51
|
Truong MJ, Delsart V, Bahr GM. Differentially expressed genes in HIV-1-infected macrophages following treatment with the virus-suppressive immunomodulator murabutide. Virus Res 2004; 99:25-33. [PMID: 14687943 DOI: 10.1016/j.virusres.2003.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The synthetic immunomodulator murabutide has been found to suppress human immunodeficiency virus type-1 (HIV-1) replication, in macrophages, through a regulated expression of cellular factors needed at different steps in the virus replication cycle. To identify cellular genes implicated in the murabutide-induced virus inhibition, we have carried out a differential display analysis on HIV-1-infected macrophages that were treated, or not, with murabutide. Sequencing of the differentially regulated cDNA bands and verification of the reproducibility of the murabutide effects, by reverse transcription-polymerase chain reaction or by Northern blotting, revealed an up-regulated expression of 21 genes and a down-regulation of seven others. The murabutide-regulated genes encoded proteins implicated in DNA binding, regulation of transcription, oxidative stress, metal binding, and other physiological functions. Six of the genes corresponded to unassigned/expressed sequence tags with yet unknown function. Among the genes which were up-regulated by murabutide and with established effects on inhibiting virus transcription, was the octamer binding factor 1 (Oct-1). We demonstrate the ability of murabutide to induce enhanced Oct-1 protein expression and DNA-binding activity in macrophages. Furthermore, our findings suggest the potential implication of additional transcription factors and metal-binding proteins in mediating the inhibitory effect of murabutide on virus transcription.
Collapse
Affiliation(s)
- Marie José Truong
- Laboratory of Molecular Immunology of Infection and Inflammation, Pasteur Institute in Lille, 1 Rue du Pr Calmette, BP 245, Lille Cedex 59019, France
| | | | | |
Collapse
|
52
|
Heath MJ, Derebail SS, Gorelick RJ, DeStefano JJ. Differing roles of the N- and C-terminal zinc fingers in human immunodeficiency virus nucleocapsid protein-enhanced nucleic acid annealing. J Biol Chem 2003; 278:30755-63. [PMID: 12783894 DOI: 10.1074/jbc.m303819200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The replication process of human immunodeficiency virus requires a number of nucleic acid annealing steps facilitated by the hybridization and helix-destabilizing activities of human immunodeficiency virus nucleocapsid (NC) protein. NC contains two CCHC zinc finger motifs numbered 1 and 2 from the N terminus. The amino acids surrounding the CCHC residues differ between the two zinc fingers. Assays were preformed to investigate the activities of the fingers by determining the effect of mutant and wild-type proteins on annealing of 42-nucleotide RNA and DNA complements. The mutants 1.1 NC and 2.2 NC had duplications of the N- and C-terminal zinc fingers in positions 1 and 2. The mutant 2.1 NC had the native zinc fingers with their positions switched. Annealing assays were completed with unstructured and highly structured oligonucleotide complements. 2.2 NC had a near wild-type level of annealing of unstructured nucleic acids, whereas it was completely unable to stimulate annealing of highly structured nucleic acids. In contrast, 1.1 NC was able to stimulate annealing of both unstructured and structured substrates, but to a lesser degree than the wild-type protein. Results suggest that finger 1 has a greater role in unfolding of strong secondary structures, whereas finger 2 serves an accessory role that leads to a further increase in the rate of annealing.
Collapse
Affiliation(s)
- Megan J Heath
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland 20742, USA
| | | | | | | |
Collapse
|
53
|
Simpson RJY, Cram ED, Czolij R, Matthews JM, Crossley M, Mackay JP. CCHX zinc finger derivatives retain the ability to bind Zn(II) and mediate protein-DNA interactions. J Biol Chem 2003; 278:28011-8. [PMID: 12736264 DOI: 10.1074/jbc.m211146200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Classical (CCHH) zinc fingers are among the most common protein domains found in eukaryotes. They function as molecular recognition elements that mediate specific contact with DNA, RNA, or other proteins and are composed of a betabetaalpha fold surrounding a single zinc ion that is ligated by two cysteine and two histidine residues. In a number of variant zinc fingers, the final histidine is not conserved, and in other unrelated zinc binding domains, residues such as aspartate can function as zinc ligands. To test whether the final histidine is required for normal folding and the DNA-binding function of classical zinc fingers, we focused on finger 3 of basic Krüppel-like factor. The structure of this domain was determined using NMR spectroscopy and found to constitute a typical classical zinc finger. We generated a panel of substitution mutants at the final histidine in this finger and found that several of the mutants retained some ability to fold in the presence of zinc. Consistent with this result, we showed that mutation of the final histidine had only a modest effect on DNA binding in the context of the full three-finger DNA-binding domain of basic Krüppel-like factor. Further, the zinc binding ability of one of the point mutants was tested and found to be indistinguishable from the wild-type domain. These results suggest that the final zinc chelating histidine is not an essential feature of classical zinc fingers and have implications for zinc finger evolution, regulation, and the design of experiments testing the functional roles of these domains.
Collapse
Affiliation(s)
- Raina J Y Simpson
- School of Molecular and Microbial Biosciences, G08, University of Sydney, New South Wales 2006, Australia
| | | | | | | | | | | |
Collapse
|
54
|
Rashkova S, Athanasiadis A, Pardue ML. Intracellular targeting of Gag proteins of the Drosophila telomeric retrotransposons. J Virol 2003; 77:6376-84. [PMID: 12743295 PMCID: PMC155015 DOI: 10.1128/jvi.77.11.6376-6384.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drosophila has two non-long-terminal-repeat (non-LTR) retrotransposons that are unique because they have a defined role in chromosome maintenance. These elements, HeT-A and TART, extend chromosome ends by successive transpositions, producing long arrays of head-to-tail repeat sequences. These arrays appear to be analogous to the arrays produced by telomerase on chromosomes of other organisms. While other non-LTR retrotransposons transpose to many chromosomal sites, HeT-A and TART transpose only to chromosome ends. Although HeT-A and TART belong to different subfamilies of non-LTR retrotransposons, they encode very similar Gag proteins, which suggests that Gag proteins are involved in their unique transposition targeting. We have recently shown that both Gags localize efficiently to nuclei where HeT-A Gag forms structures associated with telomeres. TART Gag does not associate with telomeres unless HeT-A Gag is present, suggesting a symbiotic relationship in which HeT-A Gag provides telomeric targeting. We now report studies to identify amino acid regions responsible for different aspects of the intracellular targeting of these proteins. Green fluorescent protein-tagged deletion derivatives were expressed in cultured Drosophila cells. The intracellular localization of these proteins shows the following. (i) Several regions that direct subcellular localizations or cluster formation are found in both Gags and are located in equivalent regions of the two proteins. (ii) Regions important for telomere association are present only in HeT-A Gag. These are present at several places in the protein, are not redundant, and cannot be complemented in trans. (iii) Regions containing zinc knuckle and major homology region motifs, characteristic of retroviral Gags, are involved in protein-protein interactions of the telomeric Gags, as they are in retroviral Gags.
Collapse
Affiliation(s)
- S Rashkova
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
55
|
Affiliation(s)
- Todor Dudev
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| | | |
Collapse
|
56
|
Lee EG, Alidina A, May C, Linial ML. Importance of basic residues in binding of rous sarcoma virus nucleocapsid to the RNA packaging signal. J Virol 2003; 77:2010-20. [PMID: 12525635 PMCID: PMC140994 DOI: 10.1128/jvi.77.3.2010-2020.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2001] [Accepted: 10/30/2002] [Indexed: 11/20/2022] Open
Abstract
In the context of the Rous sarcoma virus Gag polyprotein, only the nucleocapsid (NC) domain is required to mediate the specificity of genomic RNA packaging. We have previously showed that the Saccharomyces cerevisiae three-hybrid system provides a rapid genetic assay to analyze the RNA and protein components of the avian retroviral RNA-Gag interactions necessary for specific encapsidation. In this study, using both site-directed mutagenesis and in vivo random screening in the yeast three-hybrid binding assay, we have examined the amino acids in NC required for genomic RNA binding. We found that we could delete either of the two Cys-His boxes without greatly abrogating either RNA binding or packaging, although the two Cys-His boxes are likely to be required for efficient viral assembly and release. In contrast, substitutions for the Zn-coordinating residues within the boxes did prevent RNA binding, suggesting changes in the overall conformation of the protein. In the basic region between the two Cys-His boxes, three positively charged residues, as well as basic residues flanking the two boxes, were necessary for both binding and packaging. Our results suggest that the stretches of positively charged residues within NC that need to be in a proper conformation appear to be responsible for selective recognition and binding to the packaging signal (Psi)-containing RNAs.
