51
|
SHARPIN at the nexus of integrin, immune, and inflammatory signaling in human platelets. Proc Natl Acad Sci U S A 2019; 116:4983-4988. [PMID: 30804189 DOI: 10.1073/pnas.1819156116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Platelets mediate primary hemostasis, and recent work has emphasized platelet participation in immunity and inflammation. The function of the platelet-specific integrin αIIbβ3 as a fibrinogen receptor in hemostasis is well defined, but the roles of αIIbβ3 or integrin-associated proteins in nonhemostatic platelet functions are poorly understood. Here we show that human platelets express the integrin-associated protein SHARPIN with functional consequences. In leukocytes, SHARPIN interacts with integrin α cytoplasmic tails, and it is also an obligate member of the linear ubiquitin chain assembly complex (LUBAC), which mediates Met1 linear ubiquitination of proteins leading to canonical NF-κB activation. SHARPIN interacted with αIIb in pull-down and coimmunoprecipitation assays. SHARPIN was partially localized, as was αIIbβ3, at platelet edges, and thrombin stimulation induced more central SHARPIN localization. SHARPIN also coimmunoprecipitated from platelets with the two other proteins comprising LUBAC, the E3 ligase HOIP and HOIL-1. Platelet stimulation with thrombin or inflammatory agonists, including lipopolysaccharide or soluble CD40 ligand (sCD40L), induced Met1 linear ubiquitination of the NF-κB pathway protein NEMO and serine-536 phosphorylation of the p65 RelA subunit of NF-κB. In human megakaryocytes and/or platelets derived from induced pluripotent stem (iPS) cells, SHARPIN knockdown caused increased basal and agonist-induced fibrinogen binding to αIIbβ3 as well as reduced Met1 ubiquitination and RelA phosphorylation. Moreover, these SHARPIN knockdown cells exhibited increased surface expression of MHC class I molecules and increased release of sCD40L. These results establish that SHARPIN functions in the human megakaryocyte/platelet lineage through protein interactions at the nexus of integrin and immune/inflammatory signaling.
Collapse
|
52
|
Fagerholm SC, Guenther C, Llort Asens M, Savinko T, Uotila LM. Beta2-Integrins and Interacting Proteins in Leukocyte Trafficking, Immune Suppression, and Immunodeficiency Disease. Front Immunol 2019; 10:254. [PMID: 30837997 PMCID: PMC6389632 DOI: 10.3389/fimmu.2019.00254] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022] Open
Abstract
Beta2-integrins are complex leukocyte-specific adhesion molecules that are essential for leukocyte (e.g., neutrophil, lymphocyte) trafficking, as well as for other immunological processes such as neutrophil phagocytosis and ROS production, and T cell activation. Intriguingly, however, they have also been found to negatively regulate cytokine responses, maturation, and migratory responses in myeloid cells such as macrophages and dendritic cells, revealing new, and unexpected roles of these molecules in immunity. Because of their essential role in leukocyte function, a lack of expression or function of beta2-integrins causes rare immunodeficiency syndromes, Leukocyte adhesion deficiency type I, and type III (LAD-I and LAD-III). LAD-I is caused by reduced or lost expression of beta2-integrins, whilst in LAD-III, beta2-integrins are expressed but dysfunctional because a major integrin cytoplasmic regulator, kindlin-3, is mutated. Interestingly, some LAD-related phenotypes such as periodontitis have recently been shown to be due to an uncontrolled inflammatory response rather than to an uncontrolled infection, as was previously thought. This review will focus on the recent advances concerning the regulation and functions of beta2-integrins in leukocyte trafficking, immune suppression, and immune deficiency disease.
Collapse
Affiliation(s)
- Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Program, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Carla Guenther
- Molecular and Integrative Biosciences Research Program, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marc Llort Asens
- Molecular and Integrative Biosciences Research Program, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Liisa M Uotila
- Research Services, University of Helsinki, Helsinki, Finland
| |
Collapse
|
53
|
Ertl NG, O'Connor WA, Elizur A. Molecular effects of a variable environment on Sydney rock oysters, Saccostrea glomerata: Thermal and low salinity stress, and their synergistic effect. Mar Genomics 2019; 43:19-32. [DOI: 10.1016/j.margen.2018.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 10/07/2018] [Accepted: 10/18/2018] [Indexed: 12/26/2022]
|
54
|
Jacquemet G, Stubb A, Saup R, Miihkinen M, Kremneva E, Hamidi H, Ivaska J. Filopodome Mapping Identifies p130Cas as a Mechanosensitive Regulator of Filopodia Stability. Curr Biol 2019; 29:202-216.e7. [PMID: 30639111 PMCID: PMC6345628 DOI: 10.1016/j.cub.2018.11.053] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/25/2018] [Accepted: 11/20/2018] [Indexed: 01/09/2023]
Abstract
Filopodia are adhesive cellular protrusions specialized in the detection of extracellular matrix (ECM)-derived cues. Although ECM engagement at focal adhesions is known to trigger the recruitment of hundreds of proteins ("adhesome") to fine-tune cellular behavior, the components of the filopodia adhesions remain undefined. Here, we performed a structured-illumination-microscopy-based screen to map the localization of 80 target proteins, linked to cell adhesion and migration, within myosin-X-induced filopodia. We demonstrate preferential enrichment of several adhesion proteins to either filopodia tips, filopodia shafts, or shaft subdomains, suggesting divergent, spatially restricted functions for these proteins. Moreover, proteins with phosphoinositide (PI) binding sites are particularly enriched in filopodia. This, together with the strong localization of PI(3,4)P2 in filopodia tips, predicts critical roles for PIs in regulating filopodia ultra-structure and function. Our mapping further reveals that filopodia adhesions consist of a unique set of proteins, the filopodome, that are distinct from classical nascent adhesions, focal adhesions, and fibrillar adhesions. Using live imaging, we observe that filopodia adhesions can give rise to nascent adhesions, which, in turn, form focal adhesions. We demonstrate that p130Cas (BCAR1) is recruited to filopodia tips via its C-terminal Cas family homology domain (CCHD) and acts as a mechanosensitive regulator of filopodia stability. Finally, we demonstrate that our map based on myosin-X-induced filopodia can be translated to endogenous filopodia and fascin- and IRSp53-mediated filopodia.
Collapse
Affiliation(s)
- Guillaume Jacquemet
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| | - Aki Stubb
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Rafael Saup
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mitro Miihkinen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Elena Kremneva
- Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| | - Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland; Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
55
|
Jiang S, Lyu B, Müller M, Wesner D, Schönherr H. Thickness-Encoded Micropatterns in One-Component Thermoresponsive Polymer Brushes for Culture and Triggered Release of Pancreatic Tumor Cell Monolayers and Spheroids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14670-14677. [PMID: 30474988 DOI: 10.1021/acs.langmuir.8b03040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fabrication, characterization, and application of micropatterned one-component poly(di(ethylene glycol)methyl ether methacrylate) (PDEGMA) brushes for monolayer cell and spheroid culture and temperature-triggered release are reported. Micropatterns of various shapes and sizes were designed to possess a unique functionality imparted by thermoresponsive thin PDEGMA patches, which are cell adhesive at 37 °C, embedded in a much thicker cell-resistant PDEGMA matrix that does not exhibit measurable thermoresponsive properties. Depending on the cell seeding density, PaTu 8988t human pancreatic tumor cells or spheroids were cultured area-selectively, confined by the 40 ± 4 nm thick passivating PDEGMA matrix, and could be released on demand by a mild thermally triggered brush swelling in the 5 ± 1 nm thin regions. As shown by surface plasmon resonance (SPR) measurements, in contrast to the thinner brushes, the thicker brushes exhibited virtually no fibronectin adhesive properties at 37 °C, whereas at 25 °C, both areas showed similar protein resistant behavior. The quasi-2D thickness-encoded micropatterns were shown to be useful templates for the growth of 3D multicellular aggregates. Thermally induced release after 5 days of incubation afforded 3D cell spheroids comprising up to 99% viable cells demonstrating that the system can be used as a 3D spheroid in vitro model for basic tumor research and anticancer drug screenings.
Collapse
Affiliation(s)
- Siyu Jiang
- Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), Physical Chemistry I , University of Siegen , Adolf-Reichwein-Street 2 , 57076 Siegen , Germany
| | - Beier Lyu
- Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), Physical Chemistry I , University of Siegen , Adolf-Reichwein-Street 2 , 57076 Siegen , Germany
| | - Mareike Müller
- Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), Physical Chemistry I , University of Siegen , Adolf-Reichwein-Street 2 , 57076 Siegen , Germany
| | - Daniel Wesner
- Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), Physical Chemistry I , University of Siegen , Adolf-Reichwein-Street 2 , 57076 Siegen , Germany
| | - Holger Schönherr
- Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), Physical Chemistry I , University of Siegen , Adolf-Reichwein-Street 2 , 57076 Siegen , Germany
| |
Collapse
|
56
|
Vicente-Manzanares M, Sánchez-Madrid F. Targeting the integrin interactome in human disease. Curr Opin Cell Biol 2018; 55:17-23. [DOI: 10.1016/j.ceb.2018.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022]
|
57
|
Tseng HY, Samarelli AV, Kammerer P, Scholze S, Ziegler T, Immler R, Zent R, Sperandio M, Sanders CR, Fässler R, Böttcher RT. LCP1 preferentially binds clasped αMβ2 integrin and attenuates leukocyte adhesion under flow. J Cell Sci 2018; 131:jcs.218214. [PMID: 30333137 DOI: 10.1242/jcs.218214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022] Open
Abstract
Integrins are α/β heterodimers that interconvert between inactive and active states. In the active state the α/β cytoplasmic domains recruit integrin-activating proteins and separate the transmembrane and cytoplasmic (TMcyto) domains (unclasped TMcyto). Conversely, in the inactive state the α/β TMcyto domains bind integrin-inactivating proteins, resulting in the association of the TMcyto domains (clasped TMcyto). Here, we report the isolation of integrin cytoplasmic tail interactors using either lipid bicelle-incorporated integrin TMcyto domains (α5, αM, αIIb, β1, β2 and β3 integrin TMcyto) or a clasped, lipid bicelle-incorporated αMβ2 TMcyto. Among the proteins found to preferentially bind clasped rather than the isolated αM and β2 subunits was L-plastin (LCP1, also known as plastin-2), which binds to and maintains the inactive state of αMβ2 integrin in vivo and thereby regulates leukocyte adhesion to integrin ligands under flow. Our findings offer a global view on cytoplasmic proteins interacting with different integrins and provide evidence for the existence of conformation-specific integrin interactors.
