51
|
Jaleel JA, Ashraf SM, Rathinasamy K, Pramod K. Carbon dot festooned and surface passivated graphene-reinforced chitosan construct for tumor-targeted delivery of TNF-α gene. Int J Biol Macromol 2019; 127:628-636. [PMID: 30708020 DOI: 10.1016/j.ijbiomac.2019.01.174] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
Gene therapy is a promising alternative that ensures effective treatment and cure for cancer. Here, we report graphene-reinforced chitosan (CS) construct based non-viral vector for tumor-targeted gene therapy. The therapeutic gene, pDNA-TNF-α, was loaded on to chitosan-carboxylated graphene oxide (CS-CGO) construct via electrostatic interaction. The pDNA-TNF-α-CS-CGO thus obtained was further passivated with 4,7,10-trioxa-1,13-tridecanediamine for protecting the vector from the mononuclear phagocyte system that contributes to the prolongation of circulation half-life. The surface passivated carrier (PEG-pDNA-TNF-α-CS-CGO) then festooned with the folic acid derived carbon dots (C-dots) for targeting folate receptors that are overexpressed in most of the cancer cells. The results of TEM images and zeta potential values ensured the occurrence of desired changes in each stage of C-dot-PEG-pDNA-TNF-α-CS-CGO formulation. After 14 days of incubation, the anti-angiogenesis effect was observed for final formulation in the chorioallantoic membrane. The results of in vitro gene expression study in cancer cell line show a comparatively higher transfection efficacy of the developed system (C-dot-PEG-pDNA-TNF-α-CS-CGO) than pDNA-TNF-α. The efficiency of the developed gene delivery system was further confirmed using a developed and validated artificial tumor cell apparatus.
Collapse
Affiliation(s)
- Jumana Abdul Jaleel
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India
| | - Shabeeba M Ashraf
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - K Pramod
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India.
| |
Collapse
|
52
|
Ambrosi A, Pumera M. Electrochemical Exfoliation of MoS 2 Crystal for Hydrogen Electrogeneration. Chemistry 2018; 24:18551-18555. [PMID: 30462872 DOI: 10.1002/chem.201804821] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/19/2018] [Indexed: 11/05/2022]
Abstract
Transition metal dichalcogenides (TMDs) have recently emerged within the group of 2D materials due to their electrical, catalytic and optical properties significantly enhanced and useful when down-sized to single layer. In particular, MoS2 has attracted much attention due to its semiconducting nature with a useful band gap when present as single layer, the enhanced photoluminescence, but also importantly the excellent catalytic properties towards the electrochemical hydrogen evolution. We present here the preparation of thin layers MoS2 nanosheets with enhanced catalytic properties towards the hydrogen evolution reaction by means of an easy and fast electrochemical top-down exfoliation procedure in aqueous solution from a naturally occurring MoS2 crystal. After structural and chemical characterization with STEM, AFM, XPS and Raman spectroscopy electrochemical investigations were performed to test catalytic properties in acidic solution for the electrogeneration of hydrogen and compare it to MoS2 nanosheets obtained through the widely employed chemical Li intercalation/exfoliation. Electrochemically exfoliated MoS2 shows lower Tafel slope than its counterpart obtained with chemical exfoliation.
Collapse
Affiliation(s)
- Adriano Ambrosi
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Martin Pumera
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.,Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200, Brno, Czech Republic
| |
Collapse
|
53
|
Electrochemical determination of phenothrin in fruit juices at graphene oxide-polypyrrole modified glassy carbon electrode. SENSING AND BIO-SENSING RESEARCH 2018. [DOI: 10.1016/j.sbsr.2018.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
54
|
Palumbo A, Tourlomousis F, Chang RC, Yang EH. Influence of Transition Metal Dichalcogenide Surfaces on Cellular Morphology and Adhesion. ACS APPLIED BIO MATERIALS 2018; 1:1448-1457. [DOI: 10.1021/acsabm.8b00405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Anthony Palumbo
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Filippos Tourlomousis
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
- The Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, Massachusetts 02138, United States
| | - Robert C. Chang
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Eui-Hyeok Yang
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| |
Collapse
|
55
|
Wright ZM, Arnold AM, Holt BD, Eckhart KE, Sydlik SA. Functional Graphenic Materials, Graphene Oxide, and Graphene as Scaffolds for Bone Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0081-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
56
|
Guiney LM, Wang X, Xia T, Nel AE, Hersam MC. Assessing and Mitigating the Hazard Potential of Two-Dimensional Materials. ACS NANO 2018; 12:6360-6377. [PMID: 29889491 PMCID: PMC6130817 DOI: 10.1021/acsnano.8b02491] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The family of two-dimensional (2D) materials is comprised of a continually expanding palette of unique compositions and properties with potential applications in electronics, optoelectronics, energy capture and storage, catalysis, and nanomedicine. To accelerate the implementation of 2D materials in widely disseminated technologies, human health and environmental implications need to be addressed. While extensive research has focused on assessing the toxicity and environmental fate of graphene and related carbon nanomaterials, the potential hazards of other 2D materials have only recently begun to be explored. Herein, the toxicity and environmental fate of postcarbon 2D materials, such as transition metal dichalcogenides, hexagonal boron nitride, and black phosphorus, are reviewed as a function of their preparation methods and surface functionalization. Specifically, we delineate how the hazard potential of 2D materials is directly related to structural parameters and physicochemical properties and how experimental design is critical to the accurate elucidation of the underlying toxicological mechanisms. Finally, a multidisciplinary approach for streamlining the hazard assessment of emerging 2D materials is outlined, thereby providing a pathway for accelerating their safe use in a range of technologically relevant contexts.
Collapse
Affiliation(s)
- Linda M. Guiney
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Xiang Wang
- Division of NanoMedicine, Department of Medicine; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - André E. Nel
- Division of NanoMedicine, Department of Medicine; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Mark C. Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
- Department of Medicine, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
57
|
Frontiñán-Rubio J, Gómez MV, Martín C, González-Domínguez JM, Durán-Prado M, Vázquez E. Differential effects of graphene materials on the metabolism and function of human skin cells. NANOSCALE 2018; 10:11604-11615. [PMID: 29892760 DOI: 10.1039/c8nr00897c] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Graphene-related materials (GRMs) such as graphene oxide (GO) and few-layer graphene (FLG) are used in multiple biomedical applications; however, there is still insufficient information available regarding their interactions with the main biological barriers such as skin. In this study, we explored the effects of GO and FLG on HaCaTs human skin keratinocytes, using NMR-based metabolomics and fluorescence microscopy to evaluate the global impact of each GRM on cell fate and damage. GO and FLG at low concentrations (5 μg mL-1) induced a differential remodeling of the metabolome, preceded by an increase in the level of radical oxygen species (ROS) and free cytosolic Ca2+. These changes are linked to a concentration-dependent increase in cell death by triggering apoptosis and necrosis, the latter being predominant at higher concentrations of the nanostructures. In addition, both compounds reduce the ability of HaCaT cells to heal wounds. Our results demonstrate that the GO and FLG used in this study, which mainly differ in their oxidation state, slightly trigger differential effects on HaCaTs cells, but with evident outcomes at the cellular and molecular levels. Their behavior as pro-apoptotic/necrotic substances and their ability to inhibit cell migration, even at low doses, should be considered in the development of future applications.