Collapse
Affiliation(s)
- Eun-gyung Lee
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
57
|
Schito ML, Goel A, Song Y, Inman JK, Fattah RJ, Rice WG, Turpin JA, Sher A, Appella E. In vivo antiviral activity of novel human immunodeficiency virus type 1 nucleocapsid p7 zinc finger inhibitors in a transgenic murine model. AIDS Res Hum Retroviruses 2003; 19:91-101. [PMID: 12639244 DOI: 10.1089/088922203762688595] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Control of human immunodeficiency virus through the use of inexpensive chemotherapeutics, with minimal side effects and decreased potential for engendering resistant virus, is a long-term therapeutic goal. In principle, this goal can be accomplished if viral replication in reservoirs of chronically and latently infected cells is addressed. As a first step, we have developed novel antiviral compounds based on a 2-mercaptobenzamide thioester chemotype, including the pyridinioalkanoyl thioesters, which specifically target the zinc fingers of the human immunodeficiency virus nucleocapsid protein (NCp7). Using these compounds in a murine transgenic model, in which infectious human immunodeficiency virus is induced from an integrated provirus, we show inhibition of transgenic spleen cell p24 expression with potencies comparable to acute infection assays using human peripheral blood lymphocytes. More importantly, transgenic mice treated in vivo with two 2-mercaptobenzamide thioesters expressed significantly lower plasma p24, and splenocytes from these animals produced fewer infectious virions. Thus, these thioesters may provide an effective means for inhibiting the expression of human immunodeficiency virus from integrated viral reservoirs.
Collapse
Affiliation(s)
- Marco L Schito
- Chemical Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Affiliation(s)
- Michael S Chapman
- Department of Chemistry and Biochemistry, Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | | |
Collapse
|
59
|
Dudev T, Lim C. Factors governing the protonation state of cysteines in proteins: an Ab initio/CDM study. J Am Chem Soc 2002; 124:6759-66. [PMID: 12047197 DOI: 10.1021/ja012620l] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The detailed mechanism of metal-cysteine binding is still poorly understood. It is not clear if every metal cation can induce cysteine deprotonation, how the dielectric medium affects this process, and the extent to which other ligands from the metal's first and second coordination shell influence cysteine ionization. It is also not clear if the zinc cation, with its positive charge reduced by charge transfer from the first two bound cysteinates, could still assist deprotonation of the next one or two cysteines in Cys3His and Cys4 zinc-finger cores. Here, we elucidate the factors governing the cysteine protonation state in metal-binding sites, in particular in Zn.Cys4 complexes, using a combined ab initio and continuum dielectric approach. Transition metal dications such as Zn2+ and Cu2+ and trivalent cations such as Al3+ with pronounced ability to accept charge from negatively charged Cys- are predicted to induce cysteine deprotonation, but not "hard" divalent cations such as Mg2+. A high dielectric medium was found to favor cysteine deprotonation, while a low one favored the protonated state. Polarizable ligands in the metal's first shell that can competitively donate charge to the metal cation were found to lower the efficiency of the metal-assisted cysteine deprotonation. The calculations predict that the zinc cation could assist deprotonation of all the cysteines during the folding of Cys4 zinc-finger cores and the [Zn.(Cys-)4]2- state is likely to be preserved in the final folded conformation of the protein provided the binding site is tightly encapsulated by backbone peptide groups or lysine/arginine side chains, which stabilize the ionized cysteine core.
Collapse
Affiliation(s)
- Todor Dudev
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan R O C
| | | |
Collapse
|
60
|
Guo J, Wu T, Kane BF, Johnson DG, Henderson LE, Gorelick RJ, Levin JG. Subtle alterations of the native zinc finger structures have dramatic effects on the nucleic acid chaperone activity of human immunodeficiency virus type 1 nucleocapsid protein. J Virol 2002; 76:4370-8. [PMID: 11932404 PMCID: PMC155087 DOI: 10.1128/jvi.76.9.4370-4378.2002] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleocapsid protein (NC) of human immunodeficiency virus type 1 has two zinc fingers, each containing the invariant CCHC zinc-binding motif; however, the surrounding amino acid context is not identical in the two fingers. Recently, we demonstrated that zinc coordination is required when NC unfolds complex secondary structures in RNA and DNA minus- and plus-strand transfer intermediates; this property of NC reflects its nucleic acid chaperone activity. Here we have analyzed the chaperone activities of mutants having substitutions of alternative zinc-coordinating residues, i.e., CCHH or CCCC, for the wild-type CCHC motif. We also investigated the activities of mutants that retain the CCHC motifs but have mutations that exchange or duplicate the zinc fingers (mutants 1-1, 2-1, and 2-2); these changes affect amino acid context. Our results indicate that in general, for optimal activity in an assay that measures stimulation of minus-strand transfer and inhibition of nonspecific self-priming, the CCHC motif in the zinc fingers cannot be replaced by CCHH or CCCC and the amino acid context of the fingers must be conserved. Context changes also reduce the ability of NC to facilitate primer removal in plus-strand transfer. In addition, we found that the first finger is a more crucial determinant of nucleic acid chaperone activity than the second finger. Interestingly, comparison of the in vitro results with earlier in vivo replication data raises the possibility that NC may adopt multiple conformations that are responsible for different NC functions during virus replication.
Collapse
Affiliation(s)
- Jianhui Guo
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
White SA, Nilges M, Huang A, Brünger AT, Moore PB. NMR analysis of helix I from the 5S RNA of Escherichia coli. Biochemistry 2002; 31:1610-21. [PMID: 1371071 DOI: 10.1021/bi00121a005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure of helix I of the 5S rRNA from Escherichia coli has been determined using a nucleolytic digest fragment of the intact molecule. The fragment analyzed, which corresponds to bases (-1)-11 and 108-120 of intact 5S rRNA, contains a G-U pair and has unpaired bases at its termini. Its proton resonances were assigned by two-dimensional NMR methods, and both NOE distance and coupling constant information have been used to calculate structural models for it using the full relaxation matrix algorithm of the molecular dynamics program XPLOR. Helix I has A-type helical geometry, as expected. Its most striking departure from regular helical geometry occurs at its G-U, which stacks on the base pair to the 5' side of its G but not on the base pair to its 3' side. This stacking pattern maximizes interstrand guanine-guanine interactions and explains why the G-U in question fails to give imino proton NOE's to the base pair to 5' side of its G. These results are consistent with the crystal structures that have been obtained for wobble base pairs in tRNAPhe [Mizuno, H., & Sundaralingam, M. (1978) Nucleic Acids Res. 5, 4451-4461] and A-form DNA [Rabbinovich, D., Haran, T., Eisenstein, M., & Shakked, Z. (1988) J. Mol. Biol. 200, 151-161]. The conformations of the terminal residues of helix I, which corresponds to bases (-1)-11 and 108-120 of native 5S RNA, are less well-determined, and their sugar puckers are intermediate between C2' and C3'-endo, on average.
Collapse
Affiliation(s)
- S A White
- Department of Chemistry, Yale University, New Haven, Connecticut 06511
| | | | | | | | | |
Collapse
|
62
|
Rashkova S, Karam SE, Pardue ML. Element-specific localization of Drosophila retrotransposon Gag proteins occurs in both nucleus and cytoplasm. Proc Natl Acad Sci U S A 2002; 99:3621-6. [PMID: 11891280 PMCID: PMC122573 DOI: 10.1073/pnas.032071999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Many Drosophila non-long terminal repeat (LTR) retrotransposons actively transpose into internal, gene-rich regions of chromosomes but do not transpose onto chromosome ends. HeT-A and TART are remarkable exceptions; they form telomeres of Drosophila by repeated transpositions onto the ends of chromosomes and never transpose to internal regions of chromosomes. Both telomeric and nontelomeric, non-LTR elements transpose by target-primed reverse transcription, and their targets are not determined simply by DNA sequence, so it is not clear why these two kinds of elements have nonoverlapping transposition patterns. To explore roles of retrotransposon-encoded proteins in transposition, we analyzed intracellular targeting of Gag proteins from five non-LTR retrotransposons, HeT-A, TART, jockey, Doc, and I factor. All were expressed as green fluorescent protein-tagged proteins in cultured Drosophila cells. These Gag proteins have high levels of sequence similarity, but they have dramatic differences in intracellular targeting. As expected, HeT-A and TART Gags are transported efficiently to nuclei, where they show specific patterns of localization. These patterns are cell cycle-dependent, disappearing during mitosis. In contrast, only a fraction of jockey Gag moves into nuclei, whereas neither Doc nor I factor Gag is detected in the nucleus. Gags of the nontelomeric retrotransposons form characteristic clusters in the cytoplasm. These experiments demonstrate that closely related retrotransposon Gag proteins can have different intracellular localizations, presumably because they interact differently with cellular components. We suggest that these interactions reflect mechanisms by which the cell influences the level of transposition of an element.
