toxicity to normal tissues and organs. Consequently, the nanotheranostics showed strongly synergistic potency for tumor photo-chemotherapy under the precise guidance of magnetic resonance/photoacoustic/fluorescence imaging, thereby achieving highly effective tumor curing efficiency. Considering that ICG and bi-functional MTX are approved by the Food and Drug Administration, and FeIII ions have high biosafety, the self-recognizing and stimulus-responsive carrier-free metal-coordinated nanotheranostics may hold potential applications in tumor theranostics.
Collapse
Affiliation(s)
- Li Tu
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China.
| | - Zhongxiong Fan
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China.
| | - Fukai Zhu
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China.
| | - Qiang Zhang
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China.
| | - Sen Zeng
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China.
| | - Zhong Chen
- School of Electronic Science and Engineering, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Lei Ren
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China.
| | - Zhenqing Hou
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China.
| | - Shefang Ye
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China.
| | - Yang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. and Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, China
| |
Collapse
|
60
|
Tu L, Luo Z, Wu YL, Huo S, Liang XJ. Gold-based nanomaterials for the treatment of brain cancer. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0524. [PMID: 34002583 PMCID: PMC8185869 DOI: 10.20892/j.issn.2095-3941.2020.0524] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Brain cancer, also known as intracranial cancer, is one of the most invasive and fatal cancers affecting people of all ages. Despite the great advances in medical technology, improvements in transporting drugs into brain tissue have been limited by the challenge of crossing the blood-brain barrier (BBB). Fortunately, recent endeavors using gold-based nanomaterials (GBNs) have indicated the potential of these materials to cross the BBB. Therefore, GBNs might be an attractive therapeutic strategy against brain cancer. Herein, we aim to present a comprehensive summary of current understanding of the critical effects of the physicochemical properties and surface modifications of GBNs on BBB penetration for applications in brain cancer treatment. Furthermore, the most recent GBNs and their impressive performance in precise bioimaging and efficient inhibition of brain tumors are also summarized, with an emphasis on the mechanism of their effective BBB penetration. Finally, the challenges and future outlook in using GBNs for brain cancer treatment are discussed. We hope that this review will spark researchers' interest in constructing more powerful nanoplatforms for brain disease treatment.
Collapse
Affiliation(s)
- Li Tu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
61
|
Liu Z, Zhao X, Yu B, Zhao N, Zhang C, Xu FJ. Rough Carbon-Iron Oxide Nanohybrids for Near-Infrared-II Light-Responsive Synergistic Antibacterial Therapy. ACS NANO 2021; 15:7482-7490. [PMID: 33856198 DOI: 10.1021/acsnano.1c00894] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Infections caused by multidrug resistant bacteria are still a serious threat to human health. It is of great significance to explore effective alternative antibacterial strategies. Herein, carbon-iron oxide nanohybrids with rough surfaces (RCF) are developed for NIR-II light-responsive synergistic antibacterial therapy. RCF with excellent photothermal property and peroxidase-like activity could realize synergistic photothermal therapy (PTT)/chemodynamic therapy (CDT) in the NIR-II biowindow with improved penetration depth and low power density. More importantly, RCF with rough surfaces shows increased bacterial adhesion, thereby benefiting both CDT and PTT through effective interaction between RCF and bacteria. In vitro antibacterial experiments demonstrate a broad-spectrum synergistic antibacterial effect of RCF against Gram-negative Escherichia coli (E. coli), Gram-positive Staphylococcus aureus (S. aureus), and methicillin-resistant Staphylococcus aureus (MRSA). In addition, satisfactory biocompatibility makes RCF a promising antibacterial agent. Notably, the synergistic antibacterial performances in vivo could be achieved employing the rat wound model with MRSA infection. The current study proposes a facile strategy to construct antibacterial agents for practical antibacterial applications by the rational design of both composition and morphology. RCF with low power density NIR-II light responsive synergistic activity holds great potential in the effective treatment of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhiwen Liu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyi Zhao
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bingran Yu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nana Zhao
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chen Zhang
- College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
62
|
Zhang X, An L, Tian Q, Lin J, Yang S. Tumor microenvironment-activated NIR-II reagents for tumor imaging and therapy. J Mater Chem B 2021; 8:4738-4747. [PMID: 32124909 DOI: 10.1039/d0tb00030b] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Second near-infrared window (NIR-II, 1000-1700 nm) absorption and fluorescent agents have attracted great attention because they can overcome the penetration limitation of the first near-infrared window (NIR-I, 750-1000 nm). However, these always "on" agents face the severe problem of being susceptible to retention and phagocytosis by the reticuloendothelial system after intravenous administration, which results in signal interference during diagnosis and side effects during treatment. Accordingly, tumor microenvironment-responsive smart agents (smart NIR-II agents), whose imaging and therapeutic functions can only be triggered in tumors, can overcome this limitation. Thus, NIR-II smart agents, which exhibit a combined response to the tumor microenvironment and NIR-II, make full use of the advantages of both triggers and improve the precision diagnosis and effective treatment of cancer. This review summarizes the recent advances in tumor microenvironment-activated NIR-II agents for tumor diagnosis and treatment, including smart NIR-II fluorescence imaging, photoacoustic imaging, photothermal therapy and photodynamic therapy. Finally, the challenges and perspectives of NIR-II smart agents for tumor diagnosis and treatment are proposed.
Collapse
Affiliation(s)
- Xue Zhang
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China.
| | - Lu An
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China.
| | - Qiwei Tian
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China.
| | - Jiaomin Lin
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China.
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
63
|
Chen X, Xie B, Huang L, Wan J, Wang Y, Shi X, Qiao Y, Song H, Wang H. Quantitative self-assembly of pure drug cocktails as injectable nanomedicines for synergistic drug delivery and cancer therapy. Theranostics 2021; 11:5713-5727. [PMID: 33897877 PMCID: PMC8058735 DOI: 10.7150/thno.55250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
New strategies to fabricate nanomedicines with high translational capacity are urgently desired. Herein, a new class of self-assembled drug cocktails that addresses the multiple challenges of manufacturing clinically useful cancer nanomedicines was reported. Methods: With the aid of a molecular targeted agent, dasatinib (DAS), cytotoxic cabazitaxel (CTX) forms nanoassemblies (CD NAs) through one-pot process, with nearly quantitative entrapment efficiency and ultrahigh drug loading of up to 100%. Results: Surprisingly, self-assembled CD NAs show aggregation-induced emission, enabling particle trafficking and drug release in living cells. In preclinical models of human cancer, including a patient-derived melanoma xenograft, CD NAs demonstrated striking therapeutic synergy to produce a durable recession in tumor growth. Impressively, CD NAs alleviated the toxicity of the parent CTX agent and showed negligible immunotoxicity in animals. Conclusions: Overall, this approach does not require any carrier matrices, offering a scalable and cost-effective methodology to create a new generation of nanomedicines for the safe and efficient delivery of drug combinations.
Collapse
|
64
|
Ma S, Xie J, Wang L, Zhou Z, Luo X, Yan J, Ran G. Hetero-Core-Shell BiNS-Fe@Fe as a Potential Theranostic Nanoplatform for Multimodal Imaging-Guided Simultaneous Photothermal-Photodynamic and Chemodynamic Treatment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10728-10740. [PMID: 33645960 DOI: 10.1021/acsami.0c21579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photothermal/photodynamic therapy (PTT/PDT) and synergistic therapeutic strategies are often sought after, owing to their low side effects and minimal invasiveness compared to chemotherapy and surgical treatments. However, in spite of the development of the most PTT/PDT materials with good tumor-inhibitory effect, there are some disadvantages of photosensitizers and photothermal agents, such as low stability and low photonic efficiency, which greatly limit their further application. Therefore, in this study, a novel bismuth-based hetero-core-shell semiconductor nanomaterial BiNS-Fe@Fe with good photonic stability and synergistic theranostic functions was designed. On the one hand, BiNS-Fe@Fe with a high atomic number exhibits good X-ray absorption, enhanced magnetic resonance (MR) T2-weighted imaging, and strong photoacoustic imaging (PAI) signals. In addition, the hetero-core-shell provides a strong barrier to decline the recombination of electron-hole pairs, inducing the generation of a large amount of reactive oxygen species (ROS) when irradiated with visible-NIR light. Meanwhile, a Fenton reaction can further increase ROS generation in the tumor microenvironment. Furthermore, an outstanding chemodynamic therapeutic potential was determined for this material. In particular, a high photothermal conversion efficiency (η = 37.9%) is of significance and could be achieved by manipulating surface decoration with Fe, which results in tumor ablation. In summary, BiNS-Fe@Fe could achieve remarkable utilization of ROS, high photothermal conversion law, and good chemodynamic activity, which highlight the multimodal theranostic potential strategies of tumors, providing a potential viewpoint for theranostic applications of tumors.