Collapse
Affiliation(s)
- Javier Frontiñán-Rubio
- Instituto Regional de Investigación Científica Aplicada (IRICA), University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| | | | | | | | | | | |
Collapse
|
58
|
Sharma DK, Dhawan H. Separative Refining of Coals through Solvolytic Extraction under Milder Conditions: A Review. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00345] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Durlubh Kumar Sharma
- Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas New Delhi, 110016, India
| | - Heena Dhawan
- Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas New Delhi, 110016, India
| |
Collapse
|
59
|
Tu Z, Guday G, Adeli M, Haag R. Multivalent Interactions between 2D Nanomaterials and Biointerfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706709. [PMID: 29900600 DOI: 10.1002/adma.201706709] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/15/2018] [Indexed: 05/20/2023]
Abstract
2D nanomaterials, particularly graphene, offer many fascinating physicochemical properties that have generated exciting visions of future biological applications. In order to capitalize on the potential of 2D nanomaterials in this field, a full understanding of their interactions with biointerfaces is crucial. The uptake pathways, toxicity, long-term fate of 2D nanomaterials in biological systems, and their interactions with the living systems are fundamental questions that must be understood. Here, the latest progress is summarized, with a focus on pathogen, mammalian cell, and tissue interactions. The cellular uptake pathways of graphene derivatives will be discussed, along with health risks, and interactions with membranes-including bacteria and viruses-and the role of chemical structure and modifications. Other novel 2D nanomaterials with potential biomedical applications, such as transition-metal dichalcogenides, transition-metal oxide, and black phosphorus will be discussed at the end of this review.
Collapse
Affiliation(s)
- Zhaoxu Tu
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Guy Guday
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Mohsen Adeli
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
- Department of Chemistry, Faculty of Science, Lorestan University, 68151-44316, Khoramabad, Iran
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| |
Collapse
|
60
|
Guiney LM, Mansukhani ND, Jakus AE, Wallace SG, Shah RN, Hersam MC. Three-Dimensional Printing of Cytocompatible, Thermally Conductive Hexagonal Boron Nitride Nanocomposites. NANO LETTERS 2018; 18:3488-3493. [PMID: 29709193 DOI: 10.1021/acs.nanolett.8b00555] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hexagonal boron nitride (hBN) is a thermally conductive yet electrically insulating two-dimensional layered nanomaterial that has attracted significant attention as a dielectric for high-performance electronics in addition to playing a central role in thermal management applications. Here, we report a high-content hBN-polymer nanocomposite ink, which can be 3D printed to form mechanically robust, self-supporting constructs. In particular, hBN is dispersed in poly(lactic- co-glycolic acid) and 3D printed at room temperature through an extrusion process to form complex architectures. These constructs can be 3D printed with a composition of up to 60% vol hBN (solids content) while maintaining high mechanical flexibility and stretchability. The presence of hBN within the matrix results in enhanced thermal conductivity (up to 2.1 W K-1 m-1) directly after 3D printing with minimal postprocessing steps, suggesting utility in thermal management applications. Furthermore, the constructs show high levels of cytocompatibility, making them suitable for use in the field of printed bioelectronics.
Collapse
|
61
|
Sun J, Shen J, Chen S, Cooper MA, Fu H, Wu D, Yang Z. Nanofiller Reinforced Biodegradable PLA/PHA Composites: Current Status and Future Trends. Polymers (Basel) 2018; 10:E505. [PMID: 30966540 PMCID: PMC6415396 DOI: 10.3390/polym10050505] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 12/22/2022] Open
Abstract
The increasing demand for environmental protection has led to the rapid development of greener and biodegradable polymers, whose creation provided new challenges and opportunities for the advancement of nanomaterial science. Biodegradable polymer materials and even nanofillers (e.g., natural fibers) are important because of their application in greener industries. Polymers that can be degraded naturally play an important role in solving public hazards of polymer materials and maintaining ecological balance. The inherent shortcomings of some biodegradable polymers such as weak mechanical properties, narrow processing windows, and low electrical and thermal properties can be overcome by composites reinforced with various nanofillers. These biodegradable polymer composites have wide-ranging applications in different areas based on their large surface area and greater aspect ratio. Moreover, the polymer composites that exploit the synergistic effect between the nanofiller and the biodegradable polymer matrix can lead to enhanced properties while still meeting the environmental requirement. In this paper, a broad review on recent advances in the research and development of nanofiller reinforced biodegradable polymer composites that are used in various applications, including electronics, packing materials, and biomedical uses, is presented. We further present information about different kinds of nanofillers, biodegradable polymer matrixes, and their composites with specific concern to our daily applications.
Collapse
Affiliation(s)
- Jingyao Sun
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jingjing Shen
- School of Civil Engineering & Architecture, Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Shoukai Chen
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Merideth A Cooper
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Hongbo Fu
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Daming Wu
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- State Key Laboratory of Organic-Inorganic Composites, Beijing 100029, China.
| | - Zhaogang Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
62
|
Aldaadaa A, Owji N, Knowles J. Three-dimensional Printing in Maxillofacial Surgery: Hype versus Reality. J Tissue Eng 2018; 9:2041731418770909. [PMID: 29774140 PMCID: PMC5949934 DOI: 10.1177/2041731418770909] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/25/2018] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional printing technology is getting more attention recently, especially in the craniofacial region. This is a review of literature enlightening the materials that have been used to date and the application of such technology within the scope of maxillofacial surgery.
Collapse
Affiliation(s)
| | | | - Jonathan Knowles
- Jonathan Knowles, UCL Eastman Dental Institute, 256 Gray’s Inn Road, London WC1X 8LD, UK.
| |
Collapse
|
63
|
Tiwari MK, Mishra PC. Electron transfer in biologically important systems: Polycyclic aromatic hydrocarbons, DNA bases and free radicals. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1142/s0219633618500086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Occurrence of electron transfer was studied for different combinations of polycyclic aromatic hydrocarbons (PAHs) and DNA bases as electron donors or acceptors and free radicals only as electron acceptors. Geometries of all the molecules and radicals were optimized in aqueous medium employing the polarizable continuum model. Single electron transfer (SET) and sequential proton loss electron transfer mechanisms were investigated employing Gibbs free energies of the appropriate neutral, anionic and cationic species. Barrier energies involved in these phenomena were calculated using the Marcus theory. The SET barrier energies were found to be linearly correlated with [Formula: see text] (Electron affinities of acceptors – Ionization potentials of donors). SET barrier energies from the DNA bases to the PAHs follow the order Cy [Formula: see text] Th [Formula: see text] Ad [Formula: see text] Gu, whereas SET barrier energies from the PAHs to the DNA bases follow the order Gu [Formula: see text] Ad [Formula: see text] Th [Formula: see text] Cy. Thus, guanine, among the DNA bases, is the best electron donor to the PAHs and worst electron acceptor from the same.
Collapse
Affiliation(s)
- M. K. Tiwari
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221 005, Uttar Pradesh, India
| | - P. C. Mishra
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221 005, Uttar Pradesh, India
| |
Collapse
|
64
|
Erdal NB, Hakkarainen M. Construction of Bioactive and Reinforced Bioresorbable Nanocomposites by Reduced Nano-Graphene Oxide Carbon Dots. Biomacromolecules 2018; 19:1074-1081. [DOI: 10.1021/acs.biomac.8b00207] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Nejla B. Erdal
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Minna Hakkarainen
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| |
Collapse
|
65
|
Xia YJ, Xia H, Chen L, Ying QS, Yu X, Li LH, Wang JH, Zhang Y. Efficient delivery of recombinant human bone morphogenetic protein (rhBMP-2) with dextran sulfate-chitosan microspheres. Exp Ther Med 2018; 15:3265-3272. [PMID: 29545844 PMCID: PMC5840956 DOI: 10.3892/etm.2018.5849] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/22/2018] [Indexed: 11/23/2022] Open
Abstract
Bone morphogenetic protein-2 (BMP-2) serves an important role in the development of bone and cartilage. However, administration of BMP-2 protein alone by intravenous delivery is not very effective. Sustained delivery of stabilized BMP-2 by carriers has been proven necessary to improve the osteogenesis effect of BMP-2. The present study constructed a novel drug delivery system using dextran sulfate (DS)-chitosan (CS) microspheres and investigated the efficiency of the delivery system on recombinant human bone morphogenetic protein (rhBMP-2). The microsphere morphology, optimal ratio of DS/CS/rhBMP-2, and drug loading rate and entrapment efficiency of rhBMP-2 CS nanoparticles were determined. L929 cells were used to evaluate the cytotoxicity and effect of DS/CS/rhBMP-2 microspheres on cell proliferation. Differentiation study was conducted using bone marrow mesenchymal stem cells (BMSCs-C57) cells treated with DS/CS/rhBMP-2 microspheres or the control microspheres. The DS/CS/rhBMP-2 microspheres delivery system was successfully established. Subsequent complexation of rhBMP-2-bound DS with polycations afforded well defined microspheres with a diameter of ~250 nm. High protein entrapment efficiency (85.6%) and loading ratio (47.245) µg/mg were achieved. Release of rhBMP-2 from resultant microspheres persisted for over 20 days as determined by ELISA assay. The bioactivity of rhBMP-2 encapsulated in the CS/DS microsphere was observed to be well preserved as evidenced by the alkaline phosphatase activity assay and calcium nodule formation of BMSCs-C57 incubated with rhBMP-2-loaded microspheres. The results demonstrated that microspheres based on CS-DS polyion complexes were a highly efficient vehicle for delivery of rhBMP-2 protein. The present study may provide novel orientation for bone tissue engineering for repairing and regenerating bone defects.
