51
|
Ding Y, Du C, Qian J, Dong CM. NIR-Responsive Polypeptide Nanocomposite Generates NO Gas, Mild Photothermia, and Chemotherapy to Reverse Multidrug-Resistant Cancer. NANO LETTERS 2019; 19:4362-4370. [PMID: 31199153 DOI: 10.1021/acs.nanolett.9b00975] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multidrug resistance (MDR) of cancers that results from overexpression of a P-glycoprotein (P-gp) transporter mainly causes chemotherapy (CT) failure and hinders clinical transitions of current polypeptide nanomedicines. Herein, a novel polypeptide nanocomposite PNOC-PDA that integrates heat-sensitive NO gas delivery and photothermal conversion attributes can overcome MDR and maximize CT; meanwhile the optimized CT and intracellular high-concentration NO gas can assist a mild photothermal therapy (PTT) to eradicate cancer cells. The triple therapies produced a superior and synergistic effect on MDR-reversal and killing MCF-7/ADR in vitro, and the P-gp expression level was downregulated to 46%, as confirmed by means of MTT, Western blot, flow cytometry, and confocal laser scanning microscopy. Significantly, by using one intravenous injection of PNOC-PDA/DOX and a single near-infrared irradiation, the triple therapies of mild PTT, NO gas therapy, and CT achieved complete MCF-7/ADR tumor ablation without skin damage, scarring, and tumor recurrence within 30 days. This work provides a versatile method for the fabrication of NIR-responsive polypeptide nanocomposite with intrinsic photothermal conversion and NO-releasing attributes, opening up a new avenue for reversing MDR in tumors.
Collapse
Affiliation(s)
- Yue Ding
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Chang Du
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Jiwen Qian
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| |
Collapse
|
52
|
Houdaihed L, Evans JC, Allen C. In Vivo Evaluation of Dual-Targeted Nanoparticles Encapsulating Paclitaxel and Everolimus. Cancers (Basel) 2019; 11:E752. [PMID: 31146485 PMCID: PMC6628352 DOI: 10.3390/cancers11060752] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 01/01/2023] Open
Abstract
A synergistic combination of paclitaxel (PTX) and everolimus (EVER) can allow for lower drug doses, reducing the toxicities associated with PTX, while maintaining therapeutic efficacy. Polymeric nanoparticles (NPs) of high stability provide opportunities to modify the toxicity profile of the drugs by ensuring their delivery to tumor at the synergistic ratio while limiting systemic drug exposure and the toxicities that result. The current study goal is to study the in vivo fate of human epidermal factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) dual-targeted PTX+EVER-loaded NPs (Dual-NPs) in an MDA-MB-231-H2N BC tumor-bearing mouse model. The pharmacokinetic parameters, plasma area under the curve (AUC) and half-life (t1/2), were found to be 20-fold and 3 to 4-fold higher, respectively, for the drugs when administered in the Dual-NPs in comparison to the free-drug combination (i.e., PTX+EVER) at an equivalent dose of PTX. While maintaining anti-tumor efficacy, the levels of body weight loss were significantly lower (p < 0.0001) and the overall degree of neurotoxicity was reduced with Dual-NP treatment in comparison to the free-drug combination when administered at an equivalent dose of PTX. This study suggests that Dual-NPs present a promising platform for the delivery of the PTX and EVER combination with the potential to reduce severe PTX-induced toxicities and in turn, improve quality of life for patients with BC.
Collapse
Affiliation(s)
- Loujin Houdaihed
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
| | | | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
53
|
Gurunathan S, Qasim M, Park CH, Arsalan Iqbal M, Yoo H, Hwang JH, Uhm SJ, Song H, Park C, Choi Y, Kim JH, Hong K. Cytotoxicity and Transcriptomic Analyses of Biogenic Palladium Nanoparticles in Human Ovarian Cancer Cells (SKOV3). NANOMATERIALS 2019; 9:nano9050787. [PMID: 31121951 PMCID: PMC6566439 DOI: 10.3390/nano9050787] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 11/16/2022]
Abstract
Ovarian cancer incidence continues to increase at an alarming rate. Although various therapeutic approaches exist for ovarian cancer, they have limitations, including undesired side effects. Therefore, nanoparticle (NP)-mediated therapy may be a viable, biocompatible, and suitable alternative. To the best of our knowledge, no comprehensive analysis has been undertaken on the cytotoxicity and cellular pathways involved in ovarian cancer cells, particularly SKOV3 cells. Here, we investigated the effect of palladium NPs (PdNPs) and the molecular mechanisms and cellular pathways involved in ovarian cancer. We assayed cell viability, proliferation, cytotoxicity, oxidative stress, DNA damage, and apoptosis and performed an RNA-Seq analysis. The results showed that PdNPs elicited concentration-dependent decreases in cell viability and proliferation and induced increasing cytotoxicity at increasing concentrations, as determined by leakage of lactate dehydrogenase, increased levels of reactive oxygen species and malondialdehyde, and decreased levels of antioxidants like glutathione and superoxide dismutase. Furthermore, our study revealed that PdNPs induce mitochondrial dysfunction by altering mitochondrial membrane potential, reducing adenosine triphosphate levels, inducing DNA damage, and activating caspase 3, all of which significantly induced apoptosis in SKOV3 cells following PdNPs treatment. Gene ontology (GO) term analysis of PdNPs-exposed SKOV3 cells showed various dysregulated pathways, particularly nucleosome assembly, telomere organization, and rDNA chromatin silencing. When genes downregulated by PdNPs were applied to GO term enrichment analysis, nucleosome assembly was the top-ranked biological pathway. We also provide evidence for an association between PdNPs exposure and multiple layers of epigenetic transcriptional control and establish a molecular basis for NP-mediated apoptosis. These findings provide a foundation, potential targets, and novel insights into the mechanism underlying toxicity and pathways in SKOV3 cells, and open new avenues to identify novel targets for ovarian cancer treatment.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology and Humanized Pig Center (SRC), Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea.
| | - Muhammad Qasim
- Department of Stem Cell and Regenerative Biotechnology and Humanized Pig Center (SRC), Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea.
| | - Chan Hyeok Park
- Department of Stem Cell and Regenerative Biotechnology and Humanized Pig Center (SRC), Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea.
| | - Muhammad Arsalan Iqbal
- Department of Stem Cell and Regenerative Biotechnology and Humanized Pig Center (SRC), Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea.
| | - Hyunjin Yoo
- Department of Stem Cell and Regenerative Biotechnology and Humanized Pig Center (SRC), Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea.
| | - Jeong Ho Hwang
- Animal Model Research Group, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, 30 Baekhak1-gil, Jeongeup, Jeollabuk-do 56212, Korea.
| | - Sang Jun Uhm
- Department of Animal Science and Biotechnology, Sangji Youngseo College, Wonju 26339, Korea.
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology and Humanized Pig Center (SRC), Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea.
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology and Humanized Pig Center (SRC), Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea.
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology and Humanized Pig Center (SRC), Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology and Humanized Pig Center (SRC), Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea.
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology and Humanized Pig Center (SRC), Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
54
|
Lim WQ, Yang G, Phua SZF, Chen H, Zhao Y. Self-Assembled Oxaliplatin(IV) Prodrug-Porphyrin Conjugate for Combinational Photodynamic Therapy and Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16391-16401. [PMID: 31002492 DOI: 10.1021/acsami.9b04557] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanomedicine has emerged as a promising strategy for effective cancer treatment. A useful approach is to develop carrier-free nanodrugs via a facile supramolecular self-assembly process. To achieve high therapeutic effect, integrating photodynamic therapy with chemotherapy has been sought after. In this work, we designed a nanocarrier (PEG-Por-CD: oxliPt(IV)-ada) assembled with oxaliplatin prodrug (oxliPt(IV)-ada) and porphyrin photosensitizer (PEG-Por-CD) through host-guest interaction to achieve stimulus-responsive combination therapy. Contributed by excellent spatial control of the binding ratio between host and guest molecules, porphyrin and oxaliplatin were separately modified with β-cyclodextrin and adamantane to prepare the amphiphilic host-guest complex for subsequent self-assembly into therapeutic nanoparticles. The obtained PEG-Por-CD: oxliPt(IV)-ada nanoparticles exhibited good colloidal stability with an average hydrodynamic size of 164 nm while undergoing the disassembly under reductive environment to release active therapeutic species. Confocal imaging demonstrated the ability of PEG-Por-CD: oxliPt(IV)-ada to effectively accumulate in the cells and produce reactive oxygen species in vitro upon 630 nm light irradiation. As compared with the monotherapy, the PEG-Por-CD: oxliPt(IV)-ada nanoparticles exhibited 3-fold enhanced cytotoxicity and 2-fold increase in the apoptosis. In vivo experiments using 4T1 tumor-bearing mice confirmed that the nanoparticles were efficient in suppressing the tumor growth without eliciting systemic toxicity. The present self-delivery nanosystem constructed from the self-assembly approach not only allows precise control over the drug and photosensitizer loading ratio but also eliminates systemic toxicity concern of the drug carriers, providing a solution for further development of combinational cancer treatment.
Collapse
Affiliation(s)
- Wei Qi Lim
- NTU-Northwestern Institute for Nanomedicine, Interdisciplinary Graduate School , Nanyang Technological University , 50 Nanyang Drive , Singapore 637553
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Guangbao Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Soo Zeng Fiona Phua
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Hongzhong Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Yanli Zhao
- NTU-Northwestern Institute for Nanomedicine, Interdisciplinary Graduate School , Nanyang Technological University , 50 Nanyang Drive , Singapore 637553
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| |
Collapse
|
55
|
Yang R, Hou M, Gao Y, Zhang L, Xu Z, Kang Y, Xue P. Indocyanine green-modified hollow mesoporous Prussian blue nanoparticles loading doxorubicin for fluorescence-guided tri-modal combination therapy of cancer. NANOSCALE 2019; 11:5717-5731. [PMID: 30865744 DOI: 10.1039/c8nr10430a] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hollow mesoporous structures with interior cavities and expanded surface area have attracted considerable interest as drug delivery systems. In this study, a multifunctional nanotheranostic agent was developed by conjugating indocyanine green (ICG) and loading doxorubicin (DOX) onto the surfaces or within the cavities of hollow mesoporous Prussian blue (HMPB) nanoparticles, known as HMPB@PEI/ICG/DOX or simply HPID NPs, which were investigated as phototheranostic agents for in vivo fluorescence imaging and light-induced chemotherapy, photothermal therapy (PTT) and photodynamic therapy (PDT). These original HPID NPs exhibited strong near infrared (NIR) absorbance, reactive oxygen species (ROS) yield, and controlled chemotherapeutic drug release behavior. After intravenous injection of HPID NPs, highly efficient solid tumor ablation effects were observed in 4T1 tumor-bearing mouse models under NIR laser irradiation. Additionally, there was insignificant low-term toxicity or damage to normal tissues, as evidenced by histopathological and hemocompatibility analyses, suggesting that this agent has reliable biosafety for systemic applications. Taken together, the results of this study suggest that HPID NPs can produce tumor-specific and stimuli-triggered theranostic effects under tri-modal combination therapy. These HPID NPs advantageously provide traceable accumulation and activation and therefore could be a capable mediator in nanomedicines for eliminating solid tumors.
