51
|
Wu R, Gao G, Xu Y. Electrospun Fibers Immobilized with BMP-2 Mediated by Polydopamine Combined with Autogenous Tendon to Repair Developmental Dysplasia of the Hip in a Porcine Model. Int J Nanomedicine 2020; 15:6563-6577. [PMID: 32982218 PMCID: PMC7490068 DOI: 10.2147/ijn.s259028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/10/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Developmental dysplasia of the hip (DDH) can increase the pressure between the joints, which causes secondary hip osteoarthritis. The aim of the present study was to fabricate poly(D, L-lactic acid)-poly(ethylene glycol)-poly(D, L-lactic acid) (PELA) electrospun fibrous scaffolds, immobilized with bone morphogenetic protein-2 (BMP-2), to repair the acetabulum defects. Methods The characteristics of PELA electrospun were analyzed using scanning electron microscopy, the release kinetics of BMP-2 in vitro were analyzed using enzyme-linked immunosorbent assays. Human mesenchymal stem cells (hMSCs) were used for in vitro experiments, the biocompatibility of the electrospinning materials was investigated using a cell counting kit-8 (CCK-8) kit, and osteogenic differentiation was tested via alkaline phosphatase (ALP) activity and relative gene expression. Eighteen miniature pig animal models were used in the in vivo experiment. The pigs were sacrificed at 24 weeks after surgery, and the reconstructed acetabulum was evaluated using histological sections. Results Structural analysis revealed that the diameter of the PELA electrospun fiber was 0.8195 ± 0.16 μm. The PELA electrospun fiber materials showed good hydrophilicity and biocompatibility and could continuously release BMP-2 within 27 days: 16.07 ± 0.11 ng of BMP-2 was released from the scaffold. A total of sixteen implants fully filled the defects, and hematoxylin and eosin staining and Goldner's trichrome staining showed that the simple tendon group (T group) was mostly fibrous tissues, lots of fibroblasts and small amounts of chondrocytes were observed in the polydopamine-coated electrospun fiber group (DP group). The DP plus BMP-2 (DPB) group showed a large number of chondrocytes and partial new bone tissues. Conclusion PELA electrospun fibrous scaffolds are good sustained-release carriers, which can not only induce implant differentiation into cartilage and bone but also are completely degraded without toxicity. Therefore, the material can be used for bone and cartilage regeneration.
Collapse
Affiliation(s)
- Ruiqi Wu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, People's Republic of China
| | - Guanying Gao
- Department of Sports Medicine, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yan Xu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, People's Republic of China
| |
Collapse
|
52
|
Godoy-Gallardo M, Portolés-Gil N, López-Periago AM, Domingo C, Hosta-Rigau L. Immobilization of BMP-2 and VEGF within Multilayered Polydopamine-Coated Scaffolds and the Resulting Osteogenic and Angiogenic Synergy of Co-Cultured Human Mesenchymal Stem Cells and Human Endothelial Progenitor Cells. Int J Mol Sci 2020; 21:E6418. [PMID: 32899269 PMCID: PMC7503899 DOI: 10.3390/ijms21176418] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
We have previously reported the fabrication of a polycaprolactone and hydroxyapatite composite scaffold incorporating growth factors to be used for bone regeneration. Two growth factors were incorporated employing a multilayered coating based on polydopamine (PDA). In particular, Bone morphogenetic protein-2 (BMP-2) was bound onto the inner PDA layer while vascular endothelial growth factor (VEGF) was immobilized onto the outer one. Herein, the in vitro release of both growth factors is evaluated. A fastest VEGF delivery followed by a slow and more sustained release of BMP-2 was demonstrated, thus fitting the needs for bone tissue engineering applications. Due to the relevance of the crosstalk between bone-promoting and vessel-forming cells during bone healing, the functionalized scaffolds are further assessed on a co-culture setup of human mesenchymal stem cells and human endothelial progenitor cells. Osteogenic and angiogenic gene expression analysis indicates a synergistic effect between the growth factor-loaded scaffolds and the co-culture conditions. Taken together, these results indicate that the developed scaffolds hold great potential as an efficient platform for bone-tissue applications.
Collapse
Affiliation(s)
- Maria Godoy-Gallardo
- Department of Health Technology, Centre for Nanomedicine and Theranostics, DTU Health Tech, Technical University of Denmark, Produktionstorvet, Building 423, 2800 Kgs. Lyngby, Denmark;
| | - Núria Portolés-Gil
- Materials Science Institute of Barcelona (ICMAB-CSIC), Campus de la UAB s/n, 08193 Bellaterra, Spain; (N.P.-G.); (A.M.L.-P.); (C.D.)
| | - Ana M. López-Periago
- Materials Science Institute of Barcelona (ICMAB-CSIC), Campus de la UAB s/n, 08193 Bellaterra, Spain; (N.P.-G.); (A.M.L.-P.); (C.D.)
| | - Concepción Domingo
- Materials Science Institute of Barcelona (ICMAB-CSIC), Campus de la UAB s/n, 08193 Bellaterra, Spain; (N.P.-G.); (A.M.L.-P.); (C.D.)
| | - Leticia Hosta-Rigau
- Department of Health Technology, Centre for Nanomedicine and Theranostics, DTU Health Tech, Technical University of Denmark, Produktionstorvet, Building 423, 2800 Kgs. Lyngby, Denmark;
| |
Collapse
|
53
|
Yao C, Lai Y, Chen Y, Cheng C. Bone Morphogenetic Protein‐2‐Activated 3D‐Printed Polylactic Acid Scaffolds to Promote Bone Regrowth and Repair. Macromol Biosci 2020; 20:e2000161. [DOI: 10.1002/mabi.202000161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/28/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Chun‐Hsu Yao
- Department of Biomedical Imaging and Radiological Science China Medical University Taichung Taiwan 404 Republic of China
- School of Chinese Medicine China Medical University Taichung Taiwan 404 Republic of China
- Biomaterials Translational Research Center China Medical University Hospital Taichung Taiwan 404 Republic of China
- Department of Biomedical Informatics Asia University Taichung Taiwan 413 Republic of China
| | - Yi‐Hui Lai
- Department of Biomedical Imaging and Radiological Science China Medical University Taichung Taiwan 404 Republic of China
| | - Yi‐Wen Chen
- Graduate Institute of Clinical Medical Science China Medical University Taichung Taiwan 404 Republic of China
- Graduate Institute of Biomedical Sciences China Medical University Taichung Taiwan 404 Republic of China
- 3D Printing Medical Research Institute Asia University Taichung Taiwan 413 Republic of China
| | - Cheng‐Hsin Cheng
- Department of Neurosurgery An Nan Hospital China Medical University Tainan Taiwan 709 Republic of China
- Graduate Institute of Medical Science Chang Jung Christian University Tainan Taiwan 711 Republic of China
| |
Collapse
|
54
|
Godoy-Gallardo M, Portolés-Gil N, López-Periago AM, Domingo C, Hosta-Rigau L. Multi-layered polydopamine coatings for the immobilization of growth factors onto highly-interconnected and bimodal PCL/HA-based scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111245. [PMID: 32919623 DOI: 10.1016/j.msec.2020.111245] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/05/2020] [Accepted: 06/27/2020] [Indexed: 11/28/2022]
Abstract
For bone tissue engineering applications, scaffolds that mimic the porous structure of the extracellular matrix are highly desirable. Herein, we employ a PCL/HA-based scaffold with a double-scaled architecture of small pores coupled to larger ones. To improve the osteoinductivity of the scaffold, we incorporate two different growth factors via polydopamine (PDA) coating. As a first step, we identify the maximum amount of PDA that can be deposited onto the scaffold. Next, to allow for the deposition of a second PDA layer which, in turn, will allow to increase the loading of growth factors, we incorporate a dithiol connecting layer. The thiol groups covalently react with the first PDA coating through Michael addition while also allowing for the incorporation of a second PDA layer. We load the first and second PDA layers with bone morphogenic protein-2 (BMP2) and vascular endothelial growth factor (VEGF), respectively, and evaluate the osteogenic potential of the functionalised scaffold by cell viability, alkaline phosphatase activity and the expression of three different osteogenesis-related genes of pre-seeded human mesenchymal stem cells. Through these studies, we demonstrate that the osteogenic activity of the scaffolds loaded with both BMP2 and VEGF is greater than scaffolds loaded only with BMP2. Importantly, the osteoinductivity is higher when the scaffolds are loaded with BMP2 and VEGF in two different PDA layers. Taken together, these results indicate that the as-prepared scaffolds could be a useful construct for bone-tissue applications.
Collapse
Affiliation(s)
- Maria Godoy-Gallardo
- Department of Health Technology, Centre for Nanomedicine and Theranostics, DTU Health Tech, Technical University of Denmark, Produktionstorvet, Building 423, 2800 Kgs. Lyngby, Denmark
| | - Núria Portolés-Gil
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus de la UAB s/n, 08193 Bellaterra, Spain
| | - Ana M López-Periago
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus de la UAB s/n, 08193 Bellaterra, Spain
| | - Concepción Domingo
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus de la UAB s/n, 08193 Bellaterra, Spain
| | - Leticia Hosta-Rigau
- Department of Health Technology, Centre for Nanomedicine and Theranostics, DTU Health Tech, Technical University of Denmark, Produktionstorvet, Building 423, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
55
|
Synergistic regulation of osteoimmune microenvironment by IL-4 and RGD to accelerate osteogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110508. [DOI: 10.1016/j.msec.2019.110508] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/30/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022]
|
56
|
Ran HH, Cheng X, Gao G, Sun W, Jiang YW, Zhang X, Jia HR, Qiao Y, Wu FG. Colistin-Loaded Polydopamine Nanospheres Uniformly Decorated with Silver Nanodots: A Nanohybrid Platform with Improved Antibacterial and Antibiofilm Performance. ACS APPLIED BIO MATERIALS 2020; 3:2438-2448. [DOI: 10.1021/acsabm.0c00163] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Huan-Huan Ran
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical, Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Xiaotong Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical, Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Ge Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical, Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Wei Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical, Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Yao-Wen Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical, Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Xiaodong Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical, Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical, Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Ying Qiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical, Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical, Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
57
|
Zhang Y, Wang F, Huang Q, Patil AB, Hu J, Fan L, Yang Y, Duan H, Dong X, Lin C. Layer-by-layer immobilizing of polydopamine-assisted ε-polylysine and gum Arabic on titanium: Tailoring of antibacterial and osteogenic properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110690. [PMID: 32204005 DOI: 10.1016/j.msec.2020.110690] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/30/2019] [Accepted: 01/21/2020] [Indexed: 02/03/2023]
Abstract
Bacterial infection has become a crucial reason that give rise to failure of medical implants in clinical applications. In this regard, various antibacterial surface modifications of implants have been developed in recent years. However, it remains a challenge to enable the implant surfaces with both suitable antibacterial and osteogenic properties. In this work, ε-polylysine and gum Arabic multilayer composite films were immobilized layer by layer (LBL) on anodized titanium with the assistance of polydopamine for the first time. In vitro antibacterial results showed that the bacteria numbers decreased with an increase in the loading amount of ε-polylysine. Furthermore, long-term antibacterial property up to 3 weeks against both gram-positive Staphylococcus aureus (S. aureus) and gram-negative Escherichia coli (E. coli) was obtained combined with the merits of covalent binding and LBL methods. Meanwhile, the cell proliferation and osteogenic differentiation of BMSCs on titanium dioxide nanotubes (TNTs) modified with composite films was significantly improved. Remarkably, a facile method to optimize anti-infective and osteogenic properties of medical titanium has been developed, and it was demonstrated that the ε-polylysine and gum Arabic multilayer composite films with assistance of polydopamine were able to endow the orthopedic implant materials both improved antibacterial property and excellent biocompatibility, which is of profound significance for practical application of titanium-based implants.
