51
|
Nalam MN, Ali A, Reddy GKK, Cao H, Anjum SG, Altman MD, Yilmaz NK, Tidor B, Rana TM, Schiffer CA. Substrate envelope-designed potent HIV-1 protease inhibitors to avoid drug resistance. CHEMISTRY & BIOLOGY 2013; 20:1116-24. [PMID: 24012370 PMCID: PMC3934494 DOI: 10.1016/j.chembiol.2013.07.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/12/2013] [Accepted: 07/23/2013] [Indexed: 01/07/2023]
Abstract
The rapid evolution of HIV under selective drug pressure has led to multidrug resistant (MDR) strains that evade standard therapies. We designed highly potent HIV-1 protease inhibitors (PIs) using the substrate envelope model, which confines inhibitors within the consensus volume of natural substrates, providing inhibitors less susceptible to resistance because a mutation affecting such inhibitors will simultaneously affect viral substrate processing. The designed PIs share a common chemical scaffold but utilize various moieties that optimally fill the substrate envelope, as confirmed by crystal structures. The designed PIs retain robust binding to MDR protease variants and display exceptional antiviral potencies against different clades of HIV as well as a panel of 12 drug-resistant viral strains. The substrate envelope model proves to be a powerful strategy to develop potent and robust inhibitors that avoid drug resistance.
Collapse
Affiliation(s)
- Madhavi N.L. Nalam
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Medical School, Worcester, Massachusetts 01605, United States
| | - Akbar Ali
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Medical School, Worcester, Massachusetts 01605, United States
| | - G.S. Kiran Kumar Reddy
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Medical School, Worcester, Massachusetts 01605, United States
| | - Hong Cao
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Medical School, Worcester, Massachusetts 01605, United States
| | - Saima G. Anjum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Medical School, Worcester, Massachusetts 01605, United States
| | - Michael D. Altman
- Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Medical School, Worcester, Massachusetts 01605, United States
| | - Bruce Tidor
- Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Corresponding Authors: Bruce Tidor: Phone: +1 (617) 253-7258, , Tariq M. Rana: Phone: +1 (858)795-5325, , Celia A. Schiffer: Phone: +1 (508) 856-8008,
| | - Tariq M. Rana
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Medical School, Worcester, Massachusetts 01605, United States
- Corresponding Authors: Bruce Tidor: Phone: +1 (617) 253-7258, , Tariq M. Rana: Phone: +1 (858)795-5325, , Celia A. Schiffer: Phone: +1 (508) 856-8008,
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Medical School, Worcester, Massachusetts 01605, United States
- Corresponding Authors: Bruce Tidor: Phone: +1 (617) 253-7258, , Tariq M. Rana: Phone: +1 (858)795-5325, , Celia A. Schiffer: Phone: +1 (508) 856-8008,
| |
Collapse
|
52
|
Silver NW, King BM, Nalam MNL, Cao H, Ali A, Kiran Kumar Reddy GS, Rana TM, Schiffer CA, Tidor B. Efficient Computation of Small-Molecule Configurational Binding Entropy and Free Energy Changes by Ensemble Enumeration. J Chem Theory Comput 2013; 9:5098-5115. [PMID: 24250277 PMCID: PMC3827837 DOI: 10.1021/ct400383v] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Indexed: 01/02/2023]
Abstract
![]()
Here
we present a novel, end-point method using the dead-end-elimination
and A* algorithms to efficiently and accurately calculate the change
in free energy, enthalpy, and configurational entropy of binding for
ligand–receptor association reactions. We apply the new approach
to the binding of a series of human immunodeficiency virus (HIV-1)
protease inhibitors to examine the effect ensemble reranking has on
relative accuracy as well as to evaluate the role of the absolute
and relative ligand configurational entropy losses upon binding in
affinity differences for structurally related inhibitors. Our results
suggest that most thermodynamic parameters can be estimated using
only a small fraction of the full configurational space, and we see
significant improvement in relative accuracy when using an ensemble
versus single-conformer approach to ligand ranking. We also find that
using approximate metrics based on the single-conformation enthalpy
differences between the global minimum energy configuration in the
bound as well as unbound states also correlates well with experiment.
Using a novel, additive entropy expansion based on conditional mutual
information, we also analyze the source of ligand configurational
entropy loss upon binding in terms of both uncoupled per degree of
freedom losses as well as changes in coupling between inhibitor degrees
of freedom. We estimate entropic free energy losses of approximately
+24 kcal/mol, 12 kcal/mol of which stems from loss of translational
and rotational entropy. Coupling effects contribute only a small fraction
to the overall entropy change (1–2 kcal/mol) but suggest differences
in how inhibitor dihedral angles couple to each other in the bound
versus unbound states. The importance of accounting for flexibility
in drug optimization and design is also discussed.