Collapse
Affiliation(s)
- Yuan-Jun Xia
- Department of Trauma Orthopedics, Hospital of Orthopaedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Hong Xia
- Department of Trauma Orthopedics, Hospital of Orthopaedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Ling Chen
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qing-Shui Ying
- Department of Trauma Orthopedics, Hospital of Orthopaedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Xiang Yu
- Department of Trauma Orthopedics, Hospital of Orthopaedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Li-Hua Li
- Department of Trauma Orthopedics, Hospital of Orthopaedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Jian-Hua Wang
- Department of Trauma Orthopedics, Hospital of Orthopaedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Ying Zhang
- Department of Trauma Orthopedics, Hospital of Orthopaedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
66
|
Thummarungsan N, Paradee N, Pattavarakorn D, Sirivat A. Influence of graphene on electromechanical responses of plasticized poly(lactic acid). POLYMER 2018. [DOI: 10.1016/j.polymer.2018.01.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
67
|
Prasad M, Lambe UP, Brar B, Shah I, J M, Ranjan K, Rao R, Kumar S, Mahant S, Khurana SK, Iqbal HMN, Dhama K, Misri J, Prasad G. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother 2018; 97:1521-1537. [PMID: 29793315 DOI: 10.1016/j.biopha.2017.11.026] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 02/08/2023] Open
Abstract
In recent years nanotechnology has revolutionized the healthcare strategies and envisioned to have a tremendous impact to offer better health facilities. In this context, medical nanotechnology involves design, fabrication, regulation, and application of therapeutic drugs and devices having a size in nano-range (1-100 nm). Owing to the revolutionary implications in drug delivery and gene therapy, nanotherapeutics has gained increasing research interest in the current medical sector of the modern world. The areas which anticipate benefits from nano-based drug delivery systems are cancer, diabetes, infectious diseases, neurodegenerative diseases, blood disorders and orthopedic problems. The development of nanotherapeutics with multi-functionalities has considerable potential to fill the lacunae existing in the present therapeutic domain. Nanomedicines in the field of cancer management have enhanced permeability and retention of drugs thereby effectively targeting the affected tissues. Polymeric conjugates of asparaginase, polymeric micelles of paclitaxel have been recmended for various types of cancer treatment .The advancement of nano therapeutics and diagnostics can provide the improved effectiveness of the drug with less or no toxicity concerns. Similarly, diagnostic imaging is having potential future applications with newer imaging elements at nano level. The newly emerging field of nanorobotics can provide new directions in the field of healthcare. In this article, an attempt has been made to highlight the novel nanotherapeutic potentialities of polymeric nanoparticles, nanoemulsion, solid lipid nanoparticle, nanostructured lipid carriers, dendrimers, nanocapsules and nanosponges based approaches. The useful applications of these nano-medicines in the field of cancer, nutrition, and health have been discussed in details. Regulatory and safety concerns along with the commercial status of nanosystems have also been presented. In summary, a successful translation of emerging nanotherapeutics into commercial products may lead to an expansion of biomedical science. Towards the end of the review, future perspectives of this important field have been introduced briefly.
Collapse
Affiliation(s)
- Minakshi Prasad
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India.
| | - Upendra P Lambe
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Basanti Brar
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Ikbal Shah
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Manimegalai J
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Koushlesh Ranjan
- Department of Veterinary Physiology and Biochemistry, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, 250110, India
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Sheefali Mahant
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, Haryana, 124001, India
| | - Sandip Kumar Khurana
- Central Institute for Research on Buffaloes, Sirsa Road, Hisar, Haryana, 125001, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L., CP 64849, Mexico
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Jyoti Misri
- Division of Animal Health, Indian Council of Agriculture Research, New Delhi, India
| | - Gaya Prasad
- Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, 250110, India
| |
Collapse
|
68
|
Chiu NF, Yang CD. Real-time and stepwise deoxidization processes to tune the photoluminescence properties of graphene oxide using EC-SPR spectroscopy. RSC Adv 2018; 8:11557-11565. [PMID: 35542802 PMCID: PMC9079153 DOI: 10.1039/c7ra13594g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/15/2018] [Indexed: 11/21/2022] Open
Abstract
The development of a stepwise deoxidized process and real-time monitoring of the large-scale mass production of electrochemically reduced graphene oxide (ErGO) sheets are important issues.
Collapse
Affiliation(s)
- Nan-Fu Chiu
- Laboratory of Nano-photonics and Biosensors
- Institute of Electro-Optical Science and Technology
- National Taiwan Normal University
- Taipei 11677
- Taiwan
| | - Cheng-Du Yang
- Laboratory of Nano-photonics and Biosensors
- Institute of Electro-Optical Science and Technology
- National Taiwan Normal University
- Taipei 11677
- Taiwan
| |
Collapse
|
69
|
Mechanical reinforcement of bioceramics scaffolds via fracture energy dissipation induced by sliding action of MoS2 nanoplatelets. J Mech Behav Biomed Mater 2017; 75:423-433. [DOI: 10.1016/j.jmbbm.2017.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 11/18/2022]
|
70
|
Silva M, Alves NM, Paiva MC. Graphene-polymer nanocomposites for biomedical applications. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4164] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Magda Silva
- 3B's Research Group, Biomaterials, Biodegradables, and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark-Parque de Ciência e Tecnologia, 4805-017 Barco Guimarães Portugal
- ICVS/3B's, Associate PT Government Laboratory; Braga/Guimarães Portugal
- Institute for Polymers and Composites/I3N, Department of Polymer Engineering; University of Minho; 4800-058 Guimarães Portugal
| | - Natália M. Alves
- 3B's Research Group, Biomaterials, Biodegradables, and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark-Parque de Ciência e Tecnologia, 4805-017 Barco Guimarães Portugal
- ICVS/3B's, Associate PT Government Laboratory; Braga/Guimarães Portugal
| | - Maria C. Paiva
- Institute for Polymers and Composites/I3N, Department of Polymer Engineering; University of Minho; 4800-058 Guimarães Portugal
| |
Collapse
|
71
|
Rashkow JT, Talukdar Y, Lalwani G, Sitharaman B. In Vivo Hard and Soft Tissue Response of Two-Dimensional Nanoparticle Incorporated Biodegradable Polymeric Scaffolds. ACS Biomater Sci Eng 2017; 3:2533-2541. [DOI: 10.1021/acsbiomaterials.7b00425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jason T. Rashkow
- Department of Biomedical
Engineering, Stony Brook University, Stony Brook, New York 11794-5281, United States
| | - Yahfi Talukdar
- Department of Biomedical
Engineering, Stony Brook University, Stony Brook, New York 11794-5281, United States
| | - Gaurav Lalwani
- Department of Biomedical
Engineering, Stony Brook University, Stony Brook, New York 11794-5281, United States
| | - Balaji Sitharaman
- Department of Biomedical
Engineering, Stony Brook University, Stony Brook, New York 11794-5281, United States
| |
Collapse
|
72
|
Rashkow JT, Lalwani G, Sitharaman B. In Vitro Bioactivity of One- and Two-Dimensional Nanoparticle-Incorporated Bone Tissue Engineering Scaffolds. Tissue Eng Part A 2017; 24:641-652. [PMID: 28762866 DOI: 10.1089/ten.tea.2017.0117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study investigates the effect of incorporation of one- or two-dimensional nanoparticles with distinct composition and morphology on the bioactivity of biodegradable, biocompatible polymer matrices. 0.2 wt% multiwalled carbon nanotubes, multiwalled graphene nanoribbons, graphene oxide nanoplatelets (GONPs), molybdenum disulfide nanoplatelets (MSNPs), or tungsten disulfide nanotubes (WSNTs) were uniformly dispersed in poly(lactic-co-glycolic acid) (PLGA) polymer. PLGA or nanoparticle-incorporated PLGA were then incubated with simulated body fluid (SBF) under physiological conditions for 1, 3, 7, or 14 days. Apatite collection on control and incorporated scaffolds was assessed. All groups showed apatite precipitate on the surface after 1 day of SBF incubation. After 14 days of SBF incubation, scaffolds incorporated with GONPs, MSNPs, or WSNTs showed significantly higher phosphate accumulation compared to PLGA scaffolds. Scaffolds incorporated with GONPs, MSNPs, or WSNTs should be studied in vivo to further investigate potential bioactivity, leading to enhanced integration and tissue repair at the bone-implant interface.