Collapse
Affiliation(s)
- Yanmei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fumiao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiaoling Huang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Aniruddha Balkrishna Patil
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Jiejie Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lili Fan
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Yun Yang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China.
| | - Hongping Duan
- Beijing Engineering Laboratory of Functional Medical Materials and Devices, Beijing Medical Implant Engineering Research Center, Beijing Naton Technology Group Co. Ltd, Beijing, China
| | - Xiang Dong
- Beijing Engineering Laboratory of Functional Medical Materials and Devices, Beijing Medical Implant Engineering Research Center, Beijing Naton Technology Group Co. Ltd, Beijing, China
| | - Changjian Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China; Beijing Engineering Laboratory of Functional Medical Materials and Devices, Beijing Medical Implant Engineering Research Center, Beijing Naton Technology Group Co. Ltd, Beijing, China.
| |
Collapse
|
58
|
Alksne M, Kalvaityte M, Simoliunas E, Rinkunaite I, Gendviliene I, Locs J, Rutkunas V, Bukelskiene V. In vitro comparison of 3D printed polylactic acid/hydroxyapatite and polylactic acid/bioglass composite scaffolds: Insights into materials for bone regeneration. J Mech Behav Biomed Mater 2020; 104:103641. [PMID: 32174399 DOI: 10.1016/j.jmbbm.2020.103641] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
3D printing of polylactic acid (PLA) and hydroxyapatite (HA) or bioglass (BG) bioceramics composites is the most promising technique for artificial bone construction. However, HA and BG have different chemical composition as well as different bone regeneration inducing mechanisms. Thus, it is important to compare differentiation processes induced by 3D printed PLA + HA and PLA + BG scaffolds in order to evaluate the strongest osteoconductive and osteoinductive properties possessing bioceramics. In this study, we analysed porous PLA + HA (10%) and PLA + BG (10%) composites' effect on rat's dental pulp stem cells fate in vitro. Obtained results indicated, that PLA + BG scaffolds lead to weaker cell adhesion and proliferation than PLA + HA. Nevertheless, osteoinductive and other biofriendly properties were more pronounced by PLA + BG composites. Overall, the results showed a strong advantage of bioceramic BG against HA, thus, 3D printed PLA + BG composite scaffolds could be a perspective component for patient-specific, cheaper and faster artificial bone tissue production.
Collapse
Affiliation(s)
- Milda Alksne
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257, Vilnius, Lithuania.
| | - Migle Kalvaityte
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257, Vilnius, Lithuania
| | - Egidijus Simoliunas
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257, Vilnius, Lithuania
| | - Ieva Rinkunaite
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257, Vilnius, Lithuania
| | - Ieva Gendviliene
- Institute of Odontology, Faculty of Medicine, Vilnius University, Zalgirio Str. 115, LT-08217, Vilnius, Lithuania
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga, LV-1007, Latvia
| | - Vygandas Rutkunas
- Institute of Odontology, Faculty of Medicine, Vilnius University, Zalgirio Str. 115, LT-08217, Vilnius, Lithuania
| | - Virginija Bukelskiene
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257, Vilnius, Lithuania
| |
Collapse
|
59
|
Bedair TM, Lee CK, Kim DS, Baek SW, Bedair HM, Joshi HP, Choi UY, Park KH, Park W, Han I, Han DK. Magnesium hydroxide-incorporated PLGA composite attenuates inflammation and promotes BMP2-induced bone formation in spinal fusion. J Tissue Eng 2020; 11:2041731420967591. [PMID: 33178410 PMCID: PMC7592173 DOI: 10.1177/2041731420967591] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 01/09/2023] Open
Abstract
Spinal fusion has become a common surgical technique to join two or more vertebrae to stabilize a damaged spine; however, the rate of pseudarthrosis (failure of fusion) is still high. To minimize pseudarthrosis, bone morphogenetic protein-2 (BMP2) has been approved for use in humans. In this study, we developed a poly(lactide-co-glycolide) (PLGA) composite incorporated with magnesium hydroxide (MH) nanoparticles for the delivery of BMP2. This study aimed to evaluate the effects of released BMP2 from BMP2-immobilized PLGA/MH composite scaffold in an in vitro test and an in vivo mice spinal fusion model. The PLGA/MH composite films were fabricated via solvent casting technique. The surface of the PLGA/MH composite scaffold was modified with polydopamine (PDA) to effectively immobilize BMP2 on the PLGA/MH composite scaffold. Analyzes of the scaffold revealed that using PLGA/MH-PDA improved hydrophilicity, degradation performance, neutralization effects, and increased BMP2 loading efficiency. In addition, releasing BMP2 from the PLGA/MH scaffold significantly promoted the proliferation and osteogenic differentiation of MC3T3-E1 cells. Furthermore, the pH neutralization effect significantly increased in MC3T3-E1 cells cultured on the BMP2-immobilized PLGA/MH scaffold. In our animal study, the PLGA/MH scaffold as a BMP2 carrier attenuates inflammatory responses and promotes BMP2-induced bone formation in posterolateral spinal fusion model. These results collectively demonstrate that the BMP2-immobilized PLGA/MH scaffold offers great potential in effectively inducing bone formation in spinal fusion surgery.
Collapse
Affiliation(s)
- Tarek M. Bedair
- Department of Biomedical Science, CHA
University, Seongnam-si, Gyeonggi-do, Republic of Korea
- Chemistry Department, Faculty of
Science, Minia University, El-Minia, Egypt
| | - Chang Kyu Lee
- Department of Neurosurgery, Keimyung
University Dongsan Medical Center, Daegu, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA
University, Seongnam-si, Gyeonggi-do, Republic of Korea
- School of Integrative Engineering,
Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA
University, Seongnam-si, Gyeonggi-do, Republic of Korea
- Department of Biomedical Engineering,
Sungkyunkwan University, Jangan-gu, Gyeonggi-do, Republic of Korea
| | - Hanan M. Bedair
- Department of Clinical Pathology,
National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Hari Prasad Joshi
- Department of Neurosurgery, CHA
University School of Medicine, CHA Bungdang Medical Center, Seongnam-si,
Gyeonggi-do, Republic of Korea
| | - Un Yong Choi
- Department of Neurosurgery, CHA
University School of Medicine, CHA Bungdang Medical Center, Seongnam-si,
Gyeonggi-do, Republic of Korea
| | - Keun-Hong Park
- Department of Biomedical Science, CHA
University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Wooram Park
- Department of Biomedical-Chemical
Engineering, The Catholic University of Korea, Bucheon-Si, Gyeonggi-do, Republic of
Korea
| | - InBo Han
- Department of Neurosurgery, CHA
University School of Medicine, CHA Bungdang Medical Center, Seongnam-si,
Gyeonggi-do, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA
University, Seongnam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
60
|
Jiang Y, Xu Y. A mussel-inspired osteogenesis microenvironment with bioactive peptides for the dual-functionalization of biomedical substrates. NEW J CHEM 2020. [DOI: 10.1039/d0nj02997a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A facile but useful peptide modified strategy for the dual-functionalization of biomedical implants with cell-adhesion-enhancing as well as differentiation-inducing abilities.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- The First Affiliated Hospital of Xiamen University
- Xiamen 361003
- P. R. China
| | - Yang Xu
- The First Affiliated Hospital of Xiamen University
- Xiamen 361003
- P. R. China
| |
Collapse
|
61
|
Lu Z, Douek AM, Rozario AM, Tabor RF, Kaslin J, Follink B, Teo BM. Bioinspired polynorepinephrine nanoparticles as an efficient vehicle for enhanced drug delivery. J Mater Chem B 2020; 8:961-968. [DOI: 10.1039/c9tb02375e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Biocompatible polynorepinephrine based particles with excellent biocompatibility for efficient delivery of therapeutics to cancer cells.
Collapse
Affiliation(s)
- Zhenzhen Lu
- School of Chemistry
- Monash University
- Clayton
- Australia
| | - Alon M. Douek
- Australian Regenerative Medicine Institute
- Monash University
- Clayton
- Australia
| | | | - Rico F. Tabor
- School of Chemistry
- Monash University
- Clayton
- Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute
- Monash University
- Clayton
- Australia
| | - Bart Follink
- School of Chemistry
- Monash University
- Clayton
- Australia
| | - Boon Mian Teo
- School of Chemistry
- Monash University
- Clayton
- Australia
| |
Collapse
|
62
|
Xu Z, Wang N, Liu P, Sun Y, Wang Y, Fei F, Zhang S, Zheng J, Han B. Poly(Dopamine) Coating on 3D-Printed Poly-Lactic-Co-Glycolic Acid/β-Tricalcium Phosphate Scaffolds for Bone Tissue Engineering. Molecules 2019; 24:E4397. [PMID: 31810169 PMCID: PMC6930468 DOI: 10.3390/molecules24234397] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 12/22/2022] Open
Abstract
Bone defects caused by osteoporosis, bone malignant tumors, and trauma are very common, but there are many limiting factors in the clinical treatment of them. Bone tissue engineering is the most promising treatment and is considered to be the main strategy for bone defect repair. We prepared polydopamine-coated poly-(lactic-co-glycolic acid)/β-tricalcium phosphate composite scaffolds via 3D printing, and a series of characterization and biocompatibility tests were carried out. The results show that the mechanical properties and pore-related parameters of the composite scaffolds are not affected by the coatings, and the hydrophilicities of the surface are obviously improved. Scanning electron microscopy and micro-computed tomography display the nanoscale microporous structure of the bio-materials. Biological tests demonstrate that this modified surface can promote cell adhesion and proliferation and improve osteogenesis through the increase of polydopamine (PDA) concentrations. Mouse cranial defect experiments are conducted to further verify the conclusion that scaffolds with a higher content of PDA coatings have a better effect on the formation of new bones. In the study, the objective of repairing critical-sized defects is achieved by simply adding PDA as coatings to obtain positive results, which can suggest that this modification method with PDA has great potential.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bing Han
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, Changchun 130021, China; (Z.X.); (N.W.); (P.L.); (Y.S.); (Y.W.); (F.F.); (S.Z.); (J.Z.)
