51
|
Wang X, Bergelson JM. Coxsackievirus and adenovirus receptor cytoplasmic and transmembrane domains are not essential for coxsackievirus and adenovirus infection. J Virol 1999; 73:2559-62. [PMID: 9971843 PMCID: PMC104505 DOI: 10.1128/jvi.73.3.2559-2562.1999] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxsackievirus and adenovirus receptor (CAR) from which the cytoplasmic domain had been deleted and glycosylphosphatidylinositol (GPI)-anchored CAR lacking both transmembrane and cytoplasmic domains were both capable of facilitating adenovirus 5-mediated gene delivery and infection by coxsackievirus B3. These results indicate that the CAR extracellular domain is sufficient to permit virus attachment and entry and that the presence of a GPI anchor does not prevent infection.
Collapse
Affiliation(s)
- X Wang
- Division of Immunologic and Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
52
|
Sasaki M, Joh T, Tada T, Okada N, Yokoyama Y, Itoh M. Altered expression of membrane inhibitors of complement in human gastric epithelium during Helicobacter-associated gastritis. Histopathology 1998; 33:554-60. [PMID: 9870151 DOI: 10.1046/j.1365-2559.1998.00539.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS Membrane inhibitors of complement are thought to protect bystander cells from complement mediated damage. Expression of these proteins is enhanced in the colonic mucosa of patients with ulcerative colitis. Our aim was to investigate the regulation of complement activity in Helicobacter-associated chronic gastritis. METHODS AND RESULTS We immunohistochemically assayed expression of three membrane inhibitors of complement, decay accelerating factor (DAF; CD55), 20 kDa homologous restriction factor (HRF20; CD59) and membrane cofactor protein (MCP; CD46), in 55 biopsy specimens of the human gastric mucosa. DAF, expressed in 33 (60%) of biopsy specimens, and HRF20, expressed in 45 (82%) of the samples, were located mainly on the apical surface of the epithelial cells, whereas MCP, expressed in 48 (87%) of the biopsies, was found on the basolateral surface. We found strong correlation between expression of DAF on gastric mucosal epithelium and the severity of mucosal infiltration of neutrophils (rs = 0.875, P < 0.0001) and mononuclear cells (rs = 0.773, P < 0.0001). No significant correlation was observed between HRF20 expression and neutrophil or mononuclear cell infiltration, while there was a weak negative correlation between MCP expression and these cellular infiltrations. When we assayed immunostaining of Helicobacter pylori (H. pylori) in these biopsy specimens, strong correlation with the degree of neutrophil (P < 0.0001) and mononuclear cell (P < 0.0001) infiltration were observed. The expression of DAF and H. pylori infection in these biopsies were also significantly (P < 0.0001) correlated. No correlation between HRF20 expression and H. pylori infection was observed, but we did find a significant negative correlation (P < 0.005) between the expression of MCP and H. pylori infection. CONCLUSIONS Our results, demonstrating altered expression of membrane inhibitors of complement in gastric mucosa during inflammation and/or H. pylori infection, suggest that complement may significantly participate in the pathology of gastric inflammation. Moreover, DAF and MCP may play an important role in the regulation of complement activation in the alimentary tract.
Collapse
Affiliation(s)
- M Sasaki
- First Department of Internal Medicine, Nagoya City University Medical School, Japan
| | | | | | | | | | | |
Collapse
|
53
|
Nasu J, Mizuno M, Uesu T, Takeuchi K, Inaba T, Ohya S, Kawada M, Shimo K, Okada H, Fujita T, Tsuji T. Cytokine-stimulated release of decay-accelerating factor (DAF;CD55) from HT-29 human intestinal epithelial cells. Clin Exp Immunol 1998; 113:379-85. [PMID: 9737666 PMCID: PMC1905071 DOI: 10.1046/j.1365-2249.1998.00660.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Expression of DAF (CD55) is enhanced on colonic epithelial cells of patients with ulcerative colitis (UC), and stool DAF concentrations are increased in patients with active disease. Cytokines are known to modulate DAF expression in various human cells, and lesions of UC reveal altered profiles of cytokine production. In this study, we evaluate the effects of various cytokines, IL-1beta, IL-2, IL-4, IL-6, IL-8, IL-10, and interferon-gamma (IFN-gamma), on the synthesis and kinetics of DAF protein in HT-29 human intestinal epithelial cells. Using flow cytometry and an ELISA, we found that HT-29 cells constitutively express DAF on the cell surface and spontaneously release DAF into the culture supernatant under standard culture conditions. When the culture supernatant was centrifuged at 100000g, nearly a half of DAF was precipitated, indicating that one half of the released DAF was present as a membrane-bound form and the other half as a soluble form. Analysis of the culture supernatant of biotin surface-labelled HT-29 cells suggested that the soluble form DAF was derived by secretion from within the cell or by cleavage from the cell surface. Among the cytokines, IL-4 markedly, and IL-1beta moderately, enhanced the expression and the release of DAF. Actinomycin D, cycloheximide, and brefeldin A inhibited the increase in DAF release induced by IL-4 and IL-1beta stimulation. These results suggest that DAF is released from intestinal epithelial cells in response to cytokine stimulation and that IL-4 and IL-1beta are possible cytokines involved in DAF release into the colonic lumen of patients with UC.
Collapse
Affiliation(s)
- J Nasu
- First Department of Internal Medicine, Okayama University Medical School, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Chen R, Walter EI, Parker G, Lapurga JP, Millan JL, Ikehara Y, Udenfriend S, Medof ME. Mammalian glycophosphatidylinositol anchor transfer to proteins and posttransfer deacylation. Proc Natl Acad Sci U S A 1998; 95:9512-7. [PMID: 9689111 PMCID: PMC21369 DOI: 10.1073/pnas.95.16.9512] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/1998] [Indexed: 02/08/2023] Open
Abstract
The glycophosphatidylinositol (GPI) anchors of proteins expressed on human erythrocytes and nucleated cells differ with respect to acylation of an inositol hydroxyl group, a structural feature that modulates their cleavability by PI-specific phospholipase C (PI-PLC). To determine how this GPI anchor modification is regulated, the precursor and protein-associated GPIs in two K562 cell transfectants (ATCC and .48) exhibiting alternatively PI-PLC-sensitive and resistant surface proteins were analyzed and the temporal relationship between GPI protein transfer and acquisition of PI-PLC sensitivity was determined. Nondenaturing PAGE analyses demonstrated that, whereas in .48 transfectants the GPI anchors in decay accelerating factor (DAF) and placental alkaline phosphatase (PLAP) were >95% acylated, in ATCC transfectants, they were 60 and 33% unsubstituted, respectively. In contrast, TLC analyses revealed that putative GPI donors in the two lines were identical and were >/=95% acylated. Studies of de novo DAF biosynthesis in HeLa cells bearing proteins with >90% unacylated anchors showed that within 5 min at 37 degreesC (or at 18 degreesC, which does not permit endoplasmic reticilum exit), >50% of the anchor in nascent 44-kDa proDAF protein exhibited PI-PLC sensitivity. In vitro analyses of the microsomal processing of miniPLAP, a truncated PLAP reporter protein, demonstrated that the anchor donor initially transferred to prominiPLAP was acylated and then progressively was deacylated. These findings indicate that (i) the anchor moiety that initially transfers to nascent proteins is acylated, (ii) inositol acylation in mature surface proteins is regulated via posttransfer deacylation, which in general is cell-specific but also can be protein-dependent, and (iii) deacylation occurs in the endoplasmic reticulum immediately after GPI transfer.
Collapse
Affiliation(s)
- R Chen
- Institute of Pathology, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH, 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Martino TA, Petric M, Brown M, Aitken K, Gauntt CJ, Richardson CD, Chow LH, Liu PP. Cardiovirulent coxsackieviruses and the decay-accelerating factor (CD55) receptor. Virology 1998; 244:302-14. [PMID: 9601501 DOI: 10.1006/viro.1998.9122] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Group B coxsackieviruses are etiologically linked with many human diseases including acute myocarditis and associated chronic dilated cardiomyopathy. Well-established CVB3 cardiovirulent strains (CVB3c(s)) with known phenotypic difference have been used to study the pathogenesis of virus-induced heart disease. The receptor-binding characteristics of cardiovirulent CVB3 are not known, but may represent one mechanism accounting for differences in disease virulence. In this study, interactions between CVB3c(s) and the decay-accelerating factor (DAF or CD55) cell surface receptor were examined. Anti-DAF monoclonal antibodies (MAbs) blocked virus binding and infection of susceptible HeLa cells. Virus binding was significantly reduced by treatment of these cells with phosphatidylinositol phospholipase C enzyme, which rendered them DAF-deficient CVB3c(s) exhibited a differential propensity for the DAF receptor, as several cardiovirulent strains interacted more strongly than others. However, virus binding and infection was always most effectively blocked by MAbs directed against the SCR 2 and 3 domains of DAF, suggesting that binding occurs at a similar site(s) on the molecule for all strains. Virus binding and internalization were associated with DAF down-regulation at the cell surface, as monitored by flow cytometry analysis. Cardiovirulent CVB3 did not interact with molecules functionally and/or structurally related to DAF, including CD35, CD46, Factor H, or C4-binding protein. Adenovirus type 2 (Ad2) does not use the DAF receptor. However, competitive binding assays between Ad2 and CVB1-6, CVB3c(s), anti-DAF MAbs, or DAF-reduced cells indicated that DAF is associated with Ad2 receptors on the HeLa cell membrane. In summary, this study indicates that DAF is an attachment receptor for cardiovirulent CVB3 and that DAF interaction may be important in the pathogenesis of CVB-mediated heart disease.
