51
|
Assessing How Residual Errors of Scoring Functions Correlate to Ligand Structural Features. Int J Mol Sci 2022; 23:ijms232315018. [PMID: 36499344 PMCID: PMC9739603 DOI: 10.3390/ijms232315018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
Scoring functions (SFs) are ubiquitous tools for early stage drug discovery. However, their accuracy currently remains quite moderate. Despite a number of successful target-specific SFs appearing recently, up until now, no ideas on how to systematically improve the general scope of SFs have been formulated. In this work, we hypothesized that the specific features of ligands, corresponding to interactions well appreciated by medicinal chemists (e.g., hydrogen bonds, hydrophobic and aromatic interactions), might be responsible, in part, for the remaining SF errors. The latter provides direction to efforts aimed at the rational and systematic improvement of SF accuracy. In this proof-of-concept work, we took a CASF-2016 coreset of 285 ligands as a basis for comparison and calculated the values of scores for a representative panel of SFs (including AutoDock 4.2, AutoDock Vina, X-Score, NNScore2.0, ΔVina RF20, and DSX). The residual error of linear correlation of each SF value, with the experimental values of affinity and activity, was then analyzed in terms of its correlation with the presence of the fragments responsible for certain medicinal chemistry defined interactions. We showed that, despite the fact that SFs generally perform reasonably, there is room for improvement in terms of better parameterization of interactions involving certain fragments in ligands. Thus, this approach opens a potential way for the systematic improvement of SFs without their significant complication. However, the straightforward application of the proposed approach is limited by the scarcity of reliable available data for ligand-receptor complexes, which is a common problem in the field.
Collapse
|
52
|
Zhai G, Gong R, Lin Y, Zhang M, Li J, Deng Z, Sun J, Chen W, Zhang Z. Structural Insight into the Catalytic Mechanism of Non-Heme Iron Halogenase AdaV in 2′-Chloropentostatin Biosynthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guoqing Zhai
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Rong Gong
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yaxin Lin
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Meng Zhang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jiahui Li
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zixin Deng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jiazhong Sun
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Wenqing Chen
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Abichem Biotech Joint Center for Pharmaceutical Innovation, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhengyu Zhang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
53
|
Bifurcated halogen bonds in the crystal structure of 2,2′-bi(1,8-naphthyridine)—1,4-diiodotetrafluorobenzene (1/1), C 22H 10F 4I 2N 4. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
C22H10F4I2N4, monoclinic, P21/c (no. 14), a = 9.7940(3) Å, b = 5.34970(10) Å, c = 20.5119(5) Å, β = 101.673(3)°, V = 1052.49(5) Å3, Z = 2, R
gt
(F) = 0.0222, wR
ref
(F
2) = 0.0505, T = 293(2) K.
Collapse
|
54
|
Kumar R, Awasthi A, Gupta S, Eerlapally R, Draksharapu A. Spectroscopic characterization of a Ru(III)-OCl intermediate: a structural mimic of haloperoxidase enzymes. Dalton Trans 2022; 51:12848-12854. [PMID: 35968730 DOI: 10.1039/d2dt01947g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Haloperoxidase enzymes utilize metal hypohalite species to halogenate aliphatic and aromatic C-H bonds to C-X (X = Cl, Br, I) in nature. In this work, we report the synthesis and spectroscopic characterization of a unique RuIII-OCl species as a structural mimic of haloperoxidase enzymes. The reaction of [(BnTPEN)RuII(NCCH3)]2+ (BnTPEN = N1-benzyl-N1,N2,N2-tris(pyridine-2-ylmethyl)ethane-1,2-diamine) with hypochlorite in the presence of an acid in CH3CN : H2O mixtures generated a novel [(BnTPEN)RuIII-OCl]2+ species that persists for 4.5 h at room temperature. This new species was characterized by UV-vis absorption, EPR, and resonance Raman spectroscopic techniques, and ESI-MS. The RuIII-OCl species is capable of performing oxygen atom transfer and hydrogen atom abstraction to various organic substrates.
Collapse
Affiliation(s)
- Rakesh Kumar
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Ayushi Awasthi
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Sikha Gupta
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Raju Eerlapally
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Apparao Draksharapu
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| |
Collapse
|
55
|
Liu Y, Zhang H, Xiao H, Li Y, Liu Y. Expression, purification and structure determination of the chlorinase ClA2. Biochem Biophys Res Commun 2022; 628:64-67. [DOI: 10.1016/j.bbrc.2022.08.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
|
56
|
Chakalov ER, Tupikina EY, Ivanov DM, Bartashevich EV, Tolstoy PM. The Distance between Minima of Electron Density and Electrostatic Potential as a Measure of Halogen Bond Strength. Molecules 2022; 27:4848. [PMID: 35956799 PMCID: PMC9369751 DOI: 10.3390/molecules27154848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, we present results of a detailed topological analysis of electron density (ED) of 145 halogen-bonded complexes formed by various fluorine-, chlorine-, bromine-, and iodine-containing compounds with trimethylphosphine oxide, Me3PO. To characterize the halogen bond (XB) strength, we used the complexation enthalpy, the interatomic distance between oxygen and halogen, as well as the typical set of electron density properties at the bond critical points calculated at B3LYP/jorge-ATZP level of theory. We show for the first time that it is possible to predict the XB strength based on the distance between the minima of ED and molecular electrostatic potential (ESP) along the XB path. The gap between ED and ESP minima exponentially depends on local electronic kinetic energy density at the bond critical point and tends to be a common limiting value for the strongest halogen bond.
Collapse
Affiliation(s)
- Edem R. Chakalov
- Institute of Chemistry, St. Petersburg State University, 198504 St. Petersburg, Russia; (E.R.C.); (E.Y.T.)
| | - Elena Yu. Tupikina
- Institute of Chemistry, St. Petersburg State University, 198504 St. Petersburg, Russia; (E.R.C.); (E.Y.T.)
| | - Daniil M. Ivanov
- Institute of Chemistry, St. Petersburg State University, 198504 St. Petersburg, Russia; (E.R.C.); (E.Y.T.)
| | | | - Peter M. Tolstoy
- Institute of Chemistry, St. Petersburg State University, 198504 St. Petersburg, Russia; (E.R.C.); (E.Y.T.)
| |
Collapse
|
57
|
Shennan BDA, Berheci D, Crompton JL, Davidson TA, Field JL, Williams BA, Dixon DJ. Branching out: redox strategies towards the synthesis of acyclic α-tertiary ethers. Chem Soc Rev 2022; 51:5878-5929. [PMID: 35770619 DOI: 10.1039/d1cs00669j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acyclic α-tertiary ethers represent a highly prevalent functionality, common to high-value bioactive molecules, such as pharmaceuticals and natural products, and feature as crucial synthetic handles in their construction. As such their synthesis has become an ever-more important goal in synthetic chemistry as the drawbacks of traditional strong base- and acid-mediated etherifications have become more limiting. In recent years, the generation of highly reactive intermediates via redox approaches has facilitated the synthesis of highly sterically-encumbered ethers and accordingly these strategies have been widely applied in α-tertiary ether synthesis. This review summarises and appraises the state-of-the-art in the application of redox strategies enabling acyclic α-tertiary ether synthesis.
Collapse
Affiliation(s)
- Benjamin D A Shennan
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Diana Berheci
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Jessica L Crompton
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Timothy A Davidson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Joshua L Field
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Benedict A Williams
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Darren J Dixon
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
58
|
Auld N, Flood K, Kesharwani T, Cavnar PJ. A study on the cellular and cytotoxic effects of S and Se heterocycles on the myeloid leukemia cell line PLB-985. PHOSPHORUS SULFUR 2022; 197:876-884. [PMID: 36970371 PMCID: PMC10035560 DOI: 10.1080/10426507.2022.2085272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This paper describes the synthesis of several halogenated S and Se heterocycles and tests their biological activity by measuring the effects on the myeloid leukemia cell line, PLB-985 cells. We report that select compounds exhibit significant increases in mitochondria membrane potential and increased oxidative stress in PLB-985 cells. Our results contribute to the foundational knowledge of different S and Se containing compounds and their possible impacts on human cells.