Collapse
Affiliation(s)
- Jason T Rashkow
- Department of Biomedical Engineering, Stony Brook University , Stony Brook, New York
| | - Gaurav Lalwani
- Department of Biomedical Engineering, Stony Brook University , Stony Brook, New York
| | - Balaji Sitharaman
- Department of Biomedical Engineering, Stony Brook University , Stony Brook, New York
| |
Collapse
|
73
|
Diez-Pascual AM. Tissue Engineering Bionanocomposites Based on Poly(propylene fumarate). Polymers (Basel) 2017; 9:E260. [PMID: 30970938 PMCID: PMC6432123 DOI: 10.3390/polym9070260] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 01/09/2023] Open
Abstract
Poly(propylene fumarate) (PPF) is a linear and unsaturated copolyester based on fumaric acid that has been widely investigated for tissue engineering applications in recent years due to its tailorable mechanical performance, adjustable biodegradability and exceptional biocompatibility. In order to improve its mechanical properties and spread its range of practical applications, novel approaches need to be developed such as the incorporation of fillers or polymer blending. Thus, PPF-based bionanocomposites reinforced with different amounts of single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT), graphene oxide nanoribbons (GONR), graphite oxide nanoplatelets (GONP), polyethylene glycol-functionalized graphene oxide (PEG-GO), polyethylene glycol-grafted boron nitride nanotubes (PEG-g-BNNTs) and hydroxyapatite (HA) nanoparticles were synthesized via sonication and thermal curing, and their morphology, biodegradability, cytotoxicity, thermal, rheological, mechanical and antibacterial properties were investigated. An increase in the level of hydrophilicity, biodegradation rate, stiffness and strength was found upon increasing nanofiller loading. The nanocomposites retained enough rigidity and strength under physiological conditions to provide effective support for bone tissue formation, showed antibacterial activity against Gram-positive and Gram-negative bacteria, and did not induce toxicity on human dermal fibroblasts. These novel biomaterials demonstrate great potential to be used for bone tissue engineering applications.
Collapse
Affiliation(s)
- Ana M Diez-Pascual
- Analytical Chemistry, Physical Chemistry and Chemical Engineering Department, Faculty of Biology, Environmental Sciences and Chemistry, Alcalá University, 28871 Madrid, Spain.
| |
Collapse
|
74
|
Reinforcing nanomedicine using graphene family nanomaterials. J Control Release 2017; 255:218-230. [DOI: 10.1016/j.jconrel.2017.04.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 12/12/2022]
|
75
|
Lalwani G, D'agati M, Gopalan A, Patel SC, Talukdar Y, Sitharaman B. Three-dimensional carbon nanotube scaffolds for long-term maintenance and expansion of human mesenchymal stem cells. J Biomed Mater Res A 2017; 105:1927-1939. [DOI: 10.1002/jbm.a.36062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Gaurav Lalwani
- Department of Biomedical Engineering; Stony Brook University; Stony Brook New York 11794-5281
| | - Michael D'agati
- Department of Biomedical Engineering; Stony Brook University; Stony Brook New York 11794-5281
| | - Anu Gopalan
- Department of Biomedical Engineering; Stony Brook University; Stony Brook New York 11794-5281
| | - Sunny C. Patel
- Department of Biomedical Engineering; Stony Brook University; Stony Brook New York 11794-5281
| | - Yahfi Talukdar
- Department of Biomedical Engineering; Stony Brook University; Stony Brook New York 11794-5281
| | - Balaji Sitharaman
- Department of Biomedical Engineering; Stony Brook University; Stony Brook New York 11794-5281
| |
Collapse
|
76
|
Wang X, Xing W, Feng X, Song L, Hu Y. MoS2/Polymer Nanocomposites: Preparation, Properties, and Applications. POLYM REV 2017. [DOI: 10.1080/15583724.2017.1309662] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xin Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Weiyi Xing
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Xiaming Feng
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, P.R. China
| |
Collapse
|
77
|
Myllymäki TTT, Lemetti L, Nonappa, Ikkala O. Hierarchical Supramolecular Cross-Linking of Polymers for Biomimetic Fracture Energy Dissipating Sacrificial Bonds and Defect Tolerance under Mechanical Loading. ACS Macro Lett 2017; 6:210-214. [PMID: 35650915 DOI: 10.1021/acsmacrolett.7b00011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biological structural materials offer fascinating models how to synergistically increase the solid-state defect tolerance, toughness, and strength using nanocomposite structures by incorporating different levels of supramolecular sacrificial bonds to dissipate fracture energy. Inspired thereof, we show how to turn a commodity acrylate polymer, characteristically showing a brittle solid state fracture, to become defect tolerant manifesting noncatastrophic crack propagation by incorporation of different levels of fracture energy dissipating supramolecular interactions. Therein, poly(2-hydroxyethyl methacrylate) (pHEMA) is a feasible model polymer showing brittle solid state fracture in spite of a high maximum strain and clear yielding, where the weak hydroxyl group mediated hydrogen bonds do not suffice to dissipate fracture energy. We provide the next level stronger supramolecular interactions toward solid-state networks by postfunctionalizing a minor part of the HEMA repeat units using 2-ureido-4[1H]-pyrimidinone (UPy), capable of forming four strong parallel hydrogen bonds. Interestingly, such a polymer, denoted here as p(HEMA-co-UPyMA), shows toughening by suppressed catastrophic crack propagation, even if the strength and stiffness are synergistically increased. At the still higher hierarchical level, colloidal level cross-linking using oxidized carbon nanotubes with hydrogen bonding surface decorations, including UPy, COOH, and OH groups, leads to further increased stiffness and ultimate strength, still leading to suppressed catastrophic crack propagation. The findings suggest to incorporate a hierarchy of supramolecular groups of different interactions strengths upon pursuing toward biomimetic toughening.
Collapse
Affiliation(s)
- Teemu T. T. Myllymäki
- Department
of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Laura Lemetti
- School
of Chemical Technology, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Nonappa
- Department
of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Olli Ikkala
- Department
of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland
| |
Collapse
|
78
|
Tan C, Cao X, Wu XJ, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam GH, Sindoro M, Zhang H. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chem Rev 2017; 117:6225-6331. [PMID: 28306244 DOI: 10.1021/acs.chemrev.6b00558] [Citation(s) in RCA: 2088] [Impact Index Per Article: 261.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocatalysis, batteries, supercapacitors, solar cells, photocatalysis, and sensing platforms. Finally, the challenges and outlooks in this promising field are featured on the basis of its current development.