| |
Collapse
|
63
|
Li X, Yin HM, Luo E, Zhu S, Wang P, Zhang Z, Liao GQ, Xu JZ, Li ZM, Li JH. Accelerating Bone Healing by Decorating BMP-2 on Porous Composite Scaffolds. ACS APPLIED BIO MATERIALS 2019; 2:5717-5726. [PMID: 35021565 DOI: 10.1021/acsabm.9b00761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiang Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Hua-Mo Yin
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peng Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhen Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Gui-Qing Liao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ji-Hua Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
64
|
Jahanmard F, Baghban Eslaminejad M, Amani-Tehran M, Zarei F, Rezaei N, Croes M, Amin Yavari S. Incorporation of F-MWCNTs into electrospun nanofibers regulates osteogenesis through stiffness and nanotopography. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110163. [PMID: 31753334 DOI: 10.1016/j.msec.2019.110163] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/16/2019] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
Abstract
Nanotopography and stiffness are major physical cues affecting cell fate. However, the current nanofiber modifications techniques are limited by their ability to control these two physical cues irrespective of each other without changing the materials' surface chemistry. For this reason, the isolated effects of topography and stiffness on osteogenic regulation in electrospun nanofibers have been studied incompletely. Here, we investigated 1. how functionalized multiwall carbon nanotubes (F-MWCNTs) loaded in Polycaprolactone (PCL) nanofibers control their physical properties and 2. whether the resulting unique structures lead to distinctive phenotypes in bone progenitor cells. Changes in material properties were measured by high-resolution electron microscopes, protein adsorption and tensile tests. The effect of the developed structures on human mesenchymal stem cell (MSC) osteogenic differentiation was determined by extensive quantification of early and late osteogenic marker genes. It was found that F-MWCNT loading was an effective method to independently control the PCL nanofiber surface nanoroughness or stiffness, depending on the applied F-MWCNT concentration. Collectively, this suggests that stiffness and topography activate distinct osteogenic signaling pathway. The current strategy can help our further understanding of the mechano-biological responses in osteoprogenitor cells, which could ultimately lead to improved design of bone substitute biomaterials.
Collapse
Affiliation(s)
- Fatemeh Jahanmard
- Department of Orthopedics, University Medical Centre Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box: 16635-148, Tehran, Iran; Nanotechnology Institute, Amirkabir University of Technology, P.O. Box: 15875-4413, Tehran, Iran.
| | - Mohamadreza Baghban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box: 16635-148, Tehran, Iran.
| | - Mohammad Amani-Tehran
- Department of Textile Engineering, Amirkabir University of Technology, P.O. Box: 15875-4413, Tehran, Iran
| | - Fatemeh Zarei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box: 16635-148, Tehran, Iran
| | - Naeimeh Rezaei
- Department of Cell and Molecular Biology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Michiel Croes
- Department of Orthopedics, University Medical Centre Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Centre Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| |
Collapse
|
65
|
Wang Y, Qi H, Miron RJ, Zhang Y. Modulating macrophage polarization on titanium implant surface by poly(dopamine)-assisted immobilization of IL4. Clin Implant Dent Relat Res 2019; 21:977-986. [PMID: 31373150 DOI: 10.1111/cid.12819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/14/2019] [Accepted: 06/29/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND In the past few decades, very little research has been carried out to modify implant surfaces to improve osteointegration through the regulation of immune cells. PURPOSE The aim of this study is to investigate whether the poly(dopamine) (pDA)-assisted immobilization of IL4 on titanium surfaces could modulate the inflammatory profile of macrophages in vitro and search for the possibility of enhancing implant integration in this way. MATERIAL AND METHODS The surface composition, topography, and roughness of SLA, SLA-pDA, and SLA-pDA-IL4 discs were examined by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Then the releasing profile of the SLA-pDA-IL4 implants was recorded for 1 week and the bioactivity of released IL4 was investigated by ELISA. Then macrophage polarization was investigated via three methods including: (a) surface marker via immunofluorescence; (b) mRNA levels of M1 and M2 polarization markers via real-time PCR, and (c) cytokine release via ELISA. RESULTS SEM and EDS revealed that pDA and IL4 were coated successfully on SLA surfaces. The ELISA results showed that IL4 remained its bioactivity on SLA surface and were immobilized on the SLA surface. The immobilization of IL4 through pDA has no significant influence on the attachment, morphology, and proliferation of macrophages, while it increased the M2/M1 proportion in human macrophages revealed by immunofluorescence. The real-time PCR and ELISA results demonstrated that SLA-pDA-IL4 surface reduced the pro-inflammatory profile compared with SLA-pDA and SLA surfaces. CONCLUSIONS The SLA-pDA-IL4 surfaces described here is able to activate adherent macrophages into M2 phenotype and reduce the release of pro-inflammatory cytokines. Immobilization of IL4 via pDA is convenient and effective, thus providing an applicable way to control macrophage behavior upon implant insertion and is anticipated to accelerating further bone integration.
Collapse
Affiliation(s)
- Yulan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Haoning Qi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Richard J Miron
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Yufeng Zhang
- Department of Oral Implantology, School of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
66
|
Han L, Jiang Y, Lv C, Gan D, Wang K, Ge X, Lu X. Mussel-inspired hybrid coating functionalized porous hydroxyapatite scaffolds for bone tissue regeneration. Colloids Surf B Biointerfaces 2019; 179:470-478. [DOI: 10.1016/j.colsurfb.2019.04.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/20/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
|
67
|
Li X, Yin HM, Su K, Zheng GS, Mao CY, Liu W, Wang P, Zhang Z, Xu JZ, Li ZM, Liao GQ. Polydopamine-Assisted Anchor of Chitosan onto Porous Composite Scaffolds for Accelerating Bone Regeneration. ACS Biomater Sci Eng 2019; 5:2998-3006. [PMID: 33405654 DOI: 10.1021/acsbiomaterials.9b00209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Surface function has an importance for the bioactivity of porous polymeric scaffolds. The goal of the present study is to immobilize highly bioactive chitosan (CS) onto the surface of porous composite scaffolds to accelerate bone regeneration. Porous poly(ε-caprolactone) (PCL)/bioactive glass (BG) composite scaffolds with strong anchor of CS were fabricated via mussel-inspired polydopamine (PDA) coating as a bridging layer. In vitro cell culture showed that firm immobilization of CS onto the composite scaffolds significantly enhanced protein adsorption, cell adhesion, and osteogenic differentiation compared to CS-decorated scaffolds via physical adsorption. In vivo assessments demonstrated that covalent immobilization of CS onto the surface of scaffolds obviously promoted cranial bone regeneration in comparison with the counterparts with physical adsorption of CS. The proposed method offers a feasible and effective means to fabricate artificial bioactive scaffolds for bone tissue engineering application.
Collapse
Affiliation(s)
- Xiang Li
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Hua-Mo Yin
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Kai Su
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Guang-Sen Zheng
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Chao-Ying Mao
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wei Liu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Peng Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhen Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Gui-Qing Liao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
68
|
Hasani-Sadrabadi MM, Sarrion P, Nakatsuka N, Young TD, Taghdiri N, Ansari S, Aghaloo T, Li S, Khademhosseini A, Weiss PS, Moshaverinia A. Hierarchically Patterned Polydopamine-Containing Membranes for Periodontal Tissue Engineering. ACS NANO 2019; 13:3830-3838. [PMID: 30895772 DOI: 10.1021/acsnano.8b09623] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Periodontitis is a common chronic inflammatory disease that affects tooth-supporting tissues. We engineer a multifunctional periodontal membrane for the guided tissue regeneration of lost periodontal tissues. The major drawback of current periodontal membranes is the lack of tissue regeneration properties. Here, a series of nanofibrous membranes based on poly(ε-caprolactone) with tunable biochemical and biophysical properties were developed for periodontal tissue regeneration. The engineered membranes were surface coated using biomimetic polydopamine to promote the adhesion of therapeutic proteins and cells. We demonstrate successful cellular localization on the surface of the engineered membrane by morphological patterning. Polydopamine accelerates osteogenic differentiation of dental-derived stem cells by promoting hydroxyapatite mineralization. Such multiscale designs can mimic the complex extracellular environment of periodontal tissue and serve as functional tissue constructs for periodontal regeneration. In a periodontal defect model in rats, our engineered periodontal membrane successfully promoted the regeneration of periodontal tissue and bone repair. Altogether, our data demonstrate that our biomimetic membranes have potential as protein/cell delivery platforms for periodontal tissue engineering.