Collapse
Affiliation(s)
- Niccole Auld
- Department of Biology, University of West Florida, Pensacola, FL, USA
| | - Krystal Flood
- Department of Biology, University of West Florida, Pensacola, FL, USA
| | - Tanay Kesharwani
- Department of Chemistry, University of West Florida, Pensacola, FL, USA
| | - Peter J. Cavnar
- Department of Biology, University of West Florida, Pensacola, FL, USA
| |
Collapse
|
59
|
Ramesh D, Mohanty AK, De A, Vijayakumar BG, Sethumadhavan A, Muthuvel SK, Mani M, Kannan T. Uracil derivatives as HIV-1 capsid protein inhibitors: design, in silico, in vitro and cytotoxicity studies. RSC Adv 2022; 12:17466-17480. [PMID: 35765450 PMCID: PMC9190787 DOI: 10.1039/d2ra02450k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/29/2022] [Indexed: 11/24/2022] Open
Abstract
A series of novel uracil derivatives such as bispyrimidine dione and tetrapyrimidine dione derivatives were designed based on the existing four-point pharmacophore model as effective HIV capsid protein inhibitors. The compounds were initially docked with an HIV capsid protein monomer to rationalize the ideas of design and to find the potential binding modes. The successful design and computational studies led to the synthesis of bispyrimidine dione and tetrapyrimidine dione derivatives from uracil and aromatic aldehydes in the presence of HCl using novel methodology. The in vitro evaluation in HIV p24 assay revealed five potential uracil derivatives with IC50 values ranging from 191.5 μg ml−1 to 62.5 μg ml−1. The meta-chloro substituted uracil compound 9a showed promising activity with an IC50 value of 62.5 μg ml−1 which is well correlated with the computational studies. As expected, all the active compounds were noncytotoxic in BA/F3 and Mo7e cell lines highlighting the thoughtful design. The structure activity relationship indicates the position priority and lower log P values as the possible cause of inhibitory potential of the uracil compounds. The paper describes the design, synthesis, computational and biological validation of a series of novel uracil derivatives as effective HIV capsid protein inhibitors.![]()
Collapse
Affiliation(s)
- Deepthi Ramesh
- Department of Chemistry, Pondicherry University Kalapet Puducherry-605014 India
| | - Amaresh Kumar Mohanty
- Department of Bioinformatics, Pondicherry University Kalapet Puducherry-605014 India
| | - Anirban De
- Department of Chemistry, Pondicherry University Kalapet Puducherry-605014 India
| | | | | | - Suresh Kumar Muthuvel
- Department of Bioinformatics, Pondicherry University Kalapet Puducherry-605014 India
| | - Maheswaran Mani
- Department of Microbiology, Pondicherry University Kalapet Puducherry-605014 India
| | | |
Collapse
|
60
|
Swigonska S, Molcan T, Nynca A, Ciereszko RE. The involvement of CYP1A2 in biodegradation of dioxins in pigs. PLoS One 2022; 17:e0267162. [PMID: 35617319 PMCID: PMC9135293 DOI: 10.1371/journal.pone.0267162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is one of the most harmful chemicals showing resistance to biodegradation. The majority of TCDD effects is mediated by the aryl hydrocarbon receptor (AhR) pathway. TCDD binding to AhR results in the activation of cytochrome P450 enzymes (CYP1A1, CYP1A2, CYP1B1) involved in dioxin biodegradation. The goal of the study was to explore the potentialrole of CYP1A2 in the metabolism of TCDD. We investigated a molecular structure of CYP1A2 and the binding selectivity and affinity between the pig CYP1A2 and: 1/ DiCDD or TCDD (dioxins differing in toxicity and biodegradability) or 2/ their selected metabolites. pCYP1A2 demonstrated higher affinity towards DiCDD and TCDD than other pCYP1 enzymes. All dioxin-pCYP1A2 complexes were found to be stabilized by hydrophobic interactions. The calculated distances between the heme oxygen and the dioxin carbon nearest to the oxygen, reflecting the hydroxylating potential of CYP1A2, were higher than in other pCYP1 enzymes. The distances between the heme iron and the nearest dioxin carbon exceeded 5 Å, a distance sufficient to allow the metabolites to leave the active site. However, the molecular dynamics simulations revealed that two access channels of CYP1A2 were closed upon binding the majority of the examined dioxins. Moreover, the binding of dioxin metabolites did not promote opening of channel S–an exit for hydroxylated products. It appears that the undesired changes in the behavior of access channels prevail over the hydroxylating potential of CYP1A2 towards TCDD and the favorable distances, ultimately trapping the metabolites at the enzyme’s active site.
Collapse
Affiliation(s)
- Sylwia Swigonska
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- * E-mail:
| | - Tomasz Molcan
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Nynca
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Renata E. Ciereszko
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
61
|
A Combination of Pharmacophore-Based Virtual Screening, Structure-Based Lead Optimization, and DFT Study for the Identification of S. epidermidis TcaR Inhibitors. Pharmaceuticals (Basel) 2022; 15:ph15050635. [PMID: 35631461 PMCID: PMC9146354 DOI: 10.3390/ph15050635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
The transcriptional regulator (TcaR) enzyme plays an important role in biofilm formation. Prevention of TcaR-DNA complex formation leads to inhibit the biofilm formation is likely to reveal therapeutic ways for the treatment of bacterial infections. To identify the novel ligands for TcaR and to provide a new idea for drug design, two efficient drug design methods, such as pharmacophore modeling and structure-based drug design, were used for virtual screening of database and lead optimization, respectively. Gemifloxacin (FDA-approved drug) was considered to generate the pharmacophore model for virtual screening of the ZINC database, and five hits, namely ZINC77906236, ZINC09550296, ZINC77906466, ZINC09751390, and ZINC01269201, were identified as novel inhibitors of TcaR with better binding energies. Using structure-based drug design, a set of 7a–7p inhibitors of S. epidermidis were considered, and Mol34 was identified with good binding energy and high fitness score with improved pharmacological properties. The active site residues ARG110, ASN20, HIS42, ASN45, ALA38, VAL63, VAL68, ALA24, VAL43, ILE57, and ARG71 are playing a promising role in inhibition process. In addition, we performed DFT simulations of final hits to understand the electronic properties and their significant role in driving the inhibitor to adopt apposite bioactive conformations in the active site. Conclusively, the newly identified and designed hits from both the methods are promising inhibitors of TcaR, which can hinder biofilm formation.
Collapse
|
62
|
Taghizadeh Shool M, Amiri Rudbari H, Gil-Antón T, Cuevas-Vicario JV, García B, Busto N, Moini N, Blacque O. The effect of halogenation of salicylaldehyde on the antiproliferative activities of {Δ/Λ-[Ru(bpy) 2(X,Y-sal)]BF 4} complexes. Dalton Trans 2022; 51:7658-7672. [PMID: 35510940 DOI: 10.1039/d2dt00401a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ru(II) polypyridyl complexes are widely used in biological fields, due to their physico-chemical and photophysical properties. In this paper, a series of new chiral Ru(II) polypyridyl complexes (1-5) with the general formula {Δ/Λ-[Ru(bpy)2(X,Y-sal)]BF4} (bpy = 2,2'-bipyridyl; X,Y-sal = 5-bromosalicylaldehyde (1), 3,5-dibromosalicylaldehyde (2), 5-chlorosalicylaldehyde (3), 3,5-dichlorosalicylaldehyde (4) and 3-bromo-5-chlorosalicylaldehy (5)) were synthesized and characterized by elemental analysis, FT-IR, and 1H/13C NMR spectroscopy. Also, the structures of complexes 1 and 5 were determined by X-ray crystallography; these results showed that the central Ru atom adopts a distorted octahedral coordination sphere with two bpy and one halogen-substituted salicylaldehyde. DFT and TD-DFT calculations have been performed to explain the excited states of these complexes. The singlet states with higher oscillator strength are correlated with the absorption signals and are mainly described as 1MLCT from the ruthenium centre to the bpy ligands. The lowest triplet states (T1) are described as 3MLCT from the ruthenium center to the salicylaldehyde ligand. The theoretical results are in good agreement with the observed unstructured band at around 520 nm for complexes 2, 4 and 5. Biological studies on human cancer cells revealed that dihalogenated ligands endow the Ru(II) complexes with enhanced cytotoxicity compared to monohalogenated ligands. In addition, as far as the type of halogen is concerned, bromine is the halogen that provides the highest cytotoxicity to the synthesized complexes. All complexes induce cell cycle arrest in G0/G1 and apoptosis, but only complexes bearing Br are able to provoke an increase in intracellular ROS levels and mitochondrial dysfunction.
Collapse
Affiliation(s)
| | - Hadi Amiri Rudbari
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Tania Gil-Antón
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - José V Cuevas-Vicario
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - Begoña García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - Natalia Busto
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain. .,Departamento de Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad de Burgos, Hospital Militar, Paseo de los Comendadores, s/n, 09001 Burgos, Spain
| | - Nakisa Moini
- Department of Chemistry, Faculty of Physics and Chemistry Alzahra University, P.O. Box 1993891176, Vanak Tehran, Iran
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
63
|
Cochereau B, Meslet-Cladière L, Pouchus YF, Grovel O, Roullier C. Halogenation in Fungi: What Do We Know and What Remains to Be Discovered? Molecules 2022; 27:3157. [PMID: 35630634 PMCID: PMC9144378 DOI: 10.3390/molecules27103157] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
In nature, living organisms produce a wide variety of specialized metabolites to perform many biological functions. Among these specialized metabolites, some carry halogen atoms on their structure, which can modify their chemical characteristics. Research into this type of molecule has focused on how organisms incorporate these atoms into specialized metabolites. Several families of enzymes have been described gathering metalloenzymes, flavoproteins, or S-adenosyl-L-methionine (SAM) enzymes that can incorporate these atoms into different types of chemical structures. However, even though the first halogenation enzyme was discovered in a fungus, this clade is still lagging behind other clades such as bacteria, where many enzymes have been discovered. This review will therefore focus on all halogenation enzymes that have been described in fungi and their associated metabolites by searching for proteins available in databases, but also by using all the available fungal genomes. In the second part of the review, the chemical diversity of halogenated molecules found in fungi will be discussed. This will allow the highlighting of halogenation mechanisms that are still unknown today, therefore, highlighting potentially new unknown halogenation enzymes.