Collapse
Affiliation(s)
- S Rashkova
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
63
|
Ramboarina S, Srividya N, Atkinson RA, Morellet N, Roques BP, Lefèvre JF, Mély Y, Kieffer B. Effects of temperature on the dynamic behaviour of the HIV-1 nucleocapsid NCp7 and its DNA complex. J Mol Biol 2002; 316:611-27. [PMID: 11866521 DOI: 10.1006/jmbi.2001.5379] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nucleocapsid protein NCp7 of human immunodeficiency virus type 1 (HIV-1) contains two highly conserved CCHC zinc fingers and is involved in many crucial steps of the virus life-cycle. A large number of physiological rôles of NCp7 involve its binding to single-stranded nucleic acid chains. Several solution structures of NCp7 and its complex with single-stranded RNA or DNA have been reported. We have investigated the changes in the dynamic behaviour experienced by the (12-53)NCp7 peptide upon DNA binding using (15)N heteronuclear relaxation measurements at 293 K and 308 K, and fluorescence spectroscopy. The relaxation data were interpreted using the reduced spectral density approach, which allowed the high-frequency motion, overall tumbling rates and the conformational exchange contributions to be characterized for various states of the peptide without using a specific motional model. Analysis of the temperature-dependent correlation times derived from both NMR and fluorescence data indicated a co-operative change of the molecular shape of apo (12-53)NCp7 around 303 K, leading to an increased hydrodynamic radius at higher temperatures. The binding of (12-53)NCp7 to a single-stranded d(ACGCC) pentanucleotide DNA led to a reduction of the conformational flexibility that characterized the apo peptide. Translational diffusion experiments as well as rotational correlation times indicated that the (12-53)NCp7/d(ACGCC) complex tumbles as a rigid object. The amplitudes of high-frequency motions were restrained in the complex and the occurrence of conformational exchange was displaced from the second zinc finger to the linker residue Ala30.
Collapse
Affiliation(s)
- Stéphanie Ramboarina
- Laboratoire de Génomique Structurale, CNRS UPR 9004 ESBS, Bd Sébastien Brant, Illkirch, France
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
L1 retrotransposons comprise 17% of the human genome. Although most L1s are inactive, some elements remain capable of retrotransposition. L1 elements have a long evolutionary history dating to the beginnings of eukaryotic existence. Although many aspects of their retrotransposition mechanism remain poorly understood, they likely integrate into genomic DNA by a process called target primed reverse transcription. L1s have shaped mammalian genomes through a number of mechanisms. First, they have greatly expanded the genome both by their own retrotransposition and by providing the machinery necessary for the retrotransposition of other mobile elements, such as Alus. Second, they have shuffled non-L1 sequence throughout the genome by a process termed transduction. Third, they have affected gene expression by a number of mechanisms. For instance, they occasionally insert into genes and cause disease both in humans and in mice. L1 elements have proven useful as phylogenetic markers and may find other practical applications in gene discovery following insertional mutagenesis in mice and in the delivery of therapeutic genes.
Collapse
Affiliation(s)
- E M Ostertag
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
65
|
Wilcox DE, Schenk AD, Feldman BM, Xu Y. Oxidation of zinc-binding cysteine residues in transcription factor proteins. Antioxid Redox Signal 2001; 3:549-64. [PMID: 11554444 DOI: 10.1089/15230860152542925] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent results on the oxidation of cysteine residues that bind zinc in transcription factors and their analogous peptides and in related proteins and model systems are reviewed. Two classes of oxidants, the transition metals and dioxygen, hydrogen peroxide, and related species, are considered, and the role of metal ions in suppressing or enhancing Cys oxidation is a major focus. Cysteines in the zinc-bound structures of transcription factors are less susceptible to oxidation than in the metal-free form, and this appears to correlate with reduced accessibility of the thiolates to oxidants. Substitution of other metal ions for Zn(II) increases the rate of Cys oxidation, apparently through increased oxidant accessibility. Reactions that result in reversible or irreversible oxidation of these zinc-binding cysteines under biological conditions are identified in the context of deleterious implications for gene expression.
Collapse
Affiliation(s)
- D E Wilcox
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| | | | | | | |
Collapse
|
66
|
Choi YH, Rho WS, Kim ND, Park SJ, Shin DH, Kim JW, Im SH, Won HS, Lee CW, Chae CB, Sung YC. Short peptides with induced beta-turn inhibit the interaction between HIV-1 gp120 and CD4. J Med Chem 2001; 44:1356-63. [PMID: 11311058 DOI: 10.1021/jm000403+] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To identify novel peptides that inhibit the interaction between human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 and CD4, we constructed a targeted phage-displayed peptide library in which phenylalanine and proline were fixed at the fourth and sixth positions, respectively, because Phe43 and the adjacent beta-turn of CD4 are critical for interaction with gp120. Two synthetic peptides were selected after three rounds of biopanning against gp120, and one of them, G1 peptide (ARQPSFDLQCGF), exhibited specific inhibition of the interaction between gp120 and CD4 with an IC(50) of about 50 microM. Structural analysis using NMR demonstrated that G1 peptide forms a compact cyclic structure similar to the CD4 region interacting with gp120. Two derivatives of G1 peptide, a linear hexameric peptide (G1-6) and a cyclic nonameric peptide (G1-c), were synthesized based on the structure of the G1 peptide. Interestingly, they showed higher inhibitory activities than did G1 peptide with IC(50)'s of 6 and 1 microM, respectively. Thus, this study might provide a new insight into the development of anti-HIV-1 inhibitors.
Collapse
Affiliation(s)
- Y H Choi
- Department of Molecular Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Dudev T, Lim C. Tetrahedral vs Octahedral Zinc Complexes with Ligands of Biological Interest: A DFT/CDM Study. J Am Chem Soc 2000. [DOI: 10.1021/ja0010296] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Todor Dudev
- Contribution from the Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, R.O.C., and Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan, R.O.C
| | - Carmay Lim
- Contribution from the Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, R.O.C., and Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan, R.O.C
| |
Collapse
|
68
|
Chen HT, Legault P, Glushka J, Omichinski JG, Scott RA. Structure of a (Cys3His) zinc ribbon, a ubiquitous motif in archaeal and eucaryal transcription. Protein Sci 2000; 9:1743-52. [PMID: 11045620 PMCID: PMC2144703 DOI: 10.1110/ps.9.9.1743] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Transcription factor IIB (TFIIB) is an essential component in the formation of the transcription initiation complex in eucaryal and archaeal transcription. TFIIB interacts with a promoter complex containing the TATA-binding protein (TBP) to facilitate interaction with RNA polymerase II (RNA pol II) and the associated transcription factor IIF (TFIIF). TFIIB contains a zinc-binding motif near the N-terminus that is directly involved in the interaction with RNA pol II/TFIIF and plays a crucial role in selecting the transcription initiation site. The solution structure of the N-terminal residues 2-59 of human TFIIB was determined by multidimensional NMR spectroscopy. The structure consists of a nearly tetrahedral Zn(Cys)3(His)1 site confined by type I and "rubredoxin" turns, three antiparallel beta-strands, and disordered loops. The structure is similar to the reported zinc-ribbon motifs in several transcription-related proteins from archaea and eucarya, including Pyrococcus furiosus transcription factor B (PfTFB), human and yeast transcription factor IIS (TFIIS), and Thermococcus celer RNA polymerase II subunit M (TcRPOM). The zinc-ribbon structure of TFIIB, in conjunction with the biochemical analyses, suggests that residues on the beta-sheet are involved in the interaction with RNA pol II/TFIIF, while the zinc-binding site may increase the stability of the beta-sheet.
Collapse
Affiliation(s)
- H T Chen
- Center for Metalloenzyme Studies, University of Georgia, Athens 30602-2556, USA
| | | | | | | | | |
Collapse
|
69
|
Amarasinghe GK, De Guzman RN, Turner RB, Chancellor KJ, Wu ZR, Summers MF. NMR structure of the HIV-1 nucleocapsid protein bound to stem-loop SL2 of the psi-RNA packaging signal. Implications for genome recognition. J Mol Biol 2000; 301:491-511. [PMID: 10926523 DOI: 10.1006/jmbi.2000.3979] [Citation(s) in RCA: 294] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The RNA genome of the human immunodeficiency virus type-1 (HIV-1) contains a approximately 120 nucleotide Psi-packaging signal that is recognized by the nucleocapsid (NC) domain of the Gag polyprotein during virus assembly. The Psi-site contains four stem-loops (SL1-SL4) that possess overlapping and possibly redundant functions. The present studies demonstrate that the 19 residue SL2 stem-loop binds NC with affinity (K(d)=110(+/-50) nM) similar to that observed for NC binding to SL3 (K(d)=170(+/-65) nM) and tighter than expected on the basis of earlier work, suggesting that NC-SL2 interactions probably play a direct role in the specific recognition and packaging of the full-length, unspliced genome. The structure of the NC-SL2 complex was determined by heteronuclear NMR methods using (15)N,(13)C-isotopically labeled NC protein and SL2 RNA. The N and C-terminal "zinc knuckles" (Cys-X(2)-Cys-X(4)-His-X(4)-Cys; X=variable amino acid) of HIV-1 NC bind to exposed guanosine bases G9 and G11, respectively, of the G8-G9-U10-G11 tetraloop, and residues Lys3-Lys11 of the N-terminal tail forms a 3(10) helix that packs against the proximal zinc knuckle and interacts with the RNA stem. These structural features are similar to those observed previously in the NMR structure of NC bound to SL3. Other features of the complex are substantially different. In particular, the N-terminal zinc knuckle interacts with an A-U-A base triple platform in the minor groove of the SL2 RNA stem, but binds to the major groove of SL3. In addition, the relative orientations of the N and C-terminal zinc knuckles differ in the NC-SL2 and NC-SL3 complexes, and the side-chain of Phe6 makes minor groove hydrophobic contacts with G11 in the NC-SL2 complex but does not interact with RNA in the NC-SL3 complex. Finally, the N-terminal helix of NC interacts with the phosphodiester backbone of the SL2 RNA stem mainly via electrostatic interactions, but does not bind in the major groove or make specific H-bonding contacts as observed in the NC-SL3 structure. These findings demonstrate that NC binds in an adaptive manner to SL2 and SL3 via different subsets of inter and intra-molecular interactions, and support a genome recognition/packaging mechanism that involves interactions of two or more NC domains of assembling HIV-1 Gag molecules with multiple Psi-site stem-loop packaging elements during the early stages of retrovirus assembly.