Collapse
Affiliation(s)
- Hui-Yuan Tseng
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | - Anna V Samarelli
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | - Patricia Kammerer
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | - Sarah Scholze
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | - Tilman Ziegler
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | - Roland Immler
- Walter Brendel Center for Experimental Medicine, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Roy Zent
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, 37232 Tennessee, USA.,Department of Medicine, Veterans Affairs Medical Center, Nashville, 37232 Tennessee, USA
| | - Markus Sperandio
- Walter Brendel Center for Experimental Medicine, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Charles R Sanders
- Department of Biochemistry, Center for Structural Biology, and Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, 37232 Tennessee, USA
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany
| | - Ralph T Böttcher
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany .,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany
| |
Collapse
|
58
|
LaFlamme SE, Mathew-Steiner S, Singh N, Colello-Borges D, Nieves B. Integrin and microtubule crosstalk in the regulation of cellular processes. Cell Mol Life Sci 2018; 75:4177-4185. [PMID: 30206641 PMCID: PMC6182340 DOI: 10.1007/s00018-018-2913-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/14/2018] [Accepted: 08/27/2018] [Indexed: 11/25/2022]
Abstract
Integrins engage components of the extracellular matrix, and in collaboration with other receptors, regulate signaling cascades that impact cell behavior in part by modulating the cell's cytoskeleton. Integrins have long been known to function together with the actin cytoskeleton to promote cell adhesion, migration, and invasion, and with the intermediate filament cytoskeleton to mediate the strong adhesion needed for the maintenance and integrity of epithelial tissues. Recent studies have shed light on the crosstalk between integrin and the microtubule cytoskeleton. Integrins promote microtubule nucleation, growth, and stabilization at the cell cortex, whereas microtubules regulate integrin activity and remodeling of adhesion sites. Integrin-dependent stabilization of microtubules at the cell cortex is critical to the establishment of apical-basal polarity required for the formation of epithelial tissues. During cell migration, integrin-dependent microtubule stabilization contributes to front-rear polarity, whereas microtubules promote the turnover of integrin-mediated adhesions. This review focuses on this interdependent relationship and its impact on cell behavior and function.
Collapse
Affiliation(s)
- Susan E LaFlamme
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| | - Shomita Mathew-Steiner
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
- Indiana University, 975 W. Walnut Street, Indianapolis, IN, 46202, USA
| | - Neetu Singh
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Diane Colello-Borges
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Bethsaida Nieves
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| |
Collapse
|
59
|
Thome S, Begandt D, Pick R, Salvermoser M, Walzog B. Intracellular β 2 integrin (CD11/CD18) interacting partners in neutrophil trafficking. Eur J Clin Invest 2018; 48 Suppl 2:e12966. [PMID: 29896791 DOI: 10.1111/eci.12966] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/10/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neutrophil recruitment during acute inflammation critically depends on the spatial and temporal regulation of β2 integrins (CD11/CD18). This regulation occurs by inside-out and outside-in signalling via interaction of cytoplasmic proteins with the intracellular domains of the integrin α- and β-subunits. The underlying molecular mechanisms regulating β2 integrins in neutrophils are still incompletely understood. AIM This review provides a comprehensive overview of our current knowledge on proteins interacting with the cytoplasmic tail of CD18, the conserved β-subunit of β2 integrins, their regulation and their functional importance for neutrophil trafficking during acute inflammation. RESULTS A total of 22 proteins including Talin, Kindlin 3 and Coronin 1A have been reported to interact with the CD18 cytoplasmic tail. Here, proteins binding to the cytoplasmic domain of CD18 in experiments using purified, recombinant proteins or peptides in, for example, pull-down assays, are defined as direct interactors. Proteins that have been shown to interact with the cytoplasmic domain of CD18 using whole cell lysates in, for example, pull-down experiments are claimed as interacting proteins without evidence for direct interaction. In summary, β2 integrin activation and signalling depend on a specific subset of proteins interacting with CD18 and their precise regulation. If disturbed, profound defects of neutrophil recruitment and activation become evident compromising the innate immune response. CONCLUSIONS The knowledge of proteins interacting with β2 integrins and their regulation during neutrophil trafficking does not only improve our basic understanding of innate immunity but may pave the way to novel therapeutic strategies in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Sarah Thome
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Germany.,Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
| | - Daniela Begandt
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Germany.,Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
| | - Robert Pick
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Germany.,Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
| | - Melanie Salvermoser
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Germany.,Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
| | - Barbara Walzog
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Germany.,Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
60
|
Kadry YA, Huet-Calderwood C, Simon B, Calderwood DA. Kindlin-2 interacts with a highly conserved surface of ILK to regulate focal adhesion localization and cell spreading. J Cell Sci 2018; 131:jcs.221184. [PMID: 30254023 DOI: 10.1242/jcs.221184] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022] Open
Abstract
The integrin-associated adaptor proteins integrin-linked kinase (ILK) and kindlin-2 play central roles in integrin signaling and control of cell morphology. A direct ILK-kindlin-2 interaction is conserved across species and involves the F2PH subdomain of kindlin-2 and the pseudokinase domain (pKD) of ILK. However, complete understanding of the ILK-kindlin-2 interaction and its role in integrin-mediated signaling has been impeded by difficulties identifying the binding site for kindlin-2 on ILK. We used conservation-guided mapping to dissect the interaction between ILK and kindlin-2 and identified a previously unknown binding site for kindlin-2 on the C-lobe of the pKD of ILK. Mutations at this site inhibit binding to kindlin-2 while maintaining structural integrity of the pKD. Importantly, kindlin-binding-defective ILK mutants exhibit impaired focal adhesion localization and fail to fully rescue the spreading defects seen in ILK knockdown cells. Furthermore, kindlin-2 mutants with impaired ILK binding are also unable to fully support cell spreading. Thus, the interaction between ILK and kindlin-2 is critical for cell spreading and focal adhesion localization, representing a key signaling axis downstream of integrins.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yasmin A Kadry
- From the Department of Pharmacology, Yale University, New Haven CT 06510, USA
| | | | - Bertrand Simon
- From the Department of Pharmacology, Yale University, New Haven CT 06510, USA
| | - David A Calderwood
- From the Department of Pharmacology, Yale University, New Haven CT 06510, USA .,Department of Cell Biology, Yale University, New Haven CT 06510, USA
| |
Collapse
|
61
|
Autonomous conformational regulation of β 3 integrin and the conformation-dependent property of HPA-1a alloantibodies. Proc Natl Acad Sci U S A 2018; 115:E9105-E9114. [PMID: 30209215 DOI: 10.1073/pnas.1806205115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Integrin α/β heterodimer adopts a compact bent conformation in the resting state, and upon activation undergoes a large-scale conformational rearrangement. During the inside-out activation, signals impinging on the cytoplasmic tail of β subunit induce the α/β separation at the transmembrane and cytoplasmic domains, leading to the extended conformation of the ectodomain with the separated leg and the opening headpiece that is required for the high-affinity ligand binding. It remains enigmatic which integrin subunit drives the bent-to-extended conformational rearrangement in the inside-out activation. The β3 integrins, including αIIbβ3 and αVβ3, are the prototypes for understanding integrin structural regulation. The Leu33Pro polymorphism located at the β3 PSI domain defines the human platelet-specific alloantigen (HPA) 1a/b, which provokes the alloimmune response leading to clinically important bleeding disorders. Some, but not all, anti-HPA-1a alloantibodies can distinguish the αIIbβ3 from αVβ3 and affect their functions with unknown mechanisms. Here we designed a single-chain β3 subunit that mimics a separation of α/β heterodimer on inside-out activation. Our crystallographic and functional studies show that the single-chain β3 integrin folds into a bent conformation in solution but spontaneously extends on the cell surface. This demonstrates that the β3 subunit autonomously drives the membrane-dependent conformational rearrangement during integrin activation. Using the single-chain β3 integrin, we identified the conformation-dependent property of anti-HPA-1a alloantibodies, which enables them to differently recognize the β3 in the bent state vs. the extended state and in the complex with αIIb vs. αV This study provides deeper understandings of integrin conformational activation on the cell surface.