Collapse
Affiliation(s)
- T A Martino
- Center for Cardiovascular Research, Toronto Hospital, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Inaba T, Mizuno M, Ohya S, Kawada M, Uesu T, Nasu J, Takeuchi K, Nakagawa M, Okada H, Fujita T, Tsuji T. Decay-accelerating factor (DAF) in stool specimens as a marker of disease activity in patients with ulcerative colitis (UC). Clin Exp Immunol 1998; 112:237-41. [PMID: 9649185 PMCID: PMC1904958 DOI: 10.1046/j.1365-2249.1998.00573.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colonic epithelial cells of patients with UC express DAF in relation to the severity of mucosal inflammation. The aim of this study was to determine whether this factor in stool could be used as a marker of disease activity in UC patients. Stool DAF was measured by use of an immunoassay in 181 stool specimens obtained from 55 patients with UC of various levels of disease activity. Stool DAF concentrations in patients whose UC was active (0.0-785.6 ng/g stool; median 47.1 ng/g; n = 115) were significantly higher than concentrations in patients whose disease was inactive (0.0-48.6 ng/g; median 0.0 ng/g; n = 66) (P < 0.0001). Values in active UC patients also were higher than those in control patients with diarrhoea (0.0-30.0 ng/g; median 0.0 ng/g; n = 26) (P < 0.0001) and in control subjects without apparent colorectal disease (0-20.4 ng/g; median 0.0 ng/g; n = 44) (P < 0.0001). The elevated levels of stool DAF obtained from UC patients in relapse declined markedly in specimens collected after the disease went into remission following medical therapy. Stool DAF levels correlated with the severity of endoscopic and histological findings and the degree of DAF expression on the colonic epithelia. Our results suggest that the measurement of stool DAF is useful as a non-invasive means of monitoring intestinal disease activity in patients with UC.
Collapse
Affiliation(s)
- T Inaba
- First Department of Internal Medicine, Okayama University Medical School, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Kraus D, Medof ME, Mold C. Complementary recognition of alternative pathway activators by decay-accelerating factor and factor H. Infect Immun 1998; 66:399-405. [PMID: 9453587 PMCID: PMC107919 DOI: 10.1128/iai.66.2.399-405.1998] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The alternative complement pathway (ACP) functions as a surveillance mechanism by which microorganisms are opsonized with C3b in the absence of specific antibodies. The effectiveness of the ACP relies on its ability to distinguish self from non-self. This recognition function is mediated by C3 regulatory proteins including serum factor H, membrane cofactor protein (MCP), and membrane decay-accelerating factor (DAF). H activity against bound C3b can be increased by host components such as sialic acid and decreased by microbial polysaccharides. DAF and MCP may also recognize cell surface changes such as the presence of viral glycoproteins, since some virus-infected and tumor cells activate the ACP. In the present study, liposomes containing wild-type and mutant Salmonella minnesota lipopolysaccharide (LPS) were tested for ACP activation in serum. LPS-containing liposomes with bound C3b were then tested for their susceptibility to C3 convertase regulation by H and membrane DAF and for the sensitivity of their bound C3b to the cofactor activity of H. The results indicate that while the shortest mutant, Re595 LPS, did not induce ACP activation, R7 LPS containing an additional disaccharide did. This activation was poorly regulated by DAF but was inhibited by H. The regulatory activity of H for liposome-bound C3b, however, decreased when LPS of greater polysaccharide size was present in the membrane. In contrast the ACP activation induced by the phospholipid phosphatidylethanolamine was effectively inhibited by DAF but only poorly inhibited by H.
Collapse
Affiliation(s)
- D Kraus
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque 87131, USA
| | | | | |
Collapse
|
58
|
Daude N, Lehmann S, Harris DA. Identification of intermediate steps in the conversion of a mutant prion protein to a scrapie-like form in cultured cells. J Biol Chem 1997; 272:11604-12. [PMID: 9111077 DOI: 10.1074/jbc.272.17.11604] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The central causative event in infectious, familial, and sporadic forms of prion disease is thought to be a conformational change that converts the cellular isoform of the prion protein (PrPC) into the scrapie isoform (PrPSc) that is the primary constituent of infectious prion particles. To provide a model system for analyzing the mechanistic details of this critical transformation, we have previously prepared cultured Chinese hamster ovary cells that stably express mouse PrP molecules carrying mutations homologous to those seen in familial prion diseases of humans. In the present work, we have analyzed the kinetics with which a PrP molecule containing an insertional mutation associated with Creutzfeldt-Jakob disease acquires several biochemical properties characteristic of PrPSc. Within 10 min of pulse labeling, the mutant protein undergoes a molecular alteration that is detectable by a change in Triton X-114 phase partitioning and phenyl-Sepharose binding. After 30 min of labeling, a detergent-insoluble and protease-sensitive form of the protein appears. After a chase period of several hours, the protein becomes protease-resistant. Incubation of cells at 18 degrees C or treatment with brefeldin A inhibits acquisition of detergent insolubility and protease resistance but does not affect Triton X-114 partitioning and phenyl-Sepharose binding. Our results support a model in which conversion of mutant PrPs to a PrPSc-like state proceeds in a stepwise fashion via a series of identifiable biochemical intermediates, with the earliest step occurring during or very soon after synthesis of the polypeptide in the endoplasmic reticulum.
Collapse
Affiliation(s)
- N Daude
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
59
|
Li Y, van Drunen Littel-van den Hurk S, Liang X, Babiuk LA. Functional analysis of the transmembrane anchor region of bovine herpesvirus 1 glycoprotein gB. Virology 1997; 228:39-54. [PMID: 9024808 DOI: 10.1006/viro.1996.8372] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In herpesviruses, homologues of glycoprotein B (gB) are essential membrane proteins which are involved in fusion. However, there is no clear evidence regarding the location of the fusogenic domain on gB. By using bovine herpesvirus 1 (BHV-1) as a model, we studied the relationship between the structure and the fusogenic activity of gB. This was achieved by expressing genes of different gB derivatives containing specific truncations at the end of segments 2 or 3 of the transmembrane region in Madin-Darby bovine kidney cells under the control of the bovine heat-shock protein hsp70A gene promoter. All expressed gB products were structurally similar to authentic gB. One truncated form of gB, gBt, which contains residues 1-763, was efficiently secreted. However, gBtM (residues 1-807), which includes the first two segments at the carboxyl terminus, showed unstable retention on the cell surface, whereas gBtMA (residues 1 829), which contains all three membrane-spanning segments, was mostly intracellularly retained with some unstable surface anchorage. Another truncated gB, gBtDAF, which has gB residues 1-763 (gBt) and a human decay-accelerating factor (DAF) carboxyl tail, was also expressed. The DAF fragment provided a signal for the addition of a glycosyl phosphatidylinositol-based membrane anchor, which could target the gBt chimeric protein on the cell membrane. Immunofluorescence staining and pulse-chase kinetic studies support the theory that gBtM, gBtMA, and gBtDAF are retained on nuclear and cellular membranes via different segments of the transmembrane region or the DAF fragment, respectively. For the cells expressing gBt or gBtM, no cell fusion was observed, whereas cells expressing gBtMA clearly showed fusion. However, in gBtDAF cells, the overexpression and cellular accumulation of recombinant gB products did not cause fusion either, which supports our contention that the fusion phenomenon in gBtMA cells is caused by the fusogenic activity of the expressed gBtMA. With the help of sequence analysis, our results indicate that segment 2 of the transmembrane anchor region might be a fusogenic domain, whereas the real anchor is segment 3.