Collapse
Affiliation(s)
- Chaoliang Tan
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiehong Cao
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore.,College of Materials Science and Engineering, Zhejiang University of Technology , 18 Chaowang Road, Hangzhou 310014, China
| | - Xue-Jun Wu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Qiyuan He
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jian Yang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiao Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Junze Chen
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wei Zhao
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Shikui Han
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Gwang-Hyeon Nam
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Melinda Sindoro
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Hua Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
79
|
Farshid B, Lalwani G, Mohammadi MS, Simonsen J, Sitharaman B. Boron nitride nanotubes and nanoplatelets as reinforcing agents of polymeric matrices for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2017; 105:406-419. [PMID: 26526153 PMCID: PMC4854812 DOI: 10.1002/jbm.b.33565] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 09/17/2015] [Accepted: 10/14/2015] [Indexed: 11/07/2022]
Abstract
This study investigates the mechanical properties and in vitro cytotoxicity of one- and two-dimensional boron nitride nanomaterials-reinforced biodegradable polymeric nanocomposites. Poly(propylene fumarate) (PPF) nanocomposites were fabricated using crosslinking agent N-vinyl pyrrolidone and inorganic nanomaterials: boron nitride nanotubes (BNNTs) and boron nitride nanoplatelets (BNNPs) dispersed at 0.2 wt % in the polymeric matrix. The incorporation of BNNPs and BNNTs resulted in a ∼38 and ∼15% increase in compressive (Young's) modulus, and ∼31 and ∼6% increase in compressive yield strength compared to PPF control, respectively. The nanocomposites showed a time-dependent increased protein adsorption for collagen I protein. The cytotoxicity evaluation of aqueous BNNT and BNNP dispersions (at 1-100 μg/mL concentrations) using murine MC3T3 preosteoblast cells showed ∼73-99% viability. The cytotoxicity evaluation of media extracts of nanocomposites before crosslinking, after crosslinking, and upon degradation (using 1×-100× dilutions) showed dose-dependent cytotoxicity responses. Crosslinked nanocomposites showed excellent (∼79-100%) cell viability, cellular attachment (∼57-67%), and spreading similar to cells grown on the surface of tissue culture polystyrene control. The media extracts of degradation products showed a dose-dependent cytotoxicity. The favorable cytocompatibility results in combination with improved mechanical properties of BNNT and BNNP nanocomposites opens new avenues for further in vitro and in vivo safety and efficacy studies towards bone tissue engineering applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 406-419, 2017.
Collapse
Affiliation(s)
- Behzad Farshid
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Gaurav Lalwani
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Meisam Shir Mohammadi
- Department of Wood Science and Engineering, Oregon State University, Corvallis, Oregon 97331, USA
| | - John Simonsen
- Department of Wood Science and Engineering, Oregon State University, Corvallis, Oregon 97331, USA
| | - Balaji Sitharaman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
80
|
Kafiah F, Khan Z, Ibrahim A, Atieh M, Laoui T. Synthesis of Graphene Based Membranes: Effect of Substrate Surface Properties on Monolayer Graphene Transfer. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E86. [PMID: 28772446 PMCID: PMC5344567 DOI: 10.3390/ma10010086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/10/2017] [Accepted: 01/17/2017] [Indexed: 11/20/2022]
Abstract
In this work, we report the transfer of graphene onto eight commercial microfiltration substrates having different pore sizes and surface characteristics. Monolayer graphene grown on copper by the chemical vapor deposition (CVD) process was transferred by the pressing method over the target substrates, followed by wet etching of copper to obtain monolayer graphene/polymer membranes. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle (CA) measurements were carried out to explore the graphene layer transferability. Three factors, namely, the substrate roughness, its pore size, and its surface wetting (degree of hydrophobicity) are found to affect the conformality and coverage of the transferred graphene monolayer on the substrate surface. A good quality graphene transfer is achieved on the substrate with the following characteristics; being hydrophobic (CA > 90°), having small pore size, and low surface roughness, with a CA to RMS (root mean square) ratio higher than 2.7°/nm.
Collapse
Affiliation(s)
- Feras Kafiah
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Zafarullah Khan
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Ahmed Ibrahim
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
- Department of Mechanical Design and Production Engineering, Zagazig University, Zagazig 44519, Egypt.
| | - Muataz Atieh
- Qatar Environment and Energy Research Institute, HBKU, Qatar Foundation, P.O. Box 5825, Doha, Qatar.
| | - Tahar Laoui
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
81
|
Foreman HCC, Lalwani G, Kalra J, Krug LT, Sitharaman B. Gene delivery to mammalian cells using a graphene nanoribbon platform. J Mater Chem B 2017; 5:2347-2354. [DOI: 10.1039/c6tb03010f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We developed a novel oxidized graphene nanoribbon-based platform (O-GNR) for gene delivery of double-stranded DNA into mammalian cells.
Collapse
Affiliation(s)
| | - Gaurav Lalwani
- Theragnostic Technologies Inc
- Long Island High Technology Incubator Suite 123
- Stony Brook
- USA
| | - Jaslin Kalra
- Theragnostic Technologies Inc
- Long Island High Technology Incubator Suite 123
- Stony Brook
- USA
| | - Laurie T. Krug
- Department of Molecular Genetics and Microbiology
- Stony Brook University
- Stony Brook
- USA
| | - Balaji Sitharaman
- Department of Biomedical Engineering
- Stony Brook University
- Stony Brook
- USA
| |
Collapse
|
82
|
Perkins BL, Naderi N. Carbon Nanostructures in Bone Tissue Engineering. Open Orthop J 2016; 10:877-899. [PMID: 28217212 PMCID: PMC5299584 DOI: 10.2174/1874325001610010877] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/15/2015] [Accepted: 05/31/2016] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Recent advances in developing biocompatible materials for treating bone loss or defects have dramatically changed clinicians' reconstructive armory. Current clinically available reconstructive options have certain advantages, but also several drawbacks that prevent them from gaining universal acceptance. A wide range of synthetic and natural biomaterials is being used to develop tissue-engineered bone. Many of these materials are currently in the clinical trial stage. METHODS A selective literature review was performed for carbon nanostructure composites in bone tissue engineering. RESULTS Incorporation of carbon nanostructures significantly improves the mechanical properties of various biomaterials to mimic that of natural bone. Recently, carbon-modified biomaterials for bone tissue engineering have been extensively investigated to potentially revolutionize biomaterials for bone regeneration. CONCLUSION This review summarizes the chemical and biophysical properties of carbon nanostructures and discusses their functionality in bone tissue regeneration.