Collapse
Affiliation(s)
- Sihan Ma
- College of Energy, Xiamen University, Xiamen 361002, Fujian, China
- Fujian Research Center for Nuclear Engineering, Xiamen 361102, Fujian, China
| | - Jun Xie
- School of Medicine, Xiamen University, Xiamen 361002, Fujian, China
| | - Lin Wang
- Department of Oncology, Zhongshan Hospital, Xiamen University, No. 201-209 Hubinnan Road, Xiamen 361004, Fujian, China
| | - Zonglang Zhou
- School of Medicine, Xiamen University, Xiamen 361002, Fujian, China
- 174 Clinical College affiliated to Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui, China
| | - Xian Luo
- School of Medicine, Xiamen University, Xiamen 361002, Fujian, China
| | - Jianghua Yan
- School of Medicine, Xiamen University, Xiamen 361002, Fujian, China
| | - Guang Ran
- College of Energy, Xiamen University, Xiamen 361002, Fujian, China
| |
Collapse
|
65
|
Jiang Q, Liu L, Li Q, Cao Y, Chen D, Du Q, Yang X, Huang D, Pei R, Chen X, Huang G. NIR-laser-triggered gadolinium-doped carbon dots for magnetic resonance imaging, drug delivery and combined photothermal chemotherapy for triple negative breast cancer. J Nanobiotechnology 2021; 19:64. [PMID: 33653352 PMCID: PMC7923633 DOI: 10.1186/s12951-021-00811-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Owing to high genetic diversities of tumor cells and low response rate of standard chemotherapy, patients with triple negative breast cancer (TNBC) have short progression-free survivals and poor outcomes, which need to explore an effective approach to improve therapeutic efficacy. METHODS Novel gadolinium doped carbon dots (Gd@CDs) have been designed and prepared through hydrothermal method with 3,4-dihydroxyhydrocinnamic acid, 2,2'-(ethylenedioxy)bis(ethylamine) and gadolinium chloride. The synthesized nanostructures were characterized. Taking advantage of good biocompatibility of Gd@CDs, a nanoplatform based on Gd@CDs has been developed to co-deliver chemotherapy drug doxorubicin hydrochloride (Dox) and a near-infrared (NIR) photothermal agent, IR825 for magnetic resonance imaging (MRI) guided photothermal chemotherapy for TNBC. RESULTS The as-synthesized Dox@IR825@Gd@CDs displayed favorable MRI ability in vivo. Upon NIR laser irradiation, Dox@IR825@Gd@CDs could convert the NIR light to heat and efficiently inhibit tumor growth through photothermal chemotherapy in vitro and in vivo. Additionally, the impact of photothermal chemotherapy on the murine motor coordination was assessed by rotarod test. Dox@IR825@Gd@CDs presented low toxicity and high photothermal chemotherapy efficiency. CONCLUSION A noble theranostic nanoplatform (Dox@IR825@Gd@CDs) was developed that could be tailored to achieve loading of Dox and IR825, intracellular delivery, favorable MRI, excellent combination therapy with photothermal therapy and chemotherapy to enhance therapeutic effect against TNBC cells. This study will provide a promising strategy for the development of Gd-based nanomaterials for MRI and combinational therapy for TNBC.
Collapse
Affiliation(s)
- Qunjiao Jiang
- School of Public Health, Guangxi Medical University, Nanning, 530000, China
| | - Li Liu
- School of Public Health, Guangxi Medical University, Nanning, 530000, China
| | - Qiuying Li
- School of Public Health, Guangxi Medical University, Nanning, 530000, China
| | - Yi Cao
- Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Dong Chen
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Qishi Du
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Xiaobo Yang
- School of Public Health, Guangxi Medical University, Nanning, 530000, China
| | - Dongping Huang
- School of Public Health, Guangxi Medical University, Nanning, 530000, China.
| | - Renjun Pei
- Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Xing Chen
- School of Public Health, Guangxi Medical University, Nanning, 530000, China.
| | - Gang Huang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, 530007, China.
| |
Collapse
|
66
|
Park H, Saravanakumar G, Kim J, Lim J, Kim WJ. Tumor Microenvironment Sensitive Nanocarriers for Bioimaging and Therapeutics. Adv Healthc Mater 2021; 10:e2000834. [PMID: 33073497 DOI: 10.1002/adhm.202000834] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/05/2020] [Indexed: 12/11/2022]
Abstract
The tumor microenvironment (TME), which is composed of cancer cells, stromal cells, immune cells, and extracellular matrices, plays an important role in tumor growth and progression. Thus, targeting the TME using a well-designed nano-drug delivery system is emerging as a promising strategy for the treatment of solid tumors. Compared to normal tissues, the TME presents several distinguishable physiological features such as mildly acidic pH, hypoxia, high level of reactive oxygen species, and overexpression of specific enzymes, that are exploited as stimuli to induce specific changes in the nanocarrier structures, and thereby facilitates target-specific delivery of imaging or chemotherapeutic agents for the early diagnosis or effective treatment, respectively. Recently, smart nanocarriers that respond to more than one stimulus in the TME have also been designed to elicit a more desirable spatiotemporally controlled drug release. This review highlights the recent progress in TME-sensitive nanocarriers designed for more efficient tumor therapy and imaging. In particular, the design strategies, challenges, and critical considerations involved in the fabrication of TME-sensitive nanocarriers, along with their in vitro and in vivo evaluations are discussed.
Collapse
Affiliation(s)
- Hyeongmok Park
- Department of Chemistry POSTECH‐CATHOLIC Biomedical Engineering Institute Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Gurusamy Saravanakumar
- Department of Chemistry POSTECH‐CATHOLIC Biomedical Engineering Institute Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Jinseong Kim
- Department of Chemistry POSTECH‐CATHOLIC Biomedical Engineering Institute Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Junha Lim
- Department of Chemistry POSTECH‐CATHOLIC Biomedical Engineering Institute Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Won Jong Kim
- OmniaMed Co., Ltd Pohang 37673 Republic of Korea
| |
Collapse
|
67
|
Song C, Zhang X, Wei W, Ma G. Principles of regulating particle multiscale structures for controlling particle-cell interaction process. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
68
|
Rosenkrans ZT, Ferreira CA, Ni D, Cai W. Internally Responsive Nanomaterials for Activatable Multimodal Imaging of Cancer. Adv Healthc Mater 2021; 10:e2000690. [PMID: 32691969 PMCID: PMC7855763 DOI: 10.1002/adhm.202000690] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/03/2020] [Indexed: 12/13/2022]
Abstract
Advances in technology and nanomedicine have led to the development of nanoparticles that can be activated for multimodal imaging of cancer, where a stimulus induces a material modification that enhances image contrast. Multimodal imaging using nanomaterials with this capability can combine the advantages and overcome the limitations of any single imaging modality. When designed with stimuli-responsive abilities, the target-to-background ratio of multimodal imaging nanoprobes increases because specific stimuli in the tumor enhance the signal. Several aspects of the tumor microenvironment can be exploited as an internal stimulus response for multimodal imaging applications, such as the pH gradient, redox processes, overproduction of various enzymes, or combinations of these. In this review, design strategies are discussed and an overview of the recent developments of internally responsive multimodal nanomaterials is provided. Properly implementing this approach improves noninvasive cancer diagnosis and staging as well as provides a method to monitor drug delivery and treatment response.
Collapse
Affiliation(s)
- Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Carolina A Ferreira
- Department of Radiology and Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Dalong Ni
- Department of Radiology and Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Weibo Cai
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Radiology and Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
69
|
Lin Y, Li C, Liu A, Zhen X, Gao J, Wu W, Cai W, Jiang X. Responsive hyaluronic acid-gold cluster hybrid nanogel theranostic systems. Biomater Sci 2021; 9:1363-1373. [PMID: 33367388 PMCID: PMC7934158 DOI: 10.1039/d0bm01815e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Tumor microenvironment responsive and self-monitored multimodal synergistic theranostic strategies can significantly improve therapeutic efficacy by overcoming biological barriers. Herein, we report a type of smart fluorescent hyaluronic acid nanogel that can respond to the reducing microenvironment and activate tumor targeting with light-traceable monitoring in cancer therapy. First, the derivative of hyaluronic acid (HA) with a vinyl group and cystamine bisacrylamide were used to synthesize bioreducible HA based nanogels via copolymerization in aqueous medium. Then, multifunctional mHA-gold cluster (mHA-GC) hybrid nanogels were successfully prepared by the in situ reduction of gold salt in the HA nanogels. The HA matrix turns the nanogels into a capsule for effective drug loading with excellent colloidal stability. Interestingly, the reducing tumor microenvironment dramatically enhanced the fluorescence signal of gold clusters in the hybrid nanogels. The highly selective cancer cell uptake and efficient intratumoral accumulation of the hybrid nanogels were demonstrated by fluorescence tracking of these nanogels. Responsive disassembly of the hybrid nanogels and drug release were triggered by excess glutathione presence in cancer cells. Moreover, in vivo and in vitro tumor suppression assays revealed that the doxorubicin-loaded hybrid nanogels exhibited significantly superior tumor cell inhibition abilities compared to free DOX. Overall, the mHA-GC hybrid nanogels emerge as a promising theranostic nanoplatform for the targeted delivery and controlled release of antitumor drugs with light-traceable monitoring in cancer treatment.