Collapse
Affiliation(s)
- Y Li
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|
60
|
Nakakuma H, Kawaguchi T. Paroxysmal nocturnal hemoglobinuria (PNH): mechanism of intravascular hemolysis. Crit Rev Oncol Hematol 1996; 24:213-29. [PMID: 8894404 DOI: 10.1016/1040-8428(96)00221-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- H Nakakuma
- Second Department of Internal Medicine, Kumamoto University School of Medicine, Japan
| | | |
Collapse
|
61
|
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) hemolysis requires both intravascular complement activation and affected erythrocytes susceptible to complement. This susceptibility is explained by a deficiency in complement regulatory membrane proteins that are attached to the membrane by a glycosylphosphatidylinositol (GPI) anchor. Affected cells lack a series of GPI-anchored membrane proteins with various functions. The lack is caused by a synthetic defect of the anchor due to an impaired transfer of N-acetylglucosamine to phosphatidylinositol which is an early metabolic precursor in the anchor synthesis. Moreover, PIG-A gene responsible for the membrane defect was recently cloned. Further, a possible mechanism of complement activation has been proposed, especially for an infection-induced hemolytic precipitation which is clinically crucial. Thus, the molecular events, leading to intravascular hemolysis characteristic of PNH, has been virtually clarified. Next major concern is the nature of PIG-A: How does PIG-A explain the complex pathophysiology of PNH which exhibits various clinical manifestations?
Collapse
Affiliation(s)
- H Nakakuma
- The Second Department of Internal Medicine, Kumamoto University School of Medicine, Japan
| |
Collapse
|
62
|
Karnauchow TM, Tolson DL, Harrison BA, Altman E, Lublin DM, Dimock K. The HeLa cell receptor for enterovirus 70 is decay-accelerating factor (CD55). J Virol 1996; 70:5143-52. [PMID: 8764022 PMCID: PMC190469 DOI: 10.1128/jvi.70.8.5143-5152.1996] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Enterovirus 70 (EV70) is a recently emerged human pathogen belonging to the family Picornaviridae. The ability of EV70 to infect a wide variety of nonprimate cell lines in vitro is unique among human enteroviruses. The importance of virus receptors as determinants of viral host range and tropism led us to study the host cell receptor for this unusual picornavirus. We produced a monoclonal antibody (MAb), EVR1, which bound to the surface of HeLa cells and protected them against infection by EV70 but not by poliovirus or by coxsackievirus B3. This antibody also inhibited the binding of [35S]EV70 to HeLa cells. MAb EVR1 did not bind to monkey kidney (LLC-MK2) cells, nor did it protect these cells against virus infection. In Western immunoassays and in immunoprecipitations, MAb EVR1 identified a HeLa cell glycoprotein of approximately 75 kDa that is attached to the cell membrane by a glycosyl-phosphatidylinositol (GPI) anchor. Decay-accelerating factor (DAF, CD55) is a 70- to 75-kDa GPI-anchored membrane protein that is involved in the regulation of complement and has also been shown to function as a receptor for several enteroviruses. MAb EVR1 bound to Chinese hamster ovary (CHO) cells constitutively expressing human DAF. Anti-DAF MAbs inhibited EV70 binding to HeLa cells and protected them against EV70 infection. Transient expression of human DAF in murine NIH 3T3 cells resulted in binding of labelled EV70 and stably, transformed NIH 3T3 cells expressing DAF were able to support virus replication. These data indicate that the HeLa cell receptor for EV70 is DAF.
Collapse
Affiliation(s)
- T M Karnauchow
- Department of Microbiology and Immunology, University of Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
63
|
Ramalingam S, Maxwell SE, Medof ME, Chen R, Gerber LD, Udenfriend S. COOH-terminal processing of nascent polypeptides by the glycosylphosphatidylinositol transamidase in the presence of hydrazine is governed by the same parameters as glycosylphosphatidylinositol addition. Proc Natl Acad Sci U S A 1996; 93:7528-33. [PMID: 8755508 PMCID: PMC38779 DOI: 10.1073/pnas.93.15.7528] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Proteins anchored to the cell membrane via a glycosylphosphatidylinositol (GPI) moiety are found in all eukaryotes. After NH2-terminal peptide cleavage of the nascent protein by the signal peptidase, a second COOH-terminal signal peptide is cleaved with the concomitant addition of the GPI unit. The proposed mechanism of the GPI transfer is a transamidation reaction that involves the formation of an activated carbonyl intermediate (enzyme-substrate complex) with the ethanolamine moiety of the preassembled GPI unit serving as a nucleophile. Other nucleophilic acceptors like hydrazine (HDZ) and hydroxylamine have been shown to be possible alternate substrates for GPI. Since GPI has yet to be purified, the use of readily available nucleophilic substitutes such as HDZ and hydroxylamine is a viable alternative to study COOH-terminal processing by the putative transamidase. As a first step in developing a soluble system to study this process, we have examined the amino acid requirements at the COOH terminus for the transamidation reaction using HDZ as the nucleophilic acceptor instead of GPI. The hydrazide-forming reaction shows identical amino acid requirement profiles to that of GPI anchor addition. Additionally, we have studied other parameters relating to the kinetics of the transamidation reaction in the context of rough microsomal membranes. The findings with HDZ provide further evidence for the transamidase nature of the enzyme and also provide a starting point for development of a soluble assay.
Collapse
Affiliation(s)
- S Ramalingam
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110-1199, USA
| | | | | | | | | | | |
Collapse
|
64
|
Davies A. Policing the membrane: cell surface proteins which regulate complement. RESEARCH IN IMMUNOLOGY 1996; 147:82-7. [PMID: 8792465 DOI: 10.1016/0923-2494(96)87178-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- A Davies
- MIP Unit, MRC Centre, Cambridge, UK
| |
Collapse
|
65
|
Abstract
The complement system has developed a remarkably simple but elegant manner of regulating itself. It has faced and successfully dealt with how to facilitate activation on a microbe while preventing the same on host tissue. It solved this problem primarily by creating a series of secreted and membrane-regulatory proteins that prevent two highly undesirable events: activation in the fluid phase (no target) and on host tissue (inappropriate target). Also, if not checked, even on an appropriate target, the system would go to exhaustion and have nothing left for the next microbe. Therefore, the complement enzymes have an intrinsic instability and the fluid-phase control proteins play a major role in limiting activation in time. The symmetry of the regulatory process between fluid phase and membrane inhibitors at the C4/C3 step of amplification and convertase formation as well as at the MAC steps are particularly striking features of the self/nonself discrimination system. The use of glycolipid anchored proteins on membranes to decay enzymes and block membrane insertion events is unlikely to be by chance. Finally, it is economical for the cofactor regulatory activity to produce derivatives of C3b that now specifically engage additional receptors. Likewise, C1-Inh leads to C1q remaining on the immune complex to interact with the C1q receptor. Thus the complement system is designed to allow rapid, efficient, unimpeded activation on an appropriate foreign target while regulatory proteins intervene to prevent three undesirable consequences of complement activation: excessive activation on a single target, fluid phase activation, and activation on self.
Collapse
Affiliation(s)
- M K Liszewski
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
66
|
Sevlever D, Humphrey DR, Rosenberry TL. Compositional analysis of glucosaminyl(acyl)phosphatidylinositol accumulated in HeLa S3 cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:384-94. [PMID: 7588771 DOI: 10.1111/j.1432-1033.1995.384_1.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
GlcN(acyl)PtdIns, a derivative of phosphatidylinositol (PtdIns) in which glucosamine and a fatty acid are linked to inositol hydroxyl groups, has been proposed to be an intermediate in the mammalian biosynthetic pathway for glycosylphosphatidylinositol (glycosyl-PtdIns) anchors of membrane proteins. In this report, GlcN(acyl)PtdIns metabolically labeled with [3H]inositol is shown to accumulate in a HeLa S3 cell subline. The amount of GlcN(acyl)PtdIns in these HeLa S3 cells is about 10(7) molecules/cell, a level comparable to those of the most abundant glycosyl-PtdIns-containing molecules reported to date. GlcN(acyl)PtdIns was purified by a two-step procedure involving octyl-Sepharose and thin-layer chromatography. Octyl-Sepharose separated phospholipids according to their number of hydrocarbon chains: one in 2-lysoPtdIns, two in PtdIns, and three in GlcN(acyl)PtdIns. Purification also was aided by prior treatment of lipid extracts with bee venom phospholipase A2, an enzyme that did not cleave GlcN(acyl)PtdIns. The GlcN-inositol head group in purified GlcN(acyl)PtdIns was confirmed by a number of procedures, including cation-exchange chromatography and mass spectrometry; after radiomethylation, an equal molar ratio of GlcN(Me)2/inositol was measured. Fatty acid analysis indicated an overall stoichiometry of 2.3 mol fatty acid/mol inositol with palmitic (16:0), stearic (18:0) and oleic (18:1) acids being predominant. Analysis of GlcN(acyl)inositol produced by HF fragmentation showed that palmitate was the acyl group attached to inositol and indicated that stearic and oleic acids were in the glycerolipid. Base methanolysis revealed that about 15% of the purified GlcN(acyl)PtdIns contained alkylglycerol. A substantial conversion of GlcN(acyl)PtdIns to a slightly more polar lipid occurred after overnight incubation in even mildly alkaline buffers. Although the current data do not allow proposal of a structure for this lipid, its formation from GlcN(acyl)PtdIns may be important because the conversion appeared to occur in vivo.