Collapse
Affiliation(s)
- Ruihao Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China.
| | | | | | | | | | | | | |
Collapse
|
56
|
Synergistic Action of Gefitinib and GSK41364A Simultaneously Loaded in Ratiometrically-Engineered Polymeric Nanoparticles for Glioblastoma Multiforme. J Clin Med 2019; 8:jcm8030367. [PMID: 30875975 PMCID: PMC6462915 DOI: 10.3390/jcm8030367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma Multiforme is a deadly cancer of glial cells with very low survival rates. Current treatment options are invasive and have serious side effects. Single drug treatments make the tumor refractory after a certain period. Combination therapies have shown improvements in treatment responses against aggressive forms of cancer and are becoming a mainstay in the management of cancer. The purpose of this study is to design a combinatorial treatment regimen by engineering desired ratios of two different small molecule drugs (gefitinib and GSK461364A) in a single carrier that can reduce off-target effects and increase their bioavailability. Synergistic effects were observed with our formulation when optimal ratios of gefitinib and GSK461364A were loaded in poly (lactic-co-glycolic) acid and polyethylene glycol (PLGA-PEG) nanoparticles and tested for efficacy in U87-malignant glioma (U87-MG) cells. Combination nanoparticles proved to be more effective compared to single drug encapsulated nanoparticles, free drug combinations, and the mixture of two single loaded nanoparticles, with statistically significant values at certain ratios and drug concentrations. We also observed drastically reduced clonogenic potential of the cells that were treated with free drugs and nanoparticle combinations in a colony forming assay. From our findings, we conclude that the combination of GSK461364A and higher concentrations of gefitinib when encapsulated in nanoparticles yield synergistic killing of glioma cells. This study could form the basis for designing new combination treatments using nanoparticles to deliver multiple drugs to cancer cells for synergistic effects.
Collapse
|
57
|
Wu T, Qiao Q, Qin X, Zhang D, Zhang Z. Immunostimulatory cytokine and doxorubicin co-loaded nanovesicles for cancer immunochemotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 18:66-77. [PMID: 30831276 DOI: 10.1016/j.nano.2019.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/17/2018] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
Taking advantages of drug delivery system, immunostimulatory and chemotherapeutic agents with different physiochemical properties can be co-delivered to realize synergistic antitumor effect. Here the immunostimulatory cytokine interleukin-2 (IL-2) was firstly adsorbed in doxorubicin (DOX) loaded nanovesicles (NV-DOXIL-2) with high encapsulation efficiency by a facile solvent free method. After intravenous injection to melanoma bearing mice, NV-DOXIL-2 can accumulate in tumor and remarkably suppress tumor growth with negligible systemic toxicity. To extend the comprehensive application of this strategy, interferon-γ (IFN-γ) was further introduced to the combinatorial system to develop cytokine cocktails adsorbed NVs. This kind of NVs can significantly inhibit the primary tumor growth and lung metastasis of triple-negative breast cancer. With exploration of underlying mechanism, the cytokine cocktails adsorbed NVs can facilitate maturation of dendritic cells, promote the infiltration and activation of CD8+ T lymphocytes and natural killer cells, and increase the recruitment of CD45+ immune cells and Ly6G+ neutrophils.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan, China; Tongji School of Pharmacy, HuaZhong University of Science and Technology, Wuhan, China; National Engineering Research Center for Nanomedicine, HuaZhong University of Science and Technology, Wuhan, China; Hubei Engineering Research Center for Novel Drug Delivery System, HuaZhong University of Science and Technology, Wuhan, China
| | - Qi Qiao
- Tongji School of Pharmacy, HuaZhong University of Science and Technology, Wuhan, China; National Engineering Research Center for Nanomedicine, HuaZhong University of Science and Technology, Wuhan, China; Hubei Engineering Research Center for Novel Drug Delivery System, HuaZhong University of Science and Technology, Wuhan, China
| | - Xianya Qin
- Tongji School of Pharmacy, HuaZhong University of Science and Technology, Wuhan, China; National Engineering Research Center for Nanomedicine, HuaZhong University of Science and Technology, Wuhan, China; Hubei Engineering Research Center for Novel Drug Delivery System, HuaZhong University of Science and Technology, Wuhan, China
| | - Dan Zhang
- Tongji School of Pharmacy, HuaZhong University of Science and Technology, Wuhan, China; National Engineering Research Center for Nanomedicine, HuaZhong University of Science and Technology, Wuhan, China; Hubei Engineering Research Center for Novel Drug Delivery System, HuaZhong University of Science and Technology, Wuhan, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, HuaZhong University of Science and Technology, Wuhan, China; National Engineering Research Center for Nanomedicine, HuaZhong University of Science and Technology, Wuhan, China; Hubei Engineering Research Center for Novel Drug Delivery System, HuaZhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
58
|
Mao HL, Qian F, Li S, Shen JW, Ye CK, Hua L, Zhang LZ, Wu DM, Lu J, Yu RT, Liu HM. Delivery of Doxorubicin from Hyaluronic Acid-Modified Glutathione-Responsive Ferrocene Micelles for Combination Cancer Therapy. Mol Pharm 2019; 16:987-994. [PMID: 30624945 DOI: 10.1021/acs.molpharmaceut.8b00862] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A combination of different chemotherapy approaches can obtain the best response for many cancers. However, the greatest challenge is the development of a nanoparticle formulation that can encapsulate different chemotherapeutic agents to achieve the proper synergetic chemotherapy for the tumor. Here, amphiphilic ferrocenium-tetradecyl (Fe-C14) was constructed to form cationic micelles in an aqueous solution via self-assembly. Then, it was coated by hyaluronic acid (HA) through electrostatic interactions to generate HA-Fe-C14 micelles. The HA-Fe-C14 micelles were used to deliver doxorubicin (DOX), and it showed that the DOX could be released rapidly under a high-GSH tumor environment. The HA-Fe-C14/DOX micelles were able to accumulate efficiently in tumor and showed significant anticancer effect both in vitro and in vivo. These results suggest that HA-Fe-C14/DOX micelles are a useful drug delivery system that enhances synergic antitumor treatment effects.
Collapse
Affiliation(s)
- Hong-Lin Mao
- Institute of Nervous System Diseases , Xuzhou Medical University , Xuzhou 221002 , P.R. China.,Brain Hospital , Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , P.R. China
| | - Feng Qian
- Institute of Nervous System Diseases , Xuzhou Medical University , Xuzhou 221002 , P.R. China.,Brain Hospital , Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , P.R. China
| | - Shun Li
- Institute of Nervous System Diseases , Xuzhou Medical University , Xuzhou 221002 , P.R. China.,Brain Hospital , Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , P.R. China
| | - Jia-Wei Shen
- Institute of Nervous System Diseases , Xuzhou Medical University , Xuzhou 221002 , P.R. China.,Brain Hospital , Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , P.R. China
| | - Cheng-Kun Ye
- Institute of Nervous System Diseases , Xuzhou Medical University , Xuzhou 221002 , P.R. China.,Brain Hospital , Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , P.R. China
| | - Lei Hua
- Institute of Nervous System Diseases , Xuzhou Medical University , Xuzhou 221002 , P.R. China.,Brain Hospital , Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , P.R. China
| | - Long-Zhen Zhang
- Department of Radiation Oncology , Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , P.R. China.,Cancer Institute of Xuzhou Medical University , Xuzhou 221002 , P.R. China
| | - Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province School of Life Science , Jiangsu Normal University , Xuzhou 221116 , P.R. China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province School of Life Science , Jiangsu Normal University , Xuzhou 221116 , P.R. China
| | - Ru-Tong Yu
- Institute of Nervous System Diseases , Xuzhou Medical University , Xuzhou 221002 , P.R. China.,Brain Hospital , Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , P.R. China
| | - Hong-Mei Liu
- Institute of Nervous System Diseases , Xuzhou Medical University , Xuzhou 221002 , P.R. China.,Brain Hospital , Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , P.R. China
| |
Collapse
|
59
|
Ding Y, Du C, Qian J, Dong CM. Zwitterionic polypeptide nanomedicine with dual NIR/reduction-responsivity for synergistic cancer photothermal-chemotherapy. Polym Chem 2019. [DOI: 10.1039/c9py00986h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dual NIR/reduction-responsive and zwitterionic polypeptide nanoparticles of PMC/DOX-ICG were fabricated, which achieved in vivo NIR fluorescence imaging and synergistic cancer PTT-CT treatment, and effectively ablated the HeLa tumors without recurrence for 30 days.
Collapse
Affiliation(s)
- Yue Ding
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Chang Du
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Jiwen Qian
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
60
|
Du C, Ding Y, Qian J, Zhang R, Dong CM. Achieving traceless ablation of solid tumors without recurrence by mild photothermal-chemotherapy of triple stimuli-responsive polymer–drug conjugate nanoparticles. J Mater Chem B 2019; 7:415-432. [DOI: 10.1039/c8tb02432d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We put forward an innovative strategy to leverage hyperthermia and a high drug-loading capacity for mild PT-CT, which achieved traceless ablation of solid MCF-7 tumors without recurrence within 50 days.
Collapse
Affiliation(s)
- Chang Du
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yue Ding
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Jiwen Qian
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Rong Zhang
- Joint Research Center for Precision Medicine
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus
- Shanghai Fengxian Central Hospital
- Shanghai 201400
- P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
61
|
Gurunathan S, Kang MH, Qasim M, Kim JH. Nanoparticle-Mediated Combination Therapy: Two-in-One Approach for Cancer. Int J Mol Sci 2018; 19:E3264. [PMID: 30347840 PMCID: PMC6214025 DOI: 10.3390/ijms19103264] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer represents a group of heterogeneous diseases characterized by uncontrolledgrowth and spread of abnormal cells, ultimately leading to death. Nanomedicine plays a significantrole in the development of nanodrugs, nanodevices, drug delivery systems and nanocarriers. Someof the major issues in the treatment of cancer are multidrug resistance (MDR), narrow therapeuticwindow and undesired side effects of available anticancer drugs and the limitations of anticancerdrugs. Several nanosystems being utilized for detection, diagnosis and treatment such as theranosticcarriers, liposomes, carbon nanotubes, quantum dots, polymeric micelles, dendrimers and metallicnanoparticles. However, nonbiodegradable nanoparticles causes high tissue accumulation andleads to toxicity. MDR is considered a major impediment to cancer treatment due to metastatictumors that develop resistance to chemotherapy. MDR contributes to the failure of chemotherapiesin various cancers, including breast, ovarian, lung, gastrointestinal and hematological malignancies.Moreover, the therapeutic efficiency of anticancer drugs or nanoparticles (NPs) used alone is lessthan that of the combination of NPs and anticancer drugs. Combination therapy has long beenadopted as the standard first-line treatment of several malignancies to improve the clinical outcome.Combination therapy with anticancer drugs has been shown to generally induce synergistic drugactions and deter the onset of drug resistance. Therefore, this review is designed to report andanalyze the recent progress made to address combination therapy using NPs and anticancer drugs.We first provide a comprehensive overview of the angiogenesis and of the different types of NPscurrently used in treatments of cancer; those emphasized in this review are liposomes, polymericNPs, polymeric micelles (PMs), dendrimers, carbon NPs, nanodiamond (ND), fullerenes, carbonnanotubes (CNTs), graphene oxide (GO), GO nanocomposites and metallic NPs used forcombination therapy with various anticancer agents. Nanotechnology has provided the convenienttools for combination therapy. However, for clinical translation, we need continued improvementsin the field of nanotechnology.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Muhammad Qasim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
62
|
Walvekar P, Gannimani R, Govender T. Combination drug therapy via nanocarriers against infectious diseases. Eur J Pharm Sci 2018; 127:121-141. [PMID: 30342173 DOI: 10.1016/j.ejps.2018.10.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/16/2018] [Accepted: 10/16/2018] [Indexed: 11/18/2022]
Abstract
Current drug therapy against infections is threatening to become obsolete due to the poor physical, chemical, biological and pharmacokinetic properties of drugs, followed by high risk of acquiring resistance. Taking into account the significant benefits of nanotechnology, nano-based delivery of anti-infectious agents is emerging as a potential approach to combat several lethal infections. Co-delivery of multiple anti-infectious agents in a single nano-based system is beginning to show significant advantages over mono-therapy, such as synergism, enhanced anti-microbial activity, broad anti-microbial spectrum, reduced resistance development, and improved and cost-effective treatment. The current review provides a detailed update on the status of various lipid and polymer based nano-systems used to co-deliver multiple anti-infectious agents against bacterial, HIV and malarial infections. It also identifies current key challenges and suggests strategies to overcome them, thus guiding formulation scientists to further optimize nano-based co-drug delivery as an approach to fight infections effectively.