Collapse
Affiliation(s)
- Brian Lee Perkins
- Health Informatics Group, Swansea University Medical School, Swansea, SA2 8PP, United Kingdom
| | - Naghmeh Naderi
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Science (ILS), Swansea University Medical School, Swansea, SA2 8PP, United Kingdom
- Welsh Centre for Burns & Plastic Surgery, Abertawe Bro Morgannwg University Health Board, Swansea, United Kingdom
| |
Collapse
|
83
|
Lim MH, Jeung IC, Jeong J, Yoon SJ, Lee SH, Park J, Kang YS, Lee H, Park YJ, Lee HG, Lee SJ, Han BS, Song NW, Lee SC, Kim JS, Bae KH, Min JK. Graphene oxide induces apoptotic cell death in endothelial cells by activating autophagy via calcium-dependent phosphorylation of c-Jun N-terminal kinases. Acta Biomater 2016; 46:191-203. [PMID: 27640918 DOI: 10.1016/j.actbio.2016.09.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/03/2016] [Accepted: 09/14/2016] [Indexed: 12/25/2022]
Abstract
Despite the rapid expansion of the biomedical applications of graphene oxide (GO), safety issues related to GO, particularly with regard to its effects on vascular endothelial cells (ECs), have been poorly evaluated. To explore possible GO-mediated vasculature cytotoxicity and determine lateral GO size relevance, we constructed four types of GO: micrometer-sized GO (MGO; 1089.9±135.3nm), submicrometer-sized GO (SGO; 390.2±51.4nm), nanometer-sized GO (NGO; 65.5±16.3nm), and graphene quantum dots (GQDs). All types but GQD showed a significant decrease in cellular viability in a dose-dependent manner. Notably, SGO or NGO, but not MGO, potently induced apoptosis while causing no detectable necrosis. Subsequently, SGO or NGO markedly induced autophagy through a process dependent on the c-Jun N-terminal kinase (JNK)-mediated phosphorylation of B-cell lymphoma 2 (Bcl-2), leading to the dissociation of Beclin-1 from the Beclin-1-Bcl-2 complex. Autophagy suppression attenuated the SGO- or NGO-induced apoptotic cell death of ECs, suggesting that SGO- or NGO-induced cytotoxicity is associated with autophagy. Moreover, SGO or NGO significantly induced increased intracellular calcium ion (Ca2+) levels. Intracellular Ca2+ chelation with BAPTA-AM significantly attenuated microtubule-associated protein 1A/1B-light chain 3-II accumulation and JNK phosphorylation, resulting in reduced autophagy. Furthermore, we found that SGO or NGO induced Ca2+ release from the endoplasmic reticulum through the PLC β3/IP3/IP3R signaling axis. These results elucidate the mechanism underlying the size-dependent cytotoxicity of GOs in the vasculature and may facilitate the development of a safer biomedical application of GOs. STATEMENT OF SIGNIFICANCE Graphene oxide (GO) have received considerable attention with respect to their utilization in biomedical applications. However, GO-related safety issues concerning human vasculature are very limited. In this manuscript, we report for the first time the differential size-related biological effects of GOs on endothelial cells (ECs). Notably, Subnanometer- and nanometersized GOs induce apoptotic death in ECs via autophagy activation. We propose a molecular mechanism for the GO-induced autophagic cell death through the PLCβ3/IP3/Ca2+/JNK signaling axis. Our findings could be provide a better understanding of the GO sizedependent cytotoxicity in vasculature and facilitate the future development of safer biomedical applications of GOs.
Collapse
|
84
|
Chouhan RS, Pandey A, Qureshi A, Ozguz V, Niazi JH. Nanomaterial resistant microorganism mediated reduction of graphene oxide. Colloids Surf B Biointerfaces 2016; 146:39-46. [DOI: 10.1016/j.colsurfb.2016.05.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/14/2016] [Accepted: 05/17/2016] [Indexed: 11/26/2022]
|
85
|
Lalwani G, D'Agati M, Khan AM, Sitharaman B. Toxicology of graphene-based nanomaterials. Adv Drug Deliv Rev 2016; 105:109-144. [PMID: 27154267 PMCID: PMC5039077 DOI: 10.1016/j.addr.2016.04.028] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/28/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023]
Abstract
Graphene based nanomaterials possess remarkable physiochemical properties suitable for diverse applications in electronics, telecommunications, energy and healthcare. The human and environmental exposure to graphene-based nanomaterials is increasing due to advancements in the synthesis, characterization and large-scale production of graphene and the subsequent development of graphene based biomedical and consumer products. A large number of in vitro and in vivo toxicological studies have evaluated the interactions of graphene-based nanomaterials with various living systems such as microbes, mammalian cells, and animal models. A significant number of studies have examined the short- and long-term in vivo toxicity and biodistribution of graphene synthesized by variety of methods and starting materials. A key focus of these examinations is to properly associate the biological responses with chemical and morphological properties of graphene. Several studies also report the environmental and genotoxicity response of pristine and functionalized graphene. This review summarizes these in vitro and in vivo studies and critically examines the methodologies used to perform these evaluations. Our overarching goal is to provide a comprehensive overview of the complex interplay of biological responses of graphene as a function of their physiochemical properties.
Collapse
Affiliation(s)
- Gaurav Lalwani
- Theragnostic Technologies Inc., Long Island High Technology Incubator Suite 123, Stony Brook, NY 11790, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA.
| | - Michael D'Agati
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | - Amit Mahmud Khan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | - Balaji Sitharaman
- Theragnostic Technologies Inc., Long Island High Technology Incubator Suite 123, Stony Brook, NY 11790, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA.
| |
Collapse
|
86
|
Salarian M, Samimi R, Xu WZ, Wang Z, Sham TK, Lui EMK, Charpentier PA. Microfluidic Synthesis and Angiogenic Activity of Ginsenoside Rg1-Loaded PPF Microspheres. ACS Biomater Sci Eng 2016; 2:1872-1882. [DOI: 10.1021/acsbiomaterials.6b00222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mehrnaz Salarian
- Biomedical
Engineering Graduate Program, University of Western Ontario, London, Ontario N6A 5B9, Canada
- The Ontario Ginseng Innovation & Research Consortium, London, Ontario N6A 5C1, Canada
| | - Raziye Samimi
- The Ontario Ginseng Innovation & Research Consortium, London, Ontario N6A 5C1, Canada
- Chemical
and Biochemical Engineering Department, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada
| | - William Z. Xu
- Chemical
and Biochemical Engineering Department, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada
| | - Zhiqiang Wang
- Department
of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Tsun-Kong Sham
- Department
of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
- Soochow-Western
Centre for Synchrotron Radiation Research, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Edmund M. K. Lui
- The Ontario Ginseng Innovation & Research Consortium, London, Ontario N6A 5C1, Canada
- Department
of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Paul A. Charpentier
- The Ontario Ginseng Innovation & Research Consortium, London, Ontario N6A 5C1, Canada
- Chemical
and Biochemical Engineering Department, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada
| |
Collapse
|
87
|
Lalwani G, D'agati M, Gopalan A, Rao M, Schneller J, Sitharaman B. Three-dimensional macroporous graphene scaffolds for tissue engineering. J Biomed Mater Res A 2016; 105:73-83. [PMID: 27529473 DOI: 10.1002/jbm.a.35867] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 07/28/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022]
Abstract
The assembly of carbon nanomaterials into three-dimensional (3D) porous scaffolds is critical to harness their unique physiochemical properties for tissue engineering and regenerative medicine applications. In this study, we report the fabrication, characterization, and in vitro cytocompatibility of true 3D (>1 mm in all three dimensions), macroscopic (3-8 mm in height and 4-6 mm in diameter), chemically cross-linked graphene scaffolds prepared via radical initiated thermal cross-linking of single- and multiwalled graphene oxide nanoribbons (SWGONRs and MWGONRs). SWGONR and MWGONR scaffolds possess tunable porosity (∼65-80%) and interconnected macro-, micro-, and nanoscale pores. Human adipose derived stem cells (ADSCs) and murine MC3T3 preosteoblast cells show good cell viability on SWGONR and MWGONR scaffolds after 1, 3, and 5 days comparable to 3D poly(lactic-co-glycolic) acid (PLGA) scaffolds. Confocal live-cell imaging showed that cells were metabolically active and could spread on SWGONR and MWGONR scaffolds. Immunofluorescence imaging showed the presence of focal adhesion protein vinculin and expression of cell proliferation marker Ki-67 suggesting that cells could attach and proliferate on SWGONR and MWGONR scaffolds. These results indicate that cross-linked SWGONR and MWGONR scaffolds are cytocompatible and opens-avenues toward the development of 3D multifunctional graphene scaffolds for tissue engineering applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 73-83, 2017.