Collapse
Affiliation(s)
- Nathaniel W Silver
- Department of Chemistry and Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Xue W, Ban Y, Liu H, Yao X. Computational study on the drug resistance mechanism against HCV NS3/4A protease inhibitors vaniprevir and MK-5172 by the combination use of molecular dynamics simulation, residue interaction network, and substrate envelope analysis. J Chem Inf Model 2013; 54:621-33. [PMID: 23745769 DOI: 10.1021/ci400060j] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hepatitis C virus (HCV) NS3/4A protease is an important and attractive target for anti-HCV drug development and discovery. Vaniprevir (phase III clinical trials) and MK-5172 (phase II clinical trials) are two potent antiviral compounds that target NS3/4A protease. However, the emergence of resistance to these two inhibitors reduced the effectiveness of vaniprevir and MK-5172 against viral replication. Among the drug resistance mutations, three single-site mutations at residues Arg155, Ala156, and Asp168 in NS3/4A protease are especially important due to their resistance to nearly all inhibitors in clinical development. A detailed understanding of drug resistance mechanism to vaniprevir and MK-5172 is therefore very crucial for the design of novel potent agents targeting viral variants. In this work, molecular dynamics (MD) simulation, binding free energy calculation, free energy decomposition, residue interaction network (RIN), and substrate envelope analysis were used to study the detailed drug resistance mechanism of the three mutants R155K, A156T, and D168A to vaniprevir and MK-5172. MD simulation was used to investigate the binding mode for these two inhibitors to wild-type and resistant mutants of HCV NS3/4A protease. Binding free energy calculation and free energy decomposition analysis reveal that drug resistance mutations reduced the interactions between the active site residues and substituent in the P2 to P4 linker of vaniprevir and MK-5172. Furthermore, RIN and substrate envelope analysis indicate that the studied mutations of the residues are located outside the substrate (4B5A) binding site and selectively decrease the affinity of inhibitors but not the activity of the enzyme and consequently help NS3/4A protease escape from the effect of the inhibitors without influencing the affinity of substrate binding. These findings can provide useful information for understanding the drug resistance mechanism against vaniprevir and MK-5172. The results can also provide some potential clues for further design of novel inhibitors that are less susceptible to drug resistance.
Collapse
Affiliation(s)
- Weiwei Xue
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University , Lanzhou 730000, China
| | | | | | | |
Collapse
|
54
|
Xiang Y, Dunetz JR, Lovdahl M. Chiral separation of amides using supercritical fluid chromatography. J Chromatogr A 2013; 1293:150-8. [DOI: 10.1016/j.chroma.2013.03.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 11/26/2022]
|
55
|
How conformational changes can affect catalysis, inhibition and drug resistance of enzymes with induced-fit binding mechanism such as the HIV-1 protease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:867-73. [PMID: 23376188 DOI: 10.1016/j.bbapap.2013.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/21/2013] [Accepted: 01/24/2013] [Indexed: 11/21/2022]
Abstract
A central question is how the conformational changes of proteins affect their function and the inhibition of this function by drug molecules. Many enzymes change from an open to a closed conformation upon binding of substrate or inhibitor molecules. These conformational changes have been suggested to follow an induced-fit mechanism in which the molecules first bind in the open conformation in those cases where binding in the closed conformation appears to be sterically obstructed such as for the HIV-1 protease. In this article, we present a general model for the catalysis and inhibition of enzymes with induced-fit binding mechanism. We derive general expressions that specify how the overall catalytic rate of the enzymes depends on the rates for binding, for the conformational changes, and for the chemical reaction. Based on these expressions, we analyze the effect of mutations that mainly shift the conformational equilibrium on catalysis and inhibition. If the overall catalytic rate is limited by product unbinding, we find that mutations that destabilize the closed conformation relative to the open conformation increase the catalytic rate in the presence of inhibitors by a factor exp(ΔΔGC/RT) where ΔΔGC is the mutation-induced shift of the free-energy difference between the conformations. This increase in the catalytic rate due to changes in the conformational equilibrium is independent of the inhibitor molecule and, thus, may help to understand how non-active-site mutations can contribute to the multi-drug-resistance that has been observed for the HIV-1 protease. A comparison to experimental data for the non-active-site mutation L90M of the HIV-1 protease indicates that the mutation slightly destabilizes the closed conformation of the enzyme. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.
Collapse
|
56
|
Ding B, Wang J, Li N, Wang W. Characterization of small molecule binding. I. Accurate identification of strong inhibitors in virtual screening. J Chem Inf Model 2013; 53:114-22. [PMID: 23259763 DOI: 10.1021/ci300508m] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Accurately ranking docking poses remains a great challenge in computer-aided drug design. In this study, we present an integrated approach called MIEC-SVM that combines structure modeling and statistical learning to characterize protein-ligand binding based on the complex structure generated from docking. Using the HIV-1 protease as a model system, we showed that MIEC-SVM can successfully rank the docking poses and consistently outperformed the state-of-art scoring functions when the true positives only account for 1% or 0.5% of all the compounds under consideration. More excitingly, we found that MIEC-SVM can achieve a significant enrichment in virtual screening even when trained on a set of known inhibitors as small as 50, especially when enhanced by a model average approach. Given these features of MIEC-SVM, we believe it provides a powerful tool for searching for and designing new drugs.