Collapse
Affiliation(s)
- Mohammad Mahdi Hasani-Sadrabadi
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry , University of California, Los Angeles , Los Angeles , California 90095-1668 , United States
- California NanoSystems Institute , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095-7227 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , 607 Charles E. Young Drive South , Los Angeles , California 90095-1569 , United States
- Department of Bioengineering , University of California, Los Angeles , 420 Westwood Plaza, 5121 Engineering V , Los Angeles , California 90095-1600 , United States
| | - Patricia Sarrion
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry , University of California, Los Angeles , Los Angeles , California 90095-1668 , United States
| | - Nako Nakatsuka
- California NanoSystems Institute , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095-7227 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , 607 Charles E. Young Drive South , Los Angeles , California 90095-1569 , United States
| | - Thomas D Young
- California NanoSystems Institute , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095-7227 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , 607 Charles E. Young Drive South , Los Angeles , California 90095-1569 , United States
| | - Nika Taghdiri
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry , University of California, Los Angeles , Los Angeles , California 90095-1668 , United States
| | - Sahar Ansari
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry , University of California, Los Angeles , Los Angeles , California 90095-1668 , United States
| | - Tara Aghaloo
- Division of Diagnostic and Surgical Sciences, School of Dentistry , University of California, Los Angeles , Los Angeles , California 90095-1668 , United States
| | - Song Li
- Department of Bioengineering , University of California, Los Angeles , 420 Westwood Plaza, 5121 Engineering V , Los Angeles , California 90095-1600 , United States
- Center for Minimally Invasive Therapeutics (C-MIT) , University of California, Los Angeles , Los Angeles , California 90095-7227 , United States
| | - Ali Khademhosseini
- California NanoSystems Institute , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095-7227 , United States
- Department of Bioengineering , University of California, Los Angeles , 420 Westwood Plaza, 5121 Engineering V , Los Angeles , California 90095-1600 , United States
- Center for Minimally Invasive Therapeutics (C-MIT) , University of California, Los Angeles , Los Angeles , California 90095-7227 , United States
- Department of Chemical and Biomolecular Engineering , University of California, Los Angeles , Los Angeles , California 90095-1592 , United States
| | - Paul S Weiss
- California NanoSystems Institute , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095-7227 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , 607 Charles E. Young Drive South , Los Angeles , California 90095-1569 , United States
- Center for Minimally Invasive Therapeutics (C-MIT) , University of California, Los Angeles , Los Angeles , California 90095-7227 , United States
- Department of Materials Science and Engineering , University of California, Los Angeles , 410 Westwood Plaza , Los Angeles , California 90095-1595 , United States
| | - Alireza Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry , University of California, Los Angeles , Los Angeles , California 90095-1668 , United States
- California NanoSystems Institute , University of California, Los Angeles , 570 Westwood Plaza , Los Angeles , California 90095-7227 , United States
- Center for Minimally Invasive Therapeutics (C-MIT) , University of California, Los Angeles , Los Angeles , California 90095-7227 , United States
| |
Collapse
|
69
|
Youn YH, Lee SJ, Choi GR, Lee HR, Lee D, Heo DN, Kim BS, Bang JB, Hwang YS, Correlo VM, Reis RL, Im SG, Kwon IK. Simple and facile preparation of recombinant human bone morphogenetic protein-2 immobilized titanium implant via initiated chemical vapor deposition technique to promote osteogenesis for bone tissue engineering application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:949-958. [PMID: 30948131 DOI: 10.1016/j.msec.2019.03.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 09/13/2018] [Accepted: 03/13/2019] [Indexed: 01/07/2023]
Abstract
Over the past few decades, titanium (Ti) implants have been widely used to repair fractured bones. To promote osteogenesis, immobilization of osteoinductive agents, such as recombinant human bone morphogenic protein-2 (rhBMP2), onto the Ti surface is required. In this study, we prepared rhBMP2 immobilized on glycidyl methacrylate (GMA) deposited Ti surface through initiated chemical vapor deposition (iCVD) technique. After preparation, the bio-functionalized Ti surface was characterized by physicochemical analysis. For in vitro analysis, the developed Ti was evaluated by cell proliferation, alkaline phosphatase activity, calcium deposition, and real-time polymerase chain reaction to verify their osteogenic activity against human adipose-derived stem cells (hASCs). The GMA deposited Ti surface was found to effectively immobilize a large dose of rhBMP2 as compared to untreated Ti. Additionally, rhBMP2 immobilized on Ti showed significantly enhanced osteogenic differentiation and increased calcium deposition with nontoxic cell viability. These results clearly confirm that our strategy may provide a simple, solvent-free strategy to prepare an osteoinductive Ti surface for bone tissue engineering applications.
Collapse
Affiliation(s)
- Yun Hee Youn
- Interdisciplinary Program for Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, GMR, Portugal
| | - Sang Jin Lee
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Go Ro Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hak Rae Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Donghyun Lee
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dong Nyoung Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Byung-Soo Kim
- Interdisciplinary Program for Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jae Beum Bang
- Department of Dental Education, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yu-Shik Hwang
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Vitor M Correlo
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, GMR, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, GMR, Portugal; Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
70
|
Liao J, Wu S, Li K, Fan Y, Dunne N, Li X. Peptide‐modified bone repair materials: Factors influencing osteogenic activity. J Biomed Mater Res A 2019; 107:1491-1512. [DOI: 10.1002/jbm.a.36663] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/29/2019] [Accepted: 02/14/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Jie Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical Engineering, Beihang University Beijing 100083 China
| | - Shuai Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical Engineering, Beihang University Beijing 100083 China
| | - Kun Li
- State Key Laboratory of Powder MetallurgyCentral South University Changsha 410083 China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical Engineering, Beihang University Beijing 100083 China
- Beijing Advanced Innovation Center for Biomedical EngineeringBeihang University Beijing 100083 China
| | - Nicholas Dunne
- Centre for Medical Engineering ResearchSchool of Mechanical and Manufacturing Engineering, Dublin City University Stokes Building, Collins Avenue, Dublin 9 Ireland
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical Engineering, Beihang University Beijing 100083 China
- Beijing Advanced Innovation Center for Biomedical EngineeringBeihang University Beijing 100083 China
| |
Collapse
|
71
|
Wu J, Cao L, Liu Y, Zheng A, Jiao D, Zeng D, Wang X, Kaplan DL, Jiang X. Functionalization of Silk Fibroin Electrospun Scaffolds via BMSC Affinity Peptide Grafting through Oxidative Self-Polymerization of Dopamine for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8878-8895. [PMID: 30777748 DOI: 10.1021/acsami.8b22123] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrospun scaffolds have been broadly studied to enhance bone regeneration because of the ability to simulate the structure and biological functions of the extracellular matrix. Polydopamine (PDA) is used to coat various surfaces at a slightly basic pH (8-8.5) and spontaneously reacts with nucleophilic functional groups. It is suitable for surface modifications of scaffolds correlated with bone formation. E7 is a newly discovered peptide with specific affinity for bone marrow mesenchymal stem cells (BMSCs). It can be useful for recruiting stem cells. Here, electrospun silk fibroin (SF) scaffolds were fabricated, and PDA was used for surface modification followed by grafting E7 (SF-PDA-E7). These composite SF-PDA-E7 electrospun scaffolds improved hydrophilicity, facilitated cell proliferation and adhesion, and boosted the osteogenic differentiation of BMSCs by creating osteoinduction conditions under the synergistic effects of PDA and E7. Moreover, the scaffolds showed high efficiency for recruiting BMSCs induced by E7 both in vitro and in vivo, which was associated with the SDF-1α/CXCR4 axis and the p38, extracellular signal-related kinase, and Akt signal transduction pathways. These functionalized electrospun scaffolds promoted regeneration of bone in the rat calvarial bone defect model. In general, this study verified that PDA could be a simple and efficient method for surface modification, and E7-grafted PDA-modified SF electrospun scaffolds were suitable for bone tissue engineering.
Collapse
Affiliation(s)
| | | | - Yang Liu
- The State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | | | | | | | | | - David L Kaplan
- Department of Biomedical Engineering , 4 Colby Street, Tufts University , Medford , Massachusetts 02155 , United States
| | | |
Collapse
|
72
|
Lee SJ, Kim ME, Nah H, Seok JM, Jeong MH, Park K, Kwon IK, Lee JS, Park SA. Vascular endothelial growth factor immobilized on mussel-inspired three-dimensional bilayered scaffold for artificial vascular graft application: In vitro and in vivo evaluations. J Colloid Interface Sci 2019; 537:333-344. [DOI: 10.1016/j.jcis.2018.11.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/07/2018] [Accepted: 11/11/2018] [Indexed: 01/01/2023]
|
73
|
Lee SJ, Won JE, Han C, Yin XY, Kim HK, Nah H, Kwon IK, Min BH, Kim CH, Shin YS, Park SA. Development of a three-dimensionally printed scaffold grafted with bone forming peptide-1 for enhanced bone regeneration with in vitro and in vivo evaluations. J Colloid Interface Sci 2019; 539:468-480. [DOI: 10.1016/j.jcis.2018.12.097] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 12/28/2022]
|
74
|
Wang H, Lin C, Zhang X, Lin K, Wang X, Shen SG. Mussel-Inspired Polydopamine Coating: A General Strategy To Enhance Osteogenic Differentiation and Osseointegration for Diverse Implants. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7615-7625. [PMID: 30689334 DOI: 10.1021/acsami.8b21558] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Surface modifications play an important role in endowing implant surface with excellent biocompatibility and bioactivity. Among the bioinspired surface modifications, the mussel-inspired polydopamine (PDA) has aroused great interest of researchers. Herein, we fabricated PDA on diverse implant surfaces, including biopolymer, biometal, and bioceramic. Then the effects of PDA coating on cell responsive behaviors in vitro and bone formation capacity in vivo were evaluated in detail. The results showed that PDA coating was fabricated on diverse samples surface successfully, which could significantly improve the hydrophilicity of different material surfaces. Furthermore, the results indicated that PDA coating exerted direct enhancing on the adhesion, proliferation and osteogenic differentiation of bone marrow derived mesenchymal stromal cells (BMSCs) through FAK and p38 signaling pathways. During the process, the focal adhesion protein expression and osteogenic-related genes expression level (e.g., ALP, BMP2, BSP, and OPN) were considerably upregulated. Most importantly, the in vivo study confirmed that PDA coating remarkably accelerated new bone formation and enhanced osseointegration performance. Our study uncovered the biological responses stimulated by PDA coating to make a better understanding of cell/tissue-PDA interactions and affirmed that PDA, a bioinspired polymer, has great potential as a candidate and functional bioactive coating medium in bone regeneration and orthopedic application.
Collapse
Affiliation(s)
- Hui Wang
- School and Hospital of Stomatology and Shanghai Engineering Research Center of Tooth Restoration and Regeneration , Tongji University , Shanghai 200072 , China
| | - Chucheng Lin
- Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Xinran Zhang
- School and Hospital of Stomatology and Shanghai Engineering Research Center of Tooth Restoration and Regeneration , Tongji University , Shanghai 200072 , China
| | | | | | | |
Collapse
|
75
|
Goonoo N, Fahmi A, Jonas U, Gimié F, Arsa IA, Bénard S, Schönherr H, Bhaw-Luximon A. Improved Multicellular Response, Biomimetic Mineralization, Angiogenesis, and Reduced Foreign Body Response of Modified Polydioxanone Scaffolds for Skeletal Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5834-5850. [PMID: 30640432 DOI: 10.1021/acsami.8b19929] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The potential of electrospun polydioxanone (PDX) mats as scaffolds for skeletal tissue regeneration was significantly enhanced through improvement of the cell-mediated biomimetic mineralization and multicellular response. This was achieved by blending PDX ( i) with poly(hydroxybutyrate- co-valerate) (PHBV) in the presence of hydroxyapatite (HA) and ( ii) with aloe vera (AV) extract containing a mixture of acemannan/glucomannan. In an exhaustive study, the behavior of the most relevant cell lines involved in the skeletal tissue healing cascade, i.e. fibroblasts, macrophages, endothelial cells and preosteoblasts, on the scaffolds was investigated. The scaffolds were shown to be nontoxic, to exhibit insignificant inflammatory responses in macrophages, and to be degradable by macrophage-secreted enzymes. As a result of different phase separation in PDX/PHBV/HA and PDX/AV blend mats, cells interacted differentially. Presumably due to varying tension states of cell-matrix interactions, thinner microtubules and significantly more cell adhesion sites and filopodia were formed on PDX/AV compared to PDX/PHBV/HA. While PDX/PHBV/HA supported micrometer-sized spherical particles, nanosized rod-like HA was observed to nucleate and grow on PDX/AV fibers, allowing the mineralized PDX/AV scaffold to retain its porosity over a longer time for cellular infiltration. Finally, PDX/AV exhibited better in vivo biocompatibility compared to PDX/PHBV/HA, as indicated by the reduced fibrous capsule thickness and enhanced blood vessel formation. Overall, PDX/AV blend mats showed a significantly enhanced potential for skeletal tissue regeneration compared to the already promising PDX/PHBV/HA blends.