Collapse
Affiliation(s)
- Ying Lin
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Chen Li
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - An Liu
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Jiangang Gao
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Wei Wu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| |
Collapse
|
70
|
Roma-Rodrigues C, Raposo LR, Valente R, Fernandes AR, Baptista PV. Combined cancer therapeutics-Tackling the complexity of the tumor microenvironment. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1704. [PMID: 33565269 DOI: 10.1002/wnan.1704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
Cancer treatment has yet to find a "silver bullet" capable of selectively and effectively kill tumor cells without damaging healthy cells. Nanomedicine is a promising field that can combine several moieties in one system to produce a multifaceted nanoplatform. The tumor microenvironment (TME) is considered responsible for the ineffectiveness of cancer therapeutics and the difficulty in the translation from the bench to bed side of novel nanomedicines. A promising approach is the use of combinatorial therapies targeting the TME with the use of stimuli-responsive nanomaterials which would increase tumor targeting. Contemporary combined strategies for TME-targeting nanoformulations are based on the application of external stimuli therapies, such as photothermy, hyperthermia or ultrasounds, in combination with stimuli-responsive nanoparticles containing a core, usually composed by metal oxides or graphene, and a biocompatible stimuli-responsive coating layer that could also contain tumor targeting moieties and a chemotherapeutic agent to enhance the therapeutic efficacy. The obstacles that nanotherapeutics must overcome in the TME to accomplish an effective therapeutic cargo delivery and the proposed strategies for improved nanotherapeutics will be reviewed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Catarina Roma-Rodrigues
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Luís R Raposo
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Rúben Valente
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro V Baptista
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
71
|
Recent progress in development and applications of second near-infrared (NIR-II) nanoprobes. Arch Pharm Res 2021; 44:165-181. [PMID: 33538959 DOI: 10.1007/s12272-021-01313-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/16/2021] [Indexed: 02/03/2023]
Abstract
Optical probes for near-infrared (NIR) light have clear advantages over UV/VIS-based optical probes, such as their low levels of interfering auto-fluorescence and high tissue penetration. The second NIR (NIR-II) window (1000-1350 nm) offers better light penetration, lower background signal, higher safety limit, and higher maximum permitted exposure than the first NIR (NIR-I) window (650-950 nm). Therefore, NIR-II laser-based photoacoustic (PA) and fluorescence (FL) imaging can offer higher sensitivity and penetration depth than was previously available, and deeper lesions can be treated in vivo by photothermal therapy (PTT) and photodynamic therapy (PDT) with an NIR-II laser than with an NIR-I laser. Advances in creation of novel nanomaterials have increased options for improving light-induced bioimaging and treatment. Nanotechnology can provide advantages such as good disease targeting ability and relatively long circulation times to supplement the advantages of optical technologies. In this review, we present recent progress in development and applications of NIR-II light-based nanoplatforms for FL, PA, image-guided surgery, PDT, and PTT. We also discuss recent advances in smart NIR-II nanoprobes that can respond to stimuli in the tumor microenvironment and inflamed sites. Finally, we consider the challenges involved in using NIR-II nanomedicine for effective diagnosis and treatment.
Collapse
|
72
|
Fan Z, Liu H, Xue Y, Lin J, Fu Y, Xia Z, Pan D, Zhang J, Qiao K, Zhang Z, Liao Y. Reversing cold tumors to hot: An immunoadjuvant-functionalized metal-organic framework for multimodal imaging-guided synergistic photo-immunotherapy. Bioact Mater 2021; 6:312-325. [PMID: 32954050 PMCID: PMC7475520 DOI: 10.1016/j.bioactmat.2020.08.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy assays using immunoadjuvants and tumor antigens could greatly increase the survival rates of patients with malignant tumors. As effective carriers, metal-organic frameworks (MOFs) have been widely utilized in cancer therapy due to their remarkable histocompatibility and low toxicity. Herein, we constructed a multimodal imaging-guided synergistic cancer photoimmunotherapy by employing a specific MOF (MIL101-NH2) as the core carrier; the MOF was dual-dressed with photoacoustic and fluorescent signal donors (indocyanine green, ICG) and immune adjuvants (cytosine-phosphate-guanine sequence, CpG) and named ICG-CpG@MOF. This nanocarrier could passively target the tumor site through the EPR effect and achieve multimodal imaging (fluorescence, photoacoustic, photothermal and magnetic resonance imaging) of the tumor. Synergistic cancer photoimmunotherapy was achieved via simultaneous photodynamic and photothermal methods with 808 nm laser irradiation. ICG-CpG@MOF achieved the GSH-controlled release of immunoadjuvant into the tumor microenvironment. Furthermore, the released tumor-associated antigen along with CpG could induce the transformation of tumor cells from cold to hot by activating the immune system, which significantly enhanced tumor cytotoxicity and achieved high cure rates with minimal side-effects. This strategy utilizing multimodal imaging and synergistic cancer photoimmunotherapy provides a promising approach for the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Zhijin Fan
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Hongxing Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
| | - Yaohua Xue
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Jingyan Lin
- Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, 518110, China
| | - Yu Fu
- Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, 518110, China
| | - Zhaohua Xia
- Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, 518110, China
| | - Dongming Pan
- Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, 518110, China
| | - Jian Zhang
- Department of Biomedical Engineering, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Kun Qiao
- Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, 518110, China
| | - Zhenzhen Zhang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Yuhui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| |
Collapse
|
73
|
Xue K, Wei F, Lin J, Tian H, Zhu F, Li Y, Hou Z. Tumor acidity-responsive carrier-free nanodrugs based on targeting activation via ICG-templated assembly for NIR-II imaging-guided photothermal–chemotherapy. Biomater Sci 2021; 9:1008-1019. [DOI: 10.1039/d0bm01864c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Novel tumor microenvironment-driven self-targeting supramolecular nanodrugs via ICG-templated small-molecule self-assembly for NIR-II imaging-guided synergistic photothermal–chemotherapy.
Collapse
Affiliation(s)
- Kaihang Xue
- Department of Biomaterials
- College of Materials
- Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province
- Xiamen University
- Xiamen 361005
| | - Feng Wei
- Department of Translational Medicine
- Xiamen Institute of Rare Earth Materials
- Chinese Academy of Sciences
- Xiamen 361024
- P. R. China
| | - Jinyan Lin
- Department of Biomaterials
- College of Materials
- Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province
- Xiamen University
- Xiamen 361005
| | - Haina Tian
- Department of Biomaterials
- College of Materials
- Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province
- Xiamen University
- Xiamen 361005
| | - Fukai Zhu
- Department of Biomaterials
- College of Materials
- Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province
- Xiamen University
- Xiamen 361005
| | - Yang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- P.R. China
| | - Zhenqing Hou
- Department of Biomaterials
- College of Materials
- Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province
- Xiamen University
- Xiamen 361005
| |
Collapse
|
74
|
Chen Y, Sun B, Jiang X, Yuan Z, Chen S, Sun P, Fan Q, Huang W. Double-acceptor conjugated polymers for NIR-II fluorescence imaging and NIR-II photothermal therapy applications. J Mater Chem B 2021; 9:1002-1008. [DOI: 10.1039/d0tb02499f] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nanoparticles based double-acceptor conjugated polymers were developed by conventional methods. And subsequently NPs with bright NIR-II fluorescence signals and superior NIR-II PTT efficiency were successfully applied for NIR-II FI guided NIR-II PTT.
Collapse
Affiliation(s)
- Yan Chen
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Bo Sun
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Xinyue Jiang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Zhangyu Yuan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Shangyu Chen
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Pengfei Sun
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics
- Northwestern Polytechnical University
- Xi’an 710072
- China
| |
Collapse
|
75
|
Xu C, Pu K. Second near-infrared photothermal materials for combinational nanotheranostics. Chem Soc Rev 2021; 50:1111-1137. [DOI: 10.1039/d0cs00664e] [Citation(s) in RCA: 253] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes the recent development of second near-infrared photothermal combinational nanotheranostics for cancer, infectious diseases and regenerative medicine.