Collapse
|
62
|
Jahan F, Madhavan S, Rolova T, Viazmina L, Grönholm M, Gahmberg CG. Phosphorylation of the α-chain in the integrin LFA-1 enables β2-chain phosphorylation and α-actinin binding required for cell adhesion. J Biol Chem 2018; 293:12318-12330. [PMID: 29903913 DOI: 10.1074/jbc.ra118.004318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/11/2018] [Indexed: 11/06/2022] Open
Abstract
The integrin leukocyte function-associated antigen-1 (LFA-1) plays a pivotal role in leukocyte adhesion and migration, but the mechanism(s) by which this integrin is regulated has remained incompletely understood. LFA-1 integrin activity requires phosphorylation of its β2-chain and interactions of its cytoplasmic tail with various cellular proteins. The α-chain is constitutively phosphorylated and necessary for cellular adhesion, but how the α-chain regulates adhesion has remained enigmatic. We now show that substitution of the α-chain phosphorylation site (S1140A) in T cells inhibits the phosphorylation of the functionally important Thr-758 in the β2-chain, binding of α-actinin and 14-3-3 protein, and expression of an integrin-activating epitope after treatment with the stromal cell-derived factor-1α. The presence of this substitution resulted in a loss of cell adhesion and directional cell migration. Moreover, LFA-1 activation through the T-cell receptor in cells expressing the S1140A LFA-1 variant resulted in less Thr-758 phosphorylation, α-actinin and talin binding, and cell adhesion. The finding that the LFA-1 α-chain regulates adhesion through the β-chain via specific phosphorylation at Ser-1140 in the α-chain has not been previously reported and emphasizes that both chains are involved in the regulation of LFA-1 integrin activity.
Collapse
Affiliation(s)
- Farhana Jahan
- From the Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki 00014 UH, Finland
| | - Sudarrshan Madhavan
- From the Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki 00014 UH, Finland
| | - Taisia Rolova
- From the Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki 00014 UH, Finland
| | - Larisa Viazmina
- From the Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki 00014 UH, Finland
| | - Mikaela Grönholm
- From the Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki 00014 UH, Finland
| | - Carl G Gahmberg
- From the Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki 00014 UH, Finland
| |
Collapse
|
63
|
Thinn AMM, Wang Z, Zhu J. The membrane-distal regions of integrin α cytoplasmic domains contribute differently to integrin inside-out activation. Sci Rep 2018; 8:5067. [PMID: 29568062 PMCID: PMC5864728 DOI: 10.1038/s41598-018-23444-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
Functioning as signal receivers and transmitters, the integrin α/β cytoplasmic tails (CT) are pivotal in integrin activation and signaling. 18 α integrin subunits share a conserved membrane-proximal region but have a highly diverse membrane-distal (MD) region at their CTs. Recent studies demonstrated that the presence of α CTMD region is essential for talin-induced integrin inside-out activation. However, it remains unknown whether the non-conserved α CTMD regions differently regulate the inside-out activation of integrin. Using αIIbβ3, αLβ2, and α5β1 as model integrins and by replacing their α CTMD regions with those of α subunits that pair with β3, β2, and β1 subunits, we analyzed the function of CTMD regions of 17 α subunits in talin-mediated integrin activation. We found that the α CTMD regions play two roles on integrin, which are activation-supportive and activation-regulatory. The regulatory but not the supportive function depends on the sequence identity of α CTMD region. A membrane-proximal tyrosine residue present in the CTMD regions of a subset of α integrins was identified to negatively regulate integrin inside-out activation. Our study provides a useful resource for investigating the function of α integrin CTMD regions.
Collapse
Affiliation(s)
- Aye Myat Myat Thinn
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Zhengli Wang
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jieqing Zhu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53226, USA.
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
64
|
Antenucci L, Hytönen VP, Ylänne J. Phosphorylated immunoreceptor tyrosine-based activation motifs and integrin cytoplasmic domains activate spleen tyrosine kinase via distinct mechanisms. J Biol Chem 2018; 293:4591-4602. [PMID: 29440271 DOI: 10.1074/jbc.ra117.000660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/07/2018] [Indexed: 11/06/2022] Open
Abstract
Spleen tyrosine kinase (Syk) is involved in cellular adhesion and also in the activation and development of hematopoietic cells. Syk activation induced by genomic rearrangement has been linked to certain T-cell lymphomas, and Syk inhibitors have been shown to prolong survival of patients with B-cell lineage malignancies. Syk is activated either by its interaction with a double-phosphorylated immunoreceptor tyrosine-based activation motif (pITAM), which induces rearrangements in the Syk structure, or by the phosphorylation of specific tyrosine residues. In addition to its immunoreceptor function, Syk is activated downstream of integrin pathways, and integrins bind to the same region in Syk as does pITAM. However, it is unknown whether integrins and pITAM use the same mechanism to activate Syk. Here, using purified Syk protein and fluorescence-based enzyme assay we investigated whether interaction of the integrin β3 cytoplasmic domain with the Syk regulatory domain causes changes in Syk activity similar to those induced by pITAM peptides. We observed no direct Syk activation by soluble integrin peptide, and integrin did not compete with pITAM-induced activation even though at high concentrations, the integrin cytoplasmic domain peptide competed with Syk's substrate. However, clustered integrin peptides induced Syk activation, presumably via a transphosphorylation mechanism. Moreover, the clustered integrins also activated a Syk variant in which tyrosines were replaced with phenylalanine (Y348F/Y352F), indicating that clustered integrin-induced Syk activation involved other phosphorylation sites. In conclusion, integrin cytoplasmic domains do not directly induce Syk conformational changes and do not activate Syk via the same mechanism as pITAM.
Collapse
Affiliation(s)
- Lina Antenucci
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Survontie 9 C, 40014 Jyväskylä, Finland.
| | - Vesa P Hytönen
- Faculty of Medicine and Life Sciences and BioMediTech, University of Tampere, and Fimlab Laboratories, Tampere 33014, Finland
| | - Jari Ylänne
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Survontie 9 C, 40014 Jyväskylä, Finland
| |
Collapse
|
65
|
Mathew S, Palamuttam RJ, Mernaugh G, Ramalingam H, Lu Z, Zhang MZ, Ishibe S, Critchley DR, Fässler R, Pozzi A, Sanders CR, Carroll TJ, Zent R. Talin regulates integrin β1-dependent and -independent cell functions in ureteric bud development. Development 2017; 144:4148-4158. [PMID: 28993400 DOI: 10.1242/dev.149914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022]
Abstract
Kidney collecting system development requires integrin-dependent cell-extracellular matrix interactions. Integrins are heterodimeric transmembrane receptors consisting of α and β subunits; crucial integrins in the kidney collecting system express the β1 subunit. The β1 cytoplasmic tail has two NPxY motifs that mediate functions by binding to cytoplasmic signaling and scaffolding molecules. Talins, scaffolding proteins that bind to the membrane proximal NPxY motif, are proposed to activate integrins and to link them to the actin cytoskeleton. We have defined the role of talin binding to the β1 proximal NPxY motif in the developing kidney collecting system in mice that selectively express a Y-to-A mutation in this motif. The mice developed a hypoplastic dysplastic collecting system. Collecting duct cells expressing this mutation had moderate abnormalities in cell adhesion, migration, proliferation and growth factor-dependent signaling. In contrast, mice lacking talins in the developing ureteric bud developed kidney agenesis and collecting duct cells had severe cytoskeletal, adhesion and polarity defects. Thus, talins are essential for kidney collecting duct development through mechanisms that extend beyond those requiring binding to the β1 integrin subunit NPxY motif.
Collapse
Affiliation(s)
- Sijo Mathew
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Riya J Palamuttam
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Glenda Mernaugh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Harini Ramalingam
- Department of Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhenwei Lu
- Center for Structure Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Molecular Physiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ming-Zhi Zhang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shuta Ishibe
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - David R Critchley
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Molecular Physiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Veteran Affairs Hospital Nashville, TN 37212, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Center for Structure Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Thomas J Carroll
- Department of Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA .,Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Veteran Affairs Hospital Nashville, TN 37212, USA
| |
Collapse
|
66
|
Estevez B, Du X. New Concepts and Mechanisms of Platelet Activation Signaling. Physiology (Bethesda) 2017; 32:162-177. [PMID: 28228483 DOI: 10.1152/physiol.00020.2016] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Upon blood vessel injury, platelets are exposed to adhesive proteins in the vascular wall and soluble agonists, which initiate platelet activation, leading to formation of hemostatic thrombi. Pathological activation of platelets can induce occlusive thrombosis, resulting in ischemic events such as heart attack and stroke, which are leading causes of death globally. Platelet activation requires intracellular signal transduction initiated by platelet receptors for adhesion proteins and soluble agonists. Whereas many platelet activation signaling pathways have been established for many years, significant recent progress reveals much more complex and sophisticated signaling and amplification networks. With the discovery of new receptor signaling pathways and regulatory networks, some of the long-standing concepts of platelet signaling have been challenged. This review provides an overview of the new developments and concepts in platelet activation signaling.
Collapse
Affiliation(s)
- Brian Estevez
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Xiaoping Du
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
67
|
Huet-Calderwood C, Rivera-Molina F, Iwamoto DV, Kromann EB, Toomre D, Calderwood DA. Novel ecto-tagged integrins reveal their trafficking in live cells. Nat Commun 2017; 8:570. [PMID: 28924207 PMCID: PMC5603536 DOI: 10.1038/s41467-017-00646-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 07/16/2017] [Indexed: 12/22/2022] Open
Abstract
Integrins are abundant heterodimeric cell-surface adhesion receptors essential in multicellular organisms. Integrin function is dynamically modulated by endo-exocytic trafficking, however, major mysteries remain about where, when, and how this occurs in living cells. To address this, here we report the generation of functional recombinant β1 integrins with traceable tags inserted in an extracellular loop. We demonstrate that these ‘ecto-tagged’ integrins are cell-surface expressed, localize to adhesions, exhibit normal integrin activation, and restore adhesion in β1 integrin knockout fibroblasts. Importantly, β1 integrins containing an extracellular pH-sensitive pHluorin tag allow direct visualization of integrin exocytosis in live cells and revealed targeted delivery of integrin vesicles to focal adhesions. Further, using β1 integrins containing a HaloTag in combination with membrane-permeant and -impermeant Halo dyes allows imaging of integrin endocytosis and recycling. Thus, ecto-tagged integrins provide novel powerful tools to characterize integrin function and trafficking. Integrins are cell-surface adhesion receptors that are modulated by endo-exocytic trafficking, but existing tools to study this process can interfere with function. Here the authors develop β1 integrins carrying traceable tags in the extracellular domain; a pH-sensitive pHlourin tag or a HaloTag to facilitate dye attachment.