Collapse
Affiliation(s)
- Bo Ding
- Department of Chemistry and Biochemistry, UCSD, La Jolla, California 92093-0359, USA
| | | | | | | |
Collapse
|
57
|
Abstract
Viral diseases are leading cause of deaths worldwide as WHO report suggests that hepatitis A virus (HAV) infects more than 80 % of the population of many developing countries. Viral hepatitis B (HBV) affects an estimated 360 million people, whereas hepatitis C affects 123 million people worldwide, and last but not least, at current, India has an HIV/AIDS population of approximately 2.4 million people and more than 30 million in whole world and now it has become a reason for 1.8 million death globally; thus, millions of people still struggle for their lives. The progress in medical science has made it possible in overcoming the various fatal diseases such as small pox, chicken pox, dengue, etc., but human immunodeficiency viruses, influenza, and hepatitis virus have renewed challenge surprisingly. The obstacles and challenges in therapy include existence of antibiotic resistance strains of common organisms due to overuse of antibiotics, lack of vaccines, adverse drug reaction, and last but not least the susceptibility concerns. Emergence of pharmacogenomics and pharmacogenetics has shown some promises to take challenges. The discovery of human genome project has opened new vistas to understand the behaviors of genetic makeup in development and progression of diseases and treatment in various viral diseases. Current and previous decade have been engaged in making repositories of polymorphisms (SNPs) of various genes including drug-metabolizing enzymes, receptors, inflammatory cells related with immunity, and antigen-presenting cells, along with the prediction of risks. The genetic makeup alone is most likely an adequate way to handle the therapeutic decision-making process for previous regimen failure. With the introduction of new antiviral therapeutic agents, a significant improvement in progression and overall survival has been achieved, but these drugs have shown several adverse responses in some individuals, so the success is not up to the expectations. Research and acquisition of new knowledge of pharmacogenomics may help in overcoming the prevailing burden of viral diseases. So it will definitely help in selecting the most effective therapeutic agents, effective doses, and drug response for the individuals. Thus, it will be able to transform the laboratory research into the clinical bench side and will also help in understanding the pathogenesis of viral diseases with drug action, so the patients will be managed more properly and finally become able to fulfill the promise of the future.
Collapse
Affiliation(s)
- Debmalya Barh
- Centre for Genomics & Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Purba Medinipur, West Bengal India
| | - Dipali Dhawan
- Institute of Life Sciences, B.V. Patel Pharmaceutical Education and Research Development Centre, Ahmedabad University, Ahmedabad, Gujarat India
| | - Nirmal Kumar Ganguly
- Policy Centre for Biomedical Research, Translational Health Science and Technology Institute (Department of Biotechnology Institute, Government of India), Office @ National Institute of Immunology, New Delhi, India
| |
Collapse
|
58
|
Shen Y, Gilson MK, Tidor B. Charge Optimization Theory for Induced-Fit Ligands. J Chem Theory Comput 2012; 8:4580-4592. [PMID: 23162383 PMCID: PMC3496346 DOI: 10.1021/ct200931c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Indexed: 11/29/2022]
Abstract
The design of ligands with high affinity and specificity remains a fundamental challenge in understanding molecular recognition and developing therapeutic interventions. Charge optimization theory addresses this problem by determining ligand charge distributions that produce the most favorable electrostatic contribution to the binding free energy. The theory has been applied to the design of binding specificity as well. However, the formulations described only treat a rigid ligand-one that does not change conformation upon binding. Here, we extend the theory to treat induced-fit ligands for which the unbound ligand conformation may differ from the bound conformation. We develop a thermodynamic pathway analysis for binding contributions relevant to the theory, and we illustrate application of the theory using HIV-1 protease with our previously designed and validated subnanomolar inhibitor. Direct application of rigid charge optimization approaches to nonrigid cases leads to very favorable intramolecular electrostatic interactions that are physically unreasonable, and analysis shows the ligand charge distribution massively stabilizes the preconformed (bound) conformation over the unbound. After analyzing this case, we provide a treatment for the induced-fit ligand charge optimization problem that produces physically realistic results. The key factor is introducing the constraint that the free energy of the unbound ligand conformation be lower or equal to that of the preconformed ligand structure, which corresponds to the notion that the unbound structure is the ground unbound state. Results not only demonstrate the applicability of this methodology to discovering optimized charge distributions in an induced-fit model, but also provide some insights into the energetic consequences of ligand conformational change on binding. Specifically, the results show that, from an electrostatic perspective, induced-fit binding is not an adaptation designed to enhance binding affinity; at best, it can only achieve the same affinity as optimized rigid binding.
Collapse
Affiliation(s)
- Yang Shen
- Department of Biological
Engineering, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- Computer Science
and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| | - Michael K. Gilson
- Skaggs School of Pharmacy, University of
California San Diego,
La Jolla, California 92093, United States
| | - Bruce Tidor
- Department of Biological
Engineering, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- Computer Science
and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
- Department of Electrical
Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139,
United States
| |
Collapse
|
59
|
Hall BA, Wright DW, Jha S, Coveney PV. Quantized water access to the HIV-1 protease active site as a proposed mechanism for cooperative mutations in drug affinity. Biochemistry 2012; 51:6487-9. [PMID: 22866962 DOI: 10.1021/bi300432u] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of resistance to different drugs remains a major problem for a wide range of infections. In particular, combinations of specific mutations, which individually demonstrate no effect, exhibit significant cooperativity. Here we show that changes to the energy of ligand binding in different resistant HIV-1 proteases are correlated with the creation of water binding sites in the active site. This correlation is conserved across two drugs (ritonavir and lopinavir). We propose that individual mutations induce changes in flap packing that are insufficient to allow water binding but in combination allow access, leading to the observed cooperative resistance.