Collapse
Affiliation(s)
- Gaurav Lalwani
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, 11794-5281
| | - Michael D'agati
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, 11794-5281
| | - Anu Gopalan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, 11794-5281
| | - Manisha Rao
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, 11794-5281
| | - Jessica Schneller
- Department of Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892
| | - Balaji Sitharaman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, 11794-5281
| |
Collapse
|
88
|
Zhang J, Liu H, Ding JX, Wu J, Zhuang XL, Chen XS, Wang JC, Yin JB, Li ZM. High-Pressure Compression-Molded Porous Resorbable Polymer/Hydroxyapatite Composite Scaffold for Cranial Bone Regeneration. ACS Biomater Sci Eng 2016; 2:1471-1482. [DOI: 10.1021/acsbiomaterials.6b00202] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jin Zhang
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, P. R. China
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - He Liu
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Department
of Orthopedics, Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Jian-Xun Ding
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jie Wu
- Department
of Polymer Materials, Shanghai University, Shanghai 200444, P. R. China
| | - Xiu-Li Zhuang
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xue-Si Chen
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jin-Cheng Wang
- Department
of Orthopedics, Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Jing-Bo Yin
- Department
of Polymer Materials, Shanghai University, Shanghai 200444, P. R. China
| | - Zhong-Ming Li
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, P. R. China
| |
Collapse
|
89
|
Kurapati R, Kostarelos K, Prato M, Bianco A. Biomedical Uses for 2D Materials Beyond Graphene: Current Advances and Challenges Ahead. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:6052-74. [PMID: 27105929 DOI: 10.1002/adma.201506306] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 05/25/2023]
Abstract
Currently, a broad interdisciplinary research effort is pursued on biomedical applications of 2D materials (2DMs) beyond graphene, due to their unique physicochemical and electronic properties. The discovery of new 2DMs is driven by the diverse chemical compositions and tuneable characteristics offered. Researchers are increasingly attracted to exploit those as drug delivery systems, highly efficient photothermal modalities, multimodal therapeutics with non-invasive diagnostic capabilities, biosensing, and tissue engineering. A crucial limitation of some of the 2DMs is their moderate colloidal stability in aqueous media. In addition, the lack of suitable functionalisation strategies should encourage the exploration of novel chemical methodologies with that purpose. Moreover, the clinical translation of these emerging materials will require undertaking of fundamental research on biocompatibility, toxicology and biopersistence in the living body as well as in the environment. Here, a thorough account of the biomedical applications using 2DMs explored today is given.
Collapse
Affiliation(s)
- Rajendra Kurapati
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et Chimie Thérapeutique, 67000, Strasbourg, France
| | - Kostas Kostarelos
- Nanomedicine Laboratory, School of Medicine and National Graphene Institute, University of Manchester, AV Hill Building, Manchester, M13 9PT, United Kingdom
| | - Maurizio Prato
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, 34127, Trieste, Italy
- Carbon Nanobiotechnology Laboratory, CIC biomaGUNE, Donostia-San Sebastian, Paseo de Miramón 182, 20009, Spain
- Basque Foundation for Science (IKERBASQUE), Bilbao, 48013, Spain
| | - Alberto Bianco
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et Chimie Thérapeutique, 67000, Strasbourg, France
| |
Collapse
|
90
|
Feng P, Peng S, Wu P, Gao C, Huang W, Deng Y, Xiao T, Shuai C. A nano-sandwich construct built with graphene nanosheets and carbon nanotubes enhances mechanical properties of hydroxyapatite-polyetheretherketone scaffolds. Int J Nanomedicine 2016; 11:3487-500. [PMID: 27555770 PMCID: PMC4970452 DOI: 10.2147/ijn.s110920] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A nano-sandwich construct was built by combining two-dimensional graphene nanosheets (GNSs) and one-dimensional carbon nanotubes (CNTs) to improve the mechanical properties of hydroxyapatite–polyetheretherketone (HAP–PEEK) scaffolds for bone tissue engineering. In this nano-sandwich construct, the long tubular CNTs penetrated the interlayers of graphene and prevented their aggregation, increasing the effective contact area between the construct and matrix. The combination of GNSs and CNTs in a weight ratio of 2:8 facilitated the dispersion of each other and provided a synergetic effect in enhancing the mechanical properties. The compressive strength and modulus of the scaffolds were increased by 63.58% and 56.54% at this time compared with those of HAP–PEEK scaffolds, respectively. The carbon-based fillers, pulling out and bridging, were also clearly observed in the matrix. Moreover, the dangling of CNTs and their entangling with GNSs further reinforced the mechanical properties. Furthermore, apatite layer formed on the scaffold surface after immersing in simulated body fluid, and the cells attached and spread well on the surface of the scaffolds and displayed good viability, proliferation, and differentiation. These evidence indicate that the HAP–PEEK scaffolds enhanced by GNSs and CNTs are a promising alternative for bone tissue engineering.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and Cancer Research Institute, Xiangya Hospital, Central South University, Changsha
| | - Ping Wu
- College of Chemistry, Xiangtan University, Xiangtan
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing
| | - Wei Huang
- State Key Laboratory of High Performance Complex Manufacturing
| | - Youwen Deng
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Tao Xiao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing
| |
Collapse
|
91
|
Gurunathan S, Kim JH. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials. Int J Nanomedicine 2016; 11:1927-45. [PMID: 27226713 PMCID: PMC4863686 DOI: 10.2147/ijn.s105264] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Graphene is a two-dimensional atomic crystal, and since its development it has been applied in many novel ways in both research and industry. Graphene possesses unique properties, and it has been used in many applications including sensors, batteries, fuel cells, supercapacitors, transistors, components of high-strength machinery, and display screens in mobile devices. In the past decade, the biomedical applications of graphene have attracted much interest. Graphene has been reported to have antibacterial, antiplatelet, and anticancer activities. Several salient features of graphene make it a potential candidate for biological and biomedical applications. The synthesis, toxicity, biocompatibility, and biomedical applications of graphene are fundamental issues that require thorough investigation in any kind of applications related to human welfare. Therefore, this review addresses the various methods available for the synthesis of graphene, with special reference to biological synthesis, and highlights the biological applications of graphene with a focus on cancer therapy, drug delivery, bio-imaging, and tissue engineering, together with a brief discussion of the challenges and future perspectives of graphene. We hope to provide a comprehensive review of the latest progress in research on graphene, from synthesis to applications.
Collapse
Affiliation(s)
| | - Jin-Hoi Kim
- Stem Cell and Regenerative Biology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
92
|
Rashkow JT, Talukdar Y, Lalwani G, Sitharaman B. Interactions of 1D- and 2D-layered inorganic nanoparticles with fibroblasts and human mesenchymal stem cells. Nanomedicine (Lond) 2016; 10:1693-706. [PMID: 26080694 DOI: 10.2217/nnm.15.35] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
AIM This study investigates the effects of tungsten disulfide nanotubes (WSNTs) and molybdenum disulfide nanoplatelets (MSNPs) on fibroblasts (NIH-3T3) and mesenchymal stem cells (MSCs) to determine safe dosages for potential biomedical applications. MATERIALS & METHODS Cytotoxicity of MSNPs and WSNTs (5-300 μg/ml) on NIH-3T3 and MSCs was assessed at 6, 12 or 24 h. MSC differentiation to adipocytes and osteoblasts was assessed following treatment for 24 h. RESULTS Only NIH-3T3 cells treated with MSNPs showed dose or time dependent increase in cytotoxicity. Differentiation markers of MSCs in treated groups were unaffected compared with untreated controls. CONCLUSION MSNPs and WSNTs at concentrations less than 50 µg/ml are potentially safe for treatment of fibroblasts or MSCs for up to 24 h.