Collapse
Affiliation(s)
- Cheng Xu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
| |
Collapse
|
76
|
Loo YS, Bose RJ, McCarthy JR, Mat Azmi ID, Madheswaran T. Biomimetic bacterial and viral-based nanovesicles for drug delivery, theranostics, and vaccine applications. Drug Discov Today 2020; 26:902-915. [PMID: 33383213 DOI: 10.1016/j.drudis.2020.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 01/04/2023]
Abstract
Smart nanocarriers obtained from bacteria and viruses offer excellent biomimetic properties which has led to significant research into the creation of advanced biomimetic materials. Their versatile biomimicry has application as biosensors, biomedical scaffolds, immobilization, diagnostics, and targeted or personalized treatments. The inherent natural traits of biomimetic and bioinspired bacteria- and virus-derived nanovesicles show potential for their use in clinical vaccines and novel therapeutic drug delivery systems. The past few decades have seen significant progress in the bioengineering of bacteria and viruses to manipulate and enhance their therapeutic benefits. From a pharmaceutical perspective, biomimetics enable the safe integration of naturally occurring bacteria and virus particles to achieve high, stable rates of cellular transfection/infection and prolonged circulation times. In addition, biomimetic technologies can overcome safety concerns associated with live-attenuated and inactivated whole bacteria or viruses. In this review, we provide an update on the utilization of bacterial and viral particles as drug delivery systems, theranostic carriers, and vaccine/immunomodulation modalities.
Collapse
Affiliation(s)
- Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia
| | - Rajendran Jc Bose
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA
| | - Jason R McCarthy
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA
| | - Intan Diana Mat Azmi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia.
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, International Medical University, No. 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| |
Collapse
|
77
|
Gao X, Ding J, Long Q, Zhan C. Virus-mimetic systems for cancer diagnosis and therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1692. [PMID: 33354937 DOI: 10.1002/wnan.1692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 01/02/2023]
Abstract
Over past decades, various strategies have been developed to enhance the delivery efficiency of therapeutics and imaging agents to tumor tissues. However, the therapeutic outcome of tumors to date have not been significantly improved, which can be partly attributed to the weak targeting ability, fast elimination, and low stability of conventional delivery systems. Viruses are the most efficient agents for gene transfer, serving as a valuable source of inspiration for designing nanoparticle-based delivery systems. Based on the properties of viruses, including well-defined geometry, precise composition, easy modification, stable construction, and specific infection, researchers attempt to design biocompatible delivery vectors by mimicking virus assembly and using the vector system to selectively concentrate drugs or imaging probes in tumors with mitigated toxicity and improved efficacy. In this review, we introduce common viruses features and provide an overview of various virus-mimetic strategies for cancer therapy and diagnosis. The challenges faced by virus-mimetic systems are also discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Xihui Gao
- School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Junqiang Ding
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai, China
| | - Qianqian Long
- School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Changyou Zhan
- School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| |
Collapse
|
78
|
Yang M, Zhang N, Zhang T, Yin X, Shen J. Fabrication of doxorubicin-gated mesoporous polydopamine nanoplatforms for multimode imaging-guided synergistic chemophotothermal therapy of tumors. Drug Deliv 2020; 27:367-377. [PMID: 32091284 PMCID: PMC7054968 DOI: 10.1080/10717544.2020.1730523] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 02/08/2023] Open
Abstract
A versatile theranostic agent that integrated with therapeutic and diagnostic functions is extremely essential for cancer theranostic. Herein, a multifunctional theranostic nanoplatform (PFP@MPDA-DOX) based on perfluoropentane (PFP) encapsulated mesoporous polydopamine (MPDA) is elaborately designed, followed by gating of drug doxorubicin (DOX) for preventing cargo leaking. The MPDA with pH-responsive biodegradation behavior was served as nanocarrier, which also endows the nanoplatform with a large cavity for PFP filling. The nanoparticles were then gated with DOX molecule by Michael addition and/or Schiff base reaction to shield the leaking of PFP during the blood circulation before the tumor tissue is reached. Also, such nanotheranostic exhibits high photothermal conversion efficiency of 45.6%, which can act as an intelligent nanosystem for photothermal therapy (PTT) and photoacoustic (PA) imaging. Moreover, the liquid-gas phase transition of PFP arising upon exposure to an 808 nm laser and thus produced the bubbles for ultrasound (US) imaging. The subsequent PFP@MPDA-DOX-mediated synergetic chemotherapy (contributed by the DOX gatekeeper) and PTT (contributed by the MPDA) shows excellent anticancer activity, which has been systematically evaluated both in vitro and in vivo. All these positive results certify that the facile incorporation of the antitumor drug gatekeeper and MPDA into one theranostic nanoplatform shows general potential for multimode PA/US imaging and combination chemotherapy/PTT of tumors.
Collapse
Affiliation(s)
- Min Yang
- Department of Urology, The First People’s Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, P. R. China
| | - Ningnan Zhang
- Department of Urology, The First People’s Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, P. R. China
| | - Tao Zhang
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan, P. R. China
| | - Xian Yin
- Department of Urology, The First People’s Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, P. R. China
| | - Jie Shen
- Department of Urology, The First People’s Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan, P. R. China
| |
Collapse
|
79
|
Huang L, Zhao S, Fang F, Xu T, Lan M, Zhang J. Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy. Biomaterials 2020; 268:120557. [PMID: 33260095 DOI: 10.1016/j.biomaterials.2020.120557] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Nanocarrier-based drug delivery systems hold impressive promise for biomedical application because of their excellent water dispersibility, prolonged blood circulation time, increased drug accumulation in tumors, and potential in combination therapeutics. However, most nanocarriers suffer from low drug-loading efficiency, poor therapeutic effectiveness, potential systematic toxicity, and unstable metabolism. As an alternative, carrier-free nanodrugs, completely formulated with one or more drugs, have attracted increasing attention in cancer therapy due to their advantage of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug-loading. In recent years, carrier-free nanodrugs have contributed to progress in a variety of therapeutic modalities. In this review, different common strategies for carrier-free nanodrugs preparation are first summarized, mainly including nanoprecipitation, template-assisted nanoprecipitation, thin-film hydration, spray-drying technique, supercritical fluid (SCF) technique, and wet media milling. Then we describe the recently reported carrier-free nanodrugs for cancer chemo-monotherapy or combination therapy. The advantages of anti-cancer drugs combined with other chemotherapeutic, photosensitizers, photothermal, immunotherapeutic or gene drugs have been demonstrated. Finally, a future perspective is introduced to highlight the existing challenges and possible solutions toward clinical application of currently developed carrier-free nanodrugs, which may be instructive to the design of effective carrier-free regimens in the future.
Collapse
Affiliation(s)
- Li Huang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Shaojing Zhao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Ting Xu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Minhuan Lan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|
80
|
Kundu M, Chatterjee S, Ghosh N, Manna P, Das J, Sil PC. Tumor targeted delivery of umbelliferone via a smart mesoporous silica nanoparticles controlled-release drug delivery system for increased anticancer efficiency. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111239. [PMID: 32806268 DOI: 10.1016/j.msec.2020.111239] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023]
Abstract
Herein, a mesoporous silica nanoparticle (MSN) based biocompatible, targeted and controlled drug delivery system has been synthesized for tumor tissue-specific drug delivery. Umbelliferone, a natural coumarin derivative was loaded into the pores of MSN and capped with pH-sensitive poly acrylic acid (PAA). For targeted delivery of umbelliferone in tumor tissue, folic acid (FA) was grafted onto the surface of drug-loaded and PAA-coated MSN. The successful construction of the nanohybrid (Umbe@MSN-PAA-FA) was confirmed by performing a series of characterization. The synthesized pH-responsive nanohybrid showed diameter of around 50 nm with overall negative surface charge and drug loading content of 12.56%. In vitro study showed that the nanohybrid caused significant cytotoxicity through the induction of both oxidative stress as well as mitochondrial damage in folate receptor over-expressed in human breast cancer cell, MCF-7 compared with free umbelliferone. In vivo study also exhibited that the nanohybrid effectively reduced tumor growth in tumor-bearing mice compared with free umbelliferone due to the enlarged bioavailability of the drug in tumor tissue. Besides, the nanohybrid did not exhibit any significant sign of systemic toxicity in other vital organs. Together, the study denoted that PAA and FA functionalized MSN controlled-drug delivery system could assist to increase the anticancer potential of umbelliferone.
Collapse
Affiliation(s)
- Mousumi Kundu
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sharmistha Chatterjee
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Prasenjit Manna
- Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Joydeep Das
- School of Chemistry, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173212, India.