Collapse
Affiliation(s)
- Clotilde Huet-Calderwood
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Daniel V Iwamoto
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Emil B Kromann
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA.,Department of Biomedical Engineering, Yale University, 333 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA.
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA. .,Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA.
| |
Collapse
|
68
|
Abstract
Integrin αIIbβ3 is a highly abundant heterodimeric platelet receptor that can transmit information bidirectionally across the plasma membrane, and plays a critical role in hemostasis and thrombosis. Upon platelet activation, inside-out signaling pathways increase the affinity of αIIbβ3 for fibrinogen and other ligands. Ligand binding and integrin clustering subsequently stimulate outside-in signaling, which initiates and amplifies a range of cellular events driving essential platelet processes such as spreading, thrombus consolidation, and clot retraction. Integrin αIIbβ3 has served as an excellent model for the study of integrin biology, and it has become clear that integrin outside-in signaling is highly complex and involves a vast array of enzymes, signaling adaptors, and cytoskeletal components. In this review, we provide a concise but comprehensive overview of αIIbβ3 outside-in signaling, focusing on the key players involved, and how they cooperate to orchestrate this critical aspect of platelet biology. We also discuss gaps in the current understanding of αIIbβ3 outside-in signaling and highlight avenues for future investigation.
Collapse
|
69
|
Urbano RL, Furia C, Basehore S, Clyne AM. Stiff Substrates Increase Inflammation-Induced Endothelial Monolayer Tension and Permeability. Biophys J 2017; 113:645-655. [PMID: 28793219 PMCID: PMC5550298 DOI: 10.1016/j.bpj.2017.06.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/15/2017] [Accepted: 06/13/2017] [Indexed: 01/22/2023] Open
Abstract
Arterial stiffness and inflammation are associated with atherosclerosis, and each have individually been shown to increase endothelial monolayer tension and permeability. The objective of this study was to determine if substrate stiffness enhanced endothelial monolayer tension and permeability in response to inflammatory cytokines. Porcine aortic endothelial cells were cultured at confluence on polyacrylamide gels of varying stiffness and treated with either tumor necrosis factor-α (TNFα) or thrombin. Monolayer tension was measured through vinculin localization at the cell membrane, traction force microscopy, and phosphorylated myosin light chain quantity and actin fiber colocalization. Cell permeability was measured by cell-cell junction confocal microscopy and a dextran permeability assay. When treated with TNFα or thrombin, endothelial monolayers on stiffer substrates showed increased traction forces, vinculin at the cell membrane, and vinculin phosphorylation, suggesting elevated monolayer tension. Interestingly, VE-cadherin shifted toward a smaller molecular weight in endothelial monolayers on softer substrates, which may relate to increased VE-cadherin endocytosis and degradation. Phosphorylated myosin light chain colocalization with actin stress fibers increased in endothelial monolayers treated with TNFα or thrombin on stiffer substrates, indicating elevated cell monolayer contractility. Endothelial monolayers also developed focal adherens intercellular junctions and became more permeable when cultured on stiffer substrates in the presence of the inflammatory cytokines. Whereas each of these effects was likely mitigated by Rho/ROCK, Rho/ROCK pathway inhibition via Y27632 disrupted cell-cell junction morphology, showing that cell contractility is required to maintain adherens junction integrity. These data suggest that stiff substrates change intercellular junction protein localization and degradation, which may counteract the inflammation-induced increase in endothelial monolayer tension and thereby moderate inflammation-induced junction loss and associated endothelial monolayer permeability on stiffer substrates.
Collapse
|
70
|
Hirbawi J, Bialkowska K, Bledzka KM, Liu J, Fukuda K, Qin J, Plow EF. The extreme C-terminal region of kindlin-2 is critical to its regulation of integrin activation. J Biol Chem 2017; 292:14258-14269. [PMID: 28652408 DOI: 10.1074/jbc.m117.776195] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/17/2017] [Indexed: 12/25/2022] Open
Abstract
Kindlin-2 (K2), a 4.1R-ezrin-radixin-moesin (FERM) domain adaptor protein, mediates numerous cellular responses, including integrin activation. The C-terminal 15-amino acid sequence of K2 is remarkably conserved across species but is absent in canonical FERM proteins, including talin. In CHO cells expressing integrin αIIbβ3, co-expression of K2 with talin head domain resulted in robust integrin activation, but this co-activation was lost after deletion of as few as seven amino acids from the K2 C terminus. This dependence on the C terminus was also observed in activation of endogenous αIIbβ3 in human erythroleukemia (HEL) cells and β1 integrin activation in macrophage-like RAW264.1 cells. Kindlin-1 (K1) exhibited a similar dependence on its C terminus for integrin activation. Expression of the K2 C terminus as an extension of membrane-anchored P-selectin glycoprotein ligand-1 (PSGL-1) inhibited integrin-dependent cell spreading. Deletion of the K2 C terminus did not affect its binding to the integrin β3 cytoplasmic tail, but combined biochemical and NMR analyses indicated that it can insert into the F2 subdomain. We suggest that this insertion determines the topology of the K2 FERM domain, and its deletion may affect the positioning of the membrane-binding functions of the F2 subdomain and the integrin-binding properties of its F3 subdomain. Free C-terminal peptide can still bind to K2 and displace the endogenous K2 C terminus but may not restore the conformation needed for integrin co-activation. Our findings indicate that the extreme C terminus of K2 is essential for integrin co-activation and highlight the importance of an atypical architecture of the K2 FERM domain in regulating integrin activation.
Collapse
Affiliation(s)
- Jamila Hirbawi
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Katarzyna Bialkowska
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Kamila M Bledzka
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Jianmin Liu
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Koichi Fukuda
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Jun Qin
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Edward F Plow
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.
| |
Collapse
|
71
|
Currò D, Pugliese D, Armuzzi A. Frontiers in Drug Research and Development for Inflammatory Bowel Disease. Front Pharmacol 2017; 8:400. [PMID: 28690543 PMCID: PMC5481609 DOI: 10.3389/fphar.2017.00400] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/07/2017] [Indexed: 12/22/2022] Open
Abstract
Inflammatory bowel disease (IBD) is idiopathic, lifelong, immune-mediated diseases, for which curative therapies are not yet available. In the last 15 years, the introduction of monoclonal antibodies targeting tumor necrosis factor-α, a cytokine playing a key role in bowel inflammation, has revolutionized treatment paradigms for IBD. Despite their proven long-term efficacy, however, many patients do not respond or progressively lose response to these drugs. Major advances of knowledge in immunology and pathophysiology of intestinal inflammatory processes have made possible the identification of new molecular targets for drugs, thus opening several new potential therapeutic opportunities for IBD. The abnormal response of intestinal immunity to unknown antigens leads to the activation of T helper lymphocytes and triggers the inflammatory cascade. Sphingosine 1-phosphate receptor agonists negatively modulate the egress of lymphocytes, inducted by antigen-presenting cells, from secondary lymphoid tissues to intestinal wall. Leukocyte adhesion inhibitors (both anti-integrin and anti-Mucosal Vascular Addressin Cell Adhesion Molecule 1) interfere with the tissue homing processes. Activated T helper lymphocytes increase the levels of pro-inflammatory cytokines, such as interleukin 12, 23, and 6, offering several potential pharmacological interventions. The Janus kinases, intracellular enzymes mediating the transduction of several cytokine signals, are other explored targets for treating immune-mediated diseases. Finally, the impact of modulating Smad7 pathway, which is responsible for the down-regulation of the immunosuppressive cytokine transforming growth factor-β signaling, is currently under investigation. The purpose of this review is to discuss the most promising molecules in late-stage clinical development, with a special emphasis on pharmacological properties.
Collapse
Affiliation(s)
- Diego Currò
- Institute of Pharmacology, School of Medicine, Catholic University of the Sacred HeartRome, Italy
| | - Daniela Pugliese
- IBD Unit, Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario “A. Gemelli” Presidio Columbus, Catholic University of the Sacred HeartRome, Italy
| | - Alessandro Armuzzi
- IBD Unit, Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario “A. Gemelli” Presidio Columbus, Catholic University of the Sacred HeartRome, Italy
| |
Collapse
|
72
|
Rodriguez D, Braden BP, Boyer SW, Taketa DA, Setar L, Calhoun C, Maio AD, Langenbacher A, Valentine MT, De Tomaso AW. In vivo manipulation of the extracellular matrix induces vascular regression in a basal chordate. Mol Biol Cell 2017; 28:1883-1893. [PMID: 28615322 PMCID: PMC5541839 DOI: 10.1091/mbc.e17-01-0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 01/07/2023] Open
Abstract
We investigated the physical role of the extracellular matrix (ECM) in vascular homeostasis in the basal chordate Botryllus schlosseri, which has a large, transparent, extracorporeal vascular network encompassing an area >100 cm2 We found that the collagen cross-linking enzyme lysyl oxidase is expressed in all vascular cells and that in vivo inhibition using β-aminopropionitrile (BAPN) caused a rapid, global regression of the entire network, with some vessels regressing >10 mm within 16 h. BAPN treatment changed the ultrastructure of collagen fibers in the vessel basement membrane, and the kinetics of regression were dose dependent. Pharmacological inhibition of both focal adhesion kinase (FAK) and Raf also induced regression, and levels of phosphorylated FAK in vascular cells decreased during BAPN treatment and FAK inhibition but not Raf inhibition, suggesting that physical changes in the vessel ECM are detected via canonical integrin signaling pathways. Regression is driven by apoptosis and extrusion of cells through the basal lamina, which are then engulfed by blood-borne phagocytes. Extrusion and regression occurred in a coordinated manner that maintained vessel integrity, with no loss of barrier function. This suggests the presence of regulatory mechanisms linking physical changes to a homeostatic, tissue-level response.