Collapse
Affiliation(s)
- Bastien Cochereau
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France;
| | - Laurence Meslet-Cladière
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France;
| | - Yves François Pouchus
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
| | - Olivier Grovel
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
| | - Catherine Roullier
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
| |
Collapse
|
64
|
Binding of GS-461203 and Its Halogen Derivatives to HCV Genotype 2a RNA Polymerase Drug Resistance Mutants. Sci Pharm 2022. [DOI: 10.3390/scipharm90020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hepatitis C Virus (HCV) is reported to develop GS-461203 resistance because of multiple mutations within the RNA-dependent RNA Polymerase (RdRp) of HCV. The lack of a high-resolution structure of these RdRp mutants in complex with GS-461203 hinders efforts to understand the drug resistance. Here we decipher the binding differences of GS-461203 in the wild type and mutated systems T179A or M289L of HCV RdRp Genotype 2a using homology modeling, molecular docking, and molecular dynamics simulation. Key residues responsible for GS-461203 binding were identified to be Arg48, Arg158, Asp318, Asp319, and Asp220, and that mutations T179A or M289L have caused conformational changes of GS-461203 in the RdRp active site. The affinities of GS-461203 were reduced in T179A system, but it became slightly stronger in the M289L system. Furthermore, we designed two new analogues of GS-461203 which encouragingly induced more stable interactions than GS-461203, and thus resulted in much better binding energies. This present study reveals how a single mutation, T179A or M289L, will modulate GS-461203 binding in HCV RdRp Genotype 2a, while introducing two novel analogues to overcome the drug resistance which may be good candidate for further experimental verification.
Collapse
|
65
|
Liu ZL, Xu JX, Deng N, Dong Z, Shen X, Xu J, Xu HJ. Coupling of Thiols and Aryl Halides Mediated by Dicyclohexano-18-Crown-6 and Potassium Carbonate. Curr Org Synth 2022; 19:824-837. [PMID: 35418286 DOI: 10.2174/1570179419666220412084111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
AIMS A simple, transition-metal-free C-S coupling protocol for the synthesis of aryl thioethers is reported Background: Sulfur-containing moieties are ubiquitous in pharmaceutical drugs and materials and therefore methods for their construction are of great importance. One approach entails the catalytic coupling of an aryl halohydrocarbon with a thiol, but the transition metal catalysts usually used are prone to poisoning by participating sulfur species and efficient catalysis is usually only achieved after complex ligand optimization. OBJECTIVE New transition-metal-free approaches to the synthesis of C-S bonds are urgently need Method: We screened the reaction conditions such as alkali, crown ether, solvent, temperature, etc., tested the compatibility of the reaction substrate, and analyzed the mechanism process. RESULT the optimized reaction conditions were determined to be 1.0 equiv of aryl halides and 1.2 equiv of thiols at 110 ℃ in toluene with K2CO3 (1.5 equiv) as a base, promoted by 10 mol% dicyclohexano-18-crown-6. Up to 33 examples of thioethers were synthesized under transition-metal-free conditions in good to excellent yields. CONCLUSION we have developed a simple and efficient method for the C-S cross-coupling of a wide variety of (hetero)aryl halides and thiols mediated by dicyclohexano-18-crown-6 and without the need for transition-metal catalyst. In addition, the preparation and gram-scale experiments of a variety of drug molecules further verify the practicability of our developed method.
Collapse
Affiliation(s)
- Zhong-Lin Liu
- School of Food and Biological Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jing-Xiu Xu
- School of Food and Biological Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ning Deng
- School of Food and Biological Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zheng Dong
- School of Food and Biological Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiao Shen
- School of Food and Biological Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jun Xu
- School of Food and Biological Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hua-Jian Xu
- School of Food and Biological Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
66
|
Mu K, Zhu Z, Abula A, Peng C, Zhu W, Xu Z. Halogen Bonds Exist between Noncovalent Ligands and Natural Nucleic Acids. J Med Chem 2022; 65:4424-4435. [PMID: 35276046 DOI: 10.1021/acs.jmedchem.1c01854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Because of their strong electron-rich properties, nucleic acids (NAs) can theoretically serve as halogen bond (XB) acceptors. From a PDB database survey, Kolář found that no XBs are formed between noncovalent ligands and NAs. Through statistical database analysis, quantum-mechanics/molecular-mechanics (QM/MM) optimizations, and energy calculations, we find that XBs formed between natural NAs and noncovalent ligands are primarily underestimated and that NAs can serve as XB acceptors to interact with noncovalent halogen ligands. Finally, through energy calculations, natural bond orbital analysis, and noncovalent interaction analysis, XBs are confirmed in 13 systems, among which two systems (445D and 4Q9Q) have relatively strong XBs. In addition, on the basis of energy scanning of four model systems, we explore the geometric rule for XB formation in NAs. This work will inspire researchers to utilize XBs in rational drug design targeting NAs.
Collapse
Affiliation(s)
- Kaijie Mu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Zhengdan Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Amina Abula
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Cheng Peng
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| |
Collapse
|
67
|
Qin J, Xia PF, Yuan XZ, Wang SG. Chlorine disinfection elevates the toxicity of polystyrene microplastics to human cells by inducing mitochondria-dependent apoptosis. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127842. [PMID: 34875417 DOI: 10.1016/j.jhazmat.2021.127842] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are ubiquitous in drinking water and pose potential threats to human health. Despite increasingly attentions on the toxicity of MPs, the deleterious effects of MPs after chlorine disinfection, which might be a more accessible form of MPs, has rarely been considered. Here, we first treated pristine polystyrene microplastics (PS-MPs) with chlorine to simulate the reactions that occur during drinking water treatment, and investigated and compared the cytotoxicity of chlorinated PS-MPs to those of pristine PS-MPs. Chlorine disinfection did not change the size of pristine PS-MPs, but increased the surface roughness. In addition, abundant carbon-chlorine bonds and persistent free radicals were generated on the surface of chlorinated PS-MPs. Compared with pristine PS-MPs, chlorinated PS-MPs markedly inhibited the cell proliferation, changed cellular morphology, destroyed cell membrane integrity, induced cell inflammatory response and apoptosis. Proteomics confirmed the difference in interactions with intracellular proteins between these particles. Furthermore, we found that the regulation of PI3K/AKT and Bcl-2/Bax pathways, oxidative stress-triggered mitochondrial depolarization, and the activation of caspase cascade were identified as the underlying mechanisms for the enhanced apoptosis ratio in GES-1 cells when exposed to chlorinated PS-MPs. This exacerbated cytotoxicity could be explained by the enhanced surface roughness and changed surface chemistry of these PS-MPs after chlorine disinfection. This work discloses the impacts of chlorine disinfection on the cytotoxicity of PS-MPs, which provides new insights for a more systematic risk assessment of MPs.
Collapse
Affiliation(s)
- Jing Qin
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Peng-Fei Xia
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Shu-Guang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
68
|
Vale JAD, Rodrigues MP, Lima ÂMA, Santiago SS, Lima GDDA, Almeida AA, Oliveira LLD, Bressan GC, Teixeira RR, Machado-Neves M. Synthesis of cinnamic acid ester derivatives with antiproliferative and antimetastatic activities on murine melanoma cells. Pharmacotherapy 2022; 148:112689. [PMID: 35149386 DOI: 10.1016/j.biopha.2022.112689] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 01/15/2023]
Abstract
Melanoma is the most aggressive skin cancer, and its incidence has continued to rise during the past decades. Conventional treatments present severe side effects in cancer patients, and melanoma can be refractory to commonly used anticancer drugs, which justify the efforts to find new potential anti-melanoma drugs. An alternative to promote the discovery of new pharmacological substances would be modifying chemical groups from a bioactive compound. Here we describe the synthesis of seventeen compounds derived from cinnamic acid and their bioactivity evaluation against melanoma cells. The compound phenyl 2,3-dibromo-3-phenylpropanoate (3q) was the most effective against murine B16-F10 cells, as observed in cytotoxicity and cell migration assays. Simultaneously, this compound showed low cytotoxic activity on non-tumor cells. At the highest concentration, the compound 3q was able to trigger apoptosis, whereas, at lower concentrations, it affected the cell cycle and melanoma cell proliferation. Furthermore, cinnamate 3q impaired cell invasion, adhesion, colonization, and actin polymerization. In conclusion, these results highlight the antiproliferative and antimetastatic potential of cinnamic acid derivatives on melanoma.
Collapse
Affiliation(s)
- Juliana Alves do Vale
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | | | - Alisson Andrade Almeida
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Gustavo Costa Bressan
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
| | | | - Mariana Machado-Neves
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
69
|
Riel AMS, Decato DA, Sun J, Berryman OB. Halogen bonding organocatalysis enhanced through intramolecular hydrogen bonds. Chem Commun (Camb) 2022; 58:1378-1381. [PMID: 34989732 PMCID: PMC8919959 DOI: 10.1039/d1cc05475a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent results indicate a halogen bond donor is strengthened through direct interaction with a hydrogen bond to the electron-rich belt of the halogen. Here, this Hydrogen Bond enhanced Halogen Bond (HBeXB) plays a clear role in a catalyst. Our HBeXB catalyst improves product conversion in a halide abstraction reaction over a traditional halogen bonding derivative.