Collapse
Affiliation(s)
- Benjamin A Hall
- Centre for Computational Science, Department of Chemistry, UCL, London, UK
| | | | | | | |
Collapse
|
60
|
Parai MK, Huggins DJ, Cao H, Nalam MNL, Ali A, Schiffer CA, Tidor B, Rana TM. Design, synthesis, and biological and structural evaluations of novel HIV-1 protease inhibitors to combat drug resistance. J Med Chem 2012; 55:6328-41. [PMID: 22708897 PMCID: PMC3409094 DOI: 10.1021/jm300238h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of new HIV-1 protease inhibitors (PIs) were designed using a general strategy that combines computational structure-based design with substrate-envelope constraints. The PIs incorporate various alcohol-derived P2 carbamates with acyclic and cyclic heteroatomic functionalities into the (R)-hydroxyethylamine isostere. Most of the new PIs show potent binding affinities against wild-type HIV-1 protease and three multidrug resistant (MDR) variants. In particular, inhibitors containing the 2,2-dichloroacetamide, pyrrolidinone, imidazolidinone, and oxazolidinone moieties at P2 are the most potent with K(i) values in the picomolar range. Several new PIs exhibit nanomolar antiviral potencies against patient-derived wild-type viruses from HIV-1 clades A, B, and C and two MDR variants. Crystal structure analyses of four potent inhibitors revealed that carbonyl groups of the new P2 moieties promote extensive hydrogen bond interactions with the invariant Asp29 residue of the protease. These structure-activity relationship findings can be utilized to design new PIs with enhanced enzyme inhibitory and antiviral potencies.
Collapse
Affiliation(s)
- Maloy Kumar Parai
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - David J. Huggins
- Department of Biological Engineering and Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Hong Cao
- Chemical Biology Program, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Madhavi N. L. Nalam
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Akbar Ali
- Chemical Biology Program, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Bruce Tidor
- Department of Biological Engineering and Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Tariq M. Rana
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
- Chemical Biology Program, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
61
|
Designing electrostatic interactions in biological systems via charge optimization or combinatorial approaches: insights and challenges with a continuum electrostatic framework. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1252-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
62
|
Bhattacharya AK, Rana KC, Pannecouque C, De Clercq E. An Efficient Synthesis of a Hydroxyethylamine (HEA) Isostere and Its α-Aminophosphonate and Phosphoramidate Derivatives as Potential Anti-HIV Agents. ChemMedChem 2012; 7:1601-11. [DOI: 10.1002/cmdc.201200271] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/12/2012] [Indexed: 11/09/2022]
|
63
|
Safi M, Lilien RH. Efficient a Priori Identification of Drug Resistant Mutations Using Dead-End Elimination and MM-PBSA. J Chem Inf Model 2012; 52:1529-41. [DOI: 10.1021/ci200626m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Maria Safi
- Department of Computer Science, University of Toronto,
Toronto, Ontario M5S 3G4, Canada
| | - Ryan H. Lilien
- Department of Computer Science, University of Toronto,
Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
64
|
Chiummiento L, Funicello M, Lupattelli P, Tramutola F, Berti F, Marino-Merlo F. Synthesis and biological evaluation of novel small non-peptidic HIV-1 PIs: The benzothiophene ring as an effective moiety. Bioorg Med Chem Lett 2012; 22:2948-50. [DOI: 10.1016/j.bmcl.2012.02.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/10/2012] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
|
65
|
King BM, Silver NW, Tidor B. Efficient calculation of molecular configurational entropies using an information theoretic approximation. J Phys Chem B 2012; 116:2891-904. [PMID: 22229789 PMCID: PMC3465721 DOI: 10.1021/jp2068123] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accurate computation of free energy changes upon molecular binding remains a challenging problem, and changes in configurational entropy are especially difficult due to the potentially large numbers of local minima, anharmonicity, and high-order coupling among degrees of freedom. Here we propose a new method to compute molecular entropies based on the maximum information spanning tree (MIST) approximation that we have previously developed. Estimates of high-order couplings using only low-order terms provide excellent convergence properties, and the theory is also guaranteed to bound the entropy. The theory is presented together with applications to the calculation of the entropies of a variety of small molecules and the binding entropy change for a series of HIV protease inhibitors. The MIST framework developed here is demonstrated to compare favorably with results computed using the related mutual information expansion (MIE) approach, and an analysis of similarities between the methods is presented.