Collapse
Affiliation(s)
- G K Amarasinghe
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | | | | | | | |
Collapse
|
70
|
Payne JC, ter Horst MA, Godwin HA. Lead Fingers: Pb2+ Binding to Structural Zinc-Binding Domains Determined Directly by Monitoring Lead−Thiolate Charge-Transfer Bands. J Am Chem Soc 1999. [DOI: 10.1021/ja990899o] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John C. Payne
- Contribution from the Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| | - Marc A. ter Horst
- Contribution from the Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| | - Hilary Arnold Godwin
- Contribution from the Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| |
Collapse
|
71
|
Boresch S, Ringhofer S, Höchtl P, Steinhauser O. Towards a better description and understanding of biomolecular solvation. Biophys Chem 1999; 78:43-68. [PMID: 17030304 DOI: 10.1016/s0301-4622(98)00235-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/1998] [Revised: 11/12/1998] [Accepted: 11/23/1998] [Indexed: 11/26/2022]
Abstract
We introduce a flexible framework for the correct description of the solvation of biological macromolecules, the dielectric field equation (DFE). The formalism permits the use of any combination of quantum mechanical (QM), molecular mechanical (MM) and continuum electrostatic (CE) based techniques. For the CE region a method that yields the electric field rather than the potential is outlined. The DFE formalism makes clear the need to consider and to calibrate a dielectric boundary region surrounding the simulation system. The details of how to do this are presented for the case of the Ewald summation method; the effects are demonstrated by calculations of the dielectric properties and the spatially resolved Kirkwood G-factor, G(K)(r), of TIP3P water. Computing the dielectric properties of a multi-component system provides a sensitive method to better understand the solvation of biological macromolecules. Towards this goal a rigorous analysis of the dielectric properties of solvated biomolecules based on a decomposition of the frequency-dependent dielectric constant (or susceptibility) of the full system is presented. The meaning of our approach is investigated, and the results of a first application are reported. Using the method of Voronoi polyhedra, the dielectric properties of the first two solvation shells and bulk water are compared by re-analyzing a 12-ns trajectory of a zinc finger peptide in water [Löffler et al. J. Mol. Biol. 270 (1997) 520]. It is found that the first shell behaves considerably different; in addition, there is a non-negligible contribution to the total susceptibility of the system from coupling between the protein and the bulk water phase, i.e. the water molecules not in the immediate vicinity of the solute.
Collapse
Affiliation(s)
- S Boresch
- Institut für Theoretische Chemie und Molekulare Strukturbiologie, Universität Wien, Währingerstrasse 17, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
72
|
Urbaneja MA, Kane BP, Johnson DG, Gorelick RJ, Henderson LE, Casas-Finet JR. Binding properties of the human immunodeficiency virus type 1 nucleocapsid protein p7 to a model RNA: elucidation of the structural determinants for function. J Mol Biol 1999; 287:59-75. [PMID: 10074407 DOI: 10.1006/jmbi.1998.2521] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HIV-1 nucleocapsid protein (NCp7) is a double zinc-fingered protein that has been traditionally implicated in viral RNA recognition and packaging, in addition to its tight association with genomic RNA and tRNA primer within the virion nucleocapsid. The availability of large quantities of viral or recombinant wild-type NCp7 and mutant p7 has made possible the assignment of the different roles that structural motifs within the protein play during RNA binding. At low ionic strength binding to the homopolymeric fluorescent RNA, poly(epsilonA), is electrostatically driven and four sodium ions are displaced. Arg7 in the flanking N-terminal region, Lys20 and Lys26 in the first zinc finger and one positively charged residue (attributed to Lys41) in the second zinc finger are involved in electrostatic contacts with RNA. The p7 zinc fingers do not function independently but concomitantly. The first zinc finger (both isolated or in the context of the full-length protein) has a more prominent electrostatic interaction than the second one. The second zinc finger dominates the non-electrostatic stabilization of the binding to RNA due to stacking of its Trp residue with nucleic acid bases. Mutations in the highly conserved retroviral Zn-coordinating residues (CCHC) to steroid hormone receptor (CCCC) or transcription factor (CCHH) metal cluster types do not affect RNA binding. In spite of the limited impact in RNA binding affinity in vitro or RNA packaging in vivo that such mutations or structural alterations impart, they impair or abolish virus infectivity. It is likely that such an effect stems from the involvement of NCp7 in crucial steps of the virus life cycle other than RNA binding.
Collapse
Affiliation(s)
- M A Urbaneja
- AIDS Vaccine Program, SAIC Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, MD, 21702-1201, USA.
| | | | | | | | | | | |
Collapse
|
73
|
Obata T, Yanagidani A, Yokoro K, Numoto M, Yamamoto S. Analysis of the consensus binding sequence and the DNA-binding domain of ZF5. Biochem Biophys Res Commun 1999; 255:528-34. [PMID: 10049742 DOI: 10.1006/bbrc.1998.9970] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Murine ZF5 is a transcription factor with five zinc finger motifs that represses the c-myc gene by binding to two GC-rich elements at the promoter region. Because of its ubiquitous expression in a variety of tissues, elucidation of biological functions and cellular target genes of ZF5 is of great interest. As the first step of identifying cellular target genes, we have attempted to determine the consensus binding motif for ZF5. We succeeded in isolating 19 oligonucleotide duplex DNAs to which ZF5 binds and determined the binding sequences with DNase I footprinting analysis. From these sequences, we deduced the consensus binding motif for ZF5 to be GSGCGCGR. In addition, we have analyzed the DNA-binding domain of ZF5 by testing a series of deletion mutants. It turned out that the zinc fingers 3 and 4 of the five finger motifs play a critical role in DNA binding.
Collapse
Affiliation(s)
- T Obata
- Department of Dermatology, Hiroshima University School of Medicine, Japan.
| | | | | | | | | |
Collapse
|
74
|
Otto J, Jolk I, Viland T, Wonnemann R, Krebs B. Metal(II) complexes with monodentate S and N ligands as structural models for zinc–sulfur DNA-binding proteins. Inorganica Chim Acta 1999. [DOI: 10.1016/s0020-1693(98)00351-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
75
|
Abstract
The human immunodeficiency virus (HIV) genome encodes a total of three structural proteins, two envelope proteins, three enzymes, and six accessory proteins. Studies over the past ten years have provided high-resolution three-dimensional structural information for all of the viral enzymes, structural proteins and envelope proteins, as well as for three of the accessory proteins. In some cases it has been possible to solve the structures of the intact, native proteins, but in most cases structural data were obtained for isolated protein domains, peptidic fragments, or mutants. Peptide complexes with two regulatory RNA fragments and a protein complex with an RNA recognition/encapsidation element have also been structurally characterized. This article summarizes the high-resolution structural information that is currently available for HIV proteins and reviews current structure-function and structure-biological relationships.
Collapse
Affiliation(s)
- B G Turner
- Howard Hughes Medical Institute, Department of Chemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | | |
Collapse
|
76
|
Lehmann E, Zenobi R, Vetter S. Matrix-assisted laser desorption/ionization mass spectra reflect solution-phase zinc finger peptide complexation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 1999; 10:27-34. [PMID: 9888182 DOI: 10.1016/s1044-0305(98)00116-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The complexation between an 18-residue zinc finger peptide of CCHC type (CCHC = Cys-X2-Cys-X4-His-X4-Cys, X = variable amino acid) from the gag protein p55 of human immunodeficiency virus type 1 (HIV-1) and various transition metal ions was studied by means of circular dichroism spectroscopy and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). A correlation between the complexation behavior in solution and in MALDI-MS could be established. It was shown that MALDI-MS is a fast method suitable for studying metal binding properties of zinc finger complexes.