Collapse
Affiliation(s)
- Nowsheen Goonoo
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ) , University of Siegen , 57076 Siegen , Germany
- Biomaterials, Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research (CBBR) , MSIRI Building, University of Mauritius , 80837 Réduit , Mauritius
| | - Amir Fahmi
- Faculty of Technology and Bionics , Rhine-Waal University of Applied Sciences , Hochschule Rhein-Waal, Marie-Curie-Straße 1 , 47533 Kleve , Germany
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology , University of Siegen , 57076 Siegen , Germany
| | - Fanny Gimié
- Animalerie , Plateforme de recherche CYROI , 2 rue Maxime Rivière , 97490 Sainte Clotilde , Ile de La Réunion , France
| | - Imade Ait Arsa
- Animalerie , Plateforme de recherche CYROI , 2 rue Maxime Rivière , 97490 Sainte Clotilde , Ile de La Réunion , France
| | - Sébastien Bénard
- RIPA , Plateforme de recherche CYROI , 2 rue Maxime Rivière , 97490 Sainte Clotilde , Ile de La Réunion , France
| | - Holger Schönherr
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ) , University of Siegen , 57076 Siegen , Germany
| | - Archana Bhaw-Luximon
- Biomaterials, Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research (CBBR) , MSIRI Building, University of Mauritius , 80837 Réduit , Mauritius
| |
Collapse
|
76
|
Ye K, Liu D, Kuang H, Cai J, Chen W, Sun B, Xia L, Fang B, Morsi Y, Mo X. Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. J Colloid Interface Sci 2019; 534:625-636. [DOI: 10.1016/j.jcis.2018.09.071] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/16/2022]
|
77
|
Chen L, Shao L, Wang F, Huang Y, Gao F. Enhancement in sustained release of antimicrobial peptide and BMP-2 from degradable three dimensional-printed PLGA scaffold for bone regeneration. RSC Adv 2019; 9:10494-10507. [PMID: 35515290 PMCID: PMC9062520 DOI: 10.1039/c8ra08788a] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/26/2019] [Indexed: 11/24/2022] Open
Abstract
One of the goals of bone tissue engineering is to create scaffolds with well-defined, inter-connected pores, excellent biocompatibility and osteoinductive ability. Three-dimensional (3D)-printed polymer scaffold coated with bioactive peptide are an effective approach to fabricating ideal bone tissue engineering scaffolds for bone defect repair. However, the current strategy of adding bioactive peptides generally cause degradation to the polymer materials or damage the bioactivity of the biomolecules. Thus, in this study, we used a biomimetic process via poly(dopamine) coating to prepare functional 3D PLGA porous scaffolds with immobilized BMP-2 and ponericin G1 that efficiently regulate the osteogenic differentiation of preosteoblasts (MC3T3-E1) and simultaneously inhibit of pathogenic microbes, thereby enhancing biological activity. In this study, we analysed a 3D PLGA porous scaffold by scanning electron microscopy, water contact angle measurements, and materials testing. Subsequently, we examined the adsorption, release and in vitro antimicrobial activity of the 3D PLGA. Surface characterization showed that poly(dopamine) surface modification could more efficiently mediate the immobilization of BMP-2 and ponericin G1 onto the scaffold surfaces than physical adsorption, and that ponericin G1-immobilized 3D PLGA scaffolds were able to maintain long-term antibacterial activity. We evaluated the influence on cell adhesion, proliferation and differentiation by culturing MC3T3-E1 cells on different modified 3D PLGA scaffolds in vitro. The biological results indicate that MC3T3-E1 cell attachment and proliferation on BMP-2/ponericin G1-immobilized 3D PLGA scaffolds were much higher than those on other groups. Calcium deposition, and gene expression results showed that the osteogenic differentiation of cells was effectively improved by loading the 3D PLGA scaffold with BMP-2 and ponericin G1. In summary, our findings indicated that the polydopamine-assisted surface modification method can be a useful tool for grafting biomolecules onto biodegradable implants, and the dual release of BMP-2 and ponericin G1 can enhance the osteointegration of bone implants and simultaneously inhibit of pathogenic microbes. Therefore, we conclude that the BMP-2/ponericin G1-loaded PLGA 3D scaffolds are versatile and biocompatible scaffolds for bone tissue engineering. One of the goals of bone tissue engineering is to create scaffolds with well-defined, inter-connected pores, excellent biocompatibility and osteoinductive ability.![]()
Collapse
Affiliation(s)
- Lei Chen
- Department of Joints and Sports Medicine
- The First Hospital of Jilin University
- Changchun
- PR China
| | - Liping Shao
- Department of Joints and Sports Medicine
- The First Hospital of Jilin University
- Changchun
- PR China
| | - Fengping Wang
- Department of Joints and Sports Medicine
- The First Hospital of Jilin University
- Changchun
- PR China
| | - Yifan Huang
- Department of Joints Surgery
- The First Hospital of Jilin University
- Changchun
- PR China
| | - Fenghui Gao
- Department of Orthopedic
- The First Hospital of Jilin University
- Changchun
- PR China
| |
Collapse
|
78
|
Liu Y, Xu C, Gu Y, Shen X, Zhang Y, Li B, Chen L. Polydopamine-modified poly(l-lactic acid) nanofiber scaffolds immobilized with an osteogenic growth peptide for bone tissue regeneration. RSC Adv 2019; 9:11722-11736. [PMID: 35516986 PMCID: PMC9063423 DOI: 10.1039/c8ra08828d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/25/2019] [Indexed: 11/30/2022] Open
Abstract
It is highly desirable for bone tissue engineering scaffolds to have significant osteogenic properties and capability to improve cell growth and thus enhance bone regeneration. In this study, a poly(l-lactic acid) (PLLA) nanofiber scaffold-immobilized osteogenic growth peptide (OGP) was prepared via polydopamine (PDA) coating. X-ray photoelectron spectroscopy (XPS), contact angle measurement, and scanning electron microscopy (SEM) were used to determine the OGP immobilization, hydrophilicity and surface roughness of the samples. The SEM and fluorescence images demonstrate that the PLLA nanofiber scaffolds immobilized with the OGP have excellent cytocompatibility in terms of cell adhesion and proliferation. The ALP activity and the Runx2 and OPN expression results indicated that the PLLA nanofiber scaffolds immobilized with OGP significantly enhanced the osteogenic differentiation and calcium mineralization of hMSCs in vitro. A rat model of critical skull bone defect was selected to evaluate the bone formation capacity of the scaffolds. Micro CT analysis and histological results demonstrated that the PLLA scaffolds immobilized with OGP significantly promoted bone regeneration in critical-sized bone defects. This study verifies that the PLLA scaffold-immobilized OGP has significant potential in bone tissue engineering. Polydopamine-modified PLLA nanofiber scaffolds immobilized with osteogenic growth peptide were designed and prepared for promoting bone formation.![]()
Collapse
Affiliation(s)
- Yong Liu
- Department of Orthopaedic Surgery
- The First Affiliated Hospital of Soochow University
- Suzhou
- PR China
- Department of Orthopaedic Surgery
| | - Changlu Xu
- Department of Orthopaedic Surgery
- The First Affiliated Hospital of Soochow University
- Suzhou
- PR China
- Orthopedic Institute
| | - Yong Gu
- Department of Orthopaedic Surgery
- The First Affiliated Hospital of Soochow University
- Suzhou
- PR China
| | - Xiaofeng Shen
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine
- China
| | - Yanxia Zhang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital
- Soochow University
- Suzhou
- PR China
| | - Bin Li
- Orthopedic Institute
- Soochow University
- Suzhou
- PR China
| | - Liang Chen
- Department of Orthopaedic Surgery
- The First Affiliated Hospital of Soochow University
- Suzhou
- PR China
| |
Collapse
|
79
|
Yin HM, Li X, Wang P, Ren Y, Liu W, Xu JZ, Li JH, Li ZM. Role of HA and BG in engineering poly(ε-caprolactone) porous scaffolds for accelerating cranial bone regeneration. J Biomed Mater Res A 2018; 107:654-662. [PMID: 30474348 DOI: 10.1002/jbm.a.36584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022]
Abstract
Effects of varied bioactive fillers on the biological behavior of porous polymer/inorganic composite scaffolds are lack of comprehensive comparison and remain elusive. Moreover, composite scaffolds with high porosity suffer from inferior mechanical performance. Herein, high-pressure molding and salt leaching were employed to prepare poly(ε-caprolactone) (PCL) composite porous scaffolds loaded with hydroxyapatite (HA) and bioactive glass (BG), respectively. Structural analysis indicated all the porous scaffolds presented interconnected open-pore structure with the porosity of ~87% and pore size of ~180 μm, hinging on the amounts and size of porogen. Compared to PCL/HA scaffolds, PCL/BG scaffolds showed ~2.3-fold augment in the water absorption. Attributing to the compact framework, the PCL/HA and PCL/BG porous scaffolds exhibited outstanding compressive modulus, which was notably higher than other PCL composite porous scaffolds reported in literatures. Cells culture results demonstrated that PCL/BG scaffolds displayed higher expression of osteogenic differentiation than PCL and PCL/HA scaffolds. Furthermore, in vivo results showed that more mature bone was formed within PCL/BG scaffolds than PCL/HA scaffolds, manifesting that the introduction of BG accelerated cranial bone regeneration to obtain complete bone healing within a short time. Therefore, these data indicate that PCL/BG scaffolds are more competitive for bone tissue engineering application. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 654-662, 2019.
Collapse
Affiliation(s)
- Hua-Mo Yin
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiang Li
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Peng Wang
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yue Ren
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Liu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ji-Hua Li
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
80
|
Alves D, Marques A, Milho C, Costa MJ, Pastrana LM, Cerqueira MA, Sillankorva SM. Bacteriophage ϕIBB-PF7A loaded on sodium alginate-based films to prevent microbial meat spoilage. Int J Food Microbiol 2018; 291:121-127. [PMID: 30496941 DOI: 10.1016/j.ijfoodmicro.2018.11.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 01/08/2023]
Abstract
Despite the recent advances achieved in food industries to fulfil the growing consumer demand for high quality and food safety, microbial contamination remains a serious issue. This study aimed to incorporate ϕIBB-PF7A bacteriophage (phage) onto sodium alginate-based films crosslinked with calcium chloride, to prevent poultry spoilage caused by Pseudomonas fluorescens. Films were prepared by casting and characterized in terms of phage loading, distribution, stability, release profile and antimicrobial performance. Results showed that phages were successfully incorporated as evidenced by their viability and homogeneous distribution within the films as assessed by microscopy. A decrease in phage viability was only detected after 8 weeks when stored under refrigerated conditions. Antimicrobial activity demonstrated that incorporated phages significantly impaired P. fluorescens growth. Films' antimicrobial efficacy was further demonstrated on chicken breast fillets artificially inoculated, decreasing 2Log P. fluorescens viable cell counts in the first two days and reductions were maintained up to 5 days of exposure (1 Log). These results highlight that phage incorporation onto sodium-alginate-based films constitutes a simple approach of preserving the antimicrobial activity of phages in a dried and insoluble format, that can further be applied in food industry for the prevention of microbial spoilage.