Collapse
Affiliation(s)
- Delany Rodriguez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Brian P Braden
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Scott W Boyer
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Daryl A Taketa
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Leah Setar
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Chris Calhoun
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Alessandro Di Maio
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Adam Langenbacher
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Megan T Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Anthony W De Tomaso
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| |
Collapse
|
73
|
Mapping Heart Development in Flies: Src42A Acts Non-Autonomously to Promote Heart Tube Formation in Drosophila. Vet Sci 2017; 4:vetsci4020023. [PMID: 29056682 PMCID: PMC5606601 DOI: 10.3390/vetsci4020023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/27/2016] [Accepted: 12/07/2016] [Indexed: 12/26/2022] Open
Abstract
Congenital heart defects, clinically identified in both small and large animals, are multifactorial and complex. Although heritable factors are known to have a role in cardiovascular disease, the full genetic aetiology remains unclear. Model organism research has proven valuable in providing a deeper understanding of the essential factors in heart development. For example, mouse knock-out studies reveal a role for the Integrin adhesion receptor in cardiac tissue. Recent research in Drosophila melanogaster (the fruit fly), a powerful experimental model, has demonstrated that the link between the extracellular matrix and the cell, mediated by Integrins, is required for multiple aspects of cardiogenesis. Here we test the hypothesis that Integrins signal to the heart cells through Src42A kinase. Using the powerful genetics and cell biology analysis possible in Drosophila, we demonstrate that Src42A acts in early events of heart tube development. Careful examination of mutant heart tissue and genetic interaction data suggests that Src42A’s role is independent of Integrin and the Integrin-related Focal Adhesion Kinase. Rather, Src42A acts non-autonomously by promoting programmed cell death of the amnioserosa, a transient tissue that neighbors the developing heart.
Collapse
|
74
|
Becchetti A, Crescioli S, Zanieri F, Petroni G, Mercatelli R, Coppola S, Gasparoli L, D'Amico M, Pillozzi S, Crociani O, Stefanini M, Fiore A, Carraresi L, Morello V, Manoli S, Brizzi MF, Ricci D, Rinaldi M, Masi A, Schmidt T, Quercioli F, Defilippi P, Arcangeli A. The conformational state of hERG1 channels determines integrin association, downstream signaling, and cancer progression. Sci Signal 2017; 10:10/473/eaaf3236. [PMID: 28377405 DOI: 10.1126/scisignal.aaf3236] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ion channels regulate cell proliferation, differentiation, and migration in normal and neoplastic cells through cell-cell and cell-extracellular matrix (ECM) transmembrane receptors called integrins. K+ flux through the human ether-à-go-go-related gene 1 (hERG1) channel shapes action potential firing in excitable cells such as cardiomyocytes. Its abundance is often aberrantly high in tumors, where it modulates integrin-mediated signaling. We found that hERG1 interacted with the β1 integrin subunit at the plasma membrane of human cancer cells. This interaction was not detected in cardiomyocytes because of the presence of the hERG1 auxiliary subunit KCNE1 (potassium voltage-gated channel subfamily E regulatory subunit 1), which blocked the β1 integrin-hERG1 interaction. Although open hERG1 channels did not interact as strongly with β1 integrins as did closed channels, current flow through hERG1 channels was necessary to activate the integrin-dependent phosphorylation of Tyr397 in focal adhesion kinase (FAK) in both normal and cancer cells. In immunodeficient mice, proliferation was inhibited in breast cancer cells expressing forms of hERG1 with impaired K+ flow, whereas metastasis of breast cancer cells was reduced when the hERG1/β1 integrin interaction was disrupted. We conclude that the interaction of β1 integrins with hERG1 channels in cancer cells stimulated distinct signaling pathways that depended on the conformational state of hERG1 and affected different aspects of tumor progression.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Silvia Crescioli
- Department of Experimental and Clinical Medicine, University of Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | - Francesca Zanieri
- Department of Experimental and Clinical Medicine, University of Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | - Giulia Petroni
- Department of Experimental and Clinical Medicine, University of Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | - Raffaella Mercatelli
- Consiglio Nazionale delle Ricerche-Istituto Nazionale di Ottica, Via N. Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Stefano Coppola
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, Netherlands
| | - Luca Gasparoli
- Department of Experimental and Clinical Medicine, University of Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | - Massimo D'Amico
- Di.V.A.L. Toscana SRL, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Serena Pillozzi
- Department of Experimental and Clinical Medicine, University of Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | - Olivia Crociani
- Department of Experimental and Clinical Medicine, University of Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | - Matteo Stefanini
- Di.V.A.L. Toscana SRL, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Antonella Fiore
- Department of Experimental and Clinical Medicine, University of Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | - Laura Carraresi
- Di.V.A.L. Toscana SRL, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Virginia Morello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Sagar Manoli
- Department of Experimental and Clinical Medicine, University of Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | - Maria Felice Brizzi
- Department of Medical Sciences, University of Torino, Corso Dogliotti 14, 10126 Torino, Italy
| | - Davide Ricci
- Department of Surgical Sciences, University of Torino, Corso Dogliotti 14, 10126 Torino, Italy
| | - Mauro Rinaldi
- Department of Surgical Sciences, University of Torino, Corso Dogliotti 14, 10126 Torino, Italy
| | - Alessio Masi
- Department of Experimental and Clinical Medicine, University of Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | - Thomas Schmidt
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, Netherlands
| | - Franco Quercioli
- Consiglio Nazionale delle Ricerche-Istituto Nazionale di Ottica, Via N. Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Paola Defilippi
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, Netherlands
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy.
| |
Collapse
|
75
|
High Affinity vs. Native Fibronectin in the Modulation of αvβ3 Integrin Conformational Dynamics: Insights from Computational Analyses and Implications for Molecular Design. PLoS Comput Biol 2017; 13:e1005334. [PMID: 28114375 PMCID: PMC5293283 DOI: 10.1371/journal.pcbi.1005334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 02/06/2017] [Accepted: 12/23/2016] [Indexed: 11/19/2022] Open
Abstract
Understanding how binding events modulate functional motions of multidomain proteins is a major issue in chemical biology. We address several aspects of this problem by analyzing the differential dynamics of αvβ3 integrin bound to wild type (wtFN10, agonist) or high affinity (hFN10, antagonist) mutants of fibronectin. We compare the dynamics of complexes from large-scale domain motions to inter-residue coordinated fluctuations to characterize the distinctive traits of conformational evolution and shed light on the determinants of differential αvβ3 activation induced by different FN sequences. We propose an allosteric model for ligand-based integrin modulation: the conserved integrin binding pocket anchors the ligand, while different residues on the two FN10's act as the drivers that reorganize relevant interaction networks, guiding the shift towards inactive (hFN10-bound) or active states (wtFN10-bound). We discuss the implications of results for the design of integrin inhibitors.
Collapse
|
76
|
The opposing roles of laminin-binding integrins in cancer. Matrix Biol 2017; 57-58:213-243. [DOI: 10.1016/j.matbio.2016.08.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/02/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
|
77
|
Draheim KM, Huet-Calderwood C, Simon B, Calderwood DA. Nuclear Localization of Integrin Cytoplasmic Domain-associated Protein-1 (ICAP1) Influences β1 Integrin Activation and Recruits Krev/Interaction Trapped-1 (KRIT1) to the Nucleus. J Biol Chem 2016; 292:1884-1898. [PMID: 28003363 DOI: 10.1074/jbc.m116.762393] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/12/2016] [Indexed: 01/15/2023] Open
Abstract
Binding of ICAP1 (integrin cytoplasmic domain-associated protein-1) to the cytoplasmic tails of β1 integrins inhibits integrin activation. ICAP1 also binds to KRIT1 (Krev interaction trapped-1), a protein whose loss of function leads to cerebral cavernous malformation, a cerebrovascular dysplasia occurring in up to 0.5% of the population. We previously showed that KRIT1 functions as a switch for β1 integrin activation by antagonizing ICAP1-mediated inhibition of integrin activation. Here we use overexpression studies, mutagenesis, and flow cytometry to show that ICAP1 contains a functional nuclear localization signal and that nuclear localization impairs the ability of ICAP1 to suppress integrin activation. Moreover, we find that ICAP1 drives the nuclear localization of KRIT1 in a manner dependent upon a direct ICAP1/KRIT1 interaction. Thus, nuclear-cytoplasmic shuttling of ICAP1 influences both integrin activation and KRIT1 localization, presumably impacting nuclear functions of KRIT1.