Collapse
Affiliation(s)
- Pavan Walvekar
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Ramesh Gannimani
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.
| |
Collapse
|
63
|
Mao H, Xie Y, Ju H, Mao H, Zhao L, Wang Z, Hua L, Zhao C, Li Y, Yu R, Liu H. Design of Tumor Microenvironment-Responsive Drug-Drug Micelle for Cancer Radiochemotherapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33923-33935. [PMID: 30205681 DOI: 10.1021/acsami.8b11159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Concomitant radiochemotherapy is a major therapeutic strategy for treating malignant tumors. However, the greatest challenge is how to improve the therapeutic effect of radiochemotherapy to achieve the proper synergetic chemo-/radiotherapy for the tumor. In this study, ferrocenium (antitumor effect) and nitroimidazole (hypoxic cell radiosensitization) conjugates were synthesized to form amphiphilic ferrocenium-hexane-nitroimidazole (Fe-NI), which can self-assemble in aqueous solution. The Fe-NI micelles successfully encapsulate the hydrophobic chemotherapy drug doxorubicin (DOX) and are modified with hyaluronic acid (HA) by electrostatic interactions to form HA-Fe-NIs-DOX micelles. HA-Fe-NIs-DOX micelles rapidly release DOX under tumor hypoxia and a high glutathione (GSH) environment and achieve a synergetic chemo-/radiotherapy for the tumor based on the properties of nitroimidazoles and ferrocenes. The biodistribution results obtained in vivo reveal an effective accumulation in the tumor. The HA-Fe-NIs-DOX micelles show a significant radiosensitizing effect on the tumors, and the combination of chemotherapy and radiotherapy is realized for the treatment of tumor in vitro and in vivo. These findings illustrate that HA-Fe-NIs micelles are a promising candidate, which enhances the antitumor effects as a DOX delivery system, owing to the synergistic mechanisms of antitumor agents and chemo-/radiotherapy.
Collapse
Affiliation(s)
| | - Yandong Xie
- Brain Hospital , Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , P. R. China
| | | | - Hongsen Mao
- The People's Hospital of Jiawang District of Xuzhou , Affiliated Hospital of Xuzhou Medical University Jiawang Branch of Xuzhou , Xuzhou 221000 , P. R. China
| | | | | | - Lei Hua
- Brain Hospital , Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , P. R. China
| | | | - Yuling Li
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science , Jiangsu Normal University , Xuzhou 221002 , P. R. China
| | - Rutong Yu
- Brain Hospital , Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , P. R. China
| | - Hongmei Liu
- Brain Hospital , Affiliated Hospital of Xuzhou Medical University , Xuzhou 221002 , P. R. China
| |
Collapse
|
64
|
Wang Z, Duan Y, Duan Y. Application of polydopamine in tumor targeted drug delivery system and its drug release behavior. J Control Release 2018; 290:56-74. [PMID: 30312718 DOI: 10.1016/j.jconrel.2018.10.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022]
Abstract
Inspired by the bionics of marine mussels, polydopamine (PDA), a new polymer with unique physicochemical properties was discovered. Due to its simple preparation, good biocompatibility, unique drug-loading methods, PDA has attracted tremendous attentions in field of drug delivery and imaging, and the combination of chemotherapy and other therapies or diagnostic methods, such as photothermotherapy (PTT), photoacoustic imaging (PAI), magnetic resonance imaging (MRI), etc. As an excellent drug carrier in tumor targeted drug delivery system, the drug release behavior of drug-loaded PDA-based nanoparticles is also an important factor to be considered in the establishment of drug delivery systems. Therefore, the purpose of this review is to provide a comprehensive overview of the various applications of PDA in tumor targeted drug delivery systems and to gain insight into the release behavior of the drug-loaded PDA-based nanocarriers. A sufficient understanding and discussion of these aspects is expected to provide a better way to design more rational and effective PDA-based tumor nano-targeted delivery systems. Apart from this, the prospects for the future application of PDA in this field and some unique insights are listed at the end of the article.
Collapse
Affiliation(s)
- Zhe Wang
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China.
| | - Yaou Duan
- Moores Cancer Center and Institute for Genomic Medicine, University of California, San Diego, CA 92093, USA
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China; Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410011, China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, China.
| |
Collapse
|
65
|
Goswami U, Kandimalla R, Kalita S, Chattopadhyay A, Ghosh SS. Polyethylene Glycol-Encapsulated Histone Deacetylase Inhibitor Drug-Composite Nanoparticles for Combination Therapy with Artesunate. ACS OMEGA 2018; 3:11504-11516. [PMID: 30320264 PMCID: PMC6173507 DOI: 10.1021/acsomega.8b02105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Combination drug therapy has become an effective clinical practice for cancer treatment because of low cytotoxicity by the synergistic effect of each medicine. Luminescent Au nanoclusters (Au NCs) were formulated into spherical polyethylene glycol (PEG)-Au NC-encapsulated drug-sodium butyrate (NaB) composite nanoparticles (PEG-Au NC-NaB-NPs) in the presence of PEG and NaB. Their effect on cancer cells was investigated using bio imaging, unravelling the mechanism of the endocytosis pathway and combination therapeutic interventions with a plant-based antimalarial drug artesunate (ART). PEG-Au NC-NaB-NPs showed bright red luminescence in the lysosomal compartment of the cells upon uptake predominantly through a caveolae-mediated pathway. Combination of PEG-Au NC-NaB-NPs with ART displayed enhanced therapeutic activity at a reduced dose compared to its individual doses and revealed heightened synergistic activity as identified from the combination index. The mechanism of synergism revealed elevated generation of reactive oxygen species with both NaB and ART, which disrupts mitochondrial membrane potential as evident from JC-1 staining. Remarkably, the histone deacetylase (HDAC) assay and terminal deoxynucleotidyl transferase dUTP nick end labeling assay enlightened the role of NaB and ART in HDAC inhibition and DNA fragmentation, respectively. Thus, induction of apoptosis with the synergistic effect of both NaB and ART with its meticulous mechanism makes it a promising tool for combinational cancer therapy. In vivo activity of the NPs was evaluated on Daltons lymphoma ascites bearing mice, which exhibited significant reduction of tumor volume and viable tumor cells with a prolonged life span.
Collapse
Affiliation(s)
- Upashi Goswami
- Centre
for Nanotechnology, Department of Chemistry, and Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Raghuram Kandimalla
- Drug
Discovery Lab, Institute of Advanced Study
in Science and Technology, Guwahati 781035, Assam, India
| | - Sanjeeb Kalita
- Drug
Discovery Lab, Institute of Advanced Study
in Science and Technology, Guwahati 781035, Assam, India
| | - Arun Chattopadhyay
- Centre
for Nanotechnology, Department of Chemistry, and Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Siddhartha Sankar Ghosh
- Centre
for Nanotechnology, Department of Chemistry, and Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
66
|
Yang Y, Meng Y, Ye J, Xia X, Wang H, Li L, Dong W, Jin D, Liu Y. Sequential delivery of VEGF siRNA and paclitaxel for PVN destruction, anti-angiogenesis, and tumor cell apoptosis procedurally via a multi-functional polymer micelle. J Control Release 2018; 287:103-120. [PMID: 30144476 DOI: 10.1016/j.jconrel.2018.08.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/02/2018] [Accepted: 08/20/2018] [Indexed: 01/24/2023]
Abstract
Co-delivery of chemotherapy drugs and VEGF siRNA (siVEGF) to control tumor growth has been a research hotspot for improving cancer treatment. Current systems co-deliver siVEGF and chemo drugs into tumor cells simultaneously. Although effective, these systems do not flow to the abnormal blood vessels around tumor cells (vascular niche, PVN), which play an important role in the metastasis and deterioration of the tumor. Thus, we custom-synthesized triblock copolymer poly(ε-caprolactone)-polyethyleneglycol-poly(L-histidine) (PCL-PEG-PHIS) with previously synthesized folate-PEG-PHIS to construct a targeted multifunctional polymer micelle (PTX/siVEGF-CPPs/TMPM) to sequentially deliver siVEGF-CPPs (disulfide bond-linked siVEGF and cell-penetrating peptides) and paclitaxel (PTX). The sequential delivery vesicles showed the anticipated three-layered TEM structure and dual-convertible (surface charge- and particle size-reversible) features in the tumor environment (pH 6.5), which guaranteed the sequential release of siVEGF-CPPs and PTX in the tumor extracellular environment and tumor cells, respectively. To mimic the in vivo tumor environment, a double cell model was employed by co-culturing HUVECs and MCF-7 cells. Improved cell endocytosis efficiency, VEGF gene silence efficacy, and in vitro anti-proliferation activity were achieved. An in vivo study on MCF-7 tumor-bearing female nude mice also indicated that sequential delivery vesicles could lead to significant induction of tumor cell apoptosis, loss of VEGF expression, and destruction of tumor blood vessels (PVN and neovascularization). These sequential delivery vesicles show potential as an effective co-delivery platform for siVEGF and chemo drugs to improve cancer therapy efficacy.
Collapse
Affiliation(s)
- Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Yingying Meng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xuejun Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Hongliang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Lin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Wujun Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Dujia Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
67
|
Mignani S, Tripathi RP, Chen L, Caminade AM, Shi X, Majoral JP. New Ways to Treat Tuberculosis Using Dendrimers as Nanocarriers. Pharmaceutics 2018; 10:pharmaceutics10030105. [PMID: 30049938 PMCID: PMC6161254 DOI: 10.3390/pharmaceutics10030105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 11/21/2022] Open
Abstract
Tuberculosis (TB) is a contagious infection that usually attacks not only the lungs, but also brain and spine. More than twenty drugs have been developed for the treatment of TB, but most of them were developed some years ago. They are used in different combinations. Isoniazid and Rifampicin are examples of the five first line TB drugs, whereas, for instance, Levofloxacin, Kanamycin and Linezolid belong to the second line drugs that are used for the treatment of drug resistant TB. Several new bicyclic nitroimidazoles (e.g., Delamanid) without mutagenic effects were developed. New TB drugs need to provide several main issues such as more effective, less toxic, and less expensive for drug resistant TB. Besides polymeric, metal-based nanoparticles, polymeric micelles and polymers, dendrimer nanostructures represent ideal delivery vehicles and offer high hopes for the future of nanomedicine. In this original review, we present and analyze the development of anti-TB drugs in combination with dendrimers. Few articles have highlighted the encapsulation of anti-TB drugs with dendrimers. Due to their unique structure, dendrimers represent attractive candidates for the encapsulation and conjugation of other anti-TB drugs presenting important drawbacks (e.g., solubility, toxicity, low bioavailability) that hinder their development, including clinic trials.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France.
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Rama Pati Tripathi
- National Institute of Pharmaceutics and Education and Research, Raibarely 226031, India.
| | - Liang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse CEDEX 4, France.