Collapse
Affiliation(s)
- D Sevlever
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | | | | |
Collapse
|
67
|
Clarkson NA, Kaufman R, Lublin DM, Ward T, Pipkin PA, Minor PD, Evans DJ, Almond JW. Characterization of the echovirus 7 receptor: domains of CD55 critical for virus binding. J Virol 1995; 69:5497-501. [PMID: 7543583 PMCID: PMC189399 DOI: 10.1128/jvi.69.9.5497-5501.1995] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
CD55, or decay-accelerating factor (DAF), is a cell surface glycoprotein which regulates complement activity by accelerating the decay of C3/C5 convertases. Recently, we and others have established that this molecule acts as a cellular receptor for echovirus 7 and related viruses. DAF consists of five domains: four short consensus repeats (SCRs) and a serine/threonine-rich region, attached to the cell surface by a glycosylphosphatidyl inositol anchor. Chinese hamster ovary cells stably transfected with deletion mutants of DAF or DAF-membrane cofactor protein recombinants were analyzed for virus binding. The results indicate that the binding of echovirus 7 to DAF specifically requires SCR2, SCR3, and SCR4. There is also a nonspecific requirement for the S/T-rich region which probably functions to project the binding region away from the cell membrane. The three nonpeptide modifications of DAF, N-linked glycosylation, O-linked glycosylation, and the glycosylphosphatidyl inositol anchor, are not required for virus binding. The SCRs of membrane cofactor protein, the closest known relative of DAF, cannot substitute for those of DAF with retention of virus binding activity. The monoclonal antibody used to identify DAF as an echovirus receptor, and which inhibits binding of the virus (monoclonal antibody 854), binds to SCR3.
Collapse
Affiliation(s)
- N A Clarkson
- School of Animal and Microbial Sciences, University of Reading, Whiteknights, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Maxwell SE, Ramalingam S, Gerber LD, Brink L, Udenfriend S. An active carbonyl formed during glycosylphosphatidylinositol addition to a protein is evidence of catalysis by a transamidase. J Biol Chem 1995; 270:19576-82. [PMID: 7642644 DOI: 10.1074/jbc.270.33.19576] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) substitution is now recognized to be a ubiquitous method of anchoring a protein to membranes in eukaryotes. The structure of GPI and its biosynthetic pathways are known and the signals in a nascent protein for GPI addition have been elucidated. The enzyme(s) responsible for GPI addition with release of a COOH-terminal signal peptide has been considered to be a transamidase but has yet to be isolated, and evidence that it is a transamidase is indirect. The experiments reported here show that hydrazine and hydroxylamine, in the presence of rough microsomal membranes, catalyze the conversion of the pro form of the engineered protein miniplacental alkaline phosphatase (prominiPLAP) to mature forms from which the COOH-terminal signal peptide has been cleaved, apparently at the same site but without the addition of GPI. The products, presumable the hydrazide or hydroxamate of miniPLAP, have yet to be characterized definitively. However, our demonstration of enzyme-catalyzed cleavage of the signal peptide in the presence of the small nucleophiles, even in the absence of an energy source, is evidence of an activated carbonyl intermediate which is the hallmark of a transamidase.
Collapse
Affiliation(s)
- S E Maxwell
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110-1199, USA
| | | | | | | | | |
Collapse
|
69
|
Ratnoff WD, Brockman WW, Hasty LA. Immunohistochemical localization of C9 neoantigen and the terminal complement inhibitory protein CD59 in human endometrium. Am J Reprod Immunol 1995; 34:72-9. [PMID: 8526992 DOI: 10.1111/j.1600-0897.1995.tb00921.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
PROBLEM Human endometrium expresses complement components, receptors, and regulatory proteins, many of which appear to be expressed in a hormone-dependent manner. Whether terminal complement components are also present in the endometrium is unknown. CD59, a broadly expressed protein that blocks association of C9 with C8 in the membrane attack complex, is localized in reproductive tissue to human spermatozoa, seminal plasma, amniotic fluid, and placenta. The present study examines human endometrium for the presence of CD59 and terminal complement proteins. METHOD Endometrial biopsies were obtained from six normal women from various phases of the menstrual cycle and analyzed by immunohistochemistry, using MEM-43 anti-human CD59 and anti-human SC5b-9 murine monoclonal antibodies and the immunoperoxidase technique. RESULTS Both CD59 protein and SC5b-9 (C9 neoantigen) were demonstrated to be present in endometrial glandular epithelium throughout the menstrual cycle. No specific staining was demonstrated in the stromal compartment. CONCLUSION CD59 protein and terminal complement proteins are expressed in glandular epithelial cells of normal human endometrium, in both proliferative and luteal phases, suggesting that expression is not hormonally dependent. These analyses further support the presence of a functionally active complement system in normal human endometrium.
Collapse
Affiliation(s)
- W D Ratnoff
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
70
|
Abstract
The field of transplantation is faced with a growing shortage of human organs as the list of potential recipients continues to increase. Those currently listed can already expect long waits; some die waiting. Xenotransplantation is a potential solution to this widening donor-recipient disparity. Consequently, in recent years, there have been several clinical attempts using organs from nonhuman primates and pigs. The results with nonhuman primates as donors have been encouraging, but it is unlikely that these species will provide a long-term solution to the organ shortage. Most recent xenotransplantation research has therefore shifted to more phylogenetically disparate species, such as pigs, as potential donors. The major barrier to transplantation between members of disparate species combinations has been hyperacute rejection (HAR). The elements of humoral immunity involved in this rejection process include (1) naturally occurring antibodies directed against carbohydrate and other antigens expressed on pig endothelium, and (2) the complement system, which is activated by binding of natural antibodies to their targets. Several elegant strategies to prevent HAR are being developed. The creation of transgenic pigs, whose cells express human regulators of complement activation, is one such strategy. Another promising approach has been to remove antidonor antibodies from the recipient by absorption with some recently characterized carbohydrate epitopes of porcine endothelial xenoantigens. Recent experimental work indicates that HAR can successfully be prevented by inhibition or depletion of complement. A delayed type of xenograft rejection, characterized by endothelial cell antibody deposition and cellular infiltration, occurs over the next three to four days. The likely mechanisms involved in delayed xenograft rejection include antibody-dependent cell-mediated cytotoxicity and the phenomenon of endothelial cell activation.
Collapse
Affiliation(s)
- J P Fryer
- Department of Surgery, University of Minnesota, Minneapolis, USA
| | | | | |
Collapse
|
71
|
Kinoshita T, Inoue N, Takeda J. Defective glycosyl phosphatidylinositol anchor synthesis and paroxysmal nocturnal hemoglobinuria. Adv Immunol 1995; 60:57-103. [PMID: 8607375 DOI: 10.1016/s0065-2776(08)60584-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- T Kinoshita
- Department of Immunoregulation, Osaka University, Japan
| | | | | |
Collapse
|
72
|
Hirose S, Knez JJ, Medof ME. Mammalian glycosylphosphatidylinositol-anchored proteins and intracellular precursors. Methods Enzymol 1995; 250:582-614. [PMID: 7651180 DOI: 10.1016/0076-6879(95)50099-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glycosylphosphatidylinositol-anchored proteins can be specifically identified by several methods. PI-PLC digestion analyses, the most widely used technique, can be performed more reliably when conducted with purified protein and phase partitioning to exclude steric effects and when combined with alkaline hydrolysis to control for inositol acylation. Reductive radiomethylation not only can definitively identify a candidate protein as being GPI anchored, but also can provide information on the number of amine components (GlcN, ethanolamine) in the anchor structure. Biosynthetic labeling with anchor precursors is relatively specific when performed with [3H]ethanolamine or [3H]inositol. Incorporation of the precursors additionally can be used to (1) document anchor transfer to primary translation products, (2) identify soluble derivatives of GPI-anchored proteins that have been released from cell surfaces, and (3) localize the site of GPI anchor attachment within a GPI-anchored protein. A pathway for mammalian GP anchor assembly is depicted in Fig. 12. Initially GlcNAc is transferred to PI. The resulting GlcNAc-PI is then deacetylated to yield GlcN-PI. After that step, several points of divergence are identifiable between the mammalian and T. brucei pathways: (1) all mammalian Man-containing intermediates are built on acylated inositol phospholipids; (2) a proximal phosphoethanolamine is found in mammalian GPI anchor intermediates and is added to Man 1 prior to incorporation of Man 2 and Man 3; (3) no Gal branching substituent is added to the mammalian core glycan; and (4) the most polar mammalian GPI contains a third phosphoethanolamine substituent linked to the 6 position of Man 2.