Collapse
Affiliation(s)
- Kyle M Draheim
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Clotilde Huet-Calderwood
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Bertrand Simon
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - David A Calderwood
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520; the Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520.
| |
Collapse
|
78
|
Shi X, Yang J, Cui X, Huang J, Long Z, Zhou Y, Liu P, Tao L, Ruan Z, Xiao B, Zhang W, Li D, Dai K, Mao J, Xi X. Functional Effect of the Mutations Similar to the Cleavage during Platelet Activation at Integrin β3 Cytoplasmic Tail when Expressed in Mouse Platelets. PLoS One 2016; 11:e0166136. [PMID: 27851790 PMCID: PMC5112943 DOI: 10.1371/journal.pone.0166136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022] Open
Abstract
Previous studies in Chinese hamster ovary cells showed that truncational mutations of β3 at sites of F754 and Y759 mimicking calpain cleavage regulate integrin signaling. The roles of the sequence from F754 to C-terminus and the conservative N756ITY759 motif in platelet function have yet to be elaborated. Mice expressing β3 with F754 and Y759 truncations, or NITY deletion (β3-ΔTNITYRGT, β3-ΔRGT, or β3-ΔNITY) were established through transplanting the homozygous β3-deficient mouse bone marrow cells infected by the GFP tagged MSCV MigR1 retroviral vector encoding different β3 mutants into lethally radiated wild-type mice. The platelets were harvested for soluble fibrinogen binding and platelet spreading on immobilized fibrinogen. Platelet adhesion on fibrinogen- and collagen-coated surface under flow was also tested to assess the ability of the platelets to resist hydrodynamic drag forces. Data showed a drastic inhibition of the β3-ΔTNITYRGT platelets to bind soluble fibrinogen and spread on immobilized fibrinogen in contrast to a partially impaired fibrinogen binding and an almost unaffected spreading exhibited in the β3-ΔNITY platelets. Behaviors of the β3-ΔRGT platelets were consistent with the previous observations in the β3-ΔRGT knock-in platelets. The adhesion impairment of platelets with the β3 mutants under flow was in different orders of magnitude shown as: β3-ΔTNITYRGT>β3-ΔRGT>β3-ΔNITY to fibrinogen-coated surface, and β3-ΔTNITYRGT>β3-ΔNITY>β3-ΔRGT to collagen-coated surface. To evaluate the interaction of the β3 mutants with signaling molecules, GST pull-down and immunofluorescent assays were performed. Results showed that β3-ΔRGT interacted with kindlin but not c-Src, β3-ΔNITY interacted with c-Src but not kindlin, while β3-ΔTNITYRGT did not interact with both proteins. This study provided evidence in platelets at both static and flow conditions that the calpain cleavage-related sequences of integrin β3, i.e. T755NITYRGT762, R760GT762, and N756ITY759 participate in bidirectional, outside-in, and inside-out signaling, respectively and the association of c-Src or kindlin with β3 integrin may regulate these processes.
Collapse
Affiliation(s)
- Xiaofeng Shi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jichun Yang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiongying Cui
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiansong Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Hematology, Institute of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhangbiao Long
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yulan Zhou
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ping Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lanlan Tao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zheng Ruan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bing Xiao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dongya Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Kesheng Dai
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, 215006, China
| | - Jianhua Mao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- * E-mail: (JM); (XX)
| | - Xiaodong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- * E-mail: (JM); (XX)
| |
Collapse
|
79
|
Horton ER, Humphries JD, James J, Jones MC, Askari JA, Humphries MJ. The integrin adhesome network at a glance. J Cell Sci 2016; 129:4159-4163. [PMID: 27799358 PMCID: PMC5117201 DOI: 10.1242/jcs.192054] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The adhesion nexus is the site at which integrin receptors bridge intracellular cytoskeletal and extracellular matrix networks. The connection between integrins and the cytoskeleton is mediated by a dynamic integrin adhesion complex (IAC), the components of which transduce chemical and mechanical signals to control a multitude of cellular functions. In this Cell Science at a Glance article and the accompanying poster, we integrate the consensus adhesome, a set of 60 proteins that have been most commonly identified in isolated IAC proteomes, with the literature-curated adhesome, a theoretical network that has been assembled through scholarly analysis of proteins that localise to IACs. The resulting IAC network, which comprises four broad signalling and actin-bridging axes, provides a platform for future studies of the regulation and function of the adhesion nexus in health and disease.
Collapse
Affiliation(s)
- Edward R Horton
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jonathan D Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jenny James
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Matthew C Jones
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Janet A Askari
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
80
|
Fan Z, Ley K. Leukocyte arrest: Biomechanics and molecular mechanisms of β2 integrin activation. Biorheology 2016; 52:353-77. [PMID: 26684674 DOI: 10.3233/bir-15085] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Integrins are a group of heterodimeric transmembrane receptors that play essential roles in cell-cell and cell-matrix interaction. Integrins are important in many physiological processes and diseases. Integrins acquire affinity to their ligand by undergoing molecular conformational changes called activation. Here we review the molecular biomechanics during conformational changes of integrins, integrin functions in leukocyte biorheology (adhesive functions during rolling and arrest) and molecules involved in integrin activation.
Collapse
Affiliation(s)
- Zhichao Fan
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.,Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
81
|
Nordenfelt P, Elliott HL, Springer TA. Coordinated integrin activation by actin-dependent force during T-cell migration. Nat Commun 2016; 7:13119. [PMID: 27721490 PMCID: PMC5062559 DOI: 10.1038/ncomms13119] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/05/2016] [Indexed: 12/28/2022] Open
Abstract
For a cell to move forward it must convert chemical energy into mechanical propulsion. Force produced by actin polymerization can generate traction across the plasma membrane by transmission through integrins to their ligands. However, the role this force plays in integrin activation is unknown. Here we show that integrin activity and cytoskeletal dynamics are reciprocally linked, where actin-dependent force itself appears to regulate integrin activity. We generated fluorescent tension-sensing constructs of integrin αLβ2 (LFA-1) to visualize intramolecular tension during cell migration. Using quantitative imaging of migrating T cells, we correlate tension in the αL or β2 subunit with cell and actin dynamics. We find that actin engagement produces tension within the β2 subunit to induce and stabilize an active integrin conformational state and that this requires intact talin and kindlin motifs. This supports a general mechanism where localized actin polymerization can coordinate activation of the complex machinery required for cell migration. The role of force in activating integrin cell adhesion receptors is not known. Here the authors develop fluorescent tension sensors for αL and β2 integrins and show that in migrating T cells force is transduced across the β2 integrin, and that this correlates with an active conformational state.
Collapse
Affiliation(s)
- Pontus Nordenfelt
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Program in Cellular and Molecular Medicine, Children's Hospital Boston, 3 Blackfan Circle, Boston, Massachusetts 02115, USA.,Image and Data Analysis Core, Harvard Medical School, 240 Longwood Ave., Boston, Massachusetts 02115, USA.,Department of Clinical Sciences, Division of Infection Medicine, Faculty of Medicine, Lund University, BMC, B14, Sölvegatan 19, 22362 Lund, Sweden
| | - Hunter L Elliott
- Image and Data Analysis Core, Harvard Medical School, 240 Longwood Ave., Boston, Massachusetts 02115, USA
| | - Timothy A Springer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Program in Cellular and Molecular Medicine, Children's Hospital Boston, 3 Blackfan Circle, Boston, Massachusetts 02115, USA
| |
Collapse
|
82
|
Przybyla L, Muncie JM, Weaver VM. Mechanical Control of Epithelial-to-Mesenchymal Transitions in Development and Cancer. Annu Rev Cell Dev Biol 2016; 32:527-554. [DOI: 10.1146/annurev-cellbio-111315-125150] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Laralynne Przybyla
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, California 94143;
| | - Jonathon M. Muncie
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, California 94143;
- Joint Graduate Group in Bioengineering (University of California, San Francisco, and University of California, Berkeley), San Francisco, California 94143
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, California 94143;
- Departments of Anatomy, Bioengineering, and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143
| |
Collapse
|
83
|
Abstract
Integrins comprise a large family of αβ heterodimeric cell adhesion receptors that are expressed on all cells except red blood cells and that play essential roles in the regulation of cell growth and function. The leukocyte integrins, which include members of the β
1, β
2, β
3, and β
7 integrin family, are critical for innate and adaptive immune responses but also can contribute to many inflammatory and autoimmune diseases when dysregulated. This review focuses on the β
2 integrins, the principal integrins expressed on leukocytes. We review their discovery and role in host defense, the structural basis for their ligand recognition and activation, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- M Amin Arnaout
- Leukocyte Biology & Inflammation Program, Structural Biology Program, Nephrology, Center for Regenerative Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
84
|
Ertl NG, O’Connor WA, Wiegand AN, Elizur A. Molecular analysis of the Sydney rock oyster (Saccostrea glomerata) CO2 stress response. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s40665-016-0019-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
85
|
Davis K, Inaba JI. Lunasin—a multifunctional anticancer peptide from soybean. INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2016. [DOI: 10.14319/ijcto.42.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
86
|
Jonsson-Schmunk K, Wonganan P, Choi JH, Callahan SM, Croyle MA. Integrin Receptors Play a Key Role in the Regulation of Hepatic CYP3A. ACTA ACUST UNITED AC 2016; 44:758-70. [PMID: 26868618 DOI: 10.1124/dmd.115.068874] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/10/2016] [Indexed: 12/21/2022]
Abstract
Landmark studies describing the effect of microbial infection on the expression and activity of hepatic CYP3A used bacterial lipopolysaccharide as a model antigen. Our efforts to determine whether these findings were translatable to viral infections led us to observations suggesting that engagement of integrin receptors is key in the initiation of processes responsible for changes in hepatic CYP3A4 during infection and inflammation. Studies outlined in this article were designed to evaluate whether engagement of integrins, receptors commonly used by a variety of microbes to enter cellular targets, is vital in the regulation of CYP3A in the presence and absence of virus infection. Mice infected with a recombinant adenovirus (AdlacZ) experienced a 70% reduction in hepatic CYP3A catalytic activity. Infection with a mutant virus with integrin-binding arginine-glycine-aspartic acid (RGD) sequences deleted from the penton base protein of the virus capsid (AdΔRGD) did not alter CYP3A activity. CYP3A mRNA and protein levels in AdlacZ-treated animals were also suppressed, whereas those of mice given AdΔRGD were not significantly different from uninfected control mice. Silencing of the integrinβ-subunit reverted adenovirus-mediated CYP3A4 suppression in vitro. Silencing of theα-subunit did not. Suppression of integrin subunits had a profound effect on nuclear receptors pregnane X receptor and constitutive androstane receptor, whereas retinoid X receptorαwas largely unaffected. To our knowledge, this is the first time that extracellular receptors, like integrins, have been indicated in the regulation of CYP3A. This finding has several implications owing to the important role of integrins in normal physiologic process and in many disease states.