- Université de Toulouse, UPS, INPT, 31077 Toulouse CEDEX 4, France.
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse CEDEX 4, France.
- Université de Toulouse, UPS, INPT, 31077 Toulouse CEDEX 4, France.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse CEDEX 4, France.
- Université de Toulouse, UPS, INPT, 31077 Toulouse CEDEX 4, France.
| |
Collapse
|
68
|
Correard F, Roy M, Terrasson V, Braguer D, Estève MA, Gingras M. Delaying Anticancer Drug Delivery by Self-Assembly and Branching Effects of Minimalist Dendron-Drug Conjugates. Chemistry 2018; 25:9586-9591. [PMID: 29952096 DOI: 10.1002/chem.201801092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/20/2018] [Indexed: 12/30/2022]
Abstract
Self-assembly of a covalently-bound lipophilic drug to a dendronic scaffold for making organic nanoparticles is reported as a proof of concept in nanovectorization. A minimalist structural approach with a small PEG-dendron conjugated to paclitaxel (PTX), incorporating safe succinic and gallic acids, is efficient to provide the expected anticancer bioactivity, but also significantly retards and targets intracellular delivery of PTX in 2D and 3D lung cancer cell cultures. A branching effect of dendrons is crucial, when compared to linear PTX conjugates. Transmission electron microscopy (TEM) and dynamic light-scattering (DLS) studies indicate the formation of stable, low-disperse nanoparticles at 10-5 m in H2 0, which could also be responsible for the biological effects. An ultrasensitive LC-MS/MS method was used for the determination of intracellular PTX concentration over time, along with the survival rates of cancer cells. Similarly, cell survival assays were successfully correlated to a 3D cell culture with spheroids for mimicking tumors, when treated with PTX conjugates. Our work opens the way to a full evaluation program required for new chemical entities.
Collapse
Affiliation(s)
- Florian Correard
- Aix Marseille Univ, CNRS, INP, Marseille, France.,APHM, Hôpital Timone, Marseille, France
| | - Myriam Roy
- Aix Marseille Univ, CNRS, CINAM, Marseille, France
| | | | - Diane Braguer
- Aix Marseille Univ, CNRS, INP, Marseille, France.,APHM, Hôpital Timone, Marseille, France
| | - Marie-Anne Estève
- Aix Marseille Univ, CNRS, INP, Marseille, France.,APHM, Hôpital Timone, Marseille, France
| | - Marc Gingras
- Aix Marseille Univ, CNRS, CINAM, Marseille, France
| |
Collapse
|
69
|
Houdaihed L, Evans JC, Allen C. Codelivery of Paclitaxel and Everolimus at the Optimal Synergistic Ratio: A Promising Solution for the Treatment of Breast Cancer. Mol Pharm 2018; 15:3672-3681. [PMID: 29863881 DOI: 10.1021/acs.molpharmaceut.8b00217] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Clinical studies examining the combination of paclitaxel (PTX) and everolimus (EVER), an mTOR inhibitor, have failed to result in significant improvements in efficacy and toxicity in patients with breast cancer (BC), relative to treatment with PTX alone. These disappointing clinical trial results have been attributed to poorly designed preclinical studies using the combination of PTX and EVER as well as the significantly different pharmacokinetic profiles of the two drugs. In the current work, the potential synergy between PTX and EVER was examined in a panel of six BC cell lines that differ in terms of their molecular subtype and drug sensitivity. Polymeric nanoparticles (NPs) were used to encapsulate PTX and EVER at an optimal synergistic ratio to achieve specific, colocalized delivery of the combination therapy in BC cell lines. Combinations of PTX and EVER (especially at relatively high doses of EVER) resulted in pronounced synergy in all BC cell lines evaluated. The optimal molar ratio of PTX:EVER was determined to be 1:0.5. The combination was delivered to BC cells at the synergistic ratio via encapsulation within polymeric NPs formed from the poly(ethylene glycol)- b-poly(lactide- co-glycolide) (PEG- b-PLGA) copolymer. The NPs had an average diameter of less than 100 nm and were capable of in vitro retention of the encapsulated PTX and EVER at the optimal synergistic molar ratio for over 7 days. Cytotoxicity data demonstrated that PTX+EVER-loaded NPs were significantly less cytotoxic than the free drug combination in MCF-7 and SKBR3 BC cell lines following 72 h, suggesting that PTX+EVER-loaded NPs remain stable and retain the drug combination loaded within the core after 72 h. The uptake of FITC-labeled NPs in SKBR3 cells was evaluated by flow cytometry, with approximately 41% of cells demonstrating detectable fluorescence after 24 h of exposure. The thorough and systematic approach used in this study to determine and evaluate a synergistic PTX:EVER ratio in conjunction with a potentially promising delivery vector for the drug combination could offer a future clinical benefit for patients with BC.
Collapse
Affiliation(s)
- Loujin Houdaihed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto M5S 3M2 , Canada
| | - James C Evans
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto M5S 3M2 , Canada
| | - Christine Allen
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto M5S 3M2 , Canada
| |
Collapse
|
70
|
Rahikkala A, Pereira SAP, Figueiredo P, Passos MLC, Araújo ARTS, Saraiva MLMFS, Santos HA. Mesoporous Silica Nanoparticles for Targeted and Stimuli-Responsive Delivery of Chemotherapeutics: A Review. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800020] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Antti Rahikkala
- Drug Research Program; Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Sarah A. P. Pereira
- LAQV; REQUIMTE; Departamento de Ciências Químicas; Faculdade de Farmácia; Universidade do Porto; 4050-313 Porto Portugal
| | - Patrícia Figueiredo
- Drug Research Program; Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Marieta L. C. Passos
- LAQV; REQUIMTE; Departamento de Ciências Químicas; Faculdade de Farmácia; Universidade do Porto; 4050-313 Porto Portugal
| | - André R. T. S. Araújo
- LAQV; REQUIMTE; Departamento de Ciências Químicas; Faculdade de Farmácia; Universidade do Porto; 4050-313 Porto Portugal
- Unidade de Investigação para o Desenvolvimento do Interior; Instituto Politécnico da Guarda; 6300-559 Guarda Portugal
| | - M. Lúcia M. F. S. Saraiva
- LAQV; REQUIMTE; Departamento de Ciências Químicas; Faculdade de Farmácia; Universidade do Porto; 4050-313 Porto Portugal
| | - Hélder A. Santos
- Drug Research Program; Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
- Helsinki Institute of Life Science (HiLIFE); University of Helsinki; FI-00014 Helsinki Finland
| |
Collapse
|
71
|
Park NH, Cheng W, Lai F, Yang C, Florez de Sessions P, Periaswamy B, Wenhan Chu C, Bianco S, Liu S, Venkataraman S, Chen Q, Yang YY, Hedrick JL. Addressing Drug Resistance in Cancer with Macromolecular Chemotherapeutic Agents. J Am Chem Soc 2018; 140:4244-4252. [PMID: 29504396 DOI: 10.1021/jacs.7b11468] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Drug resistance to chemotherapeutics is a recurrent issue plaguing many cancer treatment regimens. To circumvent resistance issues, we have designed a new class of macromolecules as self-contained chemotherapeutic agents. The macromolecular chemotherapeutic agents readily self-assemble into well-defined nanoparticles and show excellent activity in vitro against multiple cancer cell lines. These cationic polymers function by selectively binding and lysing cancer cell membranes. As a consequence of this mechanism, they exhibit significant potency against drug-resistant cancer cells and cancer stem cells, prevent cancer cell migration, and do not induce resistance onset following multiple treatment passages. Concurrent experiments with the small-molecule chemotherapeutic, doxorubicin, show aggressive resistance onset in cancer cells, a lack of efficacy against drug-resistant cancer cell lines, and a failure to prevent cancer cell migration. Additionally, the polymers showed anticancer efficacy in a hepatocellular carcinoma patient derived xenograft mouse model. Overall, these results demonstrate a new approach to designing anticancer therapeutics utilizing macromolecular compounds.
Collapse
Affiliation(s)
- Nathaniel H Park
- IBM Research-Almaden , 650 Harry Road , San Jose , California 95120 United States
| | - Wei Cheng
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore
| | - Fritz Lai
- Institute of Molecular and Cell Biology , 61 Biopolis Drive, Proteos , Singapore 138673 , Singapore
| | - Chuan Yang
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore
| | | | - Balamurugan Periaswamy
- Genome Institute of Singapore , 60 Biopolis Street, Genome , Singapore 138672 , Singapore
| | - Collins Wenhan Chu
- Genome Institute of Singapore , 60 Biopolis Street, Genome , Singapore 138672 , Singapore
| | - Simone Bianco
- IBM Research-Almaden , 650 Harry Road , San Jose , California 95120 United States
| | - Shaoqiong Liu
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore
| | - Shrinivas Venkataraman
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology , 61 Biopolis Drive, Proteos , Singapore 138673 , Singapore
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore
| | - James L Hedrick
- IBM Research-Almaden , 650 Harry Road , San Jose , California 95120 United States
| |
Collapse
|
72
|
Bilal M, Rasheed T, Iqbal HMN, Li C, Hu H, Zhang X. Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities. Int J Biol Macromol 2017; 105:393-400. [PMID: 28705499 DOI: 10.1016/j.ijbiomac.2017.07.047] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/21/2017] [Accepted: 07/09/2017] [Indexed: 02/08/2023]
Abstract
Herein, a facile biosynthesis of silver nanoparticles (AgNPs) and AgNPs-loaded chitosan-alginate constructs with biomedical potentialities is reported. The UV-vis spectroscopic profile confirmed the synthesis of AgNPs using methanolic leaves extract of Euphorbia helioscopia. The newly developed AgNPs were characterized using various analytical and imaging techniques including UV-vis and FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The optimally yielded AgNPs at 24h reaction period were loaded onto various chitosan-alginate constructs. A maximum of 95% loading efficiency (LE) was recorded with a chitosan: alginate ratio at 2:1, followed by 81% at 2:2 ratios. The anti-bacterial activities of AgNPs and AgNPs loaded chitosan-alginate constructs were tested against six bacterial strains i.e. Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, Morganella morganii and Haemophilus influenza. A significant reduction in the log values was recorded for all test constructs, in comparison to the initial bacterial count (control value, i.e., 1.5×108 CFU/mL). The cytotoxicity profile revealed complete biocompatibility against normal cell line i.e. L929. Almost all constructs showed considerable cytotoxicity up to certain extant against human epithelial cells (HeLa) cancer cells. In summary, the highest antibacterial activities along with anti-cancer behavior both suggest the biomedical potentialities of newly engineered AgNPs and AgNPs-loaded chitosan-alginate constructs.
Collapse
Affiliation(s)
- Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai,200240, China.
| | - Tahir Rasheed
- The School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hafiz M N Iqbal
- School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico.
| | - Chuanlong Li
- The School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai,200240, China; National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai,200240, China
| |
Collapse
|
73
|
Hu Y, Ke L, Chen H, Zhuo M, Yang X, Zhao D, Zeng S, Xiao X. Natural material-decorated mesoporous silica nanoparticle container for multifunctional membrane-controlled targeted drug delivery. Int J Nanomedicine 2017; 12:8411-8426. [PMID: 29200852 PMCID: PMC5702528 DOI: 10.2147/ijn.s148438] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To avoid the side effects caused by nonspecific targeting, premature release, weak selectivity, and poor therapeutic efficacy of current nanoparticle-based systems used for drug delivery, we fabricated natural material-decorated nanoparticles as a multifunctional, membrane-controlled targeted drug delivery system. The nanocomposite material coated with a membrane was biocompatible and integrated both specific tumor targeting and responsiveness to stimulation, which improved transmission efficacy and controlled drug release. Mesoporous silica nanoparticles (MSNs), which are known for their biocompatibility and high drug-loading capacity, were selected as a model drug container and carrier. The membrane was established by the polyelectrolyte composite method from chitosan (CS) which was sensitive to the acidic tumor microenvironment, folic acid-modified CS which recognizes the folate receptor expressed on the tumor cell surface, and a CD44 receptor-targeted polysaccharide hyaluronic acid. We characterized the structure of the nanocomposite as well as the drug release behavior under the control of the pH-sensitive membrane switch and evaluated the antitumor efficacy of the system in vitro. Our results provide a basis for the design and fabrication of novel membrane-controlled nanoparticles with improved tumor-targeting therapy.