Collapse
Affiliation(s)
- S Hirose
- Department of Pediatrics, Fukuoka University, Japan
| | | | | |
Collapse
|
73
|
Morgan BP, Meri S. Membrane proteins that protect against complement lysis. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 1994; 15:369-96. [PMID: 8153873 DOI: 10.1007/bf01837366] [Citation(s) in RCA: 174] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- B P Morgan
- Department of Medical Biochemistry, University of Wales College of Medicine, Heath Park, Cardiff, UK
| | | |
Collapse
|
74
|
Bardenstein DS, Dietz Y, Lass JH, Medof ME. Localization of the complement membrane attack complex inhibitor (CD59) in human conjunctiva and lacrimal gland. Curr Eye Res 1994; 13:851-5. [PMID: 7536649 DOI: 10.3109/02713689409015085] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recent studies have established that complement is present in the eye and participates in ocular defense. The mechanisms by which ocular tissues are protected from bystander injury arising from local activation of the cascade, however, have not been characterized. Decay accelerating factor (DAF or CD55) and the membrane inhibitor of reactive lysis (MIRL or CD59) are cell surface regulatory proteins that protect blood cells from uptake of autologous C3b and polymerization of autologous C9 on their surfaces. In previous studies, we found that DAF is expressed in high levels on corneal, conjunctival, and lacrimal gland acinar surfaces. In this study we assayed ocular and lacrimal gland tissues for CD59. Immunohistochemical analyses demonstrated large amounts of the protein the same locations. The presence of CD59 in these sites is consistent with the proposal that CD59 functions together with DAF in protecting ocular tissues from autologous complement-mediated injury.
Collapse
Affiliation(s)
- D S Bardenstein
- Department of Ophthalmology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | | | | | | |
Collapse
|
75
|
Thomas JL, Stieber A, Gonatas N. Two proteins associated with secretory granule membranes identified in chicken regulated secretory cells. J Cell Sci 1994; 107 ( Pt 5):1297-308. [PMID: 7929636 DOI: 10.1242/jcs.107.5.1297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lately, we have identified two polypeptides of 92–94 kDa (GRL1) and 45–60 kDa (GRL2), expressed in cytoplasmic granules of chicken granulocytes and thrombocytes. Here, we report that GRL1 and GRL2 are widely distributed in all exocrine and several endocrine cell types, but not in neurons of the central nervous system, during late stages of embryonic development, as well as in newly hatched and two-month-old chickens. Immunogold studies in ultrathin frozen sections of pancreatic acinar cells show that GRL1 and GRL2 are co-localized at the periphery of zymogen granules, in granules fused with apical acinar membranes and on apical membranes of acini, while the pregranular compartments of the secretory pathway are weakly or not labeled. Semiquantitative morphometric studies indicate that GRL1 and GRL2 are equally distributed in secretory granules. A variety of physical and metabolic studies reveal that GRL2, a highly N-glycosylated polypeptide, is an intrinsic membrane protein, while GRL1 is a peripheral membrane polypeptide released by Na2CO3 treatment of granulocyte membranes. In all hematopoietic, exocrine or endocrine cells examinated, GRL1 shows identical electrophoretic patterns, while GRL2 is identified as a diffuse band, at 40–65 kDa, in hematopoietic and pancreatic cells. Taken together, the morphological and biochemical studies indicate that GRL1 and GRL2 are components of the secretory granule membrane in chicken exocrine, endocrine and hemopoietic cell types.
Collapse
Affiliation(s)
- J L Thomas
- Institut d'Embryologie Cellulaire et Moléculaire du CNRS et du Collège de France, Nogent sur Marne
| | | | | |
Collapse
|
76
|
Mensa-Wilmot K, LeBowitz JH, Chang KP, al-Qahtani A, McGwire BS, Tucker S, Morris JC. A glycosylphosphatidylinositol (GPI)-negative phenotype produced in Leishmania major by GPI phospholipase C from Trypanosoma brucei: topography of two GPI pathways. J Cell Biol 1994; 124:935-47. [PMID: 8132715 PMCID: PMC2119965 DOI: 10.1083/jcb.124.6.935] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The major surface macromolecules of the protozoan parasite Leishmania major, gp63 (a metalloprotease), and lipophosphoglycan (a polysaccharide), are glycosylphosphatidylinositol (GPI) anchored. We expressed a cytoplasmic glycosylphosphatidylinositol phospholipase C (GPI-PLC) in L. major in order to examine the topography of the protein-GPI and polysaccharide-GPI pathways. In L. major cells expressing GPI-PLC, cell-associated gp63 could not be detected in immunoblots. Pulse-chase analysis revealed that gp63 was secreted into the culture medium with a half-time of 5.5 h. Secreted gp63 lacked anti-cross reacting determinant epitopes, and was not metabolically labeled with [3H]ethanolamine, indicating that it never received a GPI anchor. Further, the quantity of putative protein-GPI intermediates decreased approximately 10-fold. In striking contrast, lipophosphoglycan levels were unaltered. However, GPI-PLC cleaved polysaccharide-GPI intermediates (glycoinositol phospholipids) in vitro. Thus, reactions specific to the polysaccharide-GPI pathway are compartmentalized in vivo within the endoplasmic reticulum, thereby sequestering polysaccharide-GPI intermediates from GPI-PLC cleavage. On the contrary, protein-GPI synthesis at least up to production of Man(1 alpha 6)Man(1 alpha 4)GlcN-(1 alpha 6)-myo-inositol-1-phospholipid is cytosolic. To our knowledge this represents the first use of a catabolic enzyme in vivo to elucidate the topography of biosynthetic pathways. GPI-PLC causes a protein-GPI-negative phenotype in L. major, even when genes for GPI biosynthesis are functional. This phenotype is remarkably similar to that of some GPI mutants of mammalian cells: implications for paroxysmal nocturnal hemoglobinuria and Thy-1-negative T-lymphoma are discussed.
Collapse
Affiliation(s)
- K Mensa-Wilmot
- Department of Zoology, University of Georgia, Athens 30602
| | | | | | | | | | | | | |
Collapse
|
77
|
Petty AC, Daniels GL, Anstee DJ, Tippett P. Use of the MAIEA technique to confirm the relationship between the Cromer antigens and decay-accelerating factor and to assign provisionally antigens to the short-consensus repeats. Vox Sang 1993; 65:309-15. [PMID: 7508660 DOI: 10.1111/j.1423-0410.1993.tb02172.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The MAIEA (monoclonal-antibody-specific immobilisation of erythrocyte antigens) assay has recently been developed for the assignment of red cell antigens, recognised by human alloantisera, to particular membrane components of the red cell membrane. This technique detects trimolecular complexes formed by the reaction of a human antibody and a mouse antibody with a particular red cell protein. A positive reaction, in an ELISA-type detection procedure, occurs if the epitopes to the human and mouse antibodies are present on the same membrane component but at different regions. In this report, we show how the MAIEA assay can be used to confirm the relationship between Cromer system antigens and the complement-regulatory protein, decay-accelerating factor (DAF, CD 55). In addition, the location of the antigens along the protein is postulated by using three anti-DAF monoclonal antibodies with specificities to different regions of DAF. Tca and Esa are assigned provisionally to the first short-consensus repeat (SCR), UMC to the second SCR, Dra to the third SCR and Cra, WESa and WESb to the fourth SCR or to the serine/threonine rich region of the DAF protein.
Collapse
Affiliation(s)
- A C Petty
- MRC Blood Group Unit, University College, London, UK
| | | | | | | |
Collapse
|
78
|
Liang X, Tang M, Zamb TJ, Babiuk LA, Kowalski J, Tykocinski ML. Expression of glycoprotein gIII-human decay-accelerating factor chimera on the bovine herpesvirus 1 virion via a glycosyl phosphatidylinositol-based membrane anchor. J Virol 1993; 67:4896-904. [PMID: 7687305 PMCID: PMC237877 DOI: 10.1128/jvi.67.8.4896-4904.1993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mutants of bovine herpesvirus 1 that express a truncated envelope glycoprotein gIII or a gIII-human decay-accelerating factor (hDAF) chimeric protein (gIII.hDAF) were employed to evaluate the function of the transmembrane and cytoplasmic domains of the gIII molecule. Truncated gIII (i.e., lacking the transmembrane and cytoplasmic region) was readily released from infected cells and was not detected on mature virus particles. In contrast, replacement of the transmembrane and cytoplasmic domains with the carboxyl-terminal portion of hDAF restored the expression of gIII on the membranes of infected cells as well as on virion surfaces. The presence of the gIII.hDAF chimera on virus particles was also associated with normal gIII function, i.e., the mediation of virus attachment and penetration. The gIII-hDAF chimera, which is present on both infected cell surfaces and virions, could be cleaved by a phosphatidylinositol-specific phospholipase C, indicating that it was anchored in the membrane via glycosyl phosphatidylinositol. Our results from this study suggest that the transmembrane and cytoplasmic regions of the gIII molecule serve as a general membrane anchor, but they do not contain structural signals required for the specific assembly of envelope proteins into mature virions.