Collapse
Affiliation(s)
- Diana Alves
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Arlete Marques
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Catarina Milho
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Maria José Costa
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Lorenzo M Pastrana
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Miguel A Cerqueira
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Sanna Maria Sillankorva
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
81
|
Chen M, Jiang S, Zhang F, Li L, Hu H, Wang H. Graphene Oxide Immobilized PLGA-polydopamine Nanofibrous Scaffolds for Growth Inhibition of Colon Cancer Cells. Macromol Biosci 2018; 18:e1800321. [PMID: 30408347 DOI: 10.1002/mabi.201800321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/20/2018] [Indexed: 12/22/2022]
Abstract
Graphene oxide (GO)/poly (lactide-co-glycolic acid) (PLGA) scaffolds have promising applications in the biomedical field. However, greater attention is focused on the incorporated system and its applications in normal cells. In this work, a novel GO immobilized PLGA nanofibrous scaffold assisted by polydopamine (PLGA-PDA-GO) is developed for growth inhibition of HT-29 colon cancer cells. The interactions between GO and PDA are attributed to a π-π conjugate interaction and electrostatic attraction. In addition to the enhancement of thermal stability and mechanical strength, the surface roughness, hydrophilicity, and electro-activity of the scaffolds are significantly improved by immobilization of GO. The scaffolds show good inhibition of HT-29, and immobilized GO is observed to be in contact with but not internalized in HT-29 cells. The cytotoxicity mechanism of scaffolds toward HT-29 is attributed to intracellular activated reactive oxygen species that result from the physical interaction of the sharp GO edges and electrical signals of π-π stacking between PDA and GO.
Collapse
Affiliation(s)
- Minmin Chen
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Suwei Jiang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Feng Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Linlin Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Hailiang Hu
- First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Hualin Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
82
|
Zhang Y, Wang Z, Wang Y, Li L, Wu Z, Ito Y, Yang X, Zhang P. A Novel Approach via Surface Modification of Degradable Polymers With Adhesive DOPA-IGF-1 for Neural Tissue Engineering. J Pharm Sci 2018; 108:551-562. [PMID: 30321547 DOI: 10.1016/j.xphs.2018.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/26/2018] [Accepted: 10/05/2018] [Indexed: 01/06/2023]
Abstract
The highly damaging state of spinal cord injuries has provided much inspiration for the design of surface modification of the implants that can promote nerve regeneration and functional reconstruction. DOPA-IGF-1, a new recombinant protein designed in our previous study, exhibited strong binding affinity to titanium and significantly enhanced the growth of NIH3T3 cells on the surface of titanium with the same biological activity as IGF-1. In this article, surface modification of poly(lactide-co-glycolide) (PLGA) films with recombinant DOPA-IGF-1 was performed to promote the paracrine activity of human umbilical cord mesenchymal stem cells (hUCMSCs) by secreting neurotrophic factors. DOPA-IGF-1 exhibited the strongest binding ability to PLGA films than commercial IGF-1 and nonhydroxylated YKYKY-IGF-1. In vitro cultures of hUCMSCs on the modified PLGA films showed that DOPA-IGF-1@PLGA substrates significantly improved the proliferation, adhesion, and neurotrophic factors secretion of hUCMSCs, especially for nerve growth factor, as confirmed by qRT-PCR and western blot analysis. Subsequently, the acquired neurotrophic factors secreted by the hUCMSCs cultured on the DOPA-IGF-1@PLGA films obviously enhanced neurite outgrowth of PC12 cells. Taken together, PLGA substrates with DOPA-IGF-1 immobilization is a promising platform for neural tissue engineering via neurotrophic factors secretion from MSCs and should be further tested in vivo.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Orthopaedics, The Second Hospital, Jilin University, Changchun 130041, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Linlong Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Zhenxu Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science 2-1 Hirosawa, Wako-shi, Saitama 351-0198 Japan
| | - Xiaoyu Yang
- Department of Orthopaedics, The Second Hospital, Jilin University, Changchun 130041, PR China.
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Institute of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
83
|
Dinh TN, Hou S, Park S, Shalek BA, Jeong KJ. Gelatin Hydrogel Combined with Polydopamine Coating to Enhance Tissue Integration of Medical Implants. ACS Biomater Sci Eng 2018; 4:3471-3477. [PMID: 31131316 DOI: 10.1021/acsbiomaterials.8b00886] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Soft tissue integration of medical implants is important to prevent bacterial infection and implant failure. A bioadhesive that forms firm binding between the implant and the surrounding tissue and facilitates the wound-healing process will be a great tool to establish the desired tissue-implant integration. In this project, we introduce a novel method that can be used to enhance integration between any implant material and any tissue using an enzyme-crosslinked gelatin hydrogel combined with polydopamine (PDA) coating. PDA coating was shown to enhance the binding between the gelatin hydrogel and three model implant materials - aluminum, poly(methyl methacrylate) (PMMA) and titanium. When combined with the gelatin hydrogel, pig cornea tissue adhered more strongly to the PDA coated surfaces than to the uncoated surfaces. The enzyme-crosslinked gelatin hydrogel was non-cytotoxic to human dermal fibroblasts and it also allowed the cells to adhere and proliferate. Altogether, the results indicate that the combination of PDA coating with gelatin hydrogel can be used to enhance the integration of various medical implants.
Collapse
Affiliation(s)
- Thanh N Dinh
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| | - Shujie Hou
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| | - Shiwha Park
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| | - Benjamin A Shalek
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| | - Kyung Jae Jeong
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| |
Collapse
|
84
|
Razavi M, Hu S, Thakor AS. A collagen based cryogel bioscaffold coated with nanostructured polydopamine as a platform for mesenchymal stem cell therapy. J Biomed Mater Res A 2018; 106:2213-2228. [PMID: 29637738 PMCID: PMC6161703 DOI: 10.1002/jbm.a.36428] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
Cryo-hydrogels (cryogels) are polymer hydrogels formed at sub-zero temperatures. Bioscaffolds created from cryogels have interconnected macropores which allow for cell migration, tissue-ingrowth, unhindered diffusion of solutes and mass transport of therapeutics. In this study, we developed collagen based cryogel bioscaffolds and coated them with polydopamine using a simple two-step technique. Cryogel bioscaffolds were synthesized by collagen crosslinking at -20°C and exhibited a macroporous interconnected architecture with 75% ± 3% porosity. Two groups of pore sizes were observed: 300 ± 50 µm and 30 ± 10 µm in diameter. The addition of a polydopamine coating to cryogel bioscaffolds was confirmed using composition analysis. This resulted in a 41% ± 5% decrease in water uptake, 81% ± 10% decrease in swelling rate and 12% ± 3% decrease in their degree of dissolution (p < 0.05), with a 48% ± 2% increase in stiffness and 57% ± 5% increase in compressive strength (p < 0.05). Seeding adipose tissue-derived mesenchymal stem cells (AD-MSCs) into polydopamine coated-cryogel bioscaffolds resulted in cells demonstrating a 52% ± 4% increase in viability and 33% ± 3% increase in proliferation when compared to AD-MSCs seeded into uncoated-cryogel bioscaffolds (p < 0.05). In summary, our novel polydopamine coated-cryogel bioscaffold represents an efficient and low-cost bioscaffold platform to support MSC therapies. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2213-2228, 2018.
Collapse
Affiliation(s)
- Mehdi Razavi
- Department of Radiology, Stanford University, Palo Alto, California, 94304
| | - Sophia Hu
- Department of Radiology, Stanford University, Palo Alto, California, 94304
| | - Avnesh S Thakor
- Department of Radiology, Stanford University, Palo Alto, California, 94304
| |
Collapse
|
85
|
Nakatsuka N, Hasani-Sadrabadi MM, Cheung KM, Young TD, Bahlakeh G, Moshaverinia A, Weiss PS, Andrews AM. Polyserotonin Nanoparticles as Multifunctional Materials for Biomedical Applications. ACS NANO 2018; 12:4761-4774. [PMID: 29664607 PMCID: PMC6087466 DOI: 10.1021/acsnano.8b01470] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Serotonin-based nanoparticles represent a class of previously unexplored multifunctional nanoplatforms with potential biomedical applications. Serotonin, under basic conditions, self-assembles into monodisperse nanoparticles via autoxidation of serotonin monomers. To demonstrate potential applications of polyserotonin nanoparticles for cancer therapeutics, we show that these particles are biocompatible, exhibit photothermal effects when exposed to near-infrared radiation, and load the chemotherapeutic drug doxorubicin, releasing it contextually and responsively in specific microenvironments. Quantum mechanical and molecular dynamics simulations were performed to interrogate the interactions between surface-adsorbed drug molecules and polyserotonin nanoparticles. To investigate the potential of polyserotonin nanoparticles for in vivo targeting, we explored their nano-bio interfaces by conducting protein corona experiments. Polyserotonin nanoparticles had reduced surface-protein interactions under biological conditions compared to polydopamine nanoparticles, a similar polymer material widely investigated for related applications. These findings suggest that serotonin-based nanoparticles have advantages as drug-delivery platforms for synergistic chemo- and photothermal therapy associated with limited nonspecific interactions.
Collapse
Affiliation(s)
- Nako Nakatsuka
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Mohammad Mahdi Hasani-Sadrabadi
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kevin M. Cheung
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Thomas D. Young
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Ghasem Bahlakeh
- Department of Engineering and Technology, Golestan University, Aliabad Katool, Iran
| | - Alireza Moshaverinia
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Anne M. Andrews
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Semel Institute for Neuroscience & Human Behavior and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
86
|
Park J, Lee SJ, Lee H, Park SA, Lee JY. Three dimensional cell printing with sulfated alginate for improved bone morphogenetic protein-2 delivery and osteogenesis in bone tissue engineering. Carbohydr Polym 2018; 196:217-224. [PMID: 29891290 DOI: 10.1016/j.carbpol.2018.05.048] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 01/08/2023]
Abstract
Three-dimensional (3D) cell printing is a unique technique that enables free-form fabrication of cell-laden hydrogel scaffolds with controllable features and interconnected pores for tissue engineering applications. To this end, bioink materials able to offer good printability and favorable cellular interaction are highly required. Herein, we synthesized alginate sulfate, which is a structural mimic of heparin that can strongly bind with growth factors to prolong their activities, and studied its feasibility for cell printing applications. Several bio-inks composed of alginate and alginate-sulfate were studied to characterize their material properties and their utilities in 3D printing. The inclusion of alginate-sulfate in bio-inks (alginate/alginate-sulfate) did not significantly influence their rheological properties and allowed for a good 3D printing processibility with distinct pores and features. Moreover, alginate/alginate-sulfate bio-inks exhibited an improved retention of bone morphogenetic protein 2 in 3D-printed scaffolds. Osteoblastic proliferation and differentiation in vitro were promoted by alginate/alginate-sulfate 3D-printed constructs with an optimal composition of 3% alginate and 2% alginate-sulfate. We envision that bio-inks displaying prolonged interactions with growth factors will be useful for tissue engineering applications including bone regeneration.