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
81
|
Akhter MH, Beg S, Tarique M, Malik A, Afaq S, Choudhry H, Hosawi S. Receptor-based targeting of engineered nanocarrier against solid tumors: Recent progress and challenges ahead. Biochim Biophys Acta Gen Subj 2020; 1865:129777. [PMID: 33130062 DOI: 10.1016/j.bbagen.2020.129777] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Background In past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of drug molecules on the diseased cells thereby preventing unwanted uptake into healthy cells to cause toxicity. Scope of review The applicability of enhanced permeability and retention (EPR) effect for the delivery of nanomedicines in cancer therapy has gained limited success due to poor accessibility of the drugs to the target cells where non-specific payload delivery to the off target region lack substantial reward over the conventional therapeutic systems. Major conclusions In spite of the fact, nanomedicines fabricated from the biocompatible nanocarriers have reduced targeting potential for meaningful clinical benefits. However, over expression of receptors on the tumor cells provides opportunity to design functional nanomedicine to bind substantially and deliver therapeutics to the cells or tissues of interest by alleviating the bio-toxicity and unwanted effects. This critique will give insight into the over expressed receptor in various tumor and targeting potential of functional nanomedicine as new therapeutic avenues for effective treatment. General significance This review shortly shed light on EPR-based drug targeting using nanomedicinal strategies, their limitation, and advances in therapeutic targeting to the tumor cells.
Collapse
Affiliation(s)
- Md Habban Akhter
- Department of Pharmaceutics, Faculty of Pharmacy, DIT University, Dehradun, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| | - Mohammed Tarique
- Center for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Arshi Malik
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Sarah Afaq
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
82
|
Wang J, Zhou J, Xu D, Li J, Deng D. Tailoring Viruslike Mesoporous FeSe 2 Hedgehogs for Controlled Drug Delivery and Synergistic Tumor Suppression. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47197-47207. [PMID: 32993290 DOI: 10.1021/acsami.0c10888] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To enhance affinity to their hosts, many organisms have evolved to be spiky. This strategy has been inspiring in many fields, but in drug delivery, the feasibility has not yet been extensively explored due to the lack of suitable nanocarriers. Herein, viruslike mesoporous FeSe2 hedgehogs with exceptional photothermal and catalytic performances have been tailored and explored for synergistic tumor therapy. The viruslike topology makes these hedgehogs highly prone to be internalized by cells. By uploading doxorubicin (Dox) into the hollow spikes and encapsulating the hedgehogs with photothermal-meltable gelatin, controlled surface morphology transition from quasi-spherical to spiky and accompanied Dox release have been achieved, with the assistance of the strong photothermal effect of FeSe2 hedgehogs. These integrated features allow specific and controlled drug delivery, leading to synergistic tumor suppression and immunogenic tumor cell death. These results provide new insights into the tailoring of drug carriers relying on their intrinsic physical features.
Collapse
Affiliation(s)
- Jie Wang
- Cancer Institution, The Affiliated Hospital of Qingdao University, Qingdao 266061, China
| | | | | | | | - Dawei Deng
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
83
|
Li K, Liu CJ, Zhang XZ. Multifunctional peptides for tumor therapy. Adv Drug Deliv Rev 2020; 160:36-51. [PMID: 33080257 DOI: 10.1016/j.addr.2020.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
Controlled nano-systems for drug delivery are designed to deliver therapeutical drugs to desirable sites on demand. Due to the diverse physiological functions of peptides, it is reasonable to introduce peptides into anti-tumor nano-system. The integration of peptides into nanomaterials has complementary advantages, which not only avoids the rapid degradation of peptides in vivo, but also improves the intelligence and functionality of the nano-system. We summarized the functional peptides with targeting and stimulus-responsive properties, and the present review outlined the most relevant and recent developed peptide-based multifunctional nanomaterials for tumor therapy.
Collapse
|
84
|
Xue W, Trital A, Shen J, Wang L, Chen S. Zwitterionic Polypeptide-Based Nanodrug Augments pH-Triggered Tumor Targeting via Prolonging Circulation Time and Accelerating Cellular Internalization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46639-46652. [PMID: 32893614 DOI: 10.1021/acsami.0c11747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To augment the antitumor efficacy and minimize the significant side effects of chemotherapeutic drugs on health organs, a novel albumin-mimicking nanodrug, which is based on zwitterionic poly(glutamatyl lysine-co-cysteine) peptides scaffold, is developed to enhance pH-triggered tumor targeting via prolonging circulation time and accelerating cellular internalization. Results showed that the internalization of the nanodrug by MCF-7 cells is much faster than that by Doxil and even comparable to that by free doxorubicin (Dox) at tumor microenvironmental pH 6.7, whereas the internalization of the nanodrug is only 27.4 ± 7.6% of the Doxil by RAW-264.7 cells. Moreover, the significantly prolonged circulation time of the "stealthy" nanodrug was also comparable to that of the long circulating Doxil. As a result, the accumulation of the nanodrug in the tumor is much higher than that in the liver and kidney before the circulation half-life, which is significantly different from most other nanodrugs accumulated in the liver and kidney in this time scale. The tumor inhibition rate of the nanodrug was much higher than that of Doxil (93.2 ± 3.0% vs 54.2 ± 6.5%) after 18 day treatment, while the average bodyweight of the mice treated by the nanodrug was 26.9 ± 6.7% higher than that by Doxil. This indicated that the synergetic effect of long circulation time and fast cellular internalization of the nanodrug can significantly augment tumor targeting. This method might rejuvenate the traditional chemotherapeutic treatment.
Collapse
Affiliation(s)
- Weili Xue
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ashish Trital
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Longgang Wang
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou, Zhejiang 324000, China
| |
Collapse
|
85
|
Sun X, Ni N, Ma Y, Wang Y, Leong DT. Retooling Cancer Nanotherapeutics' Entry into Tumors to Alleviate Tumoral Hypoxia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003000. [PMID: 32803846 DOI: 10.1002/smll.202003000] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Anti-hypoxia cancer nanomedicine (AHCN) holds exciting potential in improving oxygen-dependent therapeutic efficiencies of malignant tumors. However, most studies regarding AHCN focus on optimizing structure and function of nanomaterials with presupposed successful entry into tumor cells. From such a traditional perspective, the main barrier that AHCN needs to overcome is mainly the tumor cell membrane. However, such an oversimplified perspective would neglect that real tumors have many biological, physiological, physical, and chemical defenses preventing the current state-of-the-art AHCNs from even reaching the targeted tumor cells. Fortunately, in recent years, some studies are beginning to intentionally focus on overcoming physiological barriers to alleviate hypoxia. In this Review, the limitations behind the traditional AHCN delivery mindset are addressed and the key barriers that need to be surmounted before delivery to cancer cells and some good ways to improve cell membrane attachment, internalization, and intracellular retention are summarized. It is aimed to contribute to Review literature on this emerging topic through refreshing perspectives based on this work and what is also learnt from others. This Review would therefore assist AHCNs researchers to have a quick overview of the essential information and glean thought-provoking ideas to advance this sub-field in cancer nanomedicine.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yanling Ma
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yan Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
86
|
Li Y, Lin J, Wang P, Luo Q, Zhu F, Zhang Y, Hou Z, Liu X, Liu J. Tumor Microenvironment Cascade-Responsive Nanodrug with Self-Targeting Activation and ROS Regeneration for Synergistic Oxidation-Chemotherapy. NANO-MICRO LETTERS 2020; 12:182. [PMID: 34138172 PMCID: PMC7770705 DOI: 10.1007/s40820-020-00492-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/29/2020] [Indexed: 05/03/2023]
Abstract
Carrier-free nanodrug with exceptionally high drug payload has attracted increasing attentions. Herein, we construct a pH/ROS cascade-responsive nanodrug which could achieve tumor acidity-triggered targeting activation followed by circularly amplified ROS-triggered drug release via positive-feedback loop. The di-selenide-bridged prodrug synthesized from vitamin E succinate and methotrexate (MTX) self-assembles into nanoparticles (VSeM); decorating acidity-cleavable PEG onto VSeM surface temporarily shields the targeting ability of MTX to evade immune clearance and consequently elongate circulation time. Upon reaching tumor sites, acidity-triggered detachment of PEG results in targeting recovery to enhance tumor cell uptake. Afterward, the VSeM could be dissociated in response to intracellular ROS to trigger VES/MTX release; then the released VES could produce extra ROS to accelerate the collapse of VSeM. Finally, the excessive ROS produced from VES could synergize with the released MTX to efficiently suppress tumor growth via orchestrated oxidation-chemotherapy. Our study provides a novel strategy to engineer cascade-responsive nanodrug for synergistic cancer treatment.