Collapse
Affiliation(s)
- X Liang
- Veterinary Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | | | |
Collapse
|
79
|
Massoulié J, Pezzementi L, Bon S, Krejci E, Vallette FM. Molecular and cellular biology of cholinesterases. Prog Neurobiol 1993; 41:31-91. [PMID: 8321908 DOI: 10.1016/0301-0082(93)90040-y] [Citation(s) in RCA: 836] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- J Massoulié
- Laboratoire de Neurobiologie, CNRS URA 295, Ecole Normale Supérieure, Paris, France
| | | | | | | | | |
Collapse
|
80
|
Terstappen LW, Nguyen M, Huang S, Lazarus HM, Medof ME. Defective and normal haematopoietic stem cells in paroxysmal nocturnal haemoglobinuria. Br J Haematol 1993; 84:504-14. [PMID: 7692931 DOI: 10.1111/j.1365-2141.1993.tb03108.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The expression of decay-accelerating factor (DAF or CD55) and CD59 during haematopoietic cell development in bone marrow aspirates of two patients with paroxysmal nocturnal haemoglobinuria (PNH) was compared with that in normal bone marrow by five-dimensional flow cytometry. In contrast to early uncommitted haematopoietic progenitor cells (CD34+, CD38-) in normal bone marrow which uniformly express DAF and CD59, the majority of CD34+, CD38- cells in both patients' marrow exhibited the absence of the two proteins. In both specimens, however, subpopulations of CD34+, CD38- cells expressing DAF and CD59 were detectable, indicative of the presence of two lines of haematopoiesis, one abnormal and the other normal. Concurrent abnormal and normal haematopoietic development was further evident by the presence of subpopulations of DAF-, CD59- and DAF+, CD59+ cells along the differentiation and maturation pathways of the myeloid (CD33+, CD15(-)-->CD33+-->++, CD15+), the erythroid (CD45dim, CD71dim-->CD45-, CD71++), and the B-lymphoid cell lineages (CD10++, CD20(-)-->CD10-, CD20++). While the majority of cells differentiating into and maturing along each cell lineage lacked DAF and CD59, the majority of mature B (CD20++, CD10-) and T-lymphocytes lymphocytes (CD3+) expressed both proteins suggestive of the presence of lymphocytes with a long life span which were generated from normal haematopoietic progenitors before the onset of the disease. The detection of distinct sets of CD34+, CD38(-)--> + progenitor cells which are DAF+, CD59+ or DAF-, CD59- in marrow of PNH patients has relevance for the treatment of PNH. Cells with the phenotype CD34+, CD38-, DAF+, CD59+ are capable of self renewal and represent potential candidates for autologous bone marrow transplantation following depletion of CD34+, CD38-, DAF-, CD59- cells.
Collapse
Affiliation(s)
- L W Terstappen
- Becton Dickinson Immunocytometry Systems, San Jose, CA 95131
| | | | | | | | | |
Collapse
|
81
|
Rosse WF. Evolution of clinical understanding: paroxysmal nocturnal hemoglobinuria as a paradigm. Am J Hematol 1993; 42:122-6. [PMID: 8416286 DOI: 10.1002/ajh.2830420124] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In recounting the history of the development of knowledge about PNH, the roles of the clinician, the basic scientist, and the clinician-investigator are apparent. Without the observations of the clinicians, the problem could not be posed. Without the contributions from basic science (the biochemistry of complement, the biology of glycosyl-phosphatidylinositol anchors, etc), the information necessary to the solution of the problem would not be available. Without the synthesis of the clinician-investigator, the two elements would not be fused to result in knowledge about the disease.
Collapse
Affiliation(s)
- W F Rosse
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
82
|
Kamitani T, Menon A, Hallaq Y, Warren C, Yeh E. Complexity of ethanolamine phosphate addition in the biosynthesis of glycosylphosphatidylinositol anchors in mammalian cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35808-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
83
|
Lambert CC, Goode CA. Glycolipid linkage of a polyspermy blocking glycosidase to the ascidian egg surface. Dev Biol 1992; 154:95-100. [PMID: 1426636 DOI: 10.1016/0012-1606(92)90051-h] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ascidian eggs release N-acetylglucosaminidase rapidly into the seawater following fertilization. This glycosidase is detected seconds after fertilization, and histochemical tests suggest the cell surface as the prefertilization storage site (Lambert, C. C. (1989). Development 105, 415-420). Living eggs of Ascidia ceratodes, A. callosa, and A. paratropa all cleave a fluorogenic substrate in seawater. Following cell surface biotinylation and activation of the eggs, enzyme activity binds to streptavidin further substantiating the cell surface localization. The released glycosidase has a molecular weight of 180 kDa by size exclusion chromatography and exhibits bands at 62 and 70 kDa by SDS-PAGE, suggesting a possibly multimeric enzyme. The enzyme is released by a glycophosphatidylinositol-specific phospholipase C and HNO2 deamination, both of which are specific indicators of linkage to the cell surface via phosphatidylinositol. The enzyme from unfertilized eggs is quite hydrophobic in Triton X-114 phase partition experiments but becomes hydrophyllic after release by activation or deamination. All of these observations are consistent with the glycosidase being anchored to the cell surface via a GPI anchor that is cleaved at fertilization to yield the soluble form of the enzyme which helps protect the egg against polyspermy. We discuss the possible role of a cell surface PLC in this release.
Collapse
Affiliation(s)
- C C Lambert
- Department of Biology, California State University, Fullerton 92634
| | | |
Collapse
|
84
|
Cook RG, Leone B, Leone JW, Widacki SM, Zavell PJ. Characterization of T cell proliferative responses induced by anti-Qa-2 monoclonal antibodies. Cell Immunol 1992; 144:367-81. [PMID: 1394448 DOI: 10.1016/0008-8749(92)90252-k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The MHC class I Qa-2 Ag are attached to the cell surface by a glycanphosphatidylinositol (GPI) anchor. Crosslinking of Qa-2 and several other cell surface Ag attached by the GPI linkage has been shown to lead to cell activation. We have developed 10 new anti-Qa-2 mAb and characterized their capacity to induce proliferation of spleen cells. In the absence of anti-Ig-mediated crosslinking, none of the mAbs alone could induce activation. However, mAb 23.1 which reacts with the alpha 3 domain of Qa-2, when combined with most of the other mAbs (alpha 1, alpha 2 domain reactive), activated cells in the absence of anti-Ig crosslinking. The mAb pair 23.1 plus 24.16 was the most proficient and induced proliferation in the absence of any exogenous second signals. Responses were greatly enhanced and equivalent to those seen with anti-CD3 by the addition of phorbol myristate acetate (PMA). Ionomycin, rIL-2, or rIL-4 also potentiated anti-Qa-2 responses but less efficiently than PMA. Significant strain variation in the magnitude Qa-2-mediated proliferative responses was observed correlating with the levels of Qa-2 expressed on the cell surface. Crosslinking of Qa-2 molecules by the mAb combinations was required because monovalent Fab fragments failed to activate cells. F(ab')2 fragments of mAb 23.1 plus 24.16 induced vigorous proliferation indicating that accessory cell presentation of the mAb via Fc receptors was not required. Immobilized (plate bound) anti-Qa-2 mAb induced proliferation suggesting that the Qa-2 pathway may be distinct from that of other GPI molecules such as Thy-1 and Ly-6. Populations enriched for T cells (approximately 95%) responded as well as whole spleen cells, whereas B lymphocytes failed to proliferate to anti-Qa-2. Both CD4+ and CD8+ cells were activated following crosslinking of Qa-2. Finally, T cell activation mediated by Qa-2 induced elevation of [Ca2+]i, IL-2R expression, and the release of IL-2. These data demonstrate that crosslinking of Qa-2 on T lymphocytes represents a potent pathway for inducing cell activation.