Collapse
Affiliation(s)
| | - Daniel A. Decato
- Address University of Montana, 32 Campus Drive, Missoula, MT, USA
| | - Jiyu Sun
- Address University of Montana, 32 Campus Drive, Missoula, MT, USA
| | | |
Collapse
|
70
|
Halogen Bonding in Haspin-Halogenated Tubercidin Complexes: Molecular Dynamics and Quantum Chemical Calculations. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030706. [PMID: 35163974 PMCID: PMC8840108 DOI: 10.3390/molecules27030706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 11/17/2022]
Abstract
Haspin, an atypical serine/threonine protein kinase, is a potential target for cancer therapy. 5-iodotubercidin (5-iTU), an adenosine derivative, has been identified as a potent Haspin inhibitor in vitro. In this paper, quantum chemical calculations and molecular dynamics (MD) simulations were employed to identify and quantitatively confirm the presence of halogen bonding (XB), specifically halogen∙∙∙π (aromatic) interaction between halogenated tubercidin ligands with Haspin. Consistent with previous theoretical finding, the site specificity of the XB binding over the ortho-carbon is identified in all cases. A systematic increase of the interaction energy down Group 17, based on both quantum chemical and MD results, supports the important role of halogen bonding in this series of inhibitors. The observed trend is consistent with the experimental observation of the trend of activity within the halogenated tubercidin ligands (F < Cl < Br < I). Furthermore, non-covalent interaction (NCI) plots show that cooperative non-covalent interactions, namely, hydrogen and halogen bonds, contribute to the binding of tubercidin ligands toward Haspin. The understanding of the role of halogen bonding interaction in the ligand-protein complexes may shed light on rational design of potent ligands in the future.
Collapse
|
71
|
Alwahsh MI, Awwadi FF, Kailani MH. Polymorphism and isomorphism in trans-bis(2,5-diiodopyridine)dihalocopper( ii) complexes: theoretical and crystallographic studies. NEW J CHEM 2022. [DOI: 10.1039/d2nj03373a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two conformational polymorphs of [Cu(25dIpy)2Cl2] have been prepared, the anti-polymorph crystallized from 2-propanol at room temperature (green) and the syn-polymorph crystallized from acetonitrile at 60 °C (brown).
Collapse
Affiliation(s)
- Manal I. Alwahsh
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Firas F. Awwadi
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | | |
Collapse
|
72
|
Kakoulidou C, Chasapis CT, Hatzidimitriou AG, Fylaktakidou KC, Psomas G. Transition metal( ii) complexes of halogenated derivatives of ( E)-4-(2-(pyridin-2-ylmethylene)hydrazinyl)quinazoline: structure, antioxidant activity, DNA-binding DNA photocleavage, interaction with albumin and in silico studies. Dalton Trans 2022; 51:16688-16705. [DOI: 10.1039/d2dt02622h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Six transition metal(ii) complexes with halogenated quinazoline derivatives as ligands were characterized and evaluated for interaction with calf-thymus DNA, photocleavage of plasmid-DNA, affinity for bovine serum albumin, and antioxidant activity.
Collapse
Affiliation(s)
- Chrisoula Kakoulidou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Christos T. Chasapis
- NMR Facility, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, Greece
| | - Antonios G. Hatzidimitriou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantina C. Fylaktakidou
- Laboratory of Organic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
73
|
Li HP, He XH, Peng C, Li JL, Han B. A straightforward access to trifluoromethylated natural products through late-stage functionalization. Nat Prod Rep 2022; 40:988-1021. [DOI: 10.1039/d2np00056c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review summarizes the applications of late-stage strategies in the direct trifluoromethylation of natural products in the past ten years, with particular emphasis on the reaction model of each method.
Collapse
Affiliation(s)
- He-Ping Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
74
|
Decato DA, Sun J, Boller MR, Berryman OB. Pushing the Limits of the Hydrogen Bond Enhanced Halogen Bond —The Case of the C–H Hydrogen Bond. Chem Sci 2022; 13:11156-11162. [PMID: 36320486 PMCID: PMC9516949 DOI: 10.1039/d2sc03792k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
C–H hydrogen bonds have remarkable impacts on various chemical systems. Here we consider the influence of C–H hydrogen bonds to iodine atoms. Positioning a methyl group between two iodine halogen bond donors of the receptor engendered intramolecular C–H hydrogen bonding (HBing) to the electron-rich belt of both halogen bond donors. When coupled with control molecules, the role of the C–H hydrogen bond was evaluated. Gas-phase density functional theory studies indicated that methyl C–H hydrogen bonds help bias a bidentate binding conformation. Interaction energy analysis suggested that the charged C–H donors augment the halogen bond interaction—producing a >10 kcal mol−1 enhancement over a control lacking the C–H⋯I–C interaction. X-ray crystallographic analysis demonstrated C–H hydrogen bonds and bidentate conformations with triflate and iodide anions, yet the steric bulk of the central functional group seems to impact the expected trends in halogen bond distance. In solution, anion titration data indicated elevated performance from the receptors that utilize C–H Hydrogen Bond enhanced Halogen Bonds (HBeXBs). Collectively, the results suggest that even modest hydrogen bonds between C–H donors and iodine acceptors can influence molecular structure and improve receptor performance. C–H hydrogen bonds to iodine halogen bond donors are shown to improve halogen bonding and molecular preorganization.![]()
Collapse
Affiliation(s)
| | - Jiyu Sun
- University of Montana 32 Campus Drive Missoula MT USA
| | | | | |
Collapse
|
75
|
Panikkattu VV, Sinha AS, Aakeröy CB. A family of powerful halogen-bond donors: a structural and theoretical analysis of triply activated 3-iodo-1-phenylprop-2-yn-1-ones. CrystEngComm 2022. [DOI: 10.1039/d1ce01583d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new group of powerful halogen-bond donors have been synthesized and evaluated using structural and computational tools.
Collapse
Affiliation(s)
- Vinu V. Panikkattu
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Abhijeet S. Sinha
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Christer B. Aakeröy
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
76
|
Lessard O, Lainé D, Fecteau CÉ, Johnson PA, Giguère D. Fundamental curiosity of multivicinal inter-halide stereocenters. Org Chem Front 2022. [DOI: 10.1039/d2qo01433e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A stereoselective strategy allowed the striking impact of a single halogen on the physical properties of inter-halide alkane units to be unravelled.
Collapse
Affiliation(s)
- Olivier Lessard
- Département de chimie, Université Laval, 1045 Avenue de la Médecine, Quebec City, QC, G1V0A6 Canada
| | - Danny Lainé
- Département de chimie, Université Laval, 1045 Avenue de la Médecine, Quebec City, QC, G1V0A6 Canada
| | - Charles-Émile Fecteau
- Département de chimie, Université Laval, 1045 Avenue de la Médecine, Quebec City, QC, G1V0A6 Canada
| | - Paul A. Johnson
- Département de chimie, Université Laval, 1045 Avenue de la Médecine, Quebec City, QC, G1V0A6 Canada
| | - Denis Giguère
- Département de chimie, Université Laval, 1045 Avenue de la Médecine, Quebec City, QC, G1V0A6 Canada
| |
Collapse
|
77
|
Ma L, Lu Y, Li Y, Yang Z, Mao Y, Wang Y, Man S. A novel halogenated adenosine analog 5'-BrDA displays potent toxicity against colon cancer cells in vivo and in vitro. Toxicol Appl Pharmacol 2021; 436:115857. [PMID: 34979143 DOI: 10.1016/j.taap.2021.115857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 01/08/2023]
Abstract
Adenosine, as a naturally occurring nucleoside, plays an important role in human health maintenance. In recent years, many studies have shown that adenosine has the effect of cancer inhibition, and some of its analogs have been successfully marketed as anticancer drugs. This report mainly describes the anti-colon cancer activities and mechanism of a novel halogenated adenosine analog named 5'-bromodeoxyadenosine (5'-BrDA). As a result, 5'-BrDA concentration-dependently inhibited colon cancer cells proliferation, induced autophagy without disruption of lysosomal stability, and promoted autophagy-independently cellular mitochondrial apoptosis by increasing the accumulation of reactive oxygen species. Furthermore, 5'-BrDA inhibited the tumor growth of colon cancer in CT26 inbred mice without affecting the body weight in vivo. Collectively, the above-mentioned mechanisms contributed to the anticancer activity of 5'-BrDA. It is rare to discover novel anticancer adenosine analogs during the past couple of decades. We believe that our work will enrich the understanding of adenosine analogs, also, pave the way for adenosine analogs product based anticancer drug development.
Collapse
Affiliation(s)
- Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Yingying Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yaqin Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhizhen Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yu Mao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
78
|
Masih PJ, Kesharwani T, Rodriguez E, Vertudez MA, Motakhaveri ML, Le TK, Tran MKT, Cloyd MR, Kornman CT, Phillips AM. Synthesis and Evaluation of 3-Halobenzo[ b]thiophenes as Potential Antibacterial and Antifungal Agents. Pharmaceuticals (Basel) 2021; 15:39. [PMID: 35056096 PMCID: PMC8780876 DOI: 10.3390/ph15010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022] Open
Abstract
The global health concern of antimicrobial resistance has harnessed research interest to find new classes of antibiotics to combat disease-causing pathogens. In our studies, 3-halobenzo[b]thiophene derivatives were synthesized and tested for their antimicrobial activities using the broth microdilution susceptibility method. The 3-halo substituted benzo[b]thiophenes were synthesized starting from 2-alkynyl thioanisoles using a convenient electrophilic cyclization methodology that utilizes sodium halides as the source of electrophilic halogens when reacted along with copper(II) sulfate. This environmentally benign methodology is facile, uses ethanol as the solvent, and results in 3-halo substituted benzo[b]thiophene structures in very high yields. The cyclohexanol-substituted 3-chloro and 3-bromobenzo[b]thiophenes resulted in a low MIC of 16 µg/mL against Gram-positive bacteria and yeast. Additionally, in silico absorption, distribution, metabolism, and excretion (ADME) properties of the compounds were determined. The compounds with the lowest MIC values showed excellent drug-like properties with no violations to Lipinski, Veber, and Muegge filters. The time-kill curve was obtained for cyclohexanol-substituted 3-chlorobenzo[b]thiophenes against Staphylococcus aureus, which showed fast bactericidal activity at MIC.