Collapse
Affiliation(s)
- Kristina Jonsson-Schmunk
- Division of Pharmaceutics, College of Pharmacy (K.J.-S., P.W., J.H.C., S.M.C., M.A.C.), and Center for Infectious Disease (M.A.C.), The University of Texas at Austin, Austin, Texas
| | - Piynauch Wonganan
- Division of Pharmaceutics, College of Pharmacy (K.J.-S., P.W., J.H.C., S.M.C., M.A.C.), and Center for Infectious Disease (M.A.C.), The University of Texas at Austin, Austin, Texas
| | - Jin Huk Choi
- Division of Pharmaceutics, College of Pharmacy (K.J.-S., P.W., J.H.C., S.M.C., M.A.C.), and Center for Infectious Disease (M.A.C.), The University of Texas at Austin, Austin, Texas
| | - Shellie M Callahan
- Division of Pharmaceutics, College of Pharmacy (K.J.-S., P.W., J.H.C., S.M.C., M.A.C.), and Center for Infectious Disease (M.A.C.), The University of Texas at Austin, Austin, Texas
| | - Maria A Croyle
- Division of Pharmaceutics, College of Pharmacy (K.J.-S., P.W., J.H.C., S.M.C., M.A.C.), and Center for Infectious Disease (M.A.C.), The University of Texas at Austin, Austin, Texas
| |
Collapse
|
87
|
De Franceschi N, Arjonen A, Elkhatib N, Denessiouk K, Wrobel AG, Wilson TA, Pouwels J, Montagnac G, Owen DJ, Ivaska J. Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2. Nat Struct Mol Biol 2016; 23:172-9. [PMID: 26779610 PMCID: PMC5130146 DOI: 10.1038/nsmb.3161] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/14/2015] [Indexed: 12/25/2022]
Abstract
Integrins are heterodimeric cell-surface adhesion molecules comprising one of 18 possible α-chains and one of eight possible β-chains. They control a range of cell functions in a matrix- and ligand-specific manner. Integrins can be internalized by clathrin-mediated endocytosis (CME) through β subunit-based motifs found in all integrin heterodimers. However, whether specific integrin heterodimers can be selectively endocytosed was unknown. Here, we found that a subset of α subunits contain an evolutionarily conserved and functional YxxΦ motif directing integrins to selective internalization by the most abundant endocytic clathrin adaptor, AP2. We determined the structure of the human integrin α4-tail motif in complex with the AP2 C-μ2 subunit and confirmed the interaction by isothermal titration calorimetry. Mutagenesis of the motif impaired selective heterodimer endocytosis and attenuated integrin-mediated cell migration. We propose that integrins evolved to enable selective integrin-receptor turnover in response to changing matrix conditions.
Collapse
Affiliation(s)
| | - Antti Arjonen
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - Nadia Elkhatib
- Institut Gustave Roussy, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1170, Villejuif, France
| | | | - Antoni G Wrobel
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Thomas A Wilson
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Jeroen Pouwels
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - Guillaume Montagnac
- Institut Gustave Roussy, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1170, Villejuif, France
| | - David J Owen
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| |
Collapse
|
88
|
Withofs N, Hustinx R. Integrin αvβ3 and RGD-based radiopharmaceuticals. MEDECINE NUCLEAIRE-IMAGERIE FONCTIONNELLE ET METABOLIQUE 2016. [DOI: 10.1016/j.mednuc.2015.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
89
|
Vehlow A, Storch K, Matzke D, Cordes N. Molecular Targeting of Integrins and Integrin-Associated Signaling Networks in Radiation Oncology. Recent Results Cancer Res 2016; 198:89-106. [PMID: 27318682 DOI: 10.1007/978-3-662-49651-0_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Radiation and chemotherapy are the main pillars of the current multimodal treatment concept for cancer patients. However, tumor recurrences and resistances still hamper treatment success regardless of advances in radiation beam application, particle radiotherapy, and optimized chemotherapeutics. To specifically intervene at key recurrence- and resistance-promoting molecular processes, the development of potent and specific molecular-targeted agents is demanded for an efficient, safe, and simultaneous integration into current standard of care regimens. Potential targets for such an approach are integrins conferring structural and biochemical communication between cells and their microenvironment. Integrin binding to extracellular matrix activates intracellular signaling for regulating essential cellular functions such as survival, proliferation, differentiation, adhesion, and cell motility. Tumor-associated characteristics such as invasion, metastasis, and radiochemoresistance also highly depend on integrin function. Owing to their dual functionality and their overexpression in the majority of human malignancies, integrins present ideal and accessible targets for cancer therapy. In the following chapter, the current knowledge on aspects of the tumor microenvironment, the molecular regulation of integrin-dependent radiochemoresistance and current approaches to integrin targeting are summarized.
Collapse
Affiliation(s)
- Anne Vehlow
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Katja Storch
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Daniela Matzke
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nils Cordes
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Institute of Radiooncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| |
Collapse
|
90
|
Horton ER, Byron A, Askari JA, Ng DHJ, Millon-Frémillon A, Robertson J, Koper EJ, Paul NR, Warwood S, Knight D, Humphries JD, Humphries MJ. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly. Nat Cell Biol 2015; 17:1577-1587. [PMID: 26479319 PMCID: PMC4663675 DOI: 10.1038/ncb3257] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/18/2015] [Indexed: 12/14/2022]
Abstract
Integrin receptor activation initiates the formation of integrin adhesion complexes (IACs) at the cell membrane that transduce adhesion-dependent signals to control a multitude of cellular functions. Proteomic analyses of isolated IACs have revealed an unanticipated molecular complexity; however, a global view of the consensus composition and dynamics of IACs is lacking. Here, we have integrated several IAC proteomes and generated a 2,412-protein integrin adhesome. Analysis of this data set reveals the functional diversity of proteins in IACs and establishes a consensus adhesome of 60 proteins. The consensus adhesome is likely to represent a core cell adhesion machinery, centred around four axes comprising ILK-PINCH-kindlin, FAK-paxillin, talin-vinculin and α-actinin-zyxin-VASP, and includes underappreciated IAC components such as Rsu-1 and caldesmon. Proteomic quantification of IAC assembly and disassembly detailed the compositional dynamics of the core cell adhesion machinery. The definition of this consensus view of integrin adhesome components provides a resource for the research community.
Collapse
Affiliation(s)
- Edward R. Horton
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Adam Byron
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Janet A. Askari
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Daniel H. J. Ng
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Angélique Millon-Frémillon
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Joseph Robertson
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Ewa J. Koper
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Nikki R. Paul
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Stacey Warwood
- Biological Mass Spectrometry Core Facility, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - David Knight
- Biological Mass Spectrometry Core Facility, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Jonathan D. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Martin J. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
91
|
Meehan TL, Kleinsorge SE, Timmons AK, Taylor JD, McCall K. Polarization of the epithelial layer and apical localization of integrins are required for engulfment of apoptotic cells in the Drosophila ovary. Dis Model Mech 2015; 8:1603-14. [PMID: 26398951 PMCID: PMC4728319 DOI: 10.1242/dmm.021998] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/14/2015] [Indexed: 12/28/2022] Open
Abstract
Inefficient clearance of dead cells or debris by epithelial cells can lead to or exacerbate debilitating conditions such as retinitis pigmentosa, macular degeneration, chronic obstructive pulmonary disease and asthma. Despite the importance of engulfment by epithelial cells, little is known about the molecular changes that are required within these cells. The misregulation of integrins has previously been associated with disease states, suggesting that a better understanding of the regulation of receptor trafficking could be key to treating diseases caused by defects in phagocytosis. Here, we demonstrate that the integrin heterodimer αPS3/βPS becomes apically enriched and is required for engulfment by the epithelial follicle cells of the Drosophila ovary. We found that integrin heterodimer localization and function is largely directed by the α-subunit. Moreover, proper cell polarity promotes asymmetric integrin enrichment, suggesting that αPS3/βPS trafficking occurs in a polarized fashion. We show that several genes previously known for their roles in trafficking and cell migration are also required for engulfment. Moreover, as in mammals, the same α-integrin subunit is required by professional and non-professional phagocytes and migrating cells in Drosophila. Our findings suggest that migrating and engulfing cells use common machinery, and demonstrate a crucial role for integrin function and polarized trafficking of integrin subunits during engulfment. This study also establishes the epithelial follicle cells of the Drosophila ovary as a powerful model for understanding the molecular changes required for engulfment by a polarized epithelium. Summary: Apical integrin localization, mediated by polarized and directed trafficking, is crucial for proper engulfment by epithelial cells.