Collapse
Affiliation(s)
- R G Cook
- Department of Microbiology and Immunology, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | |
Collapse
|
85
|
Hirose S, Prince G, Sevlever D, Ravi L, Rosenberry T, Ueda E, Medof M. Characterization of putative glycoinositol phospholipid anchor precursors in mammalian cells. Localization of phosphoethanolamine. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41879-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
86
|
Identification of glycoinositol phospholipids in rat liver by reductive radiomethylation of amines but not in H4IIE hepatoma cells or isolated hepatocytes by biosynthetic labeling with glucosamine. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)37001-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
87
|
Hirose S, Ravi L, Prince GM, Rosenfeld MG, Silber R, Andresen SW, Hazra SV, Medof ME. Synthesis of mannosylglucosaminylinositol phospholipids in normal but not paroxysmal nocturnal hemoglobinuria cells. Proc Natl Acad Sci U S A 1992; 89:6025-9. [PMID: 1378620 PMCID: PMC402131 DOI: 10.1073/pnas.89.13.6025] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To identify mannosyl (Man)-containing intermediates of the human glycoinositol phospholipid (GPI) anchor pathway and examine their expression in paroxysmal nocturnal hemoglobinuria (PNH), mannolipid products deriving from in vitro guanosine diphosphate [3H]Man labeling of HeLa cell microsomes were characterized. The defined GPI species were correlated with products deriving from in vivo [3H]Man labeling of normal and (GPI-anchor defective) affected leukocytes. In vitro analyses in HeLa cells showed dolichol-phosphoryl (Dol-P)-[3H]Man and a spectrum of [3H]Man lipids exhibiting TLC mobilities approximating those of Trypanosoma brucei (Tryp) GPI precursors. Iatrobead HPLC separations and partial characterizations of the major isolated [3H]Man species (designated H1-H8) showed that all but H1 (Dol-P-Man) were sensitive to HNO2 deamination and serum GPI-specific phospholipase D digestion but were resistant to phosphatidylinositol-specific phospholipase C digestion unless previously deacylated with mild alkali. [3H]Man label in H3, H4, and H6 but not in H5 or H7 was efficiently released into the aqueous phase by jack bean alpha-mannosidase digestion. BioGel P-4 and AX-5 sizing of the dephosphorylated core glycan fragments of H6 and H7 gave values that coincided precisely with the corresponding glycan fragments from the fully assembled Tryp anchor donor A' (P2). Affected leukocytes from four patients with PNH supported formation of GlcNAc- and GlcN-PI but all failed to express H6 and H7 as well as H8 and two showed complete absence of earlier Man-containing intermediates. These findings argue that human intracellular GPI mannolipids are built on acylated inositol phospholipids, that H6 and H7 contain differentially phosphoethanolamine-substituted Man3-GlcN-inositol cores, and that PNH cells are defective in conversion of GlcN-PI into these more mature mannolipid structures.
Collapse
Affiliation(s)
- S Hirose
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Toney DM, Marciano-Cabral F. Alterations in protein expression and complement resistance of pathogenic Naegleria amoebae. Infect Immun 1992; 60:2784-90. [PMID: 1319405 PMCID: PMC257235 DOI: 10.1128/iai.60.7.2784-2790.1992] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Highly pathogenic strains of Naegleria fowleri activate the alternative complement pathway but are resistant to lysis. In contrast, weakly pathogenic and nonpathogenic Naegleria spp. activate the complement pathway and are readily lysed. The present study was undertaken to determine whether surface components on amoebae accounted for resistance to complement lysis. Enzymatic removal of surface components from highly pathogenic N. fowleri with phosphatidylinositol-specific phospholipase C or with endoglycosidase H increased the susceptibility of these amoebae to complement-mediated lysis. Similar treatment of nonpathogenic amoebae had no effect on susceptibility to complement. Tunicamycin treatment of highly and weakly pathogenic N. fowleri increased susceptibility to lysis by complement in a dose-related manner. Tunicamycin treatment did not alter the susceptibility of nonpathogenic amoebae to complement. Proteins of 234 and 47 kDa were detected in supernatant fluid from phosphatidylinositol-specific phospholipase C-treated highly pathogenic amoebae but not in supernatant fluid from phosphatidylinositol-specific phospholipase C-treated weakly pathogenic amoebae. Electrophoretic analysis of iodinated surface proteins of highly pathogenic N. fowleri revealed species of 89, 60, 44, and 28 kDa. Western immunoblots of lysates from surface-iodinated amoebae were stained with biotinylated concanavalin A or biotinylated Ulex europaeus agglutinin I. Surface proteins, identified in highly pathogenic amoebae by iodination, were shown to be glycoproteins by lectin analysis specific for the detection of mannose and fucose residues.
Collapse
Affiliation(s)
- D M Toney
- Department of Microbiology and Immunology, Virginia Commonwealth University, Medical College of Virginia, Richmond 23298-0678
| | | |
Collapse
|
89
|
Golub EE, Harrison G, Taylor AG, Camper S, Shapiro IM. The role of alkaline phosphatase in cartilage mineralization. BONE AND MINERAL 1992; 17:273-8. [PMID: 1611320 DOI: 10.1016/0169-6009(92)90750-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- E E Golub
- Biochemistry Department, University of Pennsylvania School of Dental Medicine, Philadelphia 19104
| | | | | | | | | |
Collapse
|
90
|
Ratnoff WD, Knez JJ, Prince GM, Okada H, Lachmann PJ, Medof ME. Structural properties of the glycoplasmanylinositol anchor phospholipid of the complement membrane attack complex inhibitor CD59. Clin Exp Immunol 1992; 87:415-21. [PMID: 1371955 PMCID: PMC1554345 DOI: 10.1111/j.1365-2249.1992.tb03012.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
CD59, the membrane regulator of autologous C5b-9 channel formation, exhibits variable sensitivity to cleavage by phosphatidylinositol-specific phospholipase C (PI-PLC), an enzyme that releases glyco-inositolphospholipid (GPI)-anchored proteins from cell surfaces. To determine whether the GPI-anchor phospholipid of CD59 is similar to that of decay-accelerating factor (DAF) and whether variation in its structure underlies its variable enzyme susceptibility, the GPI anchors of the two proteins expressed on erythrocytes, polymorphonuclear and mononuclear leucocytes were compared in situ and after purification. Flow cytometric analyses of PI-PLC-treated cells showed parallel cell type specific release of both proteins as a function of enzyme concentration. Non-denaturing PAGE analyses of alkaline/hydroxylamine-treated proteins (affinity-purified from [125I]-surface-labelled cells) provided evidence for (i) comparable proportions of GPI-anchor acylation, and (ii) alkali-resistant rather than alkali-sensitive lipid substituents in erythrocytes. These findings argue that the differential C5b-9 sensitivity that distinguishes paroxysmal nocturnal haemoglobinuria II and III erythrocytes does not derive from expression of CD59 molecules with alternative GPI-anchor phospholipid structures.
Collapse
Affiliation(s)
- W D Ratnoff
- Institute of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | | | | | | | | | | |
Collapse
|
91
|
Matsumoto M, Seya T, Nagasawa S. Polymorphism and proteolytic fragments of granulocyte membrane cofactor protein (MCP, CD46) of complement. Biochem J 1992; 281 ( Pt 2):493-9. [PMID: 1736895 PMCID: PMC1130712 DOI: 10.1042/bj2810493] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human granulocytes (polymorphonuclear leucocytes, PMN) possess a membrane cofactor protein (MCP, CD46), which is structurally and functionally distinct from the MCPs of other cell types: it shows a single broad band of 56-80 kDa (without the doublet pattern characteristic of MCP) on SDS/PAGE and has less affinity for complement component C3b. We purified PMN MCP using monoclonal antibodies in order to study the molecular differences between it and other MCPs. Several forms of PMN MCP with size heterogeneity were noted on SDS/PAGE and by immunoblotting. O-Glycanase treatment decreased this heterogeneity, yielding a fast-migrating component identical in position on SDS/PAGE to the O-glycanase-treated MCP of other cells. The cell-specific variation of MCP, therefore, arises from post-translational glycosylation and not from a difference in primary structure. The Factor I cofactor activity of PMN MCP was more efficient in cleaving the methylamine-treated complement components C4/C3 than was MCP from other cells, which shared a similar potency of cofactor activity on a weight basis. Two types of small-form PMN MCP were identified during purification. These were 42 kDa and 30 kDa in size; the former was recognized by M177 (a monoclonal antibody against the active site marker), possessed N-linked sugars [located on the short consensus repeats (SCRs)] but not O-linked ones (on the Ser/Thr-rich region), and retained cofactor activity for C3b/C4b cleavage, similar in potency to that of other MCPs. The functionally active soluble form of MCP was observed specifically in PMN. Protease inhibitors did not inhibit liberation of the fragments, although the generated fragments became susceptible to serine proteases. The findings show that the SCRs are the functional domain of MCP and that the MCP proteolysis found only in PMN may modulate the properties of PMN MCP. In conclusion, the structural features of PMN MCP largely reflect a variability in the O-linked sugars, and the decreased affinity for C3b may be in part attributable to proteolysis.