Collapse
Affiliation(s)
- Yang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361024, People's Republic of China
| | - Jinyan Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Peiyuan Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361024, People's Republic of China
| | - Qiang Luo
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361024, People's Republic of China
| | - Fukai Zhu
- College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yun Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361024, People's Republic of China
| | - Zhenqing Hou
- College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xiaolong Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361024, People's Republic of China.
| | - Jingfeng Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361024, People's Republic of China.
| |
Collapse
|
87
|
Liu C, Liu Q, Chen L, Li M, Yin J, Zhu X, Chen D. A pH-Sensitive Self-Assembled and Carrier-Free Nanoparticle Based on Charge Reversal for Enhanced Synergetic Chemo-Phototherapy. Adv Healthc Mater 2020; 9:e2000899. [PMID: 33448702 DOI: 10.1002/adhm.202000899] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 12/21/2022]
Abstract
To overcome biological barriers for nanoparticles (NPs) efficaciously accumulated at tumor sites, as well as enhancing the performance of drug delivery systems, a carrier-free nanoparticle based on charge reversal is designed for improved synergetic chemo-phototherapy for cancer treatment. In this system, doxorubicin (Dox) and zinc phthalocyanine (ZnPc) are self-assembled through noncovalent interactions (π-π stacking, hydrophobic forces) to avoid the possible toxicity of excipient, complex chemical conjugations and batch-to-batch variation. A trace amount of poly(2-(di-methylamino) ethylmethacrylate)- poly[(R)-3-hydroxybutyrate]- poly(2-(dimethylamino) ethylmethacrylate (PDMAEMA-PHB-PDMAEMA) is modified on the surface of Dox-ZnPc to construct the novel nanoparticles, namely DZP, with long-term stability, and with a dual-drug load content of up to ≈90%. The drug delivery system (DDS) can effectively decrease its toxicity among physical circulation and increase the accumulation at the tumor site. Moreover, the developed DZP nanoparticles show excellent photo-chemotherapy, photoacoustic (PA) and fluorescence (FL) imaging characteristics for multimodal imaging-guided synergetic therapy.
Collapse
Affiliation(s)
- Chen Liu
- School of Pharmaceutical Sciences Xiamen University Xiamen Fujian 361102 China
| | - Qiuhong Liu
- School of Pharmaceutical Sciences Xiamen University Xiamen Fujian 361102 China
| | - Luping Chen
- School of Pharmaceutical Sciences Xiamen University Xiamen Fujian 361102 China
| | - Mao Li
- School of Pharmaceutical Sciences Xiamen University Xiamen Fujian 361102 China
| | - Jieli Yin
- School of Pharmaceutical Sciences Xiamen University Xiamen Fujian 361102 China
| | - Xuan Zhu
- School of Pharmaceutical Sciences Xiamen University Xiamen Fujian 361102 China
| | - Dengyue Chen
- School of Pharmaceutical Sciences Xiamen University Xiamen Fujian 361102 China
| |
Collapse
|
88
|
Binary blended co-delivery nanoparticles with the characteristics of precise pH-responsive acting on tumor microenvironment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111370. [PMID: 32919698 DOI: 10.1016/j.msec.2020.111370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/19/2020] [Accepted: 07/30/2020] [Indexed: 01/12/2023]
Abstract
Although combined chemotherapy had achieved the ideal efficacy in clinical anti-cancer therapeutic, the issues that need to be addressed are non-targeting and toxic-side effects of small molecule chemical drug (SMCD). In this study, we designed and prepared a novel binary blended co-delivered nanoparticles (BBCD NPs) with pH-responsive feature on tumor microenvironment. The BBCD NPs consists of two kind of drug-loaded NPs, in one of which carboxymethyl chitosan (CMC) and Poly (lactic-co-glycolic acid) (PLGA) were chosen as delivery carrier to load anti-cancer drug vincristine (VCR), named CMC-PLGA-VCR NPs (or CPNPVCR); and in the other of which methoxy poly(ethylene glycol)-poly(β-amino ester) (mPEG-PAE) were chosen as delivery carrier to load anti-fibrotic drug pirfenidone (PFD), named mPEG-PAE-PFD NPs (or PPNPPFD). Then, the two types of NPs (CPNPVCR and PPNPPFD) were physically mixed in mass ratios to form BBCD NPs, which was named CPNPVCR&PPNPPFD. CPNPVCR&PPNPPFD had good encapsulation efficiency and loading capacity, and the particle size distribution was uniform. In cytotoxicity experiments and non-contact co-culture studies in vitro, the model drugs loaded in CPNPVCR&PPNPPFD could respectively target cancer cell and cancer associated fibroblast (CAF) owing to the precise pH-sensitive drug release in the pharmacological targets and show stronger synergism than that of the combined treatment of two free drugs. As a modularity and assemble ability feature in design, BBCD NPs would have the advantages on the terms of concise on preparation process, controllable on quality standard, stable in natural environment storage. The research results can provide scientific evidence for the further development of a novel drug co-delivery system with multi-type cell targets.
Collapse
|
89
|
Zheng K, Liu H, Liu X, Jiang L, Li L, Wu X, Guo N, Ding C, Huang M. Photo-triggered release of doxorubicin from liposomes formulated by amphiphilic phthalocyanines for combination therapy to enhance antitumor efficacy. J Mater Chem B 2020; 8:8022-8036. [PMID: 32766661 DOI: 10.1039/d0tb01093f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multidrug combination therapy based on drug delivery systems (DDSs) has great potential for cancer treatment. Stimuli-sensitive DDSs further enhance therapeutic efficacy by providing controllable drug delivery. Herein, the phospholipid compound DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) was used to construct thermosensitive liposomes to load the photosensitizer ZnPc(PEG)4 (zinc phthalocyanine substituted by tetraethylene glycol) for molecular imaging, and photodynamic and photothermal therapy, together with doxorubicin (DOX) for chemotherapy. Interestingly, ZnPc(PEG)4 as an amphipathic molecule was found to be important in the construction of the liposomes, and it provided liposomes with improved stability. The thus-obtained liposomes ZnPc(PEG)4:DOX@LiPOs were demonstrated to have enhanced ROS production capacity, heat generation properties and a photo-triggered doxorubicin release effect, and, in cellular experiments, increased cytotoxicity and apoptotic cell proportions, compared to ZnPc(PEG)4@LiPOs and DOX@LiPOs. ZnPc(PEG)4 loaded in lipid bilayers showed stronger intracellular ROS production ability compared to free ZnPc(PEG)4. In vivo studies indicated that ZnPc(PEG)4:DOX@LiPOs exhibited enhanced tumor accumulation, increased anti-cancer effects and reduced liver retention. These photo-triggered liposomes constructed by the photosensitizer ZnPc(PEG)4 can also be used to package other cargo for combined target tumor therapy and molecular imaging.
Collapse
Affiliation(s)
- Ke Zheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Chemical Engineering College, Qingdao University of Science and Technology, Qingdao 266042, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Singh P, Manhas P, Sharma R, Pandey SK, Sharma RK, Katare OP, Wangoo N. Self-assembled dipeptide nanospheres as single component based delivery vehicle for ampicillin and doxorubicin. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
91
|
Xue K, Tian H, Zhu F, Wang F, Fan Z, Zhao Q, Hou Z, Li Y. Ultralong-Circulating and Self-Targeting "Watson-Crick A = T"-Inspired Supramolecular Nanotheranostics for NIR-II Imaging-Guided Photochemotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32477-32492. [PMID: 32578429 DOI: 10.1021/acsami.0c09090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A carrier-free theranostic nanodrug directly coassembled using a NIR probe and a chemotherapeutic drug is a promising alternative for cancer theranostics. Nevertheless, this nanodrug still faces the limitations of short blood circulation and inefficient tumor accumulation/tumoral cellular uptake in vivo. Meanwhile, most exogenous targeting ligands and poly(ethylene glycol) have no therapeutic effect. Herein, we designed an ultralong-circulating and self-targeting nanodrug by an ordered supramolecular coassembly of indocyanine green (ICG), methotrexate (MTX, chemotherapeutic drug and cancer-cell-specific ligand), and clofarabine (CA). Notably, CA, as a surfactant-like chemotherapeutic drug, was introduced into the initial ICG-MTX coassembly by "Watson-Crick A = T-inspired" hydrogen-bond-driven sequential assembly with MTX. This carrier-free theranostic nanodrug with exceptionally high drug payload (100 wt %) not only showed superior serum stabilities but also displayed ultralong blood circulation (>7 days), enabling efficient accumulation at tumor sites. Moreover, our nanodrugs could be self-recognized by cancer cells and release the drugs on demand through lysosomal acidity and external laser stimulus. Under NIR-II imaging guidance, high-efficiency tumor ablation via synergistic photothermal-chemotherapy could be achieved in one treatment cycle while preventing the tumor recurrence. Our ultralong-circulating and self-recognizing carrier-free theranostic nanodrug based on the "drug-delivering-drug" strategy might have the potential for clinical theranostic application.