Collapse
Affiliation(s)
- Tracy L Meehan
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Sarah E Kleinsorge
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Allison K Timmons
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Jeffrey D Taylor
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Kimberly McCall
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| |
Collapse
|
92
|
Cantor DI, Cheruku HR, Nice EC, Baker MS. Integrin αvβ6 sets the stage for colorectal cancer metastasis. Cancer Metastasis Rev 2015; 34:715-34. [DOI: 10.1007/s10555-015-9591-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
93
|
Abstract
Integrins are adhesion and survival molecules involved in axon growth during CNS development, as well as axon regeneration after injury in the peripheral nervous system (PNS). Adult CNS axons do not regenerate after injury, partly due to a low intrinsic growth capacity. We have previously studied the role of integrins in axon growth in PNS axons; in the present study, we investigate whether integrin mechanisms involved in PNS regeneration may be altered or lacking from mature CNS axons by studying maturing CNS neurons in vitro. In rat cortical neurons, we find that integrins are present in axons during initial growth but later become restricted to the somato-dendritic domain. We investigated how this occurs and whether it can be altered to enhance axonal growth potential. We find a developmental change in integrin trafficking; transport becomes predominantly retrograde throughout axons, but not dendrites, as neurons mature. The directionality of transport is controlled through the activation state of ARF6, with developmental upregulation of the ARF6 GEF ARNO enhancing retrograde transport. Lowering ARF6 activity in mature neurons restores anterograde integrin flow, allows transport into axons, and increases axon growth. In addition, we found that the axon initial segment is partly responsible for exclusion of integrins and removal of this structure allows integrins into axons. Changing posttranslational modifications of tubulin with taxol also allows integrins into the proximal axon. The experiments suggest that the developmental loss of regenerative ability in CNS axons is due to exclusion of growth-related molecules due to changes in trafficking.
Collapse
|
94
|
Iwamoto DV, Calderwood DA. Regulation of integrin-mediated adhesions. Curr Opin Cell Biol 2015; 36:41-7. [PMID: 26189062 DOI: 10.1016/j.ceb.2015.06.009] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/01/2015] [Accepted: 06/30/2015] [Indexed: 11/18/2022]
Abstract
Integrins are heterodimeric transmembrane adhesion receptors that couple the actin cytoskeleton to the extracellular environment and bidirectionally relay signals across the cell membrane. These processes are critical for cell attachment, migration, differentiation, and survival, and therefore play essential roles in metazoan development, physiology, and pathology. Integrin-mediated adhesions are regulated by diverse factors, including the conformation-specific affinities of integrin receptors for their extracellular ligands, the clustering of integrins and their intracellular binding partners into discrete adhesive structures, mechanical forces exerted on the adhesion, and the intracellular trafficking of integrins themselves. Recent advances shed light onto how the interaction of specific intracellular proteins with the short cytoplasmic tails of integrins controls each of these activities.
Collapse
Affiliation(s)
- Daniel V Iwamoto
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA; Department of Cell Biology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA.
| |
Collapse
|
95
|
Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat Cell Biol 2015; 17:955-63. [PMID: 26121555 DOI: 10.1038/ncb3191] [Citation(s) in RCA: 330] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 05/15/2015] [Indexed: 12/12/2022]
Abstract
During cell migration, the forces generated in the actin cytoskeleton are transmitted across transmembrane receptors to the extracellular matrix or other cells through a series of mechanosensitive, regulable protein-protein interactions termed the molecular clutch. In integrin-based focal adhesions, the proteins forming this linkage are organized into a conserved three-dimensional nano-architecture. Here we discuss how the physical interactions between the actin cytoskeleton and focal-adhesion-associated molecules mediate force transmission from the molecular clutch to the extracellular matrix.
Collapse
|
96
|
De Franceschi N, Ivaska J. Integrin bondage: filamin takes control. Nat Struct Mol Biol 2015; 22:355-7. [DOI: 10.1038/nsmb.3024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
97
|
Functional roles of calreticulin in cancer biology. BIOMED RESEARCH INTERNATIONAL 2015; 2015:526524. [PMID: 25918716 PMCID: PMC4396016 DOI: 10.1155/2015/526524] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 11/17/2022]
Abstract
Calreticulin is a highly conserved endoplasmic reticulum chaperone protein which participates in various cellular processes. It was first identified as a Ca2+-binding protein in 1974. Accumulated evidences indicate that calreticulin has great impacts for the development of different cancers and the effect of calreticulin on tumor formation and progression may depend on cell types and clinical stages. Cell surface calreticulin is considered as an “eat-me” signal and promotes phagocytic uptake of cancer cells by immune system. Moreover, several reports reveal that manipulation of calreticulin levels profoundly affects cancer cell proliferation and angiogenesis as well as differentiation. In addition to immunogenicity and tumorigenesis, interactions between calreticulin and integrins have been described during cell adhesion, which is an essential process for cancer metastasis. Integrins are heterodimeric transmembrane receptors which connect extracellular matrix and intracellular cytoskeleton and trigger inside-out or outside-in signaling transduction. More and more evidences reveal that proteins binding to integrins might affect integrin-cytoskeleton interaction and therefore influence ability of cell adhesion. Here, we reviewed the biological roles of calreticulin and summarized the potential mechanisms of calreticulin in regulating mRNA stability and therefore contributed to cancer metastasis.
Collapse
|
98
|
Emerging properties of adhesion complexes: what are they and what do they do? Trends Cell Biol 2015; 25:388-97. [PMID: 25824971 DOI: 10.1016/j.tcb.2015.02.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/13/2015] [Accepted: 02/24/2015] [Indexed: 02/07/2023]
Abstract
The regulation of cell adhesion machinery is central to a wide variety of developmental and pathological processes and occurs primarily within integrin-associated adhesion complexes. Here, we review recent advances that have furthered our understanding of the composition, organisation, and dynamics of these complexes, and provide an updated view on their emerging functions. Key findings are that adhesion complexes contain both core and non-canonical components. As a result of the dramatic increase in the range of components observed in adhesion complexes by proteomics, we comment on newly emerging functions for adhesion signalling. We conclude that, from a cellular or tissue systems perspective, adhesion signalling should be viewed as an emergent property of both the core and non-canonical adhesion complex components.
Collapse
|
99
|
Mertens-Walker I, Fernandini BC, Maharaj MSN, Rockstroh A, Nelson CC, Herington AC, Stephenson SA. The tumour-promoting receptor tyrosine kinase, EphB4, regulates expression of integrin-β8 in prostate cancer cells. BMC Cancer 2015; 15:164. [PMID: 25886373 PMCID: PMC4389669 DOI: 10.1186/s12885-015-1164-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/05/2015] [Indexed: 01/18/2023] Open
Abstract
Background The EphB4 receptor tyrosine kinase is overexpressed in many cancers including prostate cancer. The molecular mechanisms by which this ephrin receptor influences cancer progression are complex as there are tumor-promoting ligand-independent mechanisms in place as well as ligand-dependent tumor suppressive pathways. Methods We employed transient knockdown of EPHB4 in prostate cancer cells, coupled with gene microarray analysis, to identify genes that were regulated by EPHB4 and may represent linked tumor-promoting factors. We validated target genes using qRT-PCR and employed functional assays to determine their role in prostate cancer migration and invasion. Results We discovered that over 500 genes were deregulated upon EPHB4 siRNA knockdown, with integrin β8 (ITGB8) being the top hit (29-fold down-regulated compared to negative non-silencing siRNA). Gene ontology analysis found that the process of cell adhesion was highly deregulated and two other integrin genes, ITGA3 and ITGA10, were also differentially expressed. In parallel, we also discovered that over-expression of EPHB4 led to a concomitant increase in ITGB8 expression. In silico analysis of a prostate cancer progression microarray publically available in the Oncomine database showed that both EPHB4 and ITGB8 are highly expressed in prostatic intraepithelial neoplasia, the precursor to prostate cancer. Knockdown of ITGB8 in PC-3 and 22Rv1 prostate cancer cells in vitro resulted in significant reduction of cell migration and invasion. Conclusions These results reveal that EphB4 regulates integrin β8 expression and that integrin β8 plays a hitherto unrecognized role in the motility of prostate cancer cells and thus targeting integrin β8 may be a new treatment strategy for prostate cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1164-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Inga Mertens-Walker
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia. .,Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, 4102, Australia.
| | - Bruno C Fernandini
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia.
| | - Mohanan S N Maharaj
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia.
| | - Anja Rockstroh
- Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, 4102, Australia.
| | - Colleen C Nelson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia. .,Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, 4102, Australia.
| | - Adrian C Herington
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia. .,Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, 4102, Australia.
| | - Sally-Anne Stephenson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia. .,Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, 4102, Australia.
| |
Collapse
|
100
|
Liu J, Wang Z, Thinn AMM, Ma YQ, Zhu J. The dual structural roles of the membrane distal region of the α-integrin cytoplasmic tail during integrin inside-out activation. J Cell Sci 2015; 128:1718-31. [PMID: 25749862 DOI: 10.1242/jcs.160663] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 03/02/2015] [Indexed: 12/22/2022] Open
Abstract
Studies on the mechanism of integrin inside-out activation have been focused on the role of β-integrin cytoplasmic tails, which are relatively conserved and bear binding sites for the intracellular activators including talin and kindlin. Cytoplasmic tails for α-integrins share a conserved GFFKR motif at the membrane-proximal region and this forms a specific interface with the β-integrin membrane-proximal region to keep the integrin inactive. The α-integrin membrane-distal regions, after the GFFKR motif, are diverse both in length and sequence and their roles in integrin activation have not been well-defined. In this study, we report that the α-integrin cytoplasmic membrane-distal region contributes to maintaining integrin in the resting state and to integrin inside-out activation. Complete deletion of the α-integrin membrane-distal region diminished talin- and kindlin-mediated integrin ligand binding and conformational change. A proper length and suitable amino acids in α-integrin membrane-distal region was found to be important for integrin inside-out activation. Our data establish an essential role for the α-integrin cytoplasmic membrane-distal region in integrin activation and provide new insights into how talin and kindlin induce the high-affinity integrin conformation that is required for fully functional integrins.
Collapse
Affiliation(s)
- Jiafu Liu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA
| | - Zhengli Wang
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Aye Myat Myat Thinn
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yan-Qing Ma
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jieqing Zhu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|