Collapse
Affiliation(s)
- Bracken M. King
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - Nathaniel W. Silver
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - Bruce Tidor
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| |
Collapse
|
66
|
Affiliation(s)
- David J Huggins
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom.
| | | | | |
Collapse
|
67
|
Huggins DJ, Tidor B. Systematic placement of structural water molecules for improved scoring of protein-ligand interactions. Protein Eng Des Sel 2011; 24:777-89. [PMID: 21771870 PMCID: PMC3170077 DOI: 10.1093/protein/gzr036] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 06/03/2011] [Accepted: 06/15/2011] [Indexed: 11/13/2022] Open
Abstract
Structural water molecules are found in many protein-ligand complexes. They are known to be vital in mediating hydrogen-bonding interactions and, in some cases, key for facilitating tight binding. It is thus very important to consider water molecules when attempting to model protein-ligand interactions for cognate ligand identification, virtual screening and drug design. While the rigid treatment of water molecules present in structures is feasible, the more relevant task of treating all possible positions and orientations of water molecules with each possible ligand pose is computationally daunting. Current methods in molecular docking provide partial treatment for such water molecules, with modest success. Here we describe a new method employing dead-end elimination to place water molecules within a binding site, bridging interactions between protein and ligand. Dead-end elimination permits a thorough, though still incomplete, treatment of water placement. The results show that this method is able to place water molecules correctly within known complexes and to create physically reasonable hydrogen bonds. The approach has also been incorporated within an inverse molecular design approach, to model a variety of compounds in the process of de novo ligand design. The inclusion of structural water molecules, combined with ranking based on the electrostatic contribution to binding affinity, improves a number of otherwise poor energetic predictions.
Collapse
Affiliation(s)
- David J. Huggins
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139–4307, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139–4307, USA
| | - Bruce Tidor
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139–4307, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139–4307, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139–4307, USA
| |
Collapse
|
68
|
Ozen A, Haliloğlu T, Schiffer CA. Dynamics of preferential substrate recognition in HIV-1 protease: redefining the substrate envelope. J Mol Biol 2011; 410:726-44. [PMID: 21762811 DOI: 10.1016/j.jmb.2011.03.053] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 03/21/2011] [Accepted: 03/24/2011] [Indexed: 11/27/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) protease (PR) permits viral maturation by processing the gag and gag-pro-pol polyproteins. HIV-1 PR inhibitors (PIs) are used in combination antiviral therapy but the emergence of drug resistance has limited their efficacy. The rapid evolution of HIV-1 necessitates consideration of drug resistance in novel drug design. Drug-resistant HIV-1 PR variants no longer inhibited efficiently, continue to hydrolyze the natural viral substrates. Though highly diverse in sequence, the HIV-1 PR substrates bind in a conserved three-dimensional shape we termed the substrate envelope. Earlier, we showed that resistance mutations arise where PIs protrude beyond the substrate envelope, because these regions are crucial for drug binding but not for substrate recognition. We extend this model by considering the role of protein dynamics in the interaction of HIV-1 PR with its substrates. We simulated the molecular dynamics of seven PR-substrate complexes to estimate the conformational flexibility of the bound substrates. Interdependence of substrate-protease interactions might compensate for variations in cleavage-site sequences and explain how a diverse set of sequences are recognized as substrates by the same enzyme. This diversity might be essential for regulating sequential processing of substrates. We define a dynamic substrate envelope as a more accurate representation of PR-substrate interactions. This dynamic substrate envelope, described by a probability distribution function, is a powerful tool for drug design efforts targeting ensembles of resistant HIV-1 PR variants with the aim of developing drugs that are less susceptible to resistance.
Collapse
Affiliation(s)
- Ayşegül Ozen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
69
|
Lévesque F, Seeberger PH. Highly efficient continuous flow reactions using singlet oxygen as a "green" reagent. Org Lett 2011; 13:5008-11. [PMID: 21879739 DOI: 10.1021/ol2017643] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Described is a new method for the efficient in situ production of singlet oxygen in a simple continuous flow photochemical reactor. The extremely large interfacial area generated by running the biphasic mixture in a narrow channel at a high flow rate ensures high throughput as well as fast and efficient oxidation of various alkenes, 1,3-dienes, and thioethers on a preparative scale.
Collapse
Affiliation(s)
- François Lévesque
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany
| | | |
Collapse
|
70
|
Abstract
Under drug selection pressure, emerging mutations render HIV-1 protease drug resistant, leading to the therapy failure in anti-HIV treatment. It is known that nine substrate cleavage site peptides bind to wild type (WT) HIV-1 protease in a conserved pattern. However, how the multidrug-resistant (MDR) HIV-1 protease binds to the substrate cleavage site peptides is yet to be determined. MDR769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, and 90) was selected for present study to understand the binding to its natural substrates. MDR769 HIV-1 protease was co-crystallized with nine substrate cleavage site hepta-peptides. Crystallographic studies show that MDR769 HIV-1 protease has an expanded substrate envelope with wide open flaps. Furthermore, ligand binding energy calculations indicate weaker binding in MDR769 HIV-1 protease-substrate complexes. These results help in designing the next generation of HIV-1 protease inhibitors by targeting the MDR HIV-1 protease.
Collapse
|
71
|
Anderson AC, Pollastri MP, Schiffer CA, Peet NP. The challenge of developing robust drugs to overcome resistance. Drug Discov Today 2011; 16:755-61. [PMID: 21784168 DOI: 10.1016/j.drudis.2011.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 06/02/2011] [Accepted: 07/04/2011] [Indexed: 11/29/2022]
Abstract
Drug resistance is problematic in microbial disease, viral disease and cancer. Understanding at the outset that resistance will impact the effectiveness of any new drug that is developed for these disease categories is imperative. In this Feature, we detail approaches that have been taken with selected drug targets to reduce the susceptibility of new drugs to resistance mechanisms. We will also define the concepts of robust drugs and resilient targets, and discuss how the design of robust drugs and the selection of resilient targets can lead to successful strategies for combating resistance.