Collapse
Affiliation(s)
- Kaihang Xue
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, P. R. China
| | - Haina Tian
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, P. R. China
| | - Fukai Zhu
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, P. R. China
| | - Fanfan Wang
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, P. R. China
| | - Zhongxiong Fan
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, P. R. China
| | - Qingliang Zhao
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005, P. R. China
| | - Zhenqing Hou
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, P. R. China
- Department of Physics, Changji University, Changji 831100, P. R. China
| | - Yang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, P. R. China
| |
Collapse
|
92
|
Zuo W, Chen D, Fan Z, Chen L, Zhu Z, Zhu Q, Zhu X. Design of light/ROS cascade-responsive tumor-recognizing nanotheranostics for spatiotemporally controlled drug release in locoregional photo-chemotherapy. Acta Biomater 2020; 111:327-340. [PMID: 32434075 DOI: 10.1016/j.actbio.2020.04.052] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/25/2022]
Abstract
Carrier-free nanotheranostics with high drug loading and no carrier-related toxicity are highly promising cancer therapy agents. However, the limited tumor accumulation and poorly controlled drug release of these nanotheranostics continue to be major challenges that restrict clinical applications. In this study, we develop a tumor-recognizing carrier-free nanotheranostic with light/reactive oxygen species (ROS) cascade-responsiveness for spatiotemporally selective photo-chemotherapy. The nanotheranostic is constructed by co-assembly of the indocyanine green (ICG) photosensitizer and the mannose-thioketal-doxorubicin conjugate (MAN-TK-DOX) (abbreviated as IMTD), efficiently preventing premature DOX leakage during blood circulation while reducing nonspecific damage to normal tissues/cells. Once accumulated in tumor tissues, IMTD rapidly diffuses into cancer cells via lectin receptors-mediated endocytosis. Photoacoustic/fluorescence-imaging-guided laser irradiation induces local hyperthermia and ROS generation in tumor cells, thereby promoting apoptosis. Together, the ICG-generated ROS and the endogenous ROS in cancer cells synergistically enhance DOX release, resulting in more efficient chemotherapeutic effects. The in vitro and in vivo results consistently demonstrate that IMTD achieves superior tumor accumulation, highly controllable drug release, and synergetic photo-chemotherapy. Therefore, the co-assembly of an ROS-sensitive targeting ligand-chemodrug conjugate and a photosensitizer could be used to develop spatiotemporally light-activatable nanotheranostics for precision cancer therapy. STATEMENT OF SIGNIFICANCE: Synergistic phototherapy and chemotherapy have been considered as a promising cancer treatment modality to maximize the therapeutic efficacy. Unfortunately, most nanodrugs consisting of chemotherapeutic drug and photosensitizer suffer from suboptimal tumor accumulation and poorly controlled drug release, which results in reduced therapeutic outcome. In this study, Mannose (MAN) was conjugated to the anticancer drug doxorubicin (DOX) by a ROS-sensitive thioketal linker (TK), the obtained amphiphilic MAN-TK-DOX could serve as an ideal self-carrier material to deliver photosensitizer, thus to achieve high-efficient tumor-targeting, spatiotemporal controlled drug release, and superior antitumor effect. We believe that the ROS-sensitive amphiphilic targeting ligand-chemodrug conjugate could be developed as a universal approach for designing tumor-targeted nanodrugs with precisely controlled drug release.
Collapse
Affiliation(s)
- Wenbao Zuo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Dengyue Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Zhongxiong Fan
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Luping Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Zhaoyuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China; School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qixin Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
93
|
Tong Q, Qiu N, Ji J, Ye L, Zhai G. Research Progress in Bioinspired Drug Delivery Systems. Expert Opin Drug Deliv 2020; 17:1269-1288. [PMID: 32543953 DOI: 10.1080/17425247.2020.1783235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION To tackle challenges associated with traditional drug carriers, investigators have explored cells, cellular membrane, and macromolecular components including proteins and exosomes for the fabrication of delivery vehicles, owing to their excellent biocompatibility, lower toxicity, lower immunogenicity and similarities with the host. Biomacromolecule- and biomimetic nanoparticle (NP)-based drug/gene carriers are drawing immense attention, and biomimetic drug delivery systems (BDDSs) have been conceived and constructed. AREAS COVERED This review focuses on BDDS based on mammalian cells, including blood cells, cancer cells, adult stem cells, endogenous proteins, pathogens and extracellular vesicles (EVs). EXPERT OPINION Compared with traditional drug delivery systems (DDSs), BDDSs are based on biological nanocarriers, exhibiting superior biocompatibility, fewer side effects, natural targeting, and diverse modifications. In addition to directly employing natural biomaterials such as cells, proteins, pathogens and EVs as carriers, BDDSs offer these advantages by mimicking the structure of natural nanocarriers through bioengineering technologies. Furthermore, BDDSs demonstrate fewer limitations and irregularities than natural materials and can overcome several shortcomings associated with natural carriers. Although research remains ongoing to resolve these limitations, it is anticipated that BDDSs possess the potential to overcome challenges associated with traditional DDS, with a promising future in the treatment of human diseases.
Collapse
Affiliation(s)
- Qirong Tong
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, PR China
| | - Na Qiu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, PR China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, PR China
| |
Collapse
|
94
|
Jiang Y, Huang C, Luan Y. Lactosylated IR820/DOX Co-Assembled Nanodrug for Synergetic Antitumour Therapy. Int J Nanomedicine 2020; 15:4431-4440. [PMID: 32606687 PMCID: PMC7320228 DOI: 10.2147/ijn.s247617] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022] Open
Abstract
Introduction Synergistic treatment integrating photothermal therapy (PTT) and chemotherapy is a promising strategy for hepatocellular carcinoma (HCC). However, the most commonly used photothermal agent, IR820, and chemotherapeutic drug, doxorubicin hydrochloride (DOX), are both hydrophilic molecules that suffer from the drawbacks of a short circulation time, rapid elimination and off-target effects. Methods and Results Herein, a novel nanodrug that combined HCC-targeted IR820 and DOX was developed based on excipient-free co-assembly. First, lactosylated IR820 (LA-IR820) was designed to target HCC. Then, the LA-IR820/DOX nanodrug (LA-IR820/DOX ND) was purely self-assembled without excipient assistance. The physicochemical properties and the chemo-photothermal antitumour activity of the excipient-free LA-IR820/DOX ND were evaluated. More importantly, the obtained LA-IR820/DOX ND exhibited 100% drug loading, remarkable HCC targeting and excellent antitumour efficacy. Conclusion This excipient-free LA-IR820/DOX ND may be a promising candidate for the synchronous delivery and synergistic targeting of IR820 and DOX as a combined chemo-photothermal therapy.
Collapse
Affiliation(s)
- Yue Jiang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Chunzhi Huang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, People's Republic of China.,Department of Pharmacy, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuxia Luan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
95
|
Zinc Oxide Nanoparticle Synergizes Sorafenib Anticancer Efficacy with Minimizing Its Cytotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1362104. [PMID: 32566073 PMCID: PMC7275957 DOI: 10.1155/2020/1362104] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/15/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022]
Abstract
Cancer, as a group, represents the most important cause of death worldwide. Unfortunately, the available therapeutic approaches of cancer including surgery, chemotherapy, radiotherapy, and immunotherapy are unsatisfactory and represent a great challenge as many patients have cancer recurrence and severe side effects. Methotrexate (MTX) is a well-established (antineoplastic or cytotoxic) chemotherapy and immunosuppressant drug used to treat different types of cancer, but its usage requires high doses causing severe side effects. Therefore, we need a novel drug with high antitumor efficacy in addition to safety. The aim of this study was the evaluation of the antitumor efficacy of zinc oxide nanoparticle (ZnO-NPs) and sorafenib alone or in combination on solid Ehrlich carcinoma (SEC) in mice. Sixty adult female Swiss-albino mice were divided equally into 6 groups as follows: control, SEC, MTX, ZnO-NPs, sorafenib, and ZnO-NPs+sorafenib; all treatments continued for 4 weeks. ZnO-NPs were characterized by TEM, zeta potential, and SEM mapping. Data showed that ZnO-NPs synergized with sorafenib as a combination therapy to execute more effective and safer anticancer activity compared to monotherapy as showed by a significant reduction (P < 0.001) in tumor weight, tumor cell viability, and cancer tissue glutathione amount as well as by significant increase (P < 0.001) in tumor growth inhibition rate, DNA fragmentation, reactive oxygen species generation, the release of cytochrome c, and expression of the apoptotic gene caspase-3 in the tumor tissues with minimal changes in the liver, renal, and hematological parameters. Therefore, we suggest that ZnO-NPs might be a safe candidate in combination with sorafenib as a more potent anticancer. The safety of this combined treatment may allow its use in clinical trials.