Collapse
Affiliation(s)
- E Lehmann
- Laboratory of Organic Chemistry, ETH Zürich, Switzerland
| | | | | |
Collapse
|
77
|
Lehmann E, Zenobi R. Detektion spezifischer nichtkovalenter Zinkfingerpeptid-Oligodesoxynucleotid-Komplexe durch matrixunterstützte Laserdesorptions/Ionisations-Massenspektrometrie. Angew Chem Int Ed Engl 1998. [DOI: 10.1002/(sici)1521-3757(19981217)110:24<3600::aid-ange3600>3.0.co;2-g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
78
|
Bouchemal-Chibani N, du Penhoat CH, Abdelkafi M, Ghomi M, Turpin PY. Characterization of the dynamic behavior of r(ACC) and r(AAC) with NMR relaxation data and both metropolis monte carlo and molecular dynamics simulations. Biopolymers 1998. [DOI: 10.1002/(sici)1097-0282(199610)39:4<549::aid-bip7>3.0.co;2-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
79
|
Abstract
The Gag proteins of HIV-1, like those of other retroviruses, are necessary and sufficient for the assembly of virus-like particles. The roles played by HIV-1 Gag proteins during the life cycle are numerous and complex, involving not only assembly but also virion maturation after particle release and early postentry steps in virus replication. As the individual Gag domains carry out their diverse functions, they must engage in interactions with themselves, other Gag proteins, other viral proteins, lipid, nucleic acid (DNA and RNA), and host cell proteins. This review briefly summarizes our current understanding of how HIV-1 Gag proteins function in the virus life cycle.
Collapse
Affiliation(s)
- E O Freed
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892-0460, USA.
| |
Collapse
|
80
|
Gao Y, Kaluarachchi K, Giedroc DP. Solution structure and backbone dynamics of Mason-Pfizer monkey virus (MPMV) nucleocapsid protein. Protein Sci 1998; 7:2265-80. [PMID: 9827993 PMCID: PMC2143852 DOI: 10.1002/pro.5560071104] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Retroviral nucleocapsid proteins (NCPs) are CCHC-type zinc finger proteins that mediate virion RNA binding activities associated with retrovirus assembly and genomic RNA encapsidation. Mason-Pfizer monkey virus (MPMV), a type D retrovirus, encodes a 96-amino acid nucleocapsid protein, which contains two Cys-X2-Cys-X4-His-X4-Cys (CCHC) zinc fingers connected by an unusually long 15-amino acid linker. Homonuclear, two-dimensional sensitivity-enhanced 15N-1H, three-dimensional 15N-1H, and triple resonance NMR spectroscopy have been used to determine the solution structure and residue-specific backbone dynamics of the structured core domain of MPMV NCP containing residues 21-80. Structure calculations and spectral density mapping of N-H bond vector mobility reveal that MPMV NCP 21-80 is best described as two independently folded, rotationally uncorrelated globular domains connected by a seven-residue flexible linker consisting of residues 42-48. The N-terminal CCHC zinc finger domain (residues 24-37) appears to adopt a fold like that described previously for HIV-1 NCP; however, residues within this domain and the immediately adjacent linker region (residues 38-41) are characterized by extensive conformational averaging on the micros-ms time scale at 25 degrees C. In contrast to other NCPs, residues 49-77, which includes the C-terminal CCHC zinc-finger (residues 53-66), comprise a well-folded globular domain with the Val49-Pro-Gly-Leu52 sequence and C-terminal tail residues 67-77 characterized by amide proton exchange properties and 15N R1, R2, and (1H-15N) NOE values indistinguishable to residues in the core C-terminal finger. Twelve refined structural models of MPMV NCP residues 49-80 (pairwise backbone RMSD of 0.77 A) reveal that the side chains of the conserved Pro50 and Trp62 are in van der Waals contact with one another. Residues 70-73 in the C-terminal tail adopt a reverse turn-like structure. Ile77 is involved in extensive van der Waals contact with the core finger domain, while the side chains of Ser68 and Asn75 appear to form hydrogen bonds that stabilize the overall fold of this domain. These residues outside of the core finger structure are conserved in D-type and related retroviral NCPs, e.g., MMTV NCP, suggesting that the structure of MPMV NCP may be representative of this subclass of retroviral NCPs.
Collapse
Affiliation(s)
- Y Gao
- Center for Macromolecular Design, Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843-2128, USA
| | | | | |
Collapse
|
81
|
Morellet N, Déméné H, Teilleux V, Huynh-Dinh T, de Rocquigny H, Fournié-Zaluski MC, Roques BP. Structure of the complex between the HIV-1 nucleocapsid protein NCp7 and the single-stranded pentanucleotide d(ACGCC). J Mol Biol 1998; 283:419-34. [PMID: 9769215 DOI: 10.1006/jmbi.1998.2098] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nucleocapsid protein NCp7 of HIV-1 Mal contains two successive Zn knuckles of the CX2CX4HX4C type and plays a major role in virion morphogenesis, genomic RNA packaging and viral infectivity, mainly through single-stranded nucleic acid binding. We report here the study by 1H 2D NMR of the complex formed between the (12-53)NCp7, encompassing the two Zn knuckles, and d(ACGCC), a deoxynucleotide sequence analog corresponding to the shortest NCp7 binding site. Ten structures of the (12-53)NCp7/d(ACGCC) complex have been obtained from 607 NOE-derived distance constraints, 28 of which are intermolecular, and from molecular dynamics studies. The oligonucleotide is almost perpendicular to the sequence linking the two Zn knuckles. The Trp37 indole ring is inserted between the C2 and G3 bases and stacked on the latter. The complex is stabilized by hydrophobic interactions and hydrogen bonds, and accounts for the observed loss of virus infectivity induced by mutations in the Zn knuckle domain. Thus, the interaction between d(ACGCC) and the inactive mutant Cys23 (12-53)NCp7 was found by NMR to be completely different from that observed with the wild-type peptide. A mechanism of action for NCp7 in virus morphogenesis and replication is proposed from these results, which could facilitate the design of possible antiviral agents acting by a new mechanism.
Collapse
Affiliation(s)
- N Morellet
- UFR des Sciences Pharmaceutiques et Biologiques, U 266 INSERM-URA D1500 CNRS, 4 avenue de l'Observatoire, Paris Cedex 06, 75270, France
| | | | | | | | | | | | | |
Collapse
|
82
|
Lee BM, De Guzman RN, Turner BG, Tjandra N, Summers MF. Dynamical behavior of the HIV-1 nucleocapsid protein. J Mol Biol 1998; 279:633-49. [PMID: 9641983 DOI: 10.1006/jmbi.1998.1766] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The HIV-1 nucleocapsid protein (NC) contains two CCHC-type zinc knuckle domains that are essential for genome recognition, packaging and infectivity. The solution structure of the protein has been determined independently by three groups. Although the structures of the individual zinc knuckle domains are similar, two of the studies indicated that the knuckles behave as independently folded, non-interacting domains connected by a flexible tether, whereas one study revealed the presence of interknuckle NOE cross-peaks, which were interpreted in terms of a more compact structure in which the knuckles are in close proximity. We have collected multidimensional NMR data for the recombinant, isotopically labeled HIV-1 NC protein, and confirmed the presence of weak interknuckle NOEs. However, the NOE data are not consistent with a single protein conformation. 15N NMR relaxation studies reveal that the two zinc knuckle domains possess different effective rotational correlation times, indicating that the knuckles are not tumbling as a single globular domain. In addition, the 1H NMR chemical shifts of isolated zinc knuckle peptides are very similar to those of the intact protein. The combined results indicate that the interknuckle interactions, which involve the close approach of the side-chains of Phe16 and Trp37, are transitory. The solution behavior of NC may be best considered as a rapid equilibrium between conformations with weakly interacting and non-interacting knuckle domains. This inherent conformational flexibility may be functionally important, enabling adaptive binding of NC to different recognition elements within the HIV-1 psi-RNA packaging signal.
Collapse
Affiliation(s)
- B M Lee
- Howard Hughes Medical Institute, University of Maryland, Baltimore County 21250, USA
| | | | | | | | | |
Collapse
|
83
|
Danilevskaya ON, Tan C, Wong J, Alibhai M, Pardue ML. Unusual features of the Drosophila melanogaster telomere transposable element HeT-A are conserved in Drosophila yakuba telomere elements. Proc Natl Acad Sci U S A 1998; 95:3770-5. [PMID: 9520442 PMCID: PMC19912 DOI: 10.1073/pnas.95.7.3770] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/1998] [Indexed: 02/06/2023] Open
Abstract
HeT-A was the first transposable element shown to have a bona fide role in chromosome structure, maintenance of telomeres in Drosophila melanogaster. HeT-A has hallmarks of non-long-terminal-repeat (non-LTR) retrotransposable elements but also has several unique features. We have now isolated HeT-A elements from Drosophila yakuba, showing that the retrotransposon mechanism of telomere maintenance predates the separation of D. melanogaster and D. yakuba (5-15 million years ago). HeT-A elements from the two species show significant sequence divergence, yet unusual features seen in HeT-Amel are conserved in HeT-Ayak. In both species, HeT-A elements are found in head-to-tail tandem arrays in telomeric heterochromatin. In both species, nearly half of the HeT-A sequence is noncoding and shows a distinctive imperfect repeat pattern of A-rich segments. Neither element encodes reverse transcriptase. The HeT-Amel promoter appears to be intermediate between the promoters of non-LTR and of LTR retrotransposons. The HeT-Ayak promoter shows similar features. HeT-Amel has a frameshift within the coding region. HeT-Ayak does not require a frameshift but shows conservation of the polypeptide sequence of the frameshifted product of D. melanogaster.