Collapse
Affiliation(s)
- Yan Hu
- Department of Pharmaceutics, School of Pharmaceutical Science, South-Central University for Nationalities
| | - Lei Ke
- Department of Medicinal Chemistry, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hao Chen
- Department of Pharmaceutics, School of Pharmaceutical Science, South-Central University for Nationalities
| | - Ma Zhuo
- Department of Pharmaceutics, School of Pharmaceutical Science, South-Central University for Nationalities
| | - Xinzhou Yang
- Department of Pharmaceutics, School of Pharmaceutical Science, South-Central University for Nationalities
| | - Dan Zhao
- Department of Pharmaceutics, School of Pharmaceutical Science, South-Central University for Nationalities
| | - Suying Zeng
- Department of Pharmaceutics, School of Pharmaceutical Science, South-Central University for Nationalities
| | - Xincai Xiao
- Department of Pharmaceutics, School of Pharmaceutical Science, South-Central University for Nationalities
| |
Collapse
|
74
|
Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents. Adv Colloid Interface Sci 2017; 249:331-345. [PMID: 28477868 DOI: 10.1016/j.cis.2017.04.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/13/2017] [Accepted: 04/17/2017] [Indexed: 12/19/2022]
Abstract
The present work highlights recent achievements in development of nanostructured dispersions and biocolloids for drug delivery applications. We emphasize the key role of biological small-angle X-ray scattering (BioSAXS) investigations for the nanomedicine design. A focus is given on controlled encapsulation of small molecular weight phytochemical drugs in lipid-based nanocarriers as well as on encapsulation of macromolecular siRNA, plasmid DNA, peptide and protein pharmaceuticals in nanostructured nanoparticles that may provide efficient intracellular delivery and triggered drug release. Selected examples of utilisation of the BioSAXS method for characterization of various types of liquid crystalline nanoorganizations (liposome, spongosome, cubosome, hexosome, and nanostructured lipid carriers) are discussed in view of the successful encapsulation and protection of phytochemicals and therapeutic biomolecules in the hydrophobic or the hydrophilic compartments of the nanocarriers. We conclude that the structural design of the nanoparticulate carriers is of crucial importance for the therapeutic outcome and the triggered drug release from biocolloids.
Collapse
|
75
|
Du C, Qian J, Zhou L, Su Y, Zhang R, Dong CM. Biopolymer-Drug Conjugate Nanotheranostics for Multimodal Imaging-Guided Synergistic Cancer Photothermal-Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31576-31588. [PMID: 28838236 DOI: 10.1021/acsami.7b10163] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Some of the biomedical polymer-drug conjugates are being translated into clinical trials; however, they intrinsically lack photothermal and multi-imaging capabilities, hindering them from imaging-guided precision cancer therapy and complete tumor regression. We introduce a new concept of all-in-one biopolymer-drug conjugate nanotheranostics and prepare a kind of intracellular pH-sensitive polydopamine-doxorubicin (DOX) conjugate nanoparticles (PDCNs) under mild conditions. Significantly, this strategy integrates polymeric prodrug-induced chemotherapy (CT), near-infrared (NIR) light-mediated photothermal therapy (PT), and triple modalities including DOX self-fluorescence, photothermal, and photoacoustic (PA) imaging into one conjugate nanoparticle. The PDCNs present excellent photothermal property, dual stimuli-triggered drug release behavior, and about 12.4-fold blood circulation time compared to free DOX. Small animal fluorescent imaging technique confirms that PDCNs have preferential tumor accumulation effect in vivo, giving a 12.8-fold DOX higher than the control at 12 h postinjection. Upon NIR laser irradiation (5 min, 808 nm, and 2 W·cm-2), the PDCN-mediated photothermal effect can quickly elevate the tumor over 50 °C, exhibiting good photothermal and PA imaging functions, of which the PA amplitude is 3.6-fold greater than the control. In vitro and in vivo assays persuasively verify that intravenous photothermal-CT of PDCNs produces synergistic antitumor activity compared to single PT or CT, achieving complete tumor ablation during the evaluation period.
Collapse
Affiliation(s)
- Chang Du
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital , South Campus, Shanghai 200240, P. R. China
| | - Jiwen Qian
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital , South Campus, Shanghai 200240, P. R. China
| | - Linzhu Zhou
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital , South Campus, Shanghai 200240, P. R. China
| | - Yue Su
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital , South Campus, Shanghai 200240, P. R. China
| | - Rong Zhang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital , South Campus, Shanghai 200240, P. R. China
- Joint Research Center for Precision Medicine, Shanghai Fengxian Hospital, Southern Medical University , Shanghai 201400, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital , South Campus, Shanghai 200240, P. R. China
| |
Collapse
|
76
|
Yuan YG, Peng QL, Gurunathan S. Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. Int J Nanomedicine 2017; 12:6487-6502. [PMID: 28919750 PMCID: PMC5592960 DOI: 10.2147/ijn.s135482] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Gemcitabine (GEM) is widely used as an anticancer agent in several types of solid tumors. Silver nanoparticles (AgNPs) possess unique cytotoxic features and can induce apoptosis in a variety of cancer cells. In this study, we investigated whether the combination of GEM and AgNPs can exert synergistic cytotoxic effects in the human ovarian cancer cell line A2780. Methods We synthesized AgNPs using resveratrol as a reducing and stabilizing agent. The synthesized nanomaterials were characterized using various analytical techniques. The anticancer effects of a combined treatment with GEM and AgNPs were evaluated using a series of cellular assays. The expression of pro- and antiapoptotic genes was measured using real-time reverse transcription polymerase chain reaction. Apoptosis was confirmed by TUNEL assay. Results In this study, combined treatment with GEM and AgNPs significantly inhibited viability and proliferation in A2780 cells. Moreover, the levels of apoptosis in cells treated with a combination of GEM and AgNPs were significantly higher compared with those in cells treated with GEM or AgNPs alone. Our data suggest that GEM and AgNPs exhibit potent apoptotic activity in human ovarian cancer cells. Combined treatment with GEM and AgNPs showed a significantly higher cytotoxic effect in ovarian cancer cells compared with that induced by either of these agents alone. Conclusion Our study demonstrated that the interaction between GEM and AgNPs was cytotoxic in ovarian cancer cells. Combined treatment with GEM and AgNPs caused increased cytotoxicity and apoptosis in A2780 cells. This treatment may have therapeutic potential as targeted therapy for the treatment of ovarian cancer. To our knowledge, this study could provide evidence that AgNPs can enhance responsiveness to GEM in ovarian cancer cells and that AgNPs can potentially be used as chemosensitizing agents in ovarian cancer therapy.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- College of Veterinary Medicine/Animal Science and Technology/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Qiu-Ling Peng
- College of Chemistry and Bioengineering, Yichun University, Yichun, Jiangxi, People's Republic of China
| | - Sangiliyandi Gurunathan
- Department of Stem cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
77
|
Tsai MH, Peng CL, Yang SJ, Shieh MJ. Photothermal, Targeting, Theranostic Near-Infrared Nanoagent with SN38 against Colorectal Cancer for Chemothermal Therapy. Mol Pharm 2017; 14:2766-2780. [PMID: 28703590 DOI: 10.1021/acs.molpharmaceut.7b00315] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer research regarding near-infrared (NIR) agents for chemothermal therapy (CTT) has shown that agents with specific functions are able to inhibit tumor growth. The aim of current study was to optimize CTT efficacy for treatment of colorectal cancer (CRC) by exploring strategies which can localize high temperature within tumors and maximize chemotherapeutic drug uptake. We designed a new and simple multifunctional NIR nanoagent composed of the NIR cyanine dye, polyethylene glycol, and a cyclic arginine-glycine-aspartic acid peptide and loaded with the anti-CRC chemotherapeutic agent, 7-ethyl-10-hydroxy-camptothecin (SN38). Each component of this nanoagent exhibited its specific functions that help boost CTT efficacy. The results showed that this nanoagent greatly strengthens the theranostic effect of SN38 and CTT against CRC due to its NIR imaging ability, photothermal, enhanced permeability and retention (EPR) effect, reticuloendothelial system avoidance, and angiogenic blood vessel-targeting properties. This NIR nanoagent will help facilitate development of new strategies for treating CRC.
Collapse
Affiliation(s)
- Ming-Hsien Tsai
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei City 10051, Taiwan
| | - Cheng-Liang Peng
- Isotope Application Division, Institute of Nuclear Energy Research , Taoyuan City 32546, Taiwan
| | - Shu-Jyuan Yang
- Gene'e Tech Co. Ltd. 2F., No.661, Bannan Rd., Zhonghe Dist., New Taipei City 235, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei City 10051, Taiwan.,Department of Oncology, National Taiwan University Hospital and College of Medicine , #7, hung-Shan South Road, Taipei 100, Taiwan
| |
Collapse
|
78
|
Dai W, Wang X, Song G, Liu T, He B, Zhang H, Wang X, Zhang Q. Combination antitumor therapy with targeted dual-nanomedicines. Adv Drug Deliv Rev 2017; 115:23-45. [PMID: 28285944 DOI: 10.1016/j.addr.2017.03.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/24/2017] [Accepted: 03/03/2017] [Indexed: 01/01/2023]
Abstract
Combination therapy is one of the important treatment strategies for cancer at present. However, the outcome of current combination therapy based on the co-administration of conventional dosage forms is suboptimal, due to the short half-lives of chemodrugs, their deficient tumor selectivity and so forth. Nanotechnology-based targeted delivery systems show great promise in addressing the associated problems and providing superior therapeutic benefits. In this review, we focus on the combination of therapeutic strategies between different nanomedicines or drug-loaded nanocarriers, rather than the co-delivery of different drugs via a single nanocarrier. We introduce the general concept of various targeting strategies of nanomedicines, present the principles of combination antitumor therapy with dual-nanomedicines, analyze their advantages and limitations compared with co-delivery strategies, and overview the recent advances of combination therapy based on targeted nanomedicines. Finally, we reviewed the challenges and future perspectives regarding the selection of therapeutic agents, targeting efficiency and the gap between the preclinical and clinical outcome.