Collapse
Affiliation(s)
- Jisun Park
- School of Materials Science and Engineering and Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheondam-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea; Nano Convergence & Manufacturing Systems, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea
| | - Su Jeong Lee
- Nano Convergence & Manufacturing Systems, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea
| | - Hwangjae Lee
- School of Materials Science and Engineering and Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheondam-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Su A Park
- Nano Convergence & Manufacturing Systems, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 304-343, Republic of Korea.
| | - Jae Young Lee
- School of Materials Science and Engineering and Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheondam-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea.
| |
Collapse
|
87
|
Stem Cells for Osteochondral Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:219-240. [DOI: 10.1007/978-3-319-76735-2_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
88
|
Polydopamine-assisted BMP-2 immobilization on titanium surface enhances the osteogenic potential of periodontal ligament stem cells via integrin-mediated cell-matrix adhesion. J Cell Commun Signal 2018; 12:661-672. [PMID: 29725988 DOI: 10.1007/s12079-018-0468-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/20/2018] [Indexed: 01/09/2023] Open
Abstract
A mussel-inspired polydopamine (PDA), resulting from the oxidative polymerization of dopamine, was reported to be an attractive substrate for advancing biomaterial applications. Thus, this study determined the osteoconductive/osteoinductive properties of titanium (Ti) surfaces coated with PDA and the facilitation of the PDA layer to immobilize bone morphogenetic protein-2 (BMP-2) on Ti substrates. The surface chemistry of PDA or PDA/BMP-2-coated Ti was confirmed by contact angle measurement, scanning electron microscopy (SEM), immunofluorescence staining, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). We verified the osteogenic potential of periodontal ligament stem cells (PDLSCs) cultured on the PDA or PDA/BMP-2-Ti surfaces. The osteogenic differentiation of the PDLSCs was assessed by measuring alkaline phosphatase (ALP) activity, intracellular calcium levels, as well as by evaluating osteocalcin (OCN), osterix (OSX), and runt-related transcription factor 2 (RUNX2) protein levels. The PDLSCs cultured on PDA/BMP-2-Ti showed the highest osteogenic activity compared with those on the control Ti and PDA-coated Ti surfaces. Moreover, PDLSCs on PDA and PDA/BMP-2-Ti expressed increased levels of integrin β1 and actin molecules compared to cells on control Ti. Blocking integrin β1 significantly decreased the osteogenic activity of PDLSCs on PDA/BMP-2 surfaces. This study suggests that the PDA coating can efficiently encourage the immobilization of BMP-2 on Ti surfaces and that this modified Ti substrate highly enhanced the osteogenic differentiation of PDLSCs by integrin-mediated cell-matrix adhesion mechanisms.
Collapse
|
89
|
Razavi M, Thakor AS. An oxygen plasma treated poly(dimethylsiloxane) bioscaffold coated with polydopamine for stem cell therapy. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:54. [PMID: 29725867 PMCID: PMC6190679 DOI: 10.1007/s10856-018-6077-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/21/2018] [Indexed: 05/24/2023]
Abstract
In this study, 3D macroporous bioscaffolds were developed from poly(dimethylsiloxane) (PDMS) which is inert, biocompatible, non-biodegradable, retrievable and easily manufactured at low cost. PDMS bioscaffolds were synthesized using a solvent casting and particulate leaching (SCPL) technique and exhibited a macroporous interconnected architecture with 86 ± 3% porosity and 300 ± 100 µm pore size. As PDMS intrinsically has a hydrophobic surface, mainly due to the existence of methyl groups, its surface was modified by oxygen plasma treatment which, in turn, enabled us to apply a novel polydopamine coating onto the surface of the bioscaffold. The addition of a polydopamine coating to bioscaffolds was confirmed using composition analysis. Characterization of oxygen plasma treated-PDMS bioscaffolds coated with polydopamine (polydopamine coated-PDMS bioscaffolds) showed the presence of hydroxyl and secondary amines on their surface which resulted in a significant decrease in water contact angle when compared to uncoated-PDMS bioscaffolds (35 ± 3%, P < 0.05). Seeding adipose tissue-derived mesenchymal stem cells (AD-MSCs) into polydopamine coated-PDMS bioscaffolds resulted in cells demonstrating a 70 ± 6% increase in viability and 40 ± 5% increase in proliferation when compared to AD-MSCs seeded into uncoated-PDMS bioscaffolds (P < 0.05). In summary, this two-step method of oxygen plasma treatment followed by polydopamine coating improves the biocompatibility of PDMS bioscaffolds and only requires the use of simple reagents and mild reaction conditions. Hence, our novel polydopamine coated-PDMS bioscaffolds can represent an efficient and low-cost bioscaffold platform to support MSC therapies.
Collapse
Affiliation(s)
- Mehdi Razavi
- Department of Radiology, Stanford University, Palo Alto, CA, 94304, USA
| | - Avnesh S Thakor
- Department of Radiology, Stanford University, Palo Alto, CA, 94304, USA.
| |
Collapse
|
90
|
Liu Z, Chen J, Zhang G, Zhao J, Fu R, Tang K, Zhi W, Duan K, Weng J, Li W, Qu S. Enhanced Repairing of Critical-Sized Calvarial Bone Defects by Mussel-Inspired Calcium Phosphate Cement. ACS Biomater Sci Eng 2018; 4:1852-1861. [DOI: 10.1021/acsbiomaterials.8b00243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zongguang Liu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianmei Chen
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Guowei Zhang
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Junsheng Zhao
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Rong Fu
- Department of Plastic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610072, China
| | - Kuangyun Tang
- Department of Plastic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610072, China
| | - Wei Zhi
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ke Duan
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jie Weng
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wei Li
- Department of Burns Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610072, China
| | - Shuxin Qu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
91
|
Huang B, Wu Z, Ding S, Yuan Y, Liu C. Localization and promotion of recombinant human bone morphogenetic protein-2 bioactivity on extracellular matrix mimetic chondroitin sulfate-functionalized calcium phosphate cement scaffolds. Acta Biomater 2018; 71:184-199. [PMID: 29355717 DOI: 10.1016/j.actbio.2018.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/28/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022]
Abstract
Localization of recombinant human bone morphogenetic protein-2 (rhBMP-2) with continuous and effective osteogenic stimulation is still a great challenge in the field of bone regeneration. To achieve this aim, rhBMP-2 was tethered on chondroitin sulfate (CS)-functionalized calcium phosphate cement (CPC) scaffolds through specific noncovalent interactions. CS, one of the core glycosaminoglycans, was covalently conjugated onto CPC scaffolds with the assistance of polydopamine (PDA) and further immobilized rhBMP-2 in a biomimetic form. The CPC-PDA-CS scaffolds not only controlled the release kinetics and presentation state of rhBMP-2 but also effectively increased the expression levels of bone morphogenetic protein receptors (BMPRs) and enhanced the recognitions of the remaining rhBMP-2 to BMPRs. Strikingly, the rhBMP-2-loaded CPC-PDA-CS significantly promoted the cellular surface translocation of BMPRs (especially BMPR-IA). In vivo studies demonstrated that, compared with the rhBMP-2 upon CPC and CPC-PDA, the rhBMP-2 upon CPC-PDA-CS exhibited sustained release and induced high quality and more ectopic bone formation. Collectively, these results suggest that rhBMP-2 can be localized within CS-functionalized CPC scaffolds and exert continuous, long-term, and effective osteogenic stimulation. Thus, this work could provide new avenues in mimicking bone extracellular matrix microenvironment and localizing growth factor activity for enhanced bone regeneration. STATEMENT OF SIGNIFICANCE A bioinspired chondroitin sulfate (CS)-functionalized calcium phosphate cement (CPC) platform was developed to tether recombinant human bone morphogenetic protein-2 (rhBMP-2), which could exhibit continuous, long-term, and effective osteogenic stimulation in bone tissue engineering. Compared with rhBMP-2-loaded CPC, the rhBMP-2-loaded CPC-polydopamine-CS scaffolds induced higher expression of bone morphogenetic protein receptors (BMPRs), greater cellular surface translocation of bone morphogenetic protein receptor-IA, higher binding affinity of BMPRs/rhBMP-2, and thus higher activation of the drosophila gene mothers against decapentaplegic protein-1/5/8 (Smad1/5/8) and extracellular-regulated protein kinases-1/2 (ERK1/2) signaling. This work can provide new guidelines for the design of BMP-2-based bioactive materials for bone regeneration.
Collapse
|
92
|
Liu X, Chen J, Qu C, Bo G, Jiang L, Zhao H, Zhang J, Lin Y, Hua Y, Yang P, Huang N, Yang Z. A Mussel-Inspired Facile Method to Prepare Multilayer-AgNP-Loaded Contact Lens for Early Treatment of Bacterial and Fungal Keratitis. ACS Biomater Sci Eng 2018; 4:1568-1579. [PMID: 33445314 DOI: 10.1021/acsbiomaterials.7b00977] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaoqi Liu
- Institute of Biomaterials and Surface Engineering, Key Lab for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu, CN 610031, China
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| | - Jiang Chen
- Institute of Biomaterials and Surface Engineering, Key Lab for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu, CN 610031, China
| | - Chao Qu
- Department of Ophthalmology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| | - Gong Bo
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| | - Lang Jiang
- Institute of Biomaterials and Surface Engineering, Key Lab for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu, CN 610031, China
| | - Hui Zhao
- School of Medicine, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave West Hi-Tech Zone, Chengdu, CN 611731, China
| | - Jing Zhang
- Department of Ophthalmology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| | - Yin Lin
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| | - Yu Hua
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| | - Ping Yang
- Institute of Biomaterials and Surface Engineering, Key Lab for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu, CN 610031, China
| | - Nan Huang
- Institute of Biomaterials and Surface Engineering, Key Lab for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu, CN 610031, China
| | - Zhenglin Yang
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| |
Collapse
|
93
|
Batul R, Tamanna T, Khaliq A, Yu A. Recent progress in the biomedical applications of polydopamine nanostructures. Biomater Sci 2018; 5:1204-1229. [PMID: 28594019 DOI: 10.1039/c7bm00187h] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polydopamine is a dark brown-black insoluble biopolymer produced by autoxidation of dopamine. Although its structure and polymerization mechanism have not been fully understood, there has been a rapid growth in the synthesis and applications of polydopamine nanostructures in biomedical fields such as drug delivery, photothermal therapy, bone and tissue engineering, and cell adhesion and patterning, as well as antimicrobial applications. This article is dedicated to reviewing some of the recent polydopamine developments in these biomedical fields. Firstly, the polymerization mechanism is introduced with a discussion of the factors that influence the polymerization process. The discussion is followed by the introduction of various forms of polydopamine nanostructures and their recent applications in biomedical fields, especially in drug delivery. Finally, the review is summarized followed by brief comments on the future prospects of polydopamine.