Collapse
|
96
|
Sun H, Fan Z, Xiang S, Zuo W, Yang Y, Huang D, Su G, Fu X, Zhao Q, Hou Z. Novel, Self-Distinguished, Dual Stimulus-Responsive Therapeutic Nanoplatform for Intracellular On-Demand Drug Release. Mol Pharm 2020; 17:2435-2450. [DOI: 10.1021/acs.molpharmaceut.0c00165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Heng Sun
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Zhongxiong Fan
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Sijin Xiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wenbao Zuo
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361005, China
| | - Yifan Yang
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| | - Doudou Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Guanghao Su
- Children’s Hospital of Soochow University, Suzhou 215025, China
| | - Xu Fu
- Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhenqing Hou
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| |
Collapse
|
97
|
Sharifi M, Jafari S, Hasan A, Paray BA, Gong G, Zheng Y, Falahati M. Antimetastatic Activity of Lactoferrin-Coated Mesoporous Maghemite Nanoparticles in Breast Cancer Enabled by Combination Therapy. ACS Biomater Sci Eng 2020; 6:3574-3584. [DOI: 10.1021/acsbiomaterials.0c00086] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1234567, Iran
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Shadi Jafari
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1234567, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Yuzhong Zheng
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1234567, Iran
| |
Collapse
|
98
|
Li Y, Lin J, Cai Z, Wang P, Luo Q, Yao C, Zhang Y, Hou Z, Liu J, Liu X. Tumor microenvironment-activated self-recognizing nanodrug through directly tailored assembly of small-molecules for targeted synergistic chemotherapy. J Control Release 2020; 321:222-235. [PMID: 32061620 DOI: 10.1016/j.jconrel.2020.02.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/16/2022]
Abstract
Carrier-free nanodrug via small-molecule assembly is a promising alternative strategy for tumor therapy. Thus, developing a self-recognizing carrier-free nanodrug without introduction of foreign ligand is very attractive to meet both targeting and therapeutic requirements while reducing structural complexity. Here we fabricated a tumor microenvironment-activated self-targeting nanodrug, via co-assembly of hydroxycamptothecin (HCPT) and bi-functional methotrexate (MTX, not only has antitumor effect but also shows innate affinity towards folate receptors) followed by surface covering through acidity-responsive polyethylene glycol (PEG). Notably, the morphology and size of MTX-HCPT nanodrug could be tuned by varying the drug-to-drug ratio and assembly time. The PEG shell of our nanodrug could be detached in response to acidic tumor microenvironment, and then MTX could be exposed for self-targeting to enhance tumor cell uptake. Subsequently, the shell-detached nanodrug could be dissociated in relatively stronger acidic lysosomal environment, resulting in burst release of both drugs. Further in vitro and in vivo studies demonstrated that our nanodrug showed a ~2.98-fold increase in cancer cell uptake, a ~1.25-fold increase in drug accumulation at tumor site, a significantly lower CI50 value of ~0.3, a ~27.3% improvement in tumor inhibition comparing with the corresponding non-responsive nanodrug. Taken together, the here reported tumor microenvironment-activated self-recognizing nanodrug might be an extremely promising strategy for synergistically enhancing chemotherapy efficiency with minimized side effects.
Collapse
Affiliation(s)
- Yang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, PR China
| | - Jinyan Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, PR China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Peiyuan Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, PR China
| | - Qiang Luo
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, PR China
| | - Cuiping Yao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yun Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, PR China
| | - Zhenqing Hou
- College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, PR China.
| | - Jingfeng Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, PR China.
| | - Xiaolong Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, PR China.
| |
Collapse
|
99
|
Chen M, Chen S, Zhu F, Wang F, Tian H, Fan Z, Ke S, Hou Z, Li Y. "Watson-Crick G[triple bond, length as m-dash]C"-inspired supramolecular nanodrug of methotrexate and 5-fluorouracil for tumor microenvironment-activatable self-recognizing synergistic chemotherapy. J Mater Chem B 2020; 8:3829-3841. [PMID: 32232285 DOI: 10.1039/d0tb00468e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carrier-free nanodrugs, generated via the straightforward small-molecule self-assembly of anticancer drugs, provide a promising route for cancer chemotherapy. However, their low structural stability, lack of targeting specificity, and poor stimulus responsiveness are still limiting their therapeutic effect. Inspired by Watson-Crick G[triple bond, length as m-dash]C base pairing, the FDA-approved chemo-drug methotrexate (MTX, which can bind with folate receptors) and 5-fluorouracil (5-FU, a DNA/RNA synthetase inhibitor) were adopted for direct assembly into self-recognizing MTX-5-FU nanoparticles via "Watson-Crick-like base pairing"-driven precise supramolecular assembly. Sequentially, our synthesized weak acidity-responsive polyethylene glycol (PEG) was inserted onto the nanoparticle surface to temporarily shield the self-targeting function of MTX and prolong the blood circulation time. Once PEG-MTX-5-FU nanoparticles reached the weakly acidic tumor microenvironment, the PEG corona could be cleaved from their surface and then MTX could be re-exposed to recover its self-recognition ability and significantly elevate tumor cell uptake; furthermore, the de-PEGylated MTX-5-FU nanoparticles could respond to the stronger acidity of lysosome, triggering core disassembly and thus the burst release of both MTX and 5-FU. Further in vitro and in vivo studies consistently confirmed that the nanodrugs exhibited preferable accumulation at the tumor sites with highly synergistic chemotherapeutic effects. The supramolecular recognition-inspired, cascade-triggered self-targeting and controlled release of nanodrugs could be a promising strategy to improve synergistic chemotherapy.
Collapse
Affiliation(s)
- Meijin Chen
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, China.
| | - Shiduan Chen
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, China.
| | - Fukai Zhu
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, China.
| | - Fanfan Wang
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, China.
| | - Haina Tian
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, China.
| | - Zhongxiong Fan
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, China.
| | - Sunkui Ke
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, China.
| | - Zhenqing Hou
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, China.
| | - Yang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China and Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, P. R. China.
| |
Collapse
|
100
|
Wang Z, Liu B, Sun Q, Dong S, Kuang Y, Dong Y, He F, Gai S, Yang P. Fusiform-Like Copper(II)-Based Metal-Organic Framework through Relief Hypoxia and GSH-Depletion Co-Enhanced Starvation and Chemodynamic Synergetic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17254-17267. [PMID: 32227859 DOI: 10.1021/acsami.0c01539] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The therapeutic effect of traditional chemodynamic therapy (CDT) agents is severely restricted by their weakly acidic pH and glutathione (GSH) overexpression in the tumor microenvironment. Here, fusiform-like copper(II)-based tetrakis(4-carboxy phenyl)porphyrin (TCPP) nanoscale metal-organic frameworks (nMOFs) were designed and constructed for the first time (named PCN-224(Cu)-GOD@MnO2). The coated MnO2 layer can not only avoid conjugation of glucose oxidase (GOD) to damage normal cells but also catalyzes the generation of O2 from H2O2 to enhance the oxidation of glucose (Glu) by GOD, which also provides abundant H2O2 for the subsequent Cu+-based Fenton-like reaction. Meanwhile, the Cu2+ chelated to the TCPP ligand is converted to Cu+ by the excess GSH in the tumor, which reduces the tumor antioxidant activity to improve the CDT effect. Next, the Cu+ reacts with the plentiful H2O2 by enzyme catalysis to produce a toxic hydroxyl radical (•OH), and singlet oxygen (1O2) is synchronously generated from combination with Cu+, O2, and H2O via the Russell mechanism. Furthermore, the nanoplatform can be used for both TCPP-based in vivo fluorescence imaging and Mn2+-induced T1-weighted magnetic resonance imaging. In conclusion, fusiform-like PCN-224(Cu)-GOD@MnO2 nMOFs facilitate the therapeutic efficiency of chemodynamic and starvation therapy via combination with relief hypoxia and GSH depletion after acting as an accurate imaging guide.
Collapse
Affiliation(s)
- Zhao Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
- College of Sciences, Harbin Engineering University, Harbin 150001, P. R. China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
- College of Sciences, Harbin Engineering University, Harbin 150001, P. R. China
| | - Qianqian Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Ye Kuang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Yushan Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
- College of Sciences, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|