Collapse
Affiliation(s)
- Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoyou Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Ge Song
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Tongzhou Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.
| |
Collapse
|
79
|
Solid matrix-based lipid nanoplatforms as carriers for combinational therapeutics in cancer. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0337-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
80
|
Zhang B, Song Y, Wang T, Yang S, Zhang J, Liu Y, Zhang N, Garg S. Efficient co-delivery of immiscible hydrophilic/hydrophobic chemotherapeutics by lipid emulsions for improved treatment of cancer. Int J Nanomedicine 2017; 12:2871-2886. [PMID: 28435264 PMCID: PMC5391159 DOI: 10.2147/ijn.s129091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Combinational nanomedicine is becoming a topic of much interest in cancer therapy, although its translation into the clinic remains extremely challenging. One of the main obstacles lies in the difficulty to efficiently co-deliver immiscible hydrophilic/hydrophobic drugs into tumor sites. The aim of this study was to develop co-loaded lipid emulsions (LEs) to co-deliver immiscible hydrophilic/hydrophobic drugs to improve cancer therapy and to explore the co-delivery abilities between co-loaded LEs and mixture formulation. Multiple oxaliplatin/irinotecan drug–phospholipid complexes (DPCs) were formulated. Co-loaded LEs were prepared using DPC technique to efficiently encapsulate both drugs. Co-loaded LEs exhibited uniform particle size distribution, desired stability and synchronous release profiles in both drugs. Co-loaded LEs demonstrated superior anti-tumor activity compared with the simple solution mixture and the mixture of single-loaded LEs. Furthermore, co-loaded nanocarriers could co-deliver both drugs into the same cells more efficiently and exhibited the optimized synergistic effect. These results indicate that co-loaded LEs could be a desired formulation for enhanced cancer therapy with potential application prospects. The comparison between co-loaded LEs and mixture formulation is significant for pharmaceutical designs aimed at co-delivery of multiple drugs.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Yunmei Song
- Centre for Pharmaceutical Innovation and Development (CPID), School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Tianqi Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Shaomei Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Jing Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Yongjun Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Na Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation and Development (CPID), School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
81
|
Mignani S, El Brahmi N, Eloy L, Poupon J, Nicolas V, Steinmetz A, El Kazzouli S, Bousmina MM, Blanchard-Desce M, Caminade AM, Majoral JP, Cresteil T. Anticancer copper(II) phosphorus dendrimers are potent proapoptotic Bax activators. Eur J Med Chem 2017; 132:142-156. [PMID: 28350998 DOI: 10.1016/j.ejmech.2017.03.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 12/21/2022]
Abstract
A multivalent phosphorus dendrimer 1G3 and its corresponding Cu-complex, 1G3-Cu have been recently identified as agents retaining high antiproliferative potency. This antiproliferative capacity was preserved in cell lines overexpressing the efflux pump ABC B1, whereas cross-resistance was observed in ovarian cancer cell lines resistant to cisplatin. Theoretical 3D models were constructed: the dendrimers appear as irregularly shaped disk-like nano-objects of about 22 Å thickness and 49 Å diameter, which accumulated in cells after penetration by endocytosis. To get insight in their mode of action, cell death pathways have been examined in human cancer cell lines: early apoptosis was followed by secondary necrosis after multivalent phosphorus dendrimers exposure. The multivalent plain phosphorus dendrimer 1G3 moderately activated caspase-3 activity, in contrast with the multivalent Cu-conjugated phosphorus dendrimer 1G3-Cu which strikingly reduced the caspase-3 content and activity. This decrease of caspase activity is not related to the presence of copper, since inorganic copper has no or little effect on caspase-3. Conversely the potent apoptosis activation could be related to a noticeable translocation of Bax to the mitochondria, resulting in the release of AIF into the cytosol, its translocation to the nucleus and a severe DNA fragmentation, without alteration of the cell cycle. The multivalent Cu-conjugated phosphorus dendrimer is more efficient than its non-complexed analog to activate this pathway in close relationship with the higher antiproliferative potency. Therefore, this multivalent Cu-conjugated phosphorus dendrimer 1G3-Cu can be considered as a new and promising first-in-class antiproliferative agent with a distinctive mode of action, inducing apoptosis tumor cell death through Bax activation pathway.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie pharmacologiques et toxicologiques, 45, rue des Saints Pères, 75006 Paris, France.
| | - Nabil El Brahmi
- Euromed Research Institute, Euro-Mediterranean University of Fes (UEMF), Route de Meknes, 30000, Fès, Morocco; Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France; Université de Toulouse UPS, INPT, F 31077 Toulouse Cedex 4, France
| | - Laure Eloy
- ICSN-CNRS UPR 2301, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Joel Poupon
- Laboratoire de Toxicologie Biologique, Hôpital Lariboisière, 75475 Paris Cedex 10, France
| | - Valérie Nicolas
- IPSIT, Faculté de Pharmacie, Université Paris Sud, 92290 Chatenay-Malabry, France
| | - Anke Steinmetz
- Sanofi R&D, LGCR, Centre de Recherche Vitry-Alfortville, 94403 Vitry-sur-Seine Cedex, France
| | - Said El Kazzouli
- Euromed Research Institute, Euro-Mediterranean University of Fes (UEMF), Route de Meknes, 30000, Fès, Morocco
| | - Mosto M Bousmina
- Euromed Research Institute, Euro-Mediterranean University of Fes (UEMF), Route de Meknes, 30000, Fès, Morocco
| | - Mireille Blanchard-Desce
- Institut des Sciences Moléculaires, UMR 5255, Université de Bordeaux, 351 cours de la Libération, Talence, France
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France; Université de Toulouse UPS, INPT, F 31077 Toulouse Cedex 4, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France; Université de Toulouse UPS, INPT, F 31077 Toulouse Cedex 4, France.
| | - Thierry Cresteil
- ICSN-CNRS UPR 2301, Avenue de la Terrasse, 91198 Gif sur Yvette, France; IPSIT, Faculté de Pharmacie, Université Paris Sud, 92290 Chatenay-Malabry, France.
| |
Collapse
|
82
|
Zhang W, Tung CH. Cisplatin Cross-Linked Multifunctional Nanodrugplexes for Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:8547-8555. [PMID: 28224786 DOI: 10.1021/acsami.6b16500] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Combination therapy efficiently tackles cancer by hitting multiple action mechanisms. However, drugs administered, simultaneously or sequentially, may not reach the targeted sites with the desired dose and ratio. The outcomes of combination therapy could be improved with a polymeric nanoparticle, which can simultaneously transport an optimal combination of drugs. We have demonstrated a simple one-pot strategy to formulate nanomedicines based on platinum coordination and the noncovalent interactions of the drugs. A naturally occurring polymer, hyaluronan (HA), was chosen as the building scaffold to form a nanodrugplex with cisplatin and aromatic-cationic drugs. The platinum coordination between cisplatin and HA induces the formation of a nanocomplex. The aromatic-cationic drugs are tightly packed by an electrostatic interaction and π-π stacking. The nanodrugplex bears excellent flexibility in drug combination and size control. It is stable in storage and has favorable release kinetics and targeting capabilities toward CD44, a receptor for HA that is highly expressed on many types of cancer cells.
Collapse
Affiliation(s)
- Weiqi Zhang
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine , 413 East 69th Street, Box 290, New York, New York 10021, United States
| | - Ching-Hsuan Tung
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine , 413 East 69th Street, Box 290, New York, New York 10021, United States
| |
Collapse
|
83
|
Synergistic antitumor efficacy of redox and pH dually responsive micelleplexes for co-delivery of camptothecin and genes. Acta Biomater 2017; 49:444-455. [PMID: 27940163 DOI: 10.1016/j.actbio.2016.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022]
Abstract
Challenges remain to load and deliver two or multiple drugs of complementary effects for synergistic cancer therapies. In the current study, multiarmed amphiphilic copolymers of 4-arm poly(ethylene glycol) (PEG) and polyaspartate (PAsp) are created for conjugation of camptothecin (CPT) and condensation with tumor necrosis factor-α (TNF) plasmids. Diethylenetriamine (DET) is grafted on PAsp, and CPT is conjugated onto PAsp(DET) by disulfide linkages to form hydrophobic cores of micelles, followed by condensation with TNF plasmids to form micelleplexes. The cis-aconitic linkers are introduced between PEG and PAsp(DET) to remove PEG shells in response to acidic pH, resulting in destabilized micelleplexes and prompted endosomal escape into the cytosol. The micelleplex disintegration in response to reductive stimuli in the cytosol leads to an efficient CPT release and pDNA disassociation. The co-delivery of CPT with TNF plasmids enhances the gene transfection of micelleplexes at low N/P ratios, and shows synergetic cytotoxicities to tumor cells with 2.5 and 8 folds lower IC50s compared with those after treatment with CPT or TNF alone, respectively. The micelleplex treatment on 4T1 tumor models dramatically extends the animal survival and suppresses the tumor growth with 2.3 and 3 folds lower in volume compared with CPT or TNF treatment alone, respectively. Histological and biochemical analyses display TNF expressions in tumor tissues after micelleplex treatment, resulting in significantly larger necrotic regions in tumors, higher cell apoptosis rates, and no obvious sign of tumor metastasis in lungs compared with other treatment. Therefore, the multifunctional micelleplexes based on multiarmed PEG-PAsp(DET) copolymers offer the targeted drug/gene delivery, dually responsive drug/gene release and synergistic antitumor efficacy, holding great promises for combination therapies. STATEMENT OF SIGNIFICANCE Micelleplexes are constructed from multiarmed amphiphilic copolymers with conjugation of captothecin (CPT) and condensation of tumor necrosis factor-α (TNF) plasmid. The pH/redox stimuli realize co-delivery of CPT and pDNA in a sequential manner of folate-mediated endocytosis, endosomal escape induced by PEG cleavage, reduction-sensitive release of CPT in cytosol, and pDNA release from disintegrated polyplexes after CPT release. Compared with CPT or TNF treatment alone, the micelleplexes achieve 2.5 and 8 folds higher cytotoxicities to tumor cells, and suppress the tumor growth with 2.3 and 3 folds lower in volume, respectively. It demonstrates a feasible strategy to develop multifunctional micelleplexes with simultaneous drug conjugation and pDNA condensation, dually responsive drug/gene release and synergistic antitumor efficacy, holding great promise for combinational therapies.
Collapse
|
84
|
Mignani S, Bryszewska M, Zablocka M, Klajnert-Maculewicz B, Cladera J, Shcharbin D, Majoral JP. Can dendrimer based nanoparticles fight neurodegenerative diseases? Current situation versus other established approaches. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2016.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
85
|
Yu H, He J, Lu Q, Huo D, Yuan S, Zhou Z, Xu P, Hu Y. Anti-Fas Antibody Conjugated Nanoparticles Enhancing the Antitumor Effect of Camptothecin by Activating the Fas-FasL Apoptotic Pathway. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29950-29959. [PMID: 27754664 DOI: 10.1021/acsami.6b09760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Emerging evidence suggest that the introduction of Fas ligand (FasL) can enhance the Fas-dependent apoptosis and induce durable immune responses against tumor. However, selective triggering of apoptosis in tumor cells while sparing normal cells remains a great challenge for the application of FasL-based therapeutic strategies. Herein, smart nanoparticles (NPs) with a sandwich structure were fabricated. These NPs consist of a matrix metalloproteinase (MMP) cleavable PEG outer layer, an anti-Fas antibody middle layer, and a camptothecin (CPT)-loaded inner core. They could accumulate at a tumor site by the enhanced permeability and retention (EPR) effect. The removable PEG layer protects the cytotoxic anti-Fas antibody from premature contact with normal tissues, thus avoiding the unexpected lethal side effect before they reach the tumor site. Due to the high level of MMP expressed by tumor cells inside the tumor tissue, these NPs would shed their PEG layers, resulting in the exposure of anti-Fas antibody to bind the Fas receptor and triggering the apoptosis of tumor cells. Results of Western blot confirmed that these NPs could mimic the function of activated cytotoxic lymphocyte (CTL) to activate the Fas-FasL apoptosis pathway of tumor cells. With the aid of CPT payload, these anti-Fas antibody conjugated NPs achieved a high tumor inhibition in the B16 allograft tumor animal model. The design of these NPs provides a method for delivering cytotoxic ligand to targeting tissue, which may be valuable in cancer therapy.