Collapse
Affiliation(s)
- Prerna J Masih
- Department of Biology, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Tanay Kesharwani
- Department of Chemistry, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Elivet Rodriguez
- Department of Biology, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Mia A Vertudez
- Department of Biology, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Mina L Motakhaveri
- Department of Biology, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Terelan K Le
- Department of Biology, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Minh Kieu T Tran
- Department of Biology, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Matthew R Cloyd
- Department of Chemistry, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Cory T Kornman
- Department of Chemistry, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| | - Aimee M Phillips
- Department of Biology, University of West Florida, 11000 University Pkwy, Pensacola, FL 32514, USA
| |
Collapse
|
79
|
Cros A, Alfaro-Espinoza G, De Maria A, Wirth NT, Nikel PI. Synthetic metabolism for biohalogenation. Curr Opin Biotechnol 2021; 74:180-193. [PMID: 34954625 DOI: 10.1016/j.copbio.2021.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022]
Abstract
The pressing need for novel bioproduction approaches faces a limitation in the number and type of molecules accessed through synthetic biology. Halogenation is widely used for tuning physicochemical properties of molecules and polymers, but traditional halogenation chemistry often lacks specificity and generates harmful by-products. Here, we pose that deploying synthetic metabolism tailored for biohalogenation represents an unique opportunity towards economically attractive and environmentally friendly organohalide production. On this background, we discuss growth-coupled selection of functional metabolic modules that harness the rich repertoire of biosynthetic and biodegradation capabilities of environmental bacteria for in vivo biohalogenation. By rationally combining these approaches, the chemical landscape of living cells can accommodate bioproduction of added-value organohalides which, as of today, are obtained by traditional chemistry.
Collapse
Affiliation(s)
- Antonin Cros
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Gabriela Alfaro-Espinoza
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; Division Biodeterioration and Reference Organisms, Federal Institute for Materials Research and Testing (BAM), 12205 Berlin, Germany
| | - Alberto De Maria
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Nicolas T Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
80
|
Li J, Hu X, Luo T, Lu Y, Feng Y, Zhang H, Liu D, Fan X, Wang Y, Jiang L, Wang Y, Hao X, Shi T, Wang Z. N-2-(phenylamino) benzamide derivatives as novel anti-glioblastoma agents: Synthesis and biological evaluation. Eur J Med Chem 2021; 226:113817. [PMID: 34537445 DOI: 10.1016/j.ejmech.2021.113817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022]
Abstract
Glioblastoma is one of the most lethal brain tumors. The crucial chemotherapy is mainly alkylating agents with modest clinical success. Given this desperate need and inspired by the encouraging results of a phase II trial via concomitant Topo I inhibitor plus COX-2 inhibitor, we designed a series of N-2-(phenylamino) benzamide derivatives as novel anti-glioblastoma agents based on structure modification on 1,5-naphthyridine derivatives (Topo I inhibitors). Notably, the target compounds I-1 (33.61 ± 1.15 μM) and I-8 (45.01 ± 2.37 μM) were confirmed to inhibit COX-2, while a previous reported compound (1,5-naphthyridine derivative) resulted nearly inactive towards COX-2 (IC50 > 150 μM). Besides, I-1 and I-8 exhibited higher anti-proliferation, anti-migration, anti-invasion effects than the parent compound 1,5-naphthyridine derivative, suggesting the success of modification based on the parent. Moreover, I-1 obviously repressed tumor growth in the C6 glioma orthotopic model (TGI = 66.7%) and U87MG xenograft model (TGI = 69.4%). Besides, I-1 downregulated PGE2, VEGF, MMP-9, and STAT3 activation, upregulated E-cadherin in the orthotopic model. More importantly, I-1 showed higher safety than temozolomide and different mechanism from temozolomide in the C6 glioma orthotopic model. All the evidence demonstrated that N-2-(phenylamino) benzamide derivatives as novel anti-glioblastoma agents could be promising for the glioma management.
Collapse
Affiliation(s)
- Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Tian Luo
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yingmei Lu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yiyue Feng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Dan Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xiaohong Fan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuqing Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Liming Jiang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuying Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
81
|
Portela S, Fernández I. Nature of C−I⋅⋅⋅π Halogen Bonding and its Role in Organocatalysis. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Susana Portela
- Departmento de Química Orgánica I and Centro de Innovación en Química Avanzada Facultad de Ciencas Químicas Universidad Complutense de Madrid 28040- Madrid Spain
| | - Israel Fernández
- Departmento de Química Orgánica I and Centro de Innovación en Química Avanzada Facultad de Ciencas Químicas Universidad Complutense de Madrid 28040- Madrid Spain
| |
Collapse
|
82
|
Forni A, Russo R, Rapeti G, Pieraccini S, Sironi M. Exploring Orthogonality between Halogen and Hydrogen Bonding Involving Benzene. Molecules 2021; 26:7126. [PMID: 34885707 PMCID: PMC8659280 DOI: 10.3390/molecules26237126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
The concept of orthogonality between halogen and hydrogen bonding, brought out by Ho and coworkers some years ago, has become a widely accepted idea within the chemists' community. While the original work was based on a common carbonyl oxygen as acceptor for both interactions, we explore here, by means of M06-2X, M11, ωB97X, and ωB97XD/aug-cc-PVTZ DFT calculations, the interdependence of halogen and hydrogen bonding with a shared π-electron system of benzene. The donor groups (specifically NCBr and H2O) were placed on either or the same side of the ring, according to a double T-shaped or a perpendicular geometry, respectively. The results demonstrate that the two interactions with benzene are not strictly independent on each other, therefore outlining that the orthogonality between halogen and hydrogen bonding, intended as energetical independence between the two interactions, should be carefully evaluated according to the specific acceptor group.
Collapse
Affiliation(s)
- Alessandra Forni
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”—CNR, INSTM RU, Via Golgi 19, 20133 Milan, Italy
| | - Rosario Russo
- Department of Chemistry, Università degli Studi di Milano, INSTM RU, Via Golgi 19, 20133 Milano, Italy; (R.R.); (G.R.)
| | - Giacomo Rapeti
- Department of Chemistry, Università degli Studi di Milano, INSTM RU, Via Golgi 19, 20133 Milano, Italy; (R.R.); (G.R.)
| | - Stefano Pieraccini
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”—CNR, INSTM RU, Via Golgi 19, 20133 Milan, Italy
- Department of Chemistry, Università degli Studi di Milano, INSTM RU, Via Golgi 19, 20133 Milano, Italy; (R.R.); (G.R.)
| | - Maurizio Sironi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”—CNR, INSTM RU, Via Golgi 19, 20133 Milan, Italy
- Department of Chemistry, Università degli Studi di Milano, INSTM RU, Via Golgi 19, 20133 Milano, Italy; (R.R.); (G.R.)
| |
Collapse
|
83
|
Saito K, Torii H. Hidden Halogen-Bonding Ability of Fluorine Manifesting in the Hydrogen-Bond Configurations of Hydrogen Fluoride. J Phys Chem B 2021; 125:11742-11750. [PMID: 34662140 DOI: 10.1021/acs.jpcb.1c07211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Elucidating how the intermolecular interactions of a covalently bonded fluorine atom are similar to and different from those of the other halogen atoms will be helpful for a better unified understanding of them. In the present study, the case of hydrogen fluoride is theoretically studied from this viewpoint by using the techniques of electron density analysis, molecular dynamics of liquid, and others. It is shown that the extra-point model, which locates an additional charge site on the line extended from (not within) the covalent bond and has been adopted for halogen-bonding systems as a key to the generation of proper stability and directionality, works well also in this case. A significantly bent hydrogen-bond configuration, which is characteristic of the intermolecular interactions of hydrogen fluoride, is reasonably well reproduced, meaning that it is a manifestation of the latent halogen-bonding ability, which is hidden by the strongly electronegative nature.
Collapse
|
84
|
Fierro A, Matthies DJ, Cassels BK, Jaque P, Zapata-Torres G. 5-HT 2 Receptor Subfamily and the Halogen Bond Promise. J Chem Inf Model 2021; 61:5001-5012. [PMID: 34617740 DOI: 10.1021/acs.jcim.1c00466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The binding of C-4-halogenated 1-(4-X-2,5-dimethoxyphenyl)-2-aminopropane (DOX) serotonin agonist psychedelics at all three 5-HT2 receptor subtypes is up to two orders of magnitude stronger for X = Cl, Br, or I (but not F) than when C-4 bears a hydrogen atom and more than expected from their hydrophobicities. Our docking and molecular dynamics simulations agree with the fact that increasing the polarizability of halogens results in halogen-oxygen distances to specific backbone C═O groups, and C-X···O angles, in ranges expected for halogen bonds (XBs), which could contribute to the high affinities observed. Good linear correlations are found for each receptor type, indicating that the binding pocket-ligand affinity is enhanced as the XB interaction becomes stronger (i.e., I ≈ Br > Cl > F). It is also striking to note how the linear equations unveil that the receptor's response on the strength of the XB interaction is quite similar among 5-HT2A and 5-HT2C, whereas the 5-HT2B's sensitivity is less. The calculated dipole polarizabilities in the binding pocket of the receptors reflect the experimental affinity values, indicating that less-polarizable and harder binding sites are more prone to XB formation.