Collapse
Affiliation(s)
- Amy C Anderson
- Institute for Drug Resistance, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA
| | | | | | | |
Collapse
|
72
|
Drug resistance against HCV NS3/4A inhibitors is defined by the balance of substrate recognition versus inhibitor binding. Proc Natl Acad Sci U S A 2010; 107:20986-91. [PMID: 21084633 DOI: 10.1073/pnas.1006370107] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hepatitis C virus infects an estimated 180 million people worldwide, prompting enormous efforts to develop inhibitors targeting the essential NS3/4A protease. Resistance against the most promising protease inhibitors, telaprevir, boceprevir, and ITMN-191, has emerged in clinical trials. In this study, crystal structures of the NS3/4A protease domain reveal that viral substrates bind to the protease active site in a conserved manner defining a consensus volume, or substrate envelope. Mutations that confer the most severe resistance in the clinic occur where the inhibitors protrude from the substrate envelope, as these changes selectively weaken inhibitor binding without compromising the binding of substrates. These findings suggest a general model for predicting the susceptibility of protease inhibitors to resistance: drugs designed to fit within the substrate envelope will be less susceptible to resistance, as mutations affecting inhibitor binding would simultaneously interfere with the recognition of viral substrates.
Collapse
|
73
|
Ali A, Bandaranayake RM, Cai Y, King NM, Kolli M, Mittal S, Murzycki JF, Nalam MN, Nalivaika EA, Özen A, Prabu-Jeyabalan MM, Thayer K, Schiffer CA. Molecular Basis for Drug Resistance in HIV-1 Protease. Viruses 2010; 2:2509-2535. [PMID: 21994628 PMCID: PMC3185577 DOI: 10.3390/v2112509] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 10/22/2010] [Accepted: 10/28/2010] [Indexed: 02/01/2023] Open
Abstract
HIV-1 protease is one of the major antiviral targets in the treatment of patients infected with HIV-1. The nine FDA approved HIV-1 protease inhibitors were developed with extensive use of structure-based drug design, thus the atomic details of how the inhibitors bind are well characterized. From this structural understanding the molecular basis for drug resistance in HIV-1 protease can be elucidated. Selected mutations in response to therapy and diversity between clades in HIV-1 protease have altered the shape of the active site, potentially altered the dynamics and even altered the sequence of the cleavage sites in the Gag polyprotein. All of these interdependent changes act in synergy to confer drug resistance while simultaneously maintaining the fitness of the virus. New strategies, such as incorporation of the substrate envelope constraint to design robust inhibitors that incorporate details of HIV-1 protease’s function and decrease the probability of drug resistance, are necessary to continue to effectively target this key protein in HIV-1 life cycle.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; E-Mails: (A.A.); (R.M.B.); (Y.C.); (N.M.K.); (M.K.); (S.M.), (M.N.L.N.); (E.A.N.); (A.Ö.); (K.T.)
| | - Rajintha M. Bandaranayake
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; E-Mails: (A.A.); (R.M.B.); (Y.C.); (N.M.K.); (M.K.); (S.M.), (M.N.L.N.); (E.A.N.); (A.Ö.); (K.T.)
| | - Yufeng Cai
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; E-Mails: (A.A.); (R.M.B.); (Y.C.); (N.M.K.); (M.K.); (S.M.), (M.N.L.N.); (E.A.N.); (A.Ö.); (K.T.)
| | - Nancy M. King
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; E-Mails: (A.A.); (R.M.B.); (Y.C.); (N.M.K.); (M.K.); (S.M.), (M.N.L.N.); (E.A.N.); (A.Ö.); (K.T.)
| | - Madhavi Kolli
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; E-Mails: (A.A.); (R.M.B.); (Y.C.); (N.M.K.); (M.K.); (S.M.), (M.N.L.N.); (E.A.N.); (A.Ö.); (K.T.)
| | - Seema Mittal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; E-Mails: (A.A.); (R.M.B.); (Y.C.); (N.M.K.); (M.K.); (S.M.), (M.N.L.N.); (E.A.N.); (A.Ö.); (K.T.)
| | - Jennifer F. Murzycki
- Department of Pediatrics, University of Rochester, Rochester, NY 14627, USA; E-Mail:
| | - Madhavi N.L. Nalam
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; E-Mails: (A.A.); (R.M.B.); (Y.C.); (N.M.K.); (M.K.); (S.M.), (M.N.L.N.); (E.A.N.); (A.Ö.); (K.T.)
| | - Ellen A. Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; E-Mails: (A.A.); (R.M.B.); (Y.C.); (N.M.K.); (M.K.); (S.M.), (M.N.L.N.); (E.A.N.); (A.Ö.); (K.T.)
| | - Ayşegül Özen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; E-Mails: (A.A.); (R.M.B.); (Y.C.); (N.M.K.); (M.K.); (S.M.), (M.N.L.N.); (E.A.N.); (A.Ö.); (K.T.)
| | - Moses M. Prabu-Jeyabalan
- Division of Basic Sciences, The Commonwealth Medical College, 150 N. Washington Avenue, Scranton, PA 18503, USA; E-Mail:
| | - Kelly Thayer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; E-Mails: (A.A.); (R.M.B.); (Y.C.); (N.M.K.); (M.K.); (S.M.), (M.N.L.N.); (E.A.N.); (A.Ö.); (K.T.)