Collapse
Affiliation(s)
- O N Danilevskaya
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
84
|
Remy E, de Rocquigny H, Petitjean P, Muriaux D, Theilleux V, Paoletti J, Roques BP. The annealing of tRNA3Lys to human immunodeficiency virus type 1 primer binding site is critically dependent on the NCp7 zinc fingers structure. J Biol Chem 1998; 273:4819-22. [PMID: 9478919 DOI: 10.1074/jbc.273.9.4819] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The nucleocapsid protein NCp7 of the human immunodeficiency virus type 1 contains two zinc fingers of the CX2CX4HX4C type, flanked by several basic residues, and plays a major role in viral infectivity. Thus, NCp7 was shown to promote annealing of the tRNA3Lys to the primer binding site, a key step in reverse transcription. However, previous in vitro experiments were unable to clarify the role of the zinc fingers in this process, due to nucleic acid aggregation induced by the basic N- and C-terminal domains of NCp7. We show here that deletion of these sequences in (12-53)NCp7 strongly reduces the formation of aggregates and allows a direct visualization of the binary or ternary complexes between NCp7 and nucleic acids by gel electrophoresis. (12-53)NCp7 is able to induce hybridization of the 33P tRNA3Lys and the human immunodeficiency virus type 1 viral RNA-(77-257), which contains the primer binding site. Modification of the proximal zinc finger conformation in Cys23(12-53)NCp7 led to a large reduction in this hybridization process, while replacement of Trp37 by Leu in the distal zinc fingers resulted in a complete absence of annealing activity. These data account for the in vivo loss of viral infectivity following these mutations and emphasize the critical role of the structure of the zinc finger domain of NCp7. This could facilitate a rational approach to new antiviral agents directed toward NCp7.
Collapse
MESH Headings
- Amino Acid Sequence
- Capsid/genetics
- Capsid/metabolism
- Capsid Proteins
- Gene Products, gag/genetics
- Gene Products, gag/metabolism
- HIV-1/genetics
- Molecular Sequence Data
- Mutation
- Nucleic Acid Hybridization
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Transcription, Genetic
- Viral Proteins
- Zinc Fingers/genetics
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- E Remy
- Département de Pharmacochimie Moléculaire and Structurale, U266 INSERM-URA D1500 CNRS, UER des Sciences Pharmaceutiques et Biologiques, 4, Avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | | | | | | | | | | | | |
Collapse
|
85
|
De Guzman RN, Wu ZR, Stalling CC, Pappalardo L, Borer PN, Summers MF. Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi-RNA recognition element. Science 1998; 279:384-8. [PMID: 9430589 DOI: 10.1126/science.279.5349.384] [Citation(s) in RCA: 556] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The three-dimensional structure of the human immunodeficiency virus-type 1 (HIV-1) nucleocapsid protein (NC) bound to the SL3 stem-loop recognition element of the genomic Psi RNA packaging signal has been determined by heteronuclear magnetic resonance spectroscopy. Tight binding (dissociation constant, approximately 100 nM) is mediated by specific interactions between the amino- and carboxyl-terminal CCHC-type zinc knuckles of the NC protein and the G7 and G9 nucleotide bases, respectively, of the G6-G7-A8-G9 RNA tetraloop. A8 packs against the amino-terminal knuckle and forms a hydrogen bond with conserved Arg32, and residues Lys3 to Arg10 of NC form a 310 helix that binds to the major groove of the RNA stem and also packs against the amino-terminal zinc knuckle. The structure provides insights into the mechanism of viral genome recognition, explains extensive amino acid conservation within NC, and serves as a basis for the development of inhibitors designed to interfere with genome encapsidation.
Collapse
Affiliation(s)
- R N De Guzman
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland-Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | | | | | | | |
Collapse
|
86
|
Bavoso A, Ostuni A, Battistuzzi G, Menabue L, Saladini M, Sola M. Metal ion binding to a zinc finger peptide containing the Cys-X2-Cys-X4-His-X4-Cys domain of a nucleic acid binding protein encoded by the Drosophila Fw-element. Biochem Biophys Res Commun 1998; 242:385-9. [PMID: 9446804 DOI: 10.1006/bbrc.1997.7974] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The metal binding properties of a 18-residue zinc finger peptide containing a CCHC box which reproduces one of the cysteine-rich domains of a putative nucleic acid binding protein encoded by the Fw transposable element from Drosophila melanogaster were investigated through electronic and 1H NMR spectroscopy. Dissociation constants of 2(+/- 1) x 10(-12) M and 4(+/- 1) x 10(-7) M were determined for the Zn2+ and Co2+ adduct, respectively. These values are similar to those for other CCHC-peptides investigated previously, although the length of the spacer between the second cysteine and the histidine apparently exerts some influence on the spectral properties and on the stability of the Co(2+)-peptide adduct. The 1H NMR spectrum of the present Co(2+)-derivative contains a number of well resolved hyperfine-shifted resonances between 350 and -50 ppm which arise from the metal binding residues and nearby groups. These peaks can in principle be profitably exploited to monitor protein-nucleic acid interactions.
Collapse
Affiliation(s)
- A Bavoso
- Department of Chemistry, University of Basilicata, Potenza, Italy
| | | | | | | | | | | |
Collapse
|
87
|
|
88
|
Cuajungco MP, Lees GJ. Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol Dis 1997; 4:137-69. [PMID: 9361293 DOI: 10.1006/nbdi.1997.0163] [Citation(s) in RCA: 405] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Zinc is an important trace element in biology. An important pool of zinc in the brain is the one present in synaptic vesicles in a subgroup of glutamatergic neurons. In this form it can be released by electrical stimulation and may serve to modulate responses at receptors for a number of different neurotransmitters. These include both excitatory and inhibitory receptors, particularly the NMDA and GABA(A) receptors. This pool of zinc is the only form of zinc readily stained histochemically (the chelatable zinc pool), but constitutes only about 8% of the total zinc content in the brain. The remainder of the zinc is more or less tightly bound to proteins where it acts either as a component of the catalytic site of enzymes or in a structural capacity. The metabolism of zinc in the brain is regulated by a number of transport proteins, some of which have been recently characterized by gene cloning techniques. The intracellular concentration may be mediated both by efflux from the cell by the zinc transporter ZrT1 and by complexing with apothionein to form metallothlonein. Metallothionein may serve as the source of zinc for incorporation into proteins, including a number of DNA transcription factors. However, zinc is readily released from metallothionein by disulfides, increasing concentrations of which are formed under oxidative stress. Metallothionein is a very good scavenger of free radicals, and zinc itself can also reduce oxidative stress by binding to thiol groups, decreasing their oxidation. Zinc is also a very potent inhibitor of nitric oxide synthase. Increased levels of chelatable zinc have been shown to be present in cell cultures of immune cells undergoing apoptosis. This is very reminiscent of the zinc staining of neuronal perikarya dying after an episode of ischemia or seizure activity. Thus a possible role of zinc in causing neuronal death in the brain needs to be fully investigated. intraventricular injections of calcium EDTA have already been shown to reduce neuronal death after a period of ischemia. Pharmacological doses of zinc cause neuronal death, and some estimates indicate that extracellular concentrations of zinc could reach neurotoxic levels under pathological conditions. Zinc is released in high concentrations from the hippocampus during seizures. Unfortunately, there are contrasting observations as to whether this zinc serves to potentiate or decrease seizure activity. Zinc may have an additional role in causing death in at least some neurons damaged by seizure activity and be involved in the sprouting phenomenon which may give rise to recurrent seizure propagation in the hippocampus. In Alzheimer's disease, zinc has been shown to aggregate beta-amyloid, a form which is potentially neurotoxic. The zinc-dependent transcription factors NF-kappa B and Sp1 bind to the promoter region of the amyloid precursor protein (APP) gene. Zinc also inhibits enzymes which degrade APP to nonamyloidogenic peptides and which degrade the soluble form of beta-amyloid. The changes in zinc metabolism which occur during oxidative stress may be important in neurological diseases where oxidative stress is implicated, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). Zinc is a structural component of superoxide dismutase 1, mutations in which give rise to one form of familiar ALS. After HIV infection, zinc deficiency is found which may be secondary to immune-induced cytokine synthesis. Zinc is involved in the replication of the HIV virus at a number of sites. These observations should stimulate further research into the role of zinc in neuropathology.