Collapse
Affiliation(s)
- Angélica Fierro
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Douglas J Matthies
- Unidad de Gráfica Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380494, Chile
| | - Bruce K Cassels
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Pablo Jaque
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380492, Chile
| | - Gerald Zapata-Torres
- Unidad de Gráfica Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380494, Chile
| |
Collapse
|
85
|
Kolling D, Stierhof M, Lasch C, Myronovskyi M, Luzhetskyy A. A Promiscuous Halogenase for the Derivatization of Flavonoids. Molecules 2021; 26:molecules26206220. [PMID: 34684801 PMCID: PMC8539768 DOI: 10.3390/molecules26206220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
Halogenation often improves the bioactive properties of natural products and is used in pharmaceutical research for the generation of new potential drug leads. High regio- and stereospecificity, simple reaction conditions and straightforward downstream processing are the main advantages of halogenation using enzymatic biocatalysts compared to chemical synthetic approaches. The identification of new promiscuous halogenases for the modification of various natural products is of great interest in modern drug discovery. In this paper, we report the identification of a new promiscuous FAD-dependent halogenase, DklH, from Frankia alni ACN14a. The identified halogenase readily modifies various flavonoid compounds, including those with well-studied biological activities. This halogenase has been demonstrated to modify not only flavones and isoflavones, but also flavonols, flavanones and flavanonols. The structural requirements for DklH substrate recognition were determined using a feeding approach. The homology model of DklH and the mechanism of substrate recognition are also proposed in this paper.
Collapse
Affiliation(s)
- Dominik Kolling
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany; (D.K.); (M.S.); (C.L.); (M.M.)
| | - Marc Stierhof
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany; (D.K.); (M.S.); (C.L.); (M.M.)
| | - Constanze Lasch
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany; (D.K.); (M.S.); (C.L.); (M.M.)
| | - Maksym Myronovskyi
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany; (D.K.); (M.S.); (C.L.); (M.M.)
| | - Andriy Luzhetskyy
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany; (D.K.); (M.S.); (C.L.); (M.M.)
- AMEG Department, Helmholtz Institute for Pharmaceutical Research Saarland, 66123 Saarbruecken, Germany
- Correspondence: ; Tel.: +49-681-302-70200
| |
Collapse
|
86
|
Pietruś W, Kurczab R, Kalinowska-Tłuścik J, Machalska E, Golonka D, Barańska M, Bojarski AJ. Influence of Fluorine Substitution on Nonbonding Interactions in Selected Para-Halogeno Anilines. Chemphyschem 2021; 22:2115-2127. [PMID: 34310822 DOI: 10.1002/cphc.202100383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/22/2021] [Indexed: 01/03/2023]
Abstract
A series of 4-halogeno aniline derivatives was studied employing combined theoretical and experimental methods (i. e. crystal structure analysis and vibrational spectroscopies). This simplified model system was selected to shed light on the impact of fluorine substitution on the formation of noncovalent interactions such as halogen bonds (XBs) and hydrogen bonds (HBs), which are key interactions in fluorinated/halogenated drug-protein complex formation. Comparative analysis of three previously reported and five newly determined crystal structures indicated that, in most cases, 2-fluoro and 2,6-difluoro substitution of 4-X anilines increases the ability of adjacent amine to form strong N-H⋅⋅⋅N HBs. Additionally, fluorine substituents in the difluorinated derivatives are competitive and attractive HB and XB acceptors and increase the probability of halogen-halogen contacts. A peculiar observation was made for 4-iodoaniline and 2,6-difluoro-4-iodoaniline, which form distinct interaction patterns compared to the corresponding 4-Cl and 4-Br analogs. The observed intramolecular N-H⋅⋅⋅F interactions lead to additional NH bands in the FT-IR spectra.
Collapse
Affiliation(s)
- Wojciech Pietruś
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343, Kraków, Poland.,Faculty of Chemistry Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Rafał Kurczab
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343, Kraków, Poland.,Faculty of Mathematical and Natural Sciences, University of Applied Sciences in Tarnów, Mickiewicza 8, 33-100, Tarnów, Poland
| | | | - Ewa Machalska
- Faculty of Chemistry Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland.,Jagiellonian Centre for Experimental Therapeutic (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348, Kraków, Poland
| | - Dominika Golonka
- Faculty of Mathematical and Natural Sciences, University of Applied Sciences in Tarnów, Mickiewicza 8, 33-100, Tarnów, Poland
| | - Małgorzata Barańska
- Faculty of Chemistry Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland.,Jagiellonian Centre for Experimental Therapeutic (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348, Kraków, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343, Kraków, Poland
| |
Collapse
|
87
|
|
88
|
|
89
|
Ouyang H, Hong J, Malroy J, Zhu X. An E. coli-Based Biosynthetic Platform Expands the Structural Diversity of Natural Benzoxazoles. ACS Synth Biol 2021; 10:2151-2158. [PMID: 34530615 DOI: 10.1021/acssynbio.1c00228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Benzoxazoles are frequently found in synthetic pharmaceuticals and medicinally active natural products. To facilitate benzoxazole-based drug development, an eco-friendly and rapid platform for benzoxazole production is required. In this study, we have completed the biosynthesis of benzoxazoles in E. coli by coexpressing the minimal set of enzymes required for their biosynthesis. Moreover, by coupling this E. coli-based platform with precursor-directed biosynthesis, we have shown that the benzoxazole biosynthetic system is highly promiscuous in incorporating fluorine, chlorine, nitrile, picolinic, and alkyne functionalities into the scaffold. Our E. coli-based system thus paves the way for straightforward generation of novel benzoxazole analogues through future protein engineering and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Huanrong Ouyang
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Joshua Hong
- Department of Biology, Texas A&M University, College Station, Texas 77843, United States
| | - Jeshua Malroy
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Xuejun Zhu
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
90
|
Crowe C, Molyneux S, Sharma SV, Zhang Y, Gkotsi DS, Connaris H, Goss RJM. Halogenases: a palette of emerging opportunities for synthetic biology-synthetic chemistry and C-H functionalisation. Chem Soc Rev 2021; 50:9443-9481. [PMID: 34368824 PMCID: PMC8407142 DOI: 10.1039/d0cs01551b] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 12/14/2022]
Abstract
The enzymatic generation of carbon-halogen bonds is a powerful strategy used by both nature and synthetic chemists to tune the bioactivity, bioavailability and reactivity of compounds, opening up the opportunity for selective C-H functionalisation. Genes encoding halogenase enzymes have recently been shown to transcend all kingdoms of life. These enzymes install halogen atoms into aromatic and less activated aliphatic substrates, achieving selectivities that are often challenging to accomplish using synthetic methodologies. Significant advances in both halogenase discovery and engineering have provided a toolbox of enzymes, enabling the ready use of these catalysts in biotransformations, synthetic biology, and in combination with chemical catalysis to enable late stage C-H functionalisation. With a focus on substrate scope, this review outlines the mechanisms employed by the major classes of halogenases, while in parallel, it highlights key advances in the utilisation of the combination of enzymatic halogenation and chemical catalysis for C-H activation and diversification.
Collapse
Affiliation(s)
- Charlotte Crowe
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Samuel Molyneux
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Sunil V. Sharma
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Ying Zhang
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Danai S. Gkotsi
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Helen Connaris
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Rebecca J. M. Goss
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| |
Collapse
|
91
|
Zhang A, Liu P, Dou C, Liu Y, Che L. Molecular conversion of MIG6 hotspot-3 peptide from the nonbinder to a moderate binder of HER2 by rational design of an orthogonal interaction system at the HER2-peptide interface. Biophys Chem 2021; 276:106625. [PMID: 34077816 DOI: 10.1016/j.bpc.2021.106625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) has been established as an approved druggable target for the treatment of patients with diverse gynecological tumors such as ovarian, cervical and breast cancers. The mitogen-inducible gene 6 (MIG6) protein is a negative regulator of HER2 signaling by using its Seg1 segment to disrupt the allosteric dimerization of HER2 kinase domain. Previous studies found that the Seg1 adopts three separated hotspots to interact with the HER2 dimerization interface, in which the third hotspot (H3) is located at the core region of the interface but its derived H3 peptide (356PKYVS360) and Tyr358Phe mutant (356PKFVS360) cannot bind effectively to the interface in an independent manner. In this study, we demonstrate that the H3 peptide can be converted from nonbinder to a moderate binder of HER2 by just adding an orthogonal noncovalent interaction system (X⋯O┄H) between a halogen bond (X⋯O) and a hydrogen bond (H┄O) involving peptide Phe358 residue and HER2 Val948/Trp951 residues. High-level calculations are utilized to rigorously characterize and rationally design the X⋯O┄H system, which is then optimized with different halogen atoms and at different substituting positions. It is revealed that there is a synergistic effect between the X⋯O and H┄O of the orthogonal interaction system; formation of the halogen bond can enhance the interaction strength of the hydrogen bond. In silico analysis and in vitro assay reach a consistence that Br-substitution at the m-position of peptide Phe358 phenyl moiety is the best choice that can render strong interaction for the X⋯O┄H system, which also makes the peptide 'bindable' to HER2 kinase domain, while F/Cl/I-substitution at the same position can only improve the peptide affinity moderately or modestly. In contrast, the Br-substitution at the o- and p-positions of peptide Phe358 phenyl moiety cannot define effective X⋯O┄H interaction and thus does not confer additional affinity to the HER2-peptide complex.