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; E-Mails: (A.A.); (R.M.B.); (Y.C.); (N.M.K.); (M.K.); (S.M.), (M.N.L.N.); (E.A.N.); (A.Ö.); (K.T.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-508-856-8008; Fax: +1-508-856-6464
| |
Collapse
|
74
|
Ali A, Kiran Kumar Reddy GS, Nalam MNL, Anjum SG, Cao H, Schiffer CA, Rana TM. Structure-based design, synthesis, and structure-activity relationship studies of HIV-1 protease inhibitors incorporating phenyloxazolidinones. J Med Chem 2010; 53:7699-708. [PMID: 20958050 PMCID: PMC2996262 DOI: 10.1021/jm1008743] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of new HIV-1 protease inhibitors with the hydroxyethylamine core and different phenyloxazolidinone P2 ligands were designed and synthesized. Variation of phenyl substitutions at the P2 and P2' moieties significantly affected the binding affinity and antiviral potency of the inhibitors. In general, compounds with 2- and 4-substituted phenyloxazolidinones at P2 exhibited lower binding affinities than 3-substituted analogues. Crystal structure analyses of ligand-enzyme complexes revealed different binding modes for 2- and 3-substituted P2 moieties in the protease S2 binding pocket, which may explain their different binding affinities. Several compounds with 3-substituted P2 moieties demonstrated picomolar binding affinity and low nanomolar antiviral potency against patient-derived viruses from HIV-1 clades A, B, and C, and most retained potency against drug-resistant viruses. Further optimization of these compounds using structure-based design may lead to the development of novel protease inhibitors with improved activity against drug-resistant strains of HIV-1.
Collapse
Affiliation(s)
- Akbar Ali
- Chemical Biology Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - G. S. Kiran Kumar Reddy
- Chemical Biology Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Madhavi N. L. Nalam
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Saima Ghafoor Anjum
- Chemical Biology Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Hong Cao
- Chemical Biology Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Tariq M. Rana
- Chemical Biology Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
75
|
Raney KD, Sharma SD, Moustafa IM, Cameron CE. Hepatitis C virus non-structural protein 3 (HCV NS3): a multifunctional antiviral target. J Biol Chem 2010; 285:22725-31. [PMID: 20457607 PMCID: PMC2906261 DOI: 10.1074/jbc.r110.125294] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus non-structural protein 3 contains a serine protease and an RNA helicase. Protease cleaves the genome-encoded polyprotein and inactivates cellular proteins required for innate immunity. Protease has emerged as an important target for the development of antiviral therapeutics, but drug resistance has turned out to be an obstacle in the clinic. Helicase is required for both genome replication and virus assembly. Mechanistic and structural studies of helicase have hurled this enzyme into a prominent position in the field of helicase enzymology. Nevertheless, studies of helicase as an antiviral target remain in their infancy.
Collapse
Affiliation(s)
- Kevin D. Raney
- From the
Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 and
| | - Suresh D. Sharma
- the
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Ibrahim M. Moustafa
- the
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Craig E. Cameron
- the
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
76
|
Identification of structural mechanisms of HIV-1 protease specificity using computational peptide docking: implications for drug resistance. Structure 2010; 17:1636-1648. [PMID: 20004167 DOI: 10.1016/j.str.2009.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 10/01/2009] [Accepted: 10/04/2009] [Indexed: 11/23/2022]
Abstract
Drug-resistant mutations (DRMs) in HIV-1 protease are a major challenge to antiretroviral therapy. Protease-substrate interactions that are determined to be critical for native selectivity could serve as robust targets for drug design that are immune to DRMs. In order to identify the structural mechanisms of selectivity, we developed a peptide-docking algorithm to predict the atomic structure of protease-substrate complexes and applied it to a large and diverse set of cleavable and noncleavable peptides. Cleavable peptides showed significantly lower energies of interaction than noncleavable peptides with six protease active-site residues playing the most significant role in discrimination. Surprisingly, all six residues correspond to sequence positions associated with drug resistance mutations, demonstrating that the very residues that are responsible for native substrate specificity in HIV-1 protease are altered during its evolution to drug resistance, suggesting that drug resistance and substrate selectivity may share common mechanisms.
Collapse
|
77
|
Evaluating the substrate-envelope hypothesis: structural analysis of novel HIV-1 protease inhibitors designed to be robust against drug resistance. J Virol 2010; 84:5368-78. [PMID: 20237088 DOI: 10.1128/jvi.02531-09] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drug resistance mutations in HIV-1 protease selectively alter inhibitor binding without significantly affecting substrate recognition and cleavage. This alteration in molecular recognition led us to develop the substrate-envelope hypothesis which predicts that HIV-1 protease inhibitors that fit within the overlapping consensus volume of the substrates are less likely to be susceptible to drug-resistant mutations, as a mutation impacting such inhibitors would simultaneously impact the processing of substrates. To evaluate this hypothesis, over 130 HIV-1 protease inhibitors were designed and synthesized using three different approaches with and without substrate-envelope constraints. A subset of 16 representative inhibitors with binding affinities to wild-type protease ranging from 58 nM to 0.8 pM was chosen for crystallographic analysis. The inhibitor-protease complexes revealed that tightly binding inhibitors (at the picomolar level of affinity) appear to "lock" into the protease active site by forming hydrogen bonds to particular active-site residues. Both this hydrogen bonding pattern and subtle variations in protein-ligand van der Waals interactions distinguish nanomolar from picomolar inhibitors. In general, inhibitors that fit within the substrate envelope, regardless of whether they are picomolar or nanomolar, have flatter profiles with respect to drug-resistant protease variants than inhibitors that protrude beyond the substrate envelope; this provides a strong rationale for incorporating substrate-envelope constraints into structure-based design strategies to develop new HIV-1 protease inhibitors.