Collapse
Affiliation(s)
- Jason Thomas Rashkow
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Rm 115, Stony Brook, NY 11794-5281, USA
| | - Yahfi Talukdar
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Rm 115, Stony Brook, NY 11794-5281, USA
| | - Gaurav Lalwani
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Rm 115, Stony Brook, NY 11794-5281, USA
| | - Balaji Sitharaman
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Rm 115, Stony Brook, NY 11794-5281, USA
| |
Collapse
|
93
|
Lalwani G, Patel SC, Sitharaman B. Two- and Three-Dimensional All-Carbon Nanomaterial Assemblies for Tissue Engineering and Regenerative Medicine. Ann Biomed Eng 2016; 44:2020-35. [DOI: 10.1007/s10439-016-1623-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/16/2016] [Indexed: 12/12/2022]
|
94
|
Tozzi G, De Mori A, Oliveira A, Roldo M. Composite Hydrogels for Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E267. [PMID: 28773392 PMCID: PMC5502931 DOI: 10.3390/ma9040267] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/14/2016] [Accepted: 03/29/2016] [Indexed: 02/06/2023]
Abstract
Over the past few decades, bone related disorders have constantly increased. Among all pathological conditions, osteoporosis is one of the most common and often leads to bone fractures. This is a massive burden and it affects an estimated 3 million people only in the UK. Furthermore, as the population ages, numbers are due to increase. In this context, novel biomaterials for bone fracture regeneration are constantly under development. Typically, these materials aim at favoring optimal bone integration in the scaffold, up to complete bone regeneration; this approach to regenerative medicine is also known as tissue engineering (TE). Hydrogels are among the most promising biomaterials in TE applications: they are very flexible materials that allow a number of different properties to be targeted for different applications, through appropriate chemical modifications. The present review will focus on the strategies that have been developed for formulating hydrogels with ideal properties for bone regeneration applications. In particular, aspects related to the improvement of hydrogels' mechanical competence, controlled delivery of drugs and growth factors are treated in detail. It is hoped that this review can provide an exhaustive compendium of the main aspects in hydrogel related research and, therefore, stimulate future biomaterial development and applications.
Collapse
Affiliation(s)
- Gianluca Tozzi
- School of Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth PO1 3DJ, UK.
| | - Arianna De Mori
- School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK.
| | - Antero Oliveira
- School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK.
| | - Marta Roldo
- School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK.
| |
Collapse
|
95
|
Comparatively studying the ultrasound present in a mild two-stage approach on the content of functional groups in modified MWCNT. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.02.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
96
|
Hassanzadeh S, Adolfsson KH, Wu D, Hakkarainen M. Supramolecular Assembly of Biobased Graphene Oxide Quantum Dots Controls the Morphology of and Induces Mineralization on Poly(ε-caprolactone) Films. Biomacromolecules 2015; 17:256-61. [DOI: 10.1021/acs.biomac.5b01339] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Salman Hassanzadeh
- Department of Fiber and Polymer
Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Karin H. Adolfsson
- Department of Fiber and Polymer
Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Duo Wu
- Department of Fiber and Polymer
Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Minna Hakkarainen
- Department of Fiber and Polymer
Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
97
|
Strojny B, Kurantowicz N, Sawosz E, Grodzik M, Jaworski S, Kutwin M, Wierzbicki M, Hotowy A, Lipińska L, Chwalibog A. Long Term Influence of Carbon Nanoparticles on Health and Liver Status in Rats. PLoS One 2015; 10:e0144821. [PMID: 26657282 PMCID: PMC4681315 DOI: 10.1371/journal.pone.0144821] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/24/2015] [Indexed: 12/12/2022] Open
Abstract
Due to their excellent biocompatibility, carbon nanoparticles have been widely investigated for prospective biomedical applications. However, their impact on an organism with prolonged exposure is still not well understood. Here, we performed an experiment investigating diamond, graphene oxide and graphite nanoparticles, which were repeatedly administrated intraperitoneally into Wistar rats for four weeks. Some of the animals was sacrificed after the last injection, whereas the rest were sacrificed twelve weeks after the last exposure. We evaluated blood morphology and biochemistry, as well as the redox and inflammatory state of the liver. The results show the retention of nanoparticles within the peritoneal cavity in the form of prominent aggregates in proximity to the injection site, as well as the presence of some nanoparticles in the mesentery. Small aggregates were also visible in the liver serosa, suggesting possible transportation to the liver. However, none of the tested nanoparticles affected the health of animals. This lack of toxic effect may suggest the potential applicability of nanoparticles as drug carriers for local therapies, ensuring accumulation and slow release of drugs into a targeted tissue without harmful systemic side effects.
Collapse
Affiliation(s)
- Barbara Strojny
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Natalia Kurantowicz
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewa Sawosz
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marta Grodzik
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Sławomir Jaworski
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marta Kutwin
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Wierzbicki
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Anna Hotowy
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ludwika Lipińska
- Department of Chemical Technologies, Institute of Electronic Materials Technology, Warsaw, Poland
| | - André Chwalibog
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
98
|
Kim H, Lee HJ, Kim DP. Flow-Assisted Synthesis of [10]Cycloparaphenylene through Serial Microreactions under Mild Conditions. Angew Chem Int Ed Engl 2015; 55:1422-6. [DOI: 10.1002/anie.201509748] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Heejin Kim
- Department of Synthetic and Biological Chemistry Graduate School of Engineering; Kyoto University; Nishikyo-ku Kyoto 615-8510 Japan
| | - Hyune-Jea Lee
- National Centre of Applied Microfluidic Chemistry, Department of Chemical Engineering, POSTECH; Pohang University of Science and Technology); Pohang 790-784 South Korea
| | - Dong-Pyo Kim
- National Centre of Applied Microfluidic Chemistry, Department of Chemical Engineering, POSTECH; Pohang University of Science and Technology); Pohang 790-784 South Korea
| |
Collapse
|
99
|
Kim H, Lee HJ, Kim DP. Flow-Assisted Synthesis of [10]Cycloparaphenylene through Serial Microreactions under Mild Conditions. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509748] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Heejin Kim
- Department of Synthetic and Biological Chemistry Graduate School of Engineering; Kyoto University; Nishikyo-ku Kyoto 615-8510 Japan
| | - Hyune-Jea Lee
- National Centre of Applied Microfluidic Chemistry, Department of Chemical Engineering, POSTECH; Pohang University of Science and Technology); Pohang 790-784 South Korea
| | - Dong-Pyo Kim
- National Centre of Applied Microfluidic Chemistry, Department of Chemical Engineering, POSTECH; Pohang University of Science and Technology); Pohang 790-784 South Korea
| |
Collapse
|
100
|
Thompson BC, Murray E, Wallace GG. Graphite Oxide to Graphene. Biomaterials to Bionics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:7563-7582. [PMID: 25914294 DOI: 10.1002/adma.201500411] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/04/2015] [Indexed: 06/04/2023]
Abstract
The advent of implantable biomaterials has revolutionized medical treatment, allowing the development of the fields of tissue engineering and medical bionic devices (e.g., cochlea implants to restore hearing, vagus nerve stimulators to control Parkinson's disease, and cardiac pace makers). Similarly, future materials developments are likely to continue to drive development in treatment of disease and disability, or even enhancing human potential. The material requirements for implantable devices are stringent. In all cases they must be nontoxic and provide appropriate mechanical integrity for the application at hand. In the case of scaffolds for tissue regeneration, biodegradability in an appropriate time frame may be required, and for medical bionics electronic conductivity is essential. The emergence of graphene and graphene-family composites has resulted in materials and structures highly relevant to the expansion of the biomaterials inventory available for implantable medical devices. The rich chemistries available are able to ensure properties uncovered in the nanodomain are conveyed into the world of macroscopic devices. Here, the inherent properties of graphene, along with how graphene or structures containing it interface with living cells and the effect of electrical stimulation on nerves and cells, are reviewed.
Collapse
Affiliation(s)
- Brianna C Thompson
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore
| | - Eoin Murray
- Institute for Sports Research, Nanyang Technological University, 639798, Singapore
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Center of Excellence for Electromaterials Science, University of Wollongong, 2500, Australia
| |
Collapse
|