Collapse
Affiliation(s)
- Aihong Zhang
- Department of Obstetrics and Gynecology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang 262500, China
| | - Ping Liu
- Department of Obstetrics and Gynecology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang 262500, China
| | - Chuncheng Dou
- Department of Obstetrics and Gynecology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang 262500, China
| | - Yao Liu
- Department of Obstetrics and Gynecology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang 262500, China
| | - Lifan Che
- Department of Obstetrics and Gynecology, Yidu Central Hospital Affiliated to Weifang Medical University, Weifang 262500, China.
| |
Collapse
|
92
|
Eusebio N, Rego A, Glasser NR, Castelo-Branco R, Balskus EP, Leão PN. Distribution and diversity of dimetal-carboxylate halogenases in cyanobacteria. BMC Genomics 2021; 22:633. [PMID: 34461836 PMCID: PMC8406957 DOI: 10.1186/s12864-021-07939-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Halogenation is a recurring feature in natural products, especially those from marine organisms. The selectivity with which halogenating enzymes act on their substrates renders halogenases interesting targets for biocatalyst development. Recently, CylC - the first predicted dimetal-carboxylate halogenase to be characterized - was shown to regio- and stereoselectively install a chlorine atom onto an unactivated carbon center during cylindrocyclophane biosynthesis. Homologs of CylC are also found in other characterized cyanobacterial secondary metabolite biosynthetic gene clusters. Due to its novelty in biological catalysis, selectivity and ability to perform C-H activation, this halogenase class is of considerable fundamental and applied interest. The study of CylC-like enzymes will provide insights into substrate scope, mechanism and catalytic partners, and will also enable engineering these biocatalysts for similar or additional C-H activating functions. Still, little is known regarding the diversity and distribution of these enzymes. RESULTS In this study, we used both genome mining and PCR-based screening to explore the genetic diversity of CylC homologs and their distribution in bacteria. While we found non-cyanobacterial homologs of these enzymes to be rare, we identified a large number of genes encoding CylC-like enzymes in publicly available cyanobacterial genomes and in our in-house culture collection of cyanobacteria. Genes encoding CylC homologs are widely distributed throughout the cyanobacterial tree of life, within biosynthetic gene clusters of distinct architectures (combination of unique gene groups). These enzymes are found in a variety of biosynthetic contexts, which include fatty-acid activating enzymes, type I or type III polyketide synthases, dialkylresorcinol-generating enzymes, monooxygenases or Rieske proteins. Our study also reveals that dimetal-carboxylate halogenases are among the most abundant types of halogenating enzymes in the phylum Cyanobacteria. CONCLUSIONS Our data show that dimetal-carboxylate halogenases are widely distributed throughout the Cyanobacteria phylum and that BGCs encoding CylC homologs are diverse and mostly uncharacterized. This work will help guide the search for new halogenating biocatalysts and natural product scaffolds.
Collapse
Affiliation(s)
- Nadia Eusebio
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Adriana Rego
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Nathaniel R Glasser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Raquel Castelo-Branco
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| | - Pedro N Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal.
| |
Collapse
|
93
|
Frontera A, Bauzá A. Biological halogen bonds in protein-ligand complexes: a combined QTAIM and NCIPlot study in four representative cases. Org Biomol Chem 2021; 19:6858-6864. [PMID: 34319314 DOI: 10.1039/d1ob01212f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, the PDB has been manually scrutinized by using a subset of all PDB entries containing organic iodinated ligands. Four structures exhibiting short IA halogen bonding (HaB) contacts (A stands for the σ-hole acceptor) have been selected and further analysed. In most hits, the sigma-hole acceptor corresponds to an O-atom of the amido group belonging to the protein backbone. In a minority of hits, the electron donors are O, S, Se or π-systems of the amino-acid side chains. A judicious selection of four PDB structures presenting all four types of HaB interactions (C-IA, A = O, S, Se, π) has been performed. For these selected structures, a comprehensive RI-MP2/def2-TZVP study has been carried out to evaluate the HaB energetically. Moreover, the interactions have been characterized by combining the quantum theory of "atoms-in-molecules" (QTAIM) and the noncovalent interaction plot (NCIPlot) and rationalized using the molecular electrostatic potential (MEP) surface.
Collapse
Affiliation(s)
- Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| | | |
Collapse
|
94
|
Liu L, Rahali S, Maurice R, Gomez Pech C, Montavon G, Le Questel JY, Graton J, Champion J, Galland N. An expanded halogen bonding scale using astatine. Chem Sci 2021; 12:10855-10861. [PMID: 34447565 PMCID: PMC8372311 DOI: 10.1039/d1sc02133h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/12/2021] [Indexed: 01/07/2023] Open
Abstract
As a non-covalent interaction, halogen bonding is now acknowledged to be useful in all fields where the control of intermolecular recognition plays a pivotal role. Halogen-bond basicity scales allow quantification of the halogen bonding of referential donors with organic functional groups from a thermodynamic point of view. Herein we present the pK BAtI basicity scale to provide the community an overview of halogen-bond acceptor strength towards astatine, the most potent halogen-bond donor element. This experimental scale is erected on the basis of complexation constants measured between astatine monoiodide (AtI) and sixteen selected Lewis bases. It spans over 6 log units and culminates with a value of 5.69 ± 0.32 for N,N,N',N'-tetramethylthiourea. On this scale, the carbon π-bases are the weakest acceptors, the oxygen derivatives cover almost two-thirds of the scale, and sulphur bases exhibit the highest AtI basicity. Regarding the applications of 211At in targeted radionuclide therapy, stronger labelling of carrier agents could be envisaged on the basis of the pK BAtI scale.
Collapse
Affiliation(s)
- Lu Liu
- SUBATECH UMR 6457, CNRS, IMT Atlantique, Université de Nantes 4 Rue Alfred Kastler 44307 Nantes France
| | - Seyfeddine Rahali
- Université de Nantes, CNRS, CEISAM UMR 6230 44000 Nantes France
- Department of Chemistry, College of Science and Arts, Qassim University Ar Rass Saudi Arabia
| | - Rémi Maurice
- SUBATECH UMR 6457, CNRS, IMT Atlantique, Université de Nantes 4 Rue Alfred Kastler 44307 Nantes France
| | - Cecilia Gomez Pech
- SUBATECH UMR 6457, CNRS, IMT Atlantique, Université de Nantes 4 Rue Alfred Kastler 44307 Nantes France
- Université de Nantes, CNRS, CEISAM UMR 6230 44000 Nantes France
| | - Gilles Montavon
- SUBATECH UMR 6457, CNRS, IMT Atlantique, Université de Nantes 4 Rue Alfred Kastler 44307 Nantes France
| | | | - Jérôme Graton
- Université de Nantes, CNRS, CEISAM UMR 6230 44000 Nantes France
| | - Julie Champion
- SUBATECH UMR 6457, CNRS, IMT Atlantique, Université de Nantes 4 Rue Alfred Kastler 44307 Nantes France
| | - Nicolas Galland
- Université de Nantes, CNRS, CEISAM UMR 6230 44000 Nantes France
| |
Collapse
|
95
|
Transmembrane Anion Transport Mediated by Halogen Bonds: Using Off-Center Charges. Methods Mol Biol 2021. [PMID: 34302682 DOI: 10.1007/978-1-0716-1468-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Synthetic anion transporters are promising therapeutic agents designed to emulate the specialized role of certain transmembrane proteins that maintain the ion concentration in cells. In the last few years, besides hydrogen bonds and ion pairs, halogen bonds have also been explored to promote the association between the synthetic molecule and the anion and their subsequent transport. This interaction is due to an anisotropic charge distribution on the halogen, and therefore, modeling halogen bonds is not a trivial task using classical force field methods that typically rely on point-charge models.Herein, a computational protocol capable of dealing with halogen bonds is presented. This protocol takes advantage of the addition of an off-center particle during the charge fitting procedure, and the resulting set of charges can be used along with the classical force field parameters from GAFF or GROMOS 54A7.
Collapse
|
96
|
Le MT, Morato NM, Kaerner A, Welch CJ, Cooks RG. Fragmentation of Polyfunctional Compounds Recorded Using Automated High-Throughput Desorption Electrospray Ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2261-2273. [PMID: 34280312 DOI: 10.1021/jasms.1c00176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Using desorption electrospray ionization (DESI) as part of an automated high-throughput system, tandem mass spectra of the compounds in a pharmaceutical library were recorded in the positive mode under standardized conditions. Quality control filtering yielded an MS/MS library of 16 662 spectra. Fragmentation of subsets of the compounds in the library chosen to contain a single instance of a particular functional group (amide, piperazine, sulfonamide) was predicted by experts, and the results were compared with the experimental data. Expert performance was good to excellent for all the cases evaluated. Substituents on the functional groups were found to exert important secondary control over the fragmentation, with the main effect observed being product ion stabilization by aromatic substitution, which was consistent across the different groups evaluated. These substituent effects are generally explicable in terms of standard physical organic chemistry considerations of product ion stability as controlling fragmentation. A somewhat unexpected feature was the incidence of homolytic cleavages, driven by the stability of substituted amine radical cations. The findings of this study are intended to lay the groundwork for machine learning approaches to performing MS/MS spectrum → structure and structure → MS/MS spectrum operations on the same experimental data set. The effort involved and the success achieved in computer-aided interpretation, now underway, will be compared with the expert performance as described here.