Collapse
Affiliation(s)
- Rahila Batul
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | | | | | | |
Collapse
|
94
|
Ko E, Lee JS, Kim H, Yang SY, Yang D, Yang K, Lee J, Shin J, Yang HS, Ryu W, Cho SW. Electrospun Silk Fibroin Nanofibrous Scaffolds with Two-Stage Hydroxyapatite Functionalization for Enhancing the Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7614-7625. [PMID: 28475306 DOI: 10.1021/acsami.7b03328] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The development of functional scaffolds with improved osteogenic potential is important for successful bone formation and mineralization in bone tissue engineering. In this study, we developed a functional electrospun silk fibroin (SF) nanofibrous scaffold functionalized with two-stage hydroxyapatite (HAp) particles, using mussel adhesive-inspired polydopamine (PDA) chemistry. HAp particles were first incorporated into SF scaffolds during the electrospinning process, and then immobilized onto the electrospun SF nanofibrous scaffolds containing HAp via PDA-mediated adhesive chemistry. We obtained two-stage HAp-functionalized SF nanofibrous scaffolds with improved mechanical properties and capable of providing a bone-specific physiological microenvironment. The developed scaffolds were tested for their ability to enhance the osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADMSCs) in vitro and repair bone defect in vivo. To boost their ability for bone repair, we genetically modified hADMSCs with the transcriptional coactivator with PDZ-binding motif (TAZ) via polymer nanoparticle-mediated gene delivery. TAZ is a well-known transcriptional modulator that activates the osteogenic differentiation of mesenchymal stem cells (MSCs). Two-stage HAp-functionalized SF scaffolds significantly promoted the osteogenic differentiation of TAZ-transfected hADMSCs in vitro and enhanced mineralized bone formation in a critical-sized calvarial bone defect model. Our study shows the potential utility of SF scaffolds with nanofibrous structures and enriched inorganic components in bone tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hee Seok Yang
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine , Dankook University , Cheonan 31116 , Republic of Korea
| | | | - Seung-Woo Cho
- Center for Nanomedicine , Institute for Basic Science (IBS) , Seoul 03722 , Republic of Korea
| |
Collapse
|
95
|
Mohan Raj R, Priya P, Raj V. Gentamicin-loaded ceramic-biopolymer dual layer coatings on the Ti with improved bioactive and corrosion resistance properties for orthopedic applications. J Mech Behav Biomed Mater 2018; 82:299-309. [PMID: 29649658 DOI: 10.1016/j.jmbbm.2017.12.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/20/2017] [Accepted: 12/29/2017] [Indexed: 11/17/2022]
Abstract
In orthopedic surgery, osteomyelitis (bone infection) is one of the most serious complications in the last few decades and the resident drug delivery is the key strategy to overcome this issue. Combination of bioactive materials with antibiotics is broadly developed for the handling of osteomyelitis which plays a dual role as bone cell growth and as local drug delivery systems for antibiotic delivery. TiO2-SiO2 mixtures were fabricated on Ti alloy by anodization method. Chitosan-Lysine (CS-LY) biopolymers were coated on composites by electrodeposition method and followed by gentamicin sulfate (GS) which was loaded as a model drug. The layers were characterized by AT-FTIR, XRD, FE-SEM and EDX methods. The mechanical, anticorrosion, antimicrobial effects and biocompatibility of the glazes were considered. In addition, drug loading, continued and prolonged liberation behaviors of GS from the fabricated coating were studied. The apatite development ability and cell viability are outstanding for CS-LY-3 coated composites. In vitro cell experimentations indicate that osteoblasts show good adhesion and high growth rates for CS-LY-3 coated TiO2-SiO2 composite substrate. In conclusion, the surface modification of TiO2-SiO2/CS-LY-3 coated Ti alloy could be used as a carrier for GS, not only to eradicate the osteomyelitis caused by Gram-negative and Gram-positive bacteria, but also to repair the bone defect initiated by the infection owing to the tunable nanocomposite degradation.
Collapse
Affiliation(s)
- R Mohan Raj
- Department of Chemistry, J.K.K.Nataraja College of Arts and Science, Komarapalayam, Namakkal, Tamil Nadu, India.
| | - P Priya
- Advanced Materials Research Laboratory, Department of Chemistry, Periyar University, Sale 636011, Tamil Nadu, India
| | - V Raj
- Advanced Materials Research Laboratory, Department of Chemistry, Periyar University, Sale 636011, Tamil Nadu, India; Center for Nanoscience and Nanotechnology, Periyar University, Sale 636011, Tamil Nadu, India.
| |
Collapse
|
96
|
Xu Q, Li Y, Zhu Y, Zhao K, Gu R, Zhu Q. Recombinant human BMP-7 grafted poly(lactide-co-glycolide)/hydroxyapatite scaffolds via polydopamine for enhanced calvarial repair. RSC Adv 2018; 8:27191-27200. [PMID: 35539987 PMCID: PMC9083550 DOI: 10.1039/c8ra05606d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023] Open
Abstract
Polydopamine-assisted rhBMP-7 immobilization on PLGA/hydroxyapatite scaffold via phase inversion for enhanced calvarial repair in vivo.
Collapse
Affiliation(s)
- Qinli Xu
- Department of Orthopedics
- China-Japan Union Hospital
- Jilin University
- Changchun
- PR China
| | - Ye Li
- Department of Orthopedics
- China-Japan Union Hospital
- Jilin University
- Changchun
- PR China
| | - Yuhang Zhu
- Department of Orthopedics
- China-Japan Union Hospital
- Jilin University
- Changchun
- PR China
| | - Kunchi Zhao
- Department of Orthopedics
- China-Japan Union Hospital
- Jilin University
- Changchun
- PR China
| | - Rui Gu
- Department of Orthopedics
- China-Japan Union Hospital
- Jilin University
- Changchun
- PR China
| | - Qingsan Zhu
- Department of Orthopedics
- China-Japan Union Hospital
- Jilin University
- Changchun
- PR China
| |
Collapse
|
97
|
Lu M, Yu J. Mussel-Inspired Biomaterials for Cell and Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:451-474. [PMID: 30357703 DOI: 10.1007/978-981-13-0947-2_24] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In designing biomaterial for regenerative medicine or tissue engineering, there are a variety of issues to consider including biocompatibility, biochemical reactivity, and cellular interaction etc. Mussel-inspired biomaterials have received much attention because of its appealing features including strong adhesiveness on moist surfaces, enhancement of cell adhesion, immobilization of bioactive molecules and its amenability to post-functionalization via catechol chemistry. In this review chapter, we give a brief introduction on the basic principles of mussel-inspired polydopamine coating, catechol conjugation, and discuss how their features play a vital role in biomedical application. Special emphasis is placed on tissue engineering and regenerative applications. We aspire to give readers of this book a comprehensive insight into mussel-inspired biomaterials that can facilitate them make significant contributions in this promising field.
Collapse
Affiliation(s)
- Min Lu
- Biomedical and Tissue Engineering Laboratory, Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Jiashing Yu
- Biomedical and Tissue Engineering Laboratory, Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
98
|
Comparative Bone Regeneration Potential Studies of Collagen, Heparin, and Polydopamine-Coated Multichannelled BCP Granules. ASAIO J 2018; 64:115-121. [DOI: 10.1097/mat.0000000000000582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
99
|
Biomimetic fabrication of antibacterial calcium phosphates mediated by polydopamine. J Inorg Biochem 2018; 178:43-53. [DOI: 10.1016/j.jinorgbio.2017.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/20/2017] [Accepted: 10/08/2017] [Indexed: 12/17/2022]
|
100
|
Ru J, Wei Q, Yang L, Qin J, Tang L, Wei J, Guo L, Niu Y. Zein regulating apatite mineralization, degradability, in vitro cells responses and in vivo osteogenesis of 3D-printed scaffold of n-MS/ZN/PCL ternary composite. RSC Adv 2018; 8:18745-18756. [PMID: 35539669 PMCID: PMC9080628 DOI: 10.1039/c8ra02595a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/09/2018] [Indexed: 12/03/2022] Open
Abstract
Bioactive and degradable scaffolds of nano magnesium silicate (n-MS)/zein (ZN)/poly(caprolactone) (PCL) ternary composites were prepared by 3D-printing method. The results showed that the 3D-printed scaffolds possessed controllable pore structure, and pore morphology, pore size, porosity and pore interconnectivity of the scaffolds can be efficiently adjusted. In addition, the apatite-mineralization ability of the scaffolds in simulated body fluids was obviously improved with the increase of ZN content, in which the scaffold with 20 w% ZN (C20) possessed excellent apatite-mineralization ability. Moreover, the degradability of the scaffolds was significantly enhanced with the increase of ZN content in the scaffolds. The degradation of ZN produced acidic products that could neutralize the alkaline products from the degradation of n-MS, which avoid the increase of pH value in degradable solution. Furthermore, the MC3T3-E1 cells responses (e.g. proliferation and differentiation, etc.) to the scaffolds were significantly promoted with the increase of ZN content. The in vivo osteogenesis of the scaffolds implanted the femur defects of rabbits was investigated by micro-CT and histological analysis. The results demonstrated that the new bone formation was significantly enhanced with the increase of ZN content, in which the C20 scaffold induced the highest new bone tissues, indicating excellent osteogenesis. The results suggested that the ZN in the ternary composite scaffolds played key roles in assisting bone regeneration in vivo. Zein regulating apatite mineralization, degradability, cells responses and osteogenesis of 3D-printed scaffold of n-MS/ZN/PCL ternary composite.![]()
Collapse
Affiliation(s)
- Jiangying Ru
- Department of Orthopaedics
- The Affiliated Hospital of Yangzhou University
- Yangzhou University
- Yangzhou 225009
- China
| | - Qiang Wei
- Department of Orthopaedics
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- China
| | - Lianqing Yang
- Department of Orthopaedics
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- China
| | - Jing Qin
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Liangchen Tang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Lieping Guo
- Department of Oncology
- Shanghai Eastern Hepatobiliary Surgery Hospital
- Shanghai
- China
| | - Yunfei Niu
- Department of Orthopaedics
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- China
| |
Collapse
|