Collapse
Affiliation(s)
- Hongliang Yu
- Institute of Materials Engineering and Collaborative Innovation Center of Chemistry for Life Sciences, College of Engineering and Applied Sciences, Nanjing University , Nanjing, 210093, China
| | | | - Qian Lu
- Institute of Materials Engineering and Collaborative Innovation Center of Chemistry for Life Sciences, College of Engineering and Applied Sciences, Nanjing University , Nanjing, 210093, China
| | - Da Huo
- Institute of Materials Engineering and Collaborative Innovation Center of Chemistry for Life Sciences, College of Engineering and Applied Sciences, Nanjing University , Nanjing, 210093, China
| | - Shanmei Yuan
- Institute of Materials Engineering and Collaborative Innovation Center of Chemistry for Life Sciences, College of Engineering and Applied Sciences, Nanjing University , Nanjing, 210093, China
| | | | | | - Yong Hu
- Institute of Materials Engineering and Collaborative Innovation Center of Chemistry for Life Sciences, College of Engineering and Applied Sciences, Nanjing University , Nanjing, 210093, China
| |
Collapse
|
86
|
Barnes JC, Bruno PM, Nguyen HVT, Liao L, Liu J, Hemann MT, Johnson JA. Using an RNAi Signature Assay To Guide the Design of Three-Drug-Conjugated Nanoparticles with Validated Mechanisms, In Vivo Efficacy, and Low Toxicity. J Am Chem Soc 2016; 138:12494-501. [PMID: 27626288 PMCID: PMC5597434 DOI: 10.1021/jacs.6b06321] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Single-nanoparticle (NP) combination chemotherapeutics are quickly emerging as attractive alternatives to traditional chemotherapy due to their ability to increase drug solubility, reduce off-target toxicity, enhance blood circulation lifetime, and increase the amount of drug delivered to tumors. In the case of NP-bound drugs, that is, NP-prodrugs, the current standard of practice is to assume that the subcellular mechanism of action for each drug released from the NP mirrors that of the unbound, free-drug. Here, we use an RNAi signature assay for the first time to examine the mechanism of action of multidrug-conjugated NP prodrugs relative to their small molecule prodrugs and native drug mechanisms of action. Additionally, the effective additive contribution of three different drugs in a single-NP platform is characterized. The results indicate that some platinum(IV) cisplatin prodrugs, although cytotoxic, may not have the expected mechanism of action for cisplatin. This insight was utilized to develop a novel platinum(IV) oxaliplatin prodrug and incorporate it into a three-drug-conjugated NP, where each drug's mechanism of action is preserved, to treat tumor-bearing mice with otherwise lethal levels of chemotherapy.
Collapse
Affiliation(s)
- Jonathan C. Barnes
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Peter M. Bruno
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hung V.-T. Nguyen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Longyan Liao
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jenny Liu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael T. Hemann
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A. Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
87
|
Zamora-Mora V, Fernández-Gutiérrez M, González-Gómez Á, Sanz B, Román JS, Goya GF, Hernández R, Mijangos C. Chitosan nanoparticles for combined drug delivery and magnetic hyperthermia: From preparation to in vitro studies. Carbohydr Polym 2016; 157:361-370. [PMID: 27987939 DOI: 10.1016/j.carbpol.2016.09.084] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 09/21/2016] [Accepted: 09/27/2016] [Indexed: 12/29/2022]
Abstract
Chitosan nanoparticles (CSNPs) ionically crosslinked with tripolyphosphate salts (TPP) were employed as nanocarriers in combined drug delivery and magnetic hyperthermia (MH) therapy. To that aim, three different ferrofluid concentrations and a constant 5-fluorouracil (5-FU) concentration were efficiently encapsulated to yield magnetic CSNPs with core-shell morphology. In vitro experiments using normal cells, fibroblasts (FHB) and cancer cells, human glioblastoma A-172, showed that CSNPs presented a dose-dependent cytotoxicity and that they were successfully uptaken into both cell lines. The application of a MH treatment in A-172 cells resulted in a cell viability of 67-75% whereas no significant reduction of cell viability was observed for FHB. However, the A-172 cells showed re-growth populations 4h after the application of the MH treatment when CSNPs were loaded only with ferrofluid. Finally, a combined effect of MH and 5-FU release was observed with the application of a second MH treatment for CSNPs exhibiting a lower amount of released 5-FU. This result demonstrates the potential of CSNPs for the improvement of MH therapies.
Collapse
Affiliation(s)
- Vanessa Zamora-Mora
- Instituto de Ciencia y Tecnología de Polímeros (CSIC), c/Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Mar Fernández-Gutiérrez
- Instituto de Ciencia y Tecnología de Polímeros (CSIC), c/Juan de la Cierva, 3, 28006 Madrid, Spain; CIBER-BBN, c/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| | - Álvaro González-Gómez
- Instituto de Ciencia y Tecnología de Polímeros (CSIC), c/Juan de la Cierva, 3, 28006 Madrid, Spain; CIBER-BBN, c/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| | - Beatriz Sanz
- Nanoscience Institute of Aragón, University of Zaragoza, Mariano Esquillor s/n, 50018 Zaragoza, Spain; Department of Condensed Matter Physics, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Julio San Román
- Instituto de Ciencia y Tecnología de Polímeros (CSIC), c/Juan de la Cierva, 3, 28006 Madrid, Spain; CIBER-BBN, c/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| | - Gerardo F Goya
- Nanoscience Institute of Aragón, University of Zaragoza, Mariano Esquillor s/n, 50018 Zaragoza, Spain; Department of Condensed Matter Physics, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Rebeca Hernández
- Instituto de Ciencia y Tecnología de Polímeros (CSIC), c/Juan de la Cierva, 3, 28006 Madrid, Spain.
| | - Carmen Mijangos
- Instituto de Ciencia y Tecnología de Polímeros (CSIC), c/Juan de la Cierva, 3, 28006 Madrid, Spain
| |
Collapse
|
88
|
Pellosi DS, Moret F, Fraix A, Marino N, Maiolino S, Gaio E, Hioka N, Reddi E, Sortino S, Quaglia F. Pluronic ® P123/F127 mixed micelles delivering sorafenib and its combination with verteporfin in cancer cells. Int J Nanomedicine 2016; 11:4479-4494. [PMID: 27660441 PMCID: PMC5019320 DOI: 10.2147/ijn.s103344] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Here, we developed Pluronic® P123/F127 (poloxamer) mixed micelles for the intravenous delivery of the anticancer drug sorafenib (SRB) or its combination with verteporfin (VP), a photosensitizer for photodynamic therapy that should complement well the cytotoxicity profile of the chemotherapeutic. SRB loading inside the core of micelles was governed by the drug:poloxamer weight ratio, while in the case of the SRB-VP combination, a mutual interference between the two drugs occurred and only specific ratios could ensure maximum loading efficiency. Coentrapment of SRB did not alter the photophysical properties of VP, confirming that SRB did not participate in any bimolecular process with the photosensitizer. Fluorescence resonance energy-transfer measurement of micelles in serum protein-containing cell-culture medium demonstrated the excellent stability of the system in physiologically relevant conditions. These results were in line with the results of the release study showing a release rate of both drugs in the presence of proteins slower than in phosphate buffer. SRB release was sustained, while VP remained substantially entrapped in the micelle core. Cytotoxicity studies in MDA-MB231 cells revealed that at 24 hours, SRB-loaded micelles were more active than free SRB only at very low SRB concentrations, while at 24+24 hours a prolonged cytotoxic effect of SRB-loaded micelles was observed, very likely mediated by the block in the S phase of the cell cycle. The combination of SRB with VP under light exposure was less cytotoxic than both the free combination and VP-loaded micelles + SRB-loaded micelles combination. This behavior was clearly explainable in terms of micelle uptake and intracellular localization. Besides the clear advantage of delivering SRB in poloxamer micelles, our results provide a clear example that each photochemotherapeutic combination needs detailed investigations on their particular interaction, and no generalization on enhanced cytotoxic effects should be derived a priori.
Collapse
Affiliation(s)
- Diogo Silva Pellosi
- Research Nucleus of Photodynamic Therapy, Chemistry Department, State University of Maringá, Maringá, Brazil
- Drug Delivery Laboratory, Department of Pharmacy, University of Naples Federico II, Naples
| | - Francesca Moret
- Cell Biology Unit, Department of Biology, University of Padova, Padua
| | - Aurore Fraix
- Laboratory of Photochemistry, Department of Drug Sciences, University of Catania, Catania, Italy
| | - Nino Marino
- Laboratory of Photochemistry, Department of Drug Sciences, University of Catania, Catania, Italy
| | - Sara Maiolino
- Drug Delivery Laboratory, Department of Pharmacy, University of Naples Federico II, Naples
| | - Elisa Gaio
- Cell Biology Unit, Department of Biology, University of Padova, Padua
| | - Noboru Hioka
- Research Nucleus of Photodynamic Therapy, Chemistry Department, State University of Maringá, Maringá, Brazil
| | - Elena Reddi
- Cell Biology Unit, Department of Biology, University of Padova, Padua
| | - Salvatore Sortino
- Laboratory of Photochemistry, Department of Drug Sciences, University of Catania, Catania, Italy
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy, University of Naples Federico II, Naples
| |
Collapse
|
89
|
Cheng Y, Huang F, Min X, Gao P, Zhang T, Li X, Liu B, Hong Y, Lou X, Xia F. Protease-Responsive Prodrug with Aggregation-Induced Emission Probe for Controlled Drug Delivery and Drug Release Tracking in Living Cells. Anal Chem 2016; 88:8913-9. [DOI: 10.1021/acs.analchem.6b02833] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yong Cheng
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- National
Engineering Research Center for Nanomedicine, Department of Biomedical
Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Fujian Huang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xuehong Min
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Pengcheng Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Tianchi Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xinchun Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Bifeng Liu
- National
Engineering Research Center for Nanomedicine, Department of Biomedical
Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yuning Hong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xiaoding Lou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Shenzhen Institute of Huazhong University of Science & Technology, Shenzhen 518000, P. R. China
| | - Fan Xia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- National
Engineering Research Center for Nanomedicine, Department of Biomedical
Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Shenzhen Institute of Huazhong University of Science & Technology, Shenzhen 518000, P. R. China
| |
Collapse
|
90
|
Wu X, Zhou L, Su Y, Dong CM. Plasmonic, Targeted, and Dual Drugs-Loaded Polypeptide Composite Nanoparticles for Synergistic Cocktail Chemotherapy with Photothermal Therapy. Biomacromolecules 2016; 17:2489-501. [PMID: 27310705 DOI: 10.1021/acs.biomac.6b00721] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To integrate cocktail chemotherapy with photothermal therapy into one biocompatible and biodegradable nanocarrier, the plasmonic, lactose-targeted, and dual anticancer drugs-loaded polypeptide composite nanoparticles were for the first time fabricated under mild conditions. The glyco-PEGylated polypeptide micelles that self-assembled from the lactose (LAC) and PEG grafted polycysteine terpolymer were used as templates to generate the plasmonic composite nanoparticles, as mainly characterized by DLS, TEM, SEM, and XPS. These composite nanoparticles showed a broad and strong near-infrared (NIR) absorption at 650-1100 nm and increased the temperature of phosphate buffer solution by 30.1 °C upon a continuous-wave laser irradiation (808 nm, 5 min, 2 W·cm(-2)), while the same dose of NIR-mediated heating completely killed HepG2 cancer cells in vitro, presenting excellent photothermal properties. Two anticancer drugs, doxorubicin (DOX) and 6-mercaptopurine (6-MP), were loaded into the composite nanoparticles through physical interactions and Au-S bond, respectively. The dual drugs-loaded composite nanoparticles exhibited reduction-sensitive and NIR-triggered cocktail drugs release profiles and trigger-enhanced cytotoxicity. As evidenced by flow cytometry, fluorescence microscopy, and MTT assay, the LAC-coated composite nanoparticles were more internalized by the HepG2 than the HeLa cell line, demonstrating a LAC-targeting enhanced cytotoxicity toward HepG2. The combination cocktail chemo-photothermal therapy produced a lower half maximal inhibitory concentration than cocktail chemotherapy or photothermal therapy alone, displaying a good synergistic antitumor effect.