Collapse
Affiliation(s)
- MyPhuong T Le
- Department of Chemistry and Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nicolás M Morato
- Department of Chemistry and Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andreas Kaerner
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Christopher J Welch
- Indiana Consortium for Analytical Science and Engineering (ICASE), Indianapolis, Indiana 46202, United States
| | - R Graham Cooks
- Department of Chemistry and Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
97
|
Md Idris MH, Mohd Amin SN, Mohd Amin SN, Wibowo A, Zakaria ZA, Shaameri Z, Hamzah AS, Selvaraj M, Teh LK, Salleh MZ. Discovery of polymethoxyflavones as potential cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX) and phosphodiesterase 4B (PDE4B) inhibitors. J Recept Signal Transduct Res 2021; 42:325-337. [PMID: 34323638 DOI: 10.1080/10799893.2021.1951756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely prescribed to treat inflammatory-related diseases, pain and fever. However, the prolong use of traditional NSAIDs leads to undesirable side effects such as gastric, ulceration, and renal toxicity due to lack of selectivity toward respective targets for COX-2, 5-LOX, and PDE4B. Thus, targeting multiple sites can reduce these adverse effects of the drugs and increase its potency. A series of methoxyflavones (F1-F5) were synthesized and investigated for their anti-inflammatory properties through molecular docking and inhibition assays. Among these flavones, only F2 exhibited selectivity toward COX-2 (Selectivity Index, SI: 3.90, COX-2 inhibition: 98.96 ± 1.47%) in comparison with celecoxib (SI: 7.54, COX-2 inhibition: 98.20 ± 2.55%). For PDEs, F3 possessed better selectivity to PDE4B (SI: 4.67) than rolipram (SI: 0.78). F5 had the best 5-LOX inhibitory activity among the flavones (33.65 ± 4.74%) but less than zileuton (90.81 ± 0.19%). Docking analysis indicated that the position of methoxy group and the substitution of halogen play role in determining the bioactivities of flavones. Interestingly, F1-F5 displayed favorable pharmacokinetic profiles and acceptable range of toxicity (IC50>70 µM) in cell lines with the exception for F1 (IC50: 16.02 ± 1.165 µM). This study generated valuable insight in designing new anti-inflammatory drug based on flavone scaffold. The newly synthesized flavones can be further developed as future therapeutic agents against inflammation.
Collapse
Affiliation(s)
- Muhd Hanis Md Idris
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam Campus, Selangor, Malaysia
| | - Siti Norhidayah Mohd Amin
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam Campus, Selangor, Malaysia
| | - Siti Norhidayu Mohd Amin
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam Campus, Selangor, Malaysia
| | - Agustono Wibowo
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM) Pahang Branch, Jengka Campus, Pahang, Malaysia
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Zurina Shaameri
- Organic Synthesis Laboratory, Institute of Science (IOS), Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam Campus, Selangor, Malaysia
| | - Ahmad Sazali Hamzah
- Organic Synthesis Laboratory, Institute of Science (IOS), Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam Campus, Selangor, Malaysia
| | - Manikandan Selvaraj
- School of Engineering, Monash University (Malaysia Campus), Bandar Sunway, Malaysia
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam Campus, Selangor, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam Campus, Selangor, Malaysia
| |
Collapse
|
98
|
Romero E, Jones BS, Hogg BN, Rué Casamajo A, Hayes MA, Flitsch SL, Turner NJ, Schnepel C. Enzymkatalysierte späte Modifizierungen: Besser spät als nie. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:16962-16993. [PMID: 38505660 PMCID: PMC10946893 DOI: 10.1002/ange.202014931] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/15/2021] [Indexed: 03/21/2024]
Abstract
AbstractDie Enzymkatalyse gewinnt zunehmend an Bedeutung in der Synthesechemie. Die durch Bioinformatik und Enzym‐Engineering stetig wachsende Zahl von Biokatalysatoren eröffnet eine große Vielfalt selektiver Reaktionen. Insbesondere für späte Funktionalisierungsreaktionen ist die Biokatalyse ein geeignetes Werkzeug, das oftmals der konventionellen De‐novo‐Synthese überlegen ist. Enzyme haben sich als nützlich erwiesen, um funktionelle Gruppen direkt in komplexe Molekülgerüste einzuführen sowie für die rasche Diversifizierung von Substanzbibliotheken. Biokatalytische Oxyfunktionalisierungen, Halogenierungen, Methylierungen, Reduktionen und Amidierungen sind von besonderem Interesse, da diese Strukturmotive häufig in Pharmazeutika vertreten sind. Dieser Aufsatz gibt einen Überblick über die Stärken und Schwächen der enzymkatalysierten späten Modifizierungen durch native und optimierte Enzyme in der Synthesechemie. Ebenso werden wichtige Beispiele in der Wirkstoffentwicklung hervorgehoben.
Collapse
Affiliation(s)
- Elvira Romero
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGötheborgSchweden
| | - Bethan S. Jones
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Bethany N. Hogg
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Arnau Rué Casamajo
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGötheborgSchweden
| | - Sabine L. Flitsch
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Nicholas J. Turner
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Christian Schnepel
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| |
Collapse
|
99
|
Romero E, Jones BS, Hogg BN, Rué Casamajo A, Hayes MA, Flitsch SL, Turner NJ, Schnepel C. Enzymatic Late-Stage Modifications: Better Late Than Never. Angew Chem Int Ed Engl 2021; 60:16824-16855. [PMID: 33453143 PMCID: PMC8359417 DOI: 10.1002/anie.202014931] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/15/2021] [Indexed: 12/16/2022]
Abstract
Enzyme catalysis is gaining increasing importance in synthetic chemistry. Nowadays, the growing number of biocatalysts accessible by means of bioinformatics and enzyme engineering opens up an immense variety of selective reactions. Biocatalysis especially provides excellent opportunities for late-stage modification often superior to conventional de novo synthesis. Enzymes have proven to be useful for direct introduction of functional groups into complex scaffolds, as well as for rapid diversification of compound libraries. Particularly important and highly topical are enzyme-catalysed oxyfunctionalisations, halogenations, methylations, reductions, and amide bond formations due to the high prevalence of these motifs in pharmaceuticals. This Review gives an overview of the strengths and limitations of enzymatic late-stage modifications using native and engineered enzymes in synthesis while focusing on important examples in drug development.
Collapse
Affiliation(s)
- Elvira Romero
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Bethan S. Jones
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Bethany N. Hogg
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Arnau Rué Casamajo
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Sabine L. Flitsch
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Nicholas J. Turner
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Christian Schnepel
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| |
Collapse
|
100
|
Rudbari HA, Saadati A, Aryaeifar M, Correia I, Marques F, Blacque O, Micale N. Cytotoxic oxidovanadium(IV) complexes of tridentate halogen-substituted Schiff bases: First dinuclear V(IV) complexes with O → V IV = O → V IV = O core. Bioorg Med Chem Lett 2021; 49:128285. [PMID: 34303813 DOI: 10.1016/j.bmcl.2021.128285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/26/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
The reaction of potentially N,N,O-tridentate Schiff base ligands, Cl-LH, Br-LH, BrCl-LH and H-LH, with [VIVO(acac)2] in 2:1 ratio in methanol gave the corresponding mononuclear and dinuclear oxidovanadium(IV) complexes, VO(Cl-L)2 (1), VO(Br-L)2 (2), [(BrCl-L)2(H2O)V(μ-O)VO(BrCl-L)2] (3) and [(H-L)2(H2O)V(μ -O)VO(H-L)2] (4), in good yields. The ligands and complexes were fully characterized by elemental analysis and FT-IR spectroscopy. The ligands were also characterized by 1H NMR spectroscopy. The oxidation state of V(IV)O with d1 configuration in all synthesized complexes was confirmed by EPR. Moreover, the structures of 2 and 3 were determined by X-ray diffraction (XRD) analysis which revealed them as mono- and dinuclear vanadium(IV) complexes, respectively, with the ligands coordinated as bidentate chelates. The structure of 3 represents the first example of dinuclear V(IV) complex with O → VIV = O → VIV = O core (Cambridge Structural Database (CSD), version 5.42, update of May 2021). The cytotoxicity of ligands and complexes was evaluated towards ovarian (A2780), breast (MCF7) and prostate (PC3) cancer cells at 48 h. While ligands showed modest IC50 values (>42 μM), all complexes turned out to be effective in the range 3.9-17.2 μM. In particular, A2780 and MCF7 cell lines were the most sensitive to the newly synthesized V(IV)O complexes.
Collapse
Affiliation(s)
- Hadi Amiri Rudbari
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Arezoo Saadati
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Mahnaz Aryaeifar
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Isabel Correia
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, I-98166 Messina, Italy
| |
Collapse
|