Collapse
Affiliation(s)
- M Matsumoto
- Department of Immunology, Center for Adult Diseases Osaka, Japan
| | | | | |
Collapse
|
92
|
|
93
|
Walter EI, Ratnoff WD, Long KE, Kazura JW, Medof ME. Effect of glycoinositolphospholipid anchor lipid groups on functional properties of decay-accelerating factor protein in cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48421-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
94
|
Affiliation(s)
- D M Lublin
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
95
|
Affiliation(s)
- C J Parker
- Hematology/Oncology Section (111c), VA Medical Center, Salt Lake City, Utah 84148
| |
Collapse
|
96
|
Müller G, Bandlow W. Two lipid-anchored cAMP-binding proteins in the yeast Saccharomyces cerevisiae are unrelated to the R subunit of cytoplasmic protein kinase A. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 202:299-308. [PMID: 1722148 DOI: 10.1111/j.1432-1033.1991.tb16376.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We show that the yeast, Saccharomyces cerevisiae, contains two cAMP-binding proteins in addition to the well-characterized regulatory (R) subunit of cytoplasmic cAMP-dependent protein kinase (PKA). We provide evidence that they comprise a new type of cAMP receptor, membrane-anchored by covalently attached lipid structures. They are genetically not related to the cytoplasmic R subunit. The respective proteins can be detected in sral mutants, in which the gene for the R subunit of PKA has been disrupted and a monoclonal antibody raised against the cytoplasmic R subunit does not cross-react with the two membrane-bound cAMP-binding proteins. In addition, they differ from the cytoplasmic species also with respect to their location and the peptide maps of the photoaffinity-labeled proteins. Although they differ from one another in molecular mass and subcellular location, peptide maps of the cAMP-binding domains resemble each other and both proteins are membrane-anchored by lipid structures, one to the outer surface of the plasma membrane, the other to the outer surface of the inner mitochondrial membrane. Both anchors can be metabolically labeled by Etn, myo-Ins and fatty acids. In addition, the anchor structure of the cAMP receptor from plasma membranes can be radiolabeled by GlcN and Man. After cleavage of the anchor with glycosylphosphatidylinositol-specific phospholipase C from trypanosomes, the solubilized cAMP-binding protein from plasma membranes reacts with antibodies which specifically recognize the cross-reacting determinant from soluble trypanosomal coat protein, suggesting similarity of the anchors. Degradation studies also point to the glycosylphosphatidylinositol nature of the anchor from the plasma membrane, whereas the mitochondrial counterpart is less complex in that it lacks carbohydrates. The plasma membrane cAMP receptor is, in addition, modified by an N-glycosidically linked carbohydrate side chain, responsible mainly for its higher molecular mass.
Collapse
Affiliation(s)
- G Müller
- Hoechst AG, Pharmaceutical Research Division, Metabolism, Frankfurt, Federal Republic of Germany
| | | |
Collapse
|
97
|
Telen MJ, Rosse WF. Phosphatidylinositol-glycan linked proteins of the erythrocyte membrane. BAILLIERE'S CLINICAL HAEMATOLOGY 1991; 4:849-68. [PMID: 1724205 DOI: 10.1016/s0950-3536(06)80033-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The human erythrocyte bears a number of proteins anchored to the outer membrane surface via a phosphatidylinositol-glycan linkage. This class of proteins includes several complement regulatory proteins (including decay-accelerating factor, CD59 antigen (protectin), and C8 binding protein) as well as several enzymes and at least one protein important in cell-cell interaction. In addition, a number of blood group antigens have been identified to reside on proteins with phosphatidylinositol anchors. One blood group (Cromer) resides on DAF. Study of variants in this blood group system has led to interesting information about the function and expression of this protein. Several other blood groups, such as JMH and Holley/Gregory, appear to reside on as yet unidentified phosphatidylinositol-linked proteins. In paroxysmal nocturnal haemoglobinuria, a variable proportion of red cells fail to express or express weakly all phosphatidylinositol-linked proteins. The origin of this deficiency is now being worked out. In addition, individuals with inherited deficiency of DAF or CD59 (protectin) have been identified. Only the latter deficiency leads to a PNH-like syndrome.
Collapse
|
98
|
Einhorn GP, Qin L, Soloski MJ. Biosynthesis of glycophospholipid bound and secreted murine class I Qa-2 polypeptides. Mol Immunol 1991; 28:1299-310. [PMID: 1961202 DOI: 10.1016/0161-5890(91)90017-e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Murine T cells synthesize and express a cell-surface glycophospholipid anchored 40 kDa and a secreted water-soluble 39 kDa Qa-2 polypeptide. We have examined the biosynthetic pathways which lead to the production of the membrane-bound and water-soluble isoforms of the Qa-2 molecule. Using the detergent TX-114, both detergent (membrane)-bound and soluble Qa-2 polypeptides can be identified in cell lysates and can be distinguished by charge and molecular weight. Two membrane-bound forms, a 40-kDa Endo H resistant cell-surface form and a 38 kDa-Endo H sensitive form can be identified, both of which can be biosynthetically labeled with 3H-ethanolamine and can be converted to water soluble forms by digestion with a phosphatidylinositol specific phospholipase C. In addition, several water soluble polypeptides at 39, 37, 35 kDa, and a minor species at 33 kDa were identified, none of which radiolabel with 3H-ethanolamine. While the 39-kDa polypeptide was Endo H resistant, the other isoforms were sensitive to Endo H digestion. Pulse chase experiments and molecular weights of the deglycosylated core polypeptides suggest a precursor to product relationship between the intracellular water-soluble species and the mature 39-kDa secreted Qa-2 molecule. This relationship is supported by the observation that murine L cells transfected with the Qa-2 encoding class I gene Q7 fail to express membrane-bound Qa-2 molecules yet synthesize both intracellular water-soluble and secreted Qa-2 molecules. These findings argue for a pathway in which secreted soluble Qa-2 molecules are derived from intracellular precursors.
Collapse
|
99
|
Moran P, Caras IW. A nonfunctional sequence converted to a signal for glycophosphatidylinositol membrane anchor attachment. J Cell Biol 1991; 115:329-36. [PMID: 1717483 PMCID: PMC2289147 DOI: 10.1083/jcb.115.2.329] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The COOH terminus of decay-accelerating factor (DAF) contains a signal that directs glycophosphatidylinositol (GPI) membrane anchor attachment in a process involving concerted proteolytic removal of 28 COOH-terminal residues. At least two elements are required for anchor addition: a COOH-terminal hydrophobic domain and a cleavage/attachment site located NH2-terminal to it, requiring a small amino acid as the acceptor for GPI addition. We previously showed that the last 29-37 residues of DAF, making up the COOH-terminal hydrophobic domain plus 20 residues of the adjacent serine/threonine-rich domain (including the anchor addition site), when fused to the COOH terminus of human growth hormone (hGH) will target the fusion protein to the plasma membrane via a GPI anchor. In contrast, a similar fusion protein (hGH-LDLR-DAF17, abbreviated HLD) containing a fragment of the serine/threonine-rich domain of the LDL receptor (LDLR) in place of the DAF-derived serine/threonine-rich sequences, does not become GPI anchored. We now show that this null sequence for GPI attachment can be converted to a strong GPI signal by mutating a pair of residues (valine-glutamate) in the LDLR sequence at a position corresponding to the normal cleavage/attachment site, to serine-glycine, as found in the DAF sequence. A single mutation (converting valine at the anchor addition site to serine, the normal acceptor for GPI addition in DAF) was insufficient to produce GPI anchoring, as was mutation of the valine-glutamate pair to serine-phenylalanine (a bulky residue). These results suggest that a pair of small residues (presumably flanking the cleavage point) is required for GPI attachment. By introducing the sequence serine-glycine (comprising a cleavage-attachment site for GPI addition) at different positions in the LDLR sequence of the fusion protein, HLD, we show that optimal GPI attachment requires a processing site positioned 10-12 residues NH2-terminal to the hydrophobic domain, the efficiency anchor attachment dropping off sharply as the cleavage site is moved beyond these limits. These data suggest that the GPI signal consists solely of a hydrophobic domain combined with a processing site composed of a pair of small residues, positioned 10-12 residues NH2-terminal to the hydrophobic domain. No other structural motifs appear necessary.
Collapse
Affiliation(s)
- P Moran
- Department of Immunobiology, Genentech, Inc., South San Francisco, California 94080
| | | |
Collapse
|
100
|
Parker CJ. Paroxysmal nocturnal hemoglobinuria and glycosyl phosphatidylinositol anchored proteins that regulate complement. Clin Exp Immunol 1991; 86 Suppl 1:36-42. [PMID: 1718642 PMCID: PMC1554036 DOI: 10.1111/j.1365-2249.1991.tb06205.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- C J Parker
- Division of Hematology/Oncology, Univerisity of Utah School of Medicine, Salt Lake City
| |
Collapse
|