Collapse
Affiliation(s)
- M P Cuajungco
- Department of Psychiatry and Behavioural Science, University of Auckland School of Medicine, New Zealand
| | | |
Collapse
|
89
|
Roques BP, Morellet N, de Rocquigny H, Déméné H, Schueler W, Jullian N. Structure, biological functions and inhibition of the HIV-1 proteins Vpr and NCp7. Biochimie 1997; 79:673-80. [PMID: 9479450 DOI: 10.1016/s0300-9084(97)83501-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Gag-encoded nucleocapsid protein NCp7 (72 amino acids) from HIV-1, the regulatory protein, Vpr (96 amino acids) and numerous derivatives have been synthesized by solid phase method and their structures determined by 2D NMR. In NCp7, the two highly folded zinc fingers of the Cx2Cx4Hx4C type are in close spacial proximity and the replacement of H by C in the first zinc finger or P by L in the short interdigital domain led to structural modifications evidenced by NMR. In vivo, these point mutations induced a complete loss of viral infectivity by interrupting critical step(s) of the retroviral life cycle. To account for these findings, a model of the complex between NCp7 and d (ACGCC) has been proposed from NMR data, showing the intercalation of Trp37 in the oligonucleotide. This model could also explain the role of NCp7 in the formation of viral particles and agrees with the modifications in morphology of the virions containing mutations in the NCp7 zinc fingers. Vpr is essentially constituted by two long helical domains at its N- and C-terminals and the side chains of Leu60 and Leu67 participate in a leucine-zipper mode of intramolecular interaction. The results obtained have been used to try to develop new antiviral agents inhibiting NCp7 functions and thus possibly devoid of the resistance effects found with inhibitors of HIV enzymes (reverse transcriptase and protease).
Collapse
Affiliation(s)
- B P Roques
- Département de Pharmacochimie Moléculaire et Structurale, U266 INSERM, URA D1500 CNRS, Université René-Descartes, UFR des Sciences Pharmaceutiques et Biologiques, Paris, France
| | | | | | | | | | | |
Collapse
|
90
|
Bertini I, Donaire A, Felli IC, Luchinat C, Rosato A. 1H and (13)C NMR Studies of an Oxidized HiPIP. Inorg Chem 1997; 36:4798-4803. [PMID: 11670159 DOI: 10.1021/ic970057v] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1H-(13)C HETCOR NMR spectra have been recorded for the oxidized HiPIP I from Ectothiorhodospira halophila for which an extended (1)H assignment was available. The hyperfine shifts of the alpha and beta carbons of the coordinated cysteines, as well as those of their attached protons, have been discussed in terms of the current magnetic coupling models and of the mechanisms of spin density delocalization. Through HSQC spectra preceded by a proton 180 degrees pulse, the nonselective T(1) values of the protons have been accurately obtained. It is shown how the nuclear T(1) values can be used as constraints, together with NOEs, for solution structure determination even when the present magnetic coupling scheme occurs. The oxidized cluster is shown to have an effective relaxation time much shorter than that in the reduced state.
Collapse
Affiliation(s)
- Ivano Bertini
- Departments of Chemistry and of Soil Science and Plant Nutrition, University of Florence, Florence, Italy
| | | | | | | | | |
Collapse
|
91
|
Yamamura T, Watanabe T, Kikuchi A, Yamane T, Ushiyama M, Hirota H. Conformation Control of Peptides by Metal Ions. Coordination Conformation Correlation Observed in a Model for Cys-X-Y-Cys/M(2+) in Proteins. Inorg Chem 1997; 36:4849-4859. [PMID: 11670165 DOI: 10.1021/ic961009y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The structure of [(Boc-Cys(1)-Pro-Leu-Cys(4)-OMe)(S-tert-C(4)H(9))Hg](-) (Boc: butoxycarbonyl), 1, was studied in N,N-dimethylformamide (DMF) and compared with that of [(Boc-Cys(1)-Pro-Leu-Cys(4)-OMe)Hg], 2, in order to discuss the intrinsic structural feature of the cysteine-containing metal-binding sites of proteins: Cys(i)-X-Y-Cys(i)(+3)/M(2+). 1 was generated by the reaction of 2 with NaS-tert-C(4)H(9). The geometry of the mercury ion (Hg(2+)) in 1 was proposed to be trigonal planar by UV-vis spectroscopy and Hg L(III) edge X-ray absorption fine structure (XAFS) measurements. Extended X-ray absorption fine structure (EXAFS) calculations yielded r(Hg-S) = 2.42 Å. Analyses of the nuclear Overhauser and exchange spectroscopy (NOESY) and the rotating frame nuclear Overhauser effect spectroscopy (ROESY) spectra of 1 in DMF-d(7) gave approximate distances for the 21 (1)H-(1)H pairs of the main chain loop. These results on distance information were processed by distance geometry (DG) and restrained molecular dynamics (RMD) calculations in order to optimize the molecular structure of 1. Molecular dynamics (MD) calculations were also performed. We proposed that the trigonal planar Hg(2+) in 1 regulates the hydrogen-bonding schemes of the peptide in the same manner as the tetrahedral ions involved in the Cys(i)-X-Y-Cys(i)(+3)/M(2+) core sites in natural proteins, forming two hydrogen bonds, Cys(1) S-Leu H(N) and Cys(1) S-Cys(4) H(N). This is in contrast to 2, where the linear coordinate mercury causes another type of hydrogen-bonding scheme, Cys(1) S-Leu H(N) and Pro CO-Cys(4) H(N). Details of the effect of trigonal planar Hg(2+) on the peptide conformation were analyzed with respect to the phi, varphi, and chi torsion angles of the peptide chain. The effect of the change of the angleS-Hg-S bite angle on the conformation of Cys-Pro-Leu-Cys was also discussed on the basis of MD calculations. The distribution area of Leu (phi, varphi) in the Ramachandran plot moves from near the alpha helix region to the turn structure region as the bite angle increases from 90 to 180 degrees, accompanying the change in the hydrogen-bonding scheme. The critical bite angle is around 140 degrees. The analysis revealed that angleS-Hg-S congruent with 110 degrees, which corresponds to the tetrahedral coordination geometry of the central metal ion, allows a high flexibility of the Cys-Pro-Leu-Cys skeleton.
Collapse
Affiliation(s)
- Takeshi Yamamura
- Department of Chemistry, Faculty of Science, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162, Japan, and Kawachi Millibioflight Project, ERATO, JST, 4-7-6 Komaba, Meguro-ku, Tokyo 153, Japan
| | | | | | | | | | | |
Collapse
|
92
|
Dong CZ, De Rocquigny H, Rémy E, Mellac S, Fournié-Zaluski MC, Roques BP. Synthesis and biological activities of fluorescent acridine-containing HIV-1 nucleocapsid proteins for investigation of nucleic acid-NCp7 interactions. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1997; 50:269-78. [PMID: 9352465 DOI: 10.1111/j.1399-3011.1997.tb01468.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Specific interactions between the 72-amino acid nucleocapsid protein NCp7 of the human immunodeficiency virus, type 1 and the genomic RNA are essential for virus replication. Studies on the mechanism of action of NCp7 require a direct visualization of its complexes with nucleic acids and the determination of binding affinities. To facilitate these investigations, fluorescent NCp7 derivatives were developed by introduction in the NCp7 sequence of a non-natural amino acid, (S)-beta-(9-acridinyl)alanine (Aca) obtained by a chiral synthetic method. Three fluorescent NCp7 derivatives were obtained by introducing this amino acid at different positions. As shown by NMR, the three-dimensional structure of NCp7 is not altered by introduction of Aca. The fluorescent peptides were found to be as potent as their precursors in interacting with nucleic acids and in promoting HIV-1 genomic RNA dimerization. Moreover, because of their fluorescent properties, these NCp7s can be used at submicromolar concentrations to directly visualize and quantify protein-nucleic acid interactions in solution or after gel electrophoresis. This could facilitate the development of new antiviral agents aimed at inhibiting the functions of NCp7 and studies on the intracellular traffic of NCp7 within the preintegration complex.
Collapse
Affiliation(s)
- C Z Dong
- Département de Pharmacochimie Moléculaire et Structurale, INSERM U266-CNRS URA D 1500, UFR des Sciences Pharmaceutiques et Biologiques, Paris, France
| | | | | | | | | | | |
Collapse
|
93
|
Sem DS, Casimiro DR, Kliewer SA, Provencal J, Evans RM, Wright PE. NMR spectroscopic studies of the DNA-binding domain of the monomer-binding nuclear orphan receptor, human estrogen related receptor-2. The carboxyl-terminal extension to the zinc-finger region is unstructured in the free form of the protein. J Biol Chem 1997; 272:18038-43. [PMID: 9218433 DOI: 10.1074/jbc.272.29.18038] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Unlike steroid and retinoid receptors, which associate with DNA as dimers, human estrogen related receptor-2 (hERR2) belongs to a growing subclass of nuclear hormone receptors that bind DNA with high affinity as monomers. A carboxyl-terminal extension (CTE) to the zinc-finger domain has been implicated to be responsible for determining the stoichiometry of binding by a nuclear receptor to its response element. To better understand the mechanism by which DNA specificity is achieved, the solution structure of the DNA-binding domain of hERR2 (residues 96-194) consisting of the two putative zinc fingers and the requisite 26-amino acid CTE was analyzed by multidimensional heteronuclear magnetic resonance spectroscopy. The highly conserved zinc-finger region (residues 103-168) has a fold similar to those reported for steroid and retinoid receptors, with two helices that originate from the carboxyl-terminal ends of the two zinc fingers and that pack together orthogonally, forming a hydrophobic core. The CTE element of hERR2 is unstructured and highly flexible, exhibiting nearly random coil chemical shifts, extreme sensitivity of the backbone amide protons to solvent presaturation, and reduced heteronuclear (1H-15N) nuclear Overhauser effect values. This is in contrast to the dimer-binding retinoid X and thyroid hormone receptors, where, in each case, a helix has been observed within the CTE. The implications of this property of the hERR2 CTE are discussed.