Collapse
Affiliation(s)
- Xingjie Wu
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
| | - Linzhu Zhou
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
| | - Yue Su
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
| | - Chang-Ming Dong
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University , Shanghai 200240, P. R. China.,Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
| |
Collapse
|
91
|
Py-Daniel KR, Namban JS, de Andrade LR, de Souza PE, Paterno LG, Azevedo RB, Soler MA. Highly efficient photodynamic therapy colloidal system based on chloroaluminum phthalocyanine/pluronic micelles. Eur J Pharm Biopharm 2016; 103:23-31. [DOI: 10.1016/j.ejpb.2016.03.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/05/2016] [Accepted: 03/23/2016] [Indexed: 12/23/2022]
|
92
|
Landesman-Milo D, Peer D. Transforming Nanomedicines From Lab Scale Production to Novel Clinical Modality. Bioconjug Chem 2016; 27:855-62. [PMID: 26734836 DOI: 10.1021/acs.bioconjchem.5b00607] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The use of nanoparticles as anticancer drug carriers has been studied for over 50 years. These nanoparticles that can carry drugs are now termed "nanomedicines". Since the approval of the first FDA "nanodrug", DOXIL in 1995, tremendous efforts have been made to develop hundreds of nanomedicines based on different materials. The development of drug nanocarriers (NCs) for cancer therapy is especially challenging and requires multidisciplinary approach. Not only is the translation from a lab scale production of the NCs to clinical scale a challenge, but tumor biology and its unique physiology also possess challenges that need to be overcome with cleverer approaches. Yet, with all the efforts made to develop new strategies to deliver drugs (including small molecules and biologics) for cancer therapy, the number of new NCs that are reaching clinical trials is extremely low. Here we discuss the reasons most of the NCs loaded with anticancer drugs are not likely to reach the clinic and emphasize the importance of understanding tumor physiology and heterogeneity, the use of predictive animal models, and the importance of sharing data as key denominators for potential successful translation of NCs from a bench scale into clinical modality for cancer care.
Collapse
Affiliation(s)
- Dalit Landesman-Milo
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University , Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University , Tel Aviv 69978, Israel
| |
Collapse
|
93
|
Wu X, Zhou L, Su Y, Dong CM. A polypeptide micelle template method to prepare polydopamine composite nanoparticles for synergistic photothermal–chemotherapy. Polym Chem 2016. [DOI: 10.1039/c6py01189f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A polypeptide micelle template method was, for the first time, developed to fabricate polydopamine nanocomposites for the synergistic photothermal–chemotherapy of cancer.
Collapse
Affiliation(s)
- Xingjie Wu
- Department of Polymer Science & Engineering
- School of Chemistry & Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Linzhu Zhou
- Department of Polymer Science & Engineering
- School of Chemistry & Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yue Su
- Department of Polymer Science & Engineering
- School of Chemistry & Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Chang-Ming Dong
- Department of Polymer Science & Engineering
- School of Chemistry & Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
94
|
Bhattacharjee S, Gong C, Jones JW, Gibson HW. A hyperbranched mechanically interlocked rotaxane-type polymer. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.10.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
95
|
Affiliation(s)
- Mahmoud Elsabahy
- Department of Chemistry, Department of Chemical Engineering, Department of Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842-3012, United States
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, 71515 Assiut, Egypt, and Misr University for Science and Technology, 6 of October City, Egypt
| | - Gyu Seong Heo
- Department of Chemistry, Department of Chemical Engineering, Department of Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842-3012, United States
| | - Soon-Mi Lim
- Department of Chemistry, Department of Chemical Engineering, Department of Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842-3012, United States
| | - Guorong Sun
- Department of Chemistry, Department of Chemical Engineering, Department of Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842-3012, United States
| | - Karen L. Wooley
- Department of Chemistry, Department of Chemical Engineering, Department of Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842-3012, United States
| |
Collapse
|
96
|
Balakrishnan G, Rajendran T, Senthil Murugan K, Sathish Kumar M, Sivasubramanian VK, Ganesan M, Mahesh A, Thirunalasundari T, Rajagopal S. Interaction of rhenium(I) complex carrying long alkyl chain with Calf Thymus DNA: Cytotoxic and cell imaging studies. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.04.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
97
|
Gaspar VM, Baril P, Costa EC, de Melo-Diogo D, Foucher F, Queiroz JA, Sousa F, Pichon C, Correia IJ. Bioreducible poly(2-ethyl-2-oxazoline)-PLA-PEI-SS triblock copolymer micelles for co-delivery of DNA minicircles and Doxorubicin. J Control Release 2015; 213:175-191. [PMID: 26184050 DOI: 10.1016/j.jconrel.2015.07.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 12/20/2022]
Abstract
The co-delivery of minicircle DNA (mcDNA) and small anti-cancer drugs via stimuli-sensitive nanocarriers is a promising approach for combinatorial cancer therapy. However, the simultaneous loading of drugs and DNA in nanosized delivery systems is remarkably challenging. In this study we describe the synthesis of triblock copolymer micelles based on poly(2-ethyl-2-oxazoline)-poly(L-lactide) grafted with bioreducible polyethylenimine (PEOz-PLA-g-PEI-SS) for co-delivery of supercoiled (sc) mcDNA vectors and Doxorubicin (Dox). These amphiphilic carriers take advantage of non-fouling oxazolines to confer biological stability, of PLA to provide a hydrophobic core for drug encapsulation and of bioreducible PEI-SS to provide mcDNA complexation and an on-demand stimuli-responsive release. The obtained results show that mcDNA-loaded micelleplexes penetrate into in vitro tumor spheroid models with specific kinetics and exhibit a higher gene expression when compared to non-bioreducible nanocarriers. Moreover, in vivo bioluminescence imaging showed that gene expression is detected up to 8days following mcDNA-micelles intratumoral administration. Furthermore, drug-gene co-delivery in PEOz-PLA-g-PEI-SS carriers was verified by successful encapsulation of both Dox and mcDNA with high efficacy. Moreover, dual-loaded micelleplexes presented significant uptake and a cytotoxic effect in 2D cultures of cancer cells. The co-delivery of mcDNA-Dox to B16F10-Luciferase tumor bearing mice resulted in a reduction in tumor volume and cancer cells viability. Overall, such findings indicate that bioreducible triblock micelles are efficient for focal delivery in vivo and have potential for future application in combinatorial DNA-drug therapy.
Collapse
Affiliation(s)
- Vítor M Gaspar
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Patrick Baril
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071 Orléans cedex 02, France
| | - Elisabete C Costa
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Frédéric Foucher
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071 Orléans cedex 02, France
| | - João A Queiroz
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Fani Sousa
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071 Orléans cedex 02, France
| | - Ilídio J Correia
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
98
|
Ferris DP, McGonigal PR, Witus LS, Kawaji T, Algaradah MM, Alnajadah AR, Nassar MS, Stoddart JF. Oxime ligation on the surface of mesoporous silica nanoparticles. Org Lett 2015; 17:2146-9. [PMID: 25894019 DOI: 10.1021/acs.orglett.5b00740] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A versatile surface-functionalization strategy applicable to mesoporous silica nanoparticles, which could potentially serve as drug delivery vehicles, is described that makes use of alkoxyamine tethers on the surface of the nanoparticles. A wide variety of carbonyl compounds can be attached readily to these tethers under the mild conditions of oxime ether formation, simply by incubating the chemically modified mesoporous silica nanoparticles with aldehydes or ketones in water.
Collapse
Affiliation(s)
- Daniel P Ferris
- †Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Paul R McGonigal
- †Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Leah S Witus
- †Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Takatoshi Kawaji
- †Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States.,‡Department of Materials Science, National Institute of Technology, Wakayama College, Nada, Gobo, Wakayama 644-0023, Japan
| | - Mohammed M Algaradah
- †Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Ahmed R Alnajadah
- †Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Majed S Nassar
- †Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - J Fraser Stoddart
- †Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
99
|
Wang L, Hao Y, Li H, Zhao Y, Meng D, Li D, Shi J, Zhang H, Zhang Z, Zhang Y. Co-delivery of doxorubicin and siRNA for glioma therapy by a brain targeting system: angiopep-2-modified poly(lactic-co-glycolic acid) nanoparticles. J Drug Target 2015; 23:832-46. [PMID: 25856302 DOI: 10.3109/1061186x.2015.1025077] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It is very challenging to treat brain cancer because of the blood-brain barrier (BBB) restricting therapeutic drug or gene to access the brain. In this research project, angiopep-2 (ANG) was used as a brain-targeted peptide for preparing multifunctional ANG-modified poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), which encapsulated both doxorubicin (DOX) and epidermal growth factor receptor (EGFR) siRNA, designated as ANG/PLGA/DOX/siRNA. This system could efficiently deliver DOX and siRNA into U87MG cells leading to significant cell inhibition, apoptosis and EGFR silencing in vitro. It demonstrated that this drug system was capable of penetrating the BBB in vivo, resulting in more drugs accumulation in the brain. The animal study using the brain orthotopic U87MG glioma xenograft model indicated that the ANG-targeted co-delivery of DOX and EGFR siRNA resulted in not only the prolongation of the life span of the glioma-bearing mice but also an obvious cell apoptosis in glioma tissue.
Collapse
Affiliation(s)
- Lei Wang
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Yongwei Hao
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Haixia Li
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Yalin Zhao
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Dehui Meng
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Dong Li
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Jinjin Shi
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Hongling Zhang
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Zhenzhong Zhang
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Yun Zhang
- a School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| |
Collapse
|
100
|
Chen Y, Angelova A, Angelov B, Drechsler M, Garamus VM, Willumeit-Römer R, Zou A. Sterically stabilized spongosomes for multidrug delivery of anticancer nanomedicines. J Mater Chem B 2015; 3:7734-7744. [DOI: 10.1039/c5tb01193k] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
SAXS patterns of drug-loaded lipid nanocarriers stabilized by polysorbate P80 (left); cryo-TEM image of BAI-BJO-spongosomes-2 (right).
Collapse
Affiliation(s)
- Yiyin Chen
- East China University of Science and Technology
- Shanghai
- China
| | - Angelina Angelova
- CNRS UMR8612 Institut Galien Paris-Sud
- Univ Paris Sud
- LabEx LERMIT
- Châtenay-Malabry
- F-92296 France
| | - Borislav Angelov
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 16206 Prague
- Czech Republic
| | - Markus Drechsler
- Laboratory for Soft Matter Electron Microscopy
- Bayreuth Institute of Macromolecular Research (BIMF)
- University of Bayreuth
- D-95440 Bayreuth
- Germany
| | - Vasil M. Garamus
- Helmholtz-Zentrum Geesthacht
- Centre for Materials and Coastal Research
- D-21502 Geesthacht
- Germany
| | - Regine Willumeit-Römer
- Helmholtz-Zentrum Geesthacht
- Centre for Materials and Coastal Research
- D-21502 Geesthacht
- Germany
| | - Aihua Zou
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|