Collapse
Affiliation(s)
- D S Sem
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
94
|
Löffler G, Schreiber H, Steinhauser O. Calculation of the dielectric properties of a protein and its solvent: theory and a case study. J Mol Biol 1997; 270:520-34. [PMID: 9237916 DOI: 10.1006/jmbi.1997.1130] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This paper presents a rigorous derivation of a theory for the calculation of the frequency-dependent dielectric properties of each component of the system protein/water/ions with the aim of enabling comparison to experimentally determined dielectric properties. We apply this theory to a very long (13.1 ns) molecular dynamics simulation of an HIV1 zinc finger peptide, its co-ordinated zinc ion, and two chloride ions in a box of SPC/E water molecules. We find the dielectric relaxation of the water molecules restricted compared to pure water, giving rise to a static dielectric constant for the water-component of only 47. The peptide is found to have a complicated dielectric relaxation behaviour, with a static dielectric constant of 15. We also calculate the frequency-dependent conductivity of the ions in this system. We analyze all contributions to the calculation of these dielectric properties and find that the coupling between the dielectric relaxation of the peptide and that of the water-component is particularly important for correctly describing the dielectric constant of the peptide.
Collapse
Affiliation(s)
- G Löffler
- University of Vienna, Institute for Theoretical Chemistry, Molecular Dynamics Group, Wien, Austria
| | | | | |
Collapse
|
95
|
McDonnell NB, De Guzman RN, Rice WG, Turpin JA, Summers MF. Zinc ejection as a new rationale for the use of cystamine and related disulfide-containing antiviral agents in the treatment of AIDS. J Med Chem 1997; 40:1969-76. [PMID: 9207937 DOI: 10.1021/jm970147+] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The highly conserved and mutationally intolerant retroviral zinc finger motif of the HIV-1 nucleocapsid protein (NC) is an attractive target for drug therapy due to its participation in multiple stages of the viral replication cycle. A literature search identified cystamine, thiamine disulfide, and disulfiram as compounds that have been shown to inhibit HIV-1 replication by poorly defined mechanisms and that have electrophilic functional groups that might react with the metal-coordinating sulfur atoms of the retroviral zinc fingers and cause zinc ejection. 1H NMR studies reveal that these compounds readily eject zinc from synthetic peptides with sequences corresponding to the HIV-1 NC zinc fingers, as well as from the intact HIV-1 NC protein. In contrast, the reduced forms of disulfiram and cystamine, diethyl dithiocarbamate and cysteamine, respectively, were found to be ineffective at zinc ejection, although cysteamine formed a transient complex with the zinc fingers. Studies with HIV-1-infected human T-cells and monocyte/macrophage cultures revealed that cystamine and cysteamine possess significant antiviral properties at nontoxic concentrations, which warrant their consideration as therapeutically useful anti-HIV agents.
Collapse
Affiliation(s)
- N B McDonnell
- Howard Hughes Medical Institute, University of Maryland Baltimore County 21228, USA
| | | | | | | | | |
Collapse
|
96
|
Calafat AM, Won H, Marzilli LG. A New Arrangement for the Anticancer Antibiotics Tallysomycin and Bleomycin When Bound to Zinc: An Assessment of Metal and Ligand Chirality by NMR and Molecular Dynamics. J Am Chem Soc 1997. [DOI: 10.1021/ja963392b] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Antonia M. Calafat
- Contribution from the Department of Chemistry, Emory University, Atlanta, Georgia 30322
| | - Hoshik Won
- Contribution from the Department of Chemistry, Emory University, Atlanta, Georgia 30322
| | - Luigi G. Marzilli
- Contribution from the Department of Chemistry, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
97
|
Narayan VA, Kriwacki RW, Caradonna JP. Structures of zinc finger domains from transcription factor Sp1. Insights into sequence-specific protein-DNA recognition. J Biol Chem 1997; 272:7801-9. [PMID: 9065444 DOI: 10.1074/jbc.272.12.7801] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The carboxyl terminus of transcription factor Sp1 contains three contiguous Cys2-His2 zinc finger domains with the consensus sequence Cys-X2-4-Cys-X12-His-X3-His. We have used standard homonuclear two-dimensional NMR techniques to solve the solution structures of synthetic peptides corresponding to the last two zinc finger domains (Sp1f2 and Sp1f3, respectively) of Sp1. Our studies indicate a classical Cys2-His2 type fold for both the domains differing from each other primarily in the conformation of Cys-X2-Cys (beta-type I turn) and Cys-X4-Cys (beta-type II turn) elements. There are, however, no significant differences in the metal binding properties between the Cys-X4-Cys (Sp1f2) and Cys-X2-Cys (Sp1f3) subclasses of zinc fingers. The free solution structures of Sp1f2 and Sp1f3 are very similar to those of the analogous fingers of Zif268 bound to DNA. There is NMR spectral evidence suggesting that the Arg-Asp buttressing interaction observed in the Zif-268.DNA complex is also preserved in unbound Sp1f2 and Sp1f3. Modeling Sp1-DNA complex by overlaying the Sp1f2 and Sp1f3 structures on Zif268 fingers 1 and 2, respectively, predicts the role of key amino acid residues, the interference/protection data, and supports the model of Sp1-DNA interaction proposed earlier.
Collapse
Affiliation(s)
- V A Narayan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, USA
| | | | | |
Collapse
|
98
|
Pardue ML, Danilevskaya ON, Traverse KL, Lowenhaupt K. Evolutionary links between telomeres and transposable elements. Genetica 1997. [PMID: 9440260 DOI: 10.1007/978-94-011-4898-6_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Transposable elements are abundant in the genomes of higher organisms but are usually thought to affect cells only incidentally, by transposing in or near a gene and influencing its expression. Telomeres of Drosophila chromosomes are maintained by two non-LTR retrotransposons, HeT-A and TART. These are the first transposable elements with identified roles in chromosome structure. We suggest that these elements may be evolutionarily related to telomerase; in both cases an enzyme extends the end of a chromosome by adding DNA copied from an RNA template. The evolution of transposable elements from chromosomal replication mechanisms may have occurred multiple times, although in other organisms the new products have not replaced the endogenous telomerase, as they have in Drosophila. This is somewhat reminiscent of the oncogenes that have arisen from cellular genes. Perhaps the viruses that carry oncogenes have also arisen from cellular genetic systems.
Collapse
Affiliation(s)
- M L Pardue
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | |
Collapse
|
99
|
Pardue ML, Danilevskaya ON, Lowenhaupt K, Wong J, Erby K. The gag coding region of the Drosophila telomeric retrotransposon, HeT-A, has an internal frame shift and a length polymorphic region. J Mol Evol 1996; 43:572-83. [PMID: 8995054 DOI: 10.1007/bf02202105] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A major component of Drosophila telomeres is the retrotransposon HeT-A, which is clearly related to other retrotransposons and retroviruses. This retrotransposon is distinguished by its exclusively telomeric location, and by the fact that, unlike other retrotransposons, it does not encode its own reverse transcriptase. HeT-A coding sequences diverge significantly, even between elements within the same genome. Such rapid divergence has been noted previously in studies of gag genes from other retroelements. Sequence comparisons indicate that the entire HeT-A coding region codes for gag protein, with regions of similarity to other insect retrotransposon gag proteins found throughout the open reading frame (ORF). Similarity is most striking in the zinc knuckle region, a region characteristic of gag genes of most replication-competent retroelements. We identify a subgroup of insect non-LTR retrotransposons with three zinc knuckles of the form: (1) CX2CX4HX4C, (2) CX2CX3HX4C, (3) CX2CX3HX6C. The first and third knuckles are invariant, but the second shows some differences between members of this subgroup. This subgroup includes HeT-A and a second Drosophila telomeric retrotransposon, TART. Unlike other gag regions, HeT-A requires a -1 frameshift for complete translation. Such frameshifts are common between the gag and pol sequences of retroviruses but have not before been seen within a gag sequence. The frameshift allows HeT-A to encode two polypeptides; this mechanism may substitute for the post-translational cleavage that creates multiple gag polypeptides in retroviruses. D. melanogaster HeT-A coding sequences have a polymorphic region with insertions/deletions of 1-31 codons and many nucleotide changes. None of these changes interrupt the open reading frame, arguing that only elements with translatable ORFs can be incorporated into the chromosomes. Perhaps HeT-A translation products act in cis to target the RNA to chromosome ends.
Collapse
Affiliation(s)
- M L Pardue
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | | | |
Collapse
|
100
|
|