Collapse
|
78
|
Qin S, Minh DL, McCammon JA, Zhou HX. Method to Predict Crowding Effects by Postprocessing Molecular Dynamics Trajectories: Application to the Flap Dynamics of HIV-1 Protease. J Phys Chem Lett 2010; 1:107-110. [PMID: 20228897 PMCID: PMC2837415 DOI: 10.1021/jz900023w] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 11/03/2009] [Indexed: 05/06/2023]
Abstract
The internal dynamics of proteins inside of cells may be affected by the crowded intracellular environments. Here, we test a novel approach to simulations of crowding, in which simulations in the absence of crowders are postprocessed to predict crowding effects, against the direct approach of simulations in the presence of crowders. The effects of crowding on the flap dynamics of HIV-1 protease predicted by the postprocessing approach are found to agree well with those calculated by the direct approach. The postprocessing approach presents distinct advantages over the direct approach in terms of accuracy and speed and is expected to have broad impact on atomistic simulations of macromolecular crowding.
Collapse
Affiliation(s)
- Sanbo Qin
- Department of Physics and Institute
of Molecular Biophysics, Florida State University, Tallahassee, Florida
32306
| | - David
D. L. Minh
- Departments of Chemistry and
Biochemistry and of Pharmacology, Center for Theoretical Biological
Physics, and Howard Hughes Medical Institute, University of California
at San Diego, La Jolla, California 92093-0365
| | - J. Andrew McCammon
- Departments of Chemistry and
Biochemistry and of Pharmacology, Center for Theoretical Biological
Physics, and Howard Hughes Medical Institute, University of California
at San Diego, La Jolla, California 92093-0365
| | - Huan-Xiang Zhou
- Department of Physics and Institute
of Molecular Biophysics, Florida State University, Tallahassee, Florida
32306
- To whom correspondence should be
addressed. Phone: (850) 645-1336. Fax: (850) 644-7244. E-mail:
| |
Collapse
|
79
|
Kairys V, Gilson MK, Lather V, Schiffer CA, Fernandes MX. Toward the design of mutation-resistant enzyme inhibitors: further evaluation of the substrate envelope hypothesis. Chem Biol Drug Des 2009; 74:234-45. [PMID: 19703025 DOI: 10.1111/j.1747-0285.2009.00851.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous studies have shown the usefulness of the substrate envelope concept in the analysis and prediction of drug resistance profiles for human immunodeficiency virus protease mutants. This study tests its applicability to several other therapeutic targets: Abl kinase, chitinase, thymidylate synthase, dihydrofolate reductase, and neuraminidase. For the targets where many (> or =6) mutation data are available to compute the average mutation sensitivity of inhibitors, the total volume of an inhibitor molecule that projects outside the substrate envelope V(out), is found to correlate with average mutation sensitivity. Analysis of a locally computed volume suggests that the same correlation would hold for the other targets, if more extensive mutation data sets were available. It is concluded that the substrate envelope concept offers a promising and easily implemented computational tool for the design of drugs that will tend to resist mutations. Software implementing these calculations is provided with the 'Supporting Information'.
Collapse
Affiliation(s)
- Visvaldas Kairys
- Centro de Química da Madeira, Departamento de Química, Universidade da Madeira, 9000-390 Funchal, Portugal
| | | | | | | | | |
Collapse
|
80
|
Approaches to the design of HIV protease inhibitors with improved resistance profiles. Curr Opin HIV AIDS 2009; 3:633-41. [PMID: 19373035 DOI: 10.1097/coh.0b013e328313911d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW This review describes current approaches to HIV protease inhibitor design, with a focus on improving their profile against drug-resistant mutants. Potential explanations for the flat resistance profile of some potent protease inhibitors and discrepancies between the apparent fold change of potency at the enzyme level and in cell-based assays are discussed. RECENT FINDINGS Despite new ideas and a clear rationale for designing inhibitors that bind outside the enzyme active site, all current protease inhibitors with potent antiviral activity target this site. Several bis-tetrahydrofuran-containing compounds including darunavir, brecanavir, GS-8374, and Sequoia protease inhibitors exhibit excellent potency against mutant HIV strains that are resistant to clinically used protease inhibitors. The apparently flat resistance profiles of these and some other protease inhibitors may, at least in part, be explained by their high potency against wild-type enzyme. The substrate envelope and solvent-anchoring hypotheses have been used to design and/or rationalize improved resistance profiles. Traditional approaches yielded a lysine sulfonamide PL-100 with a unique resistance profile. SUMMARY Several theories on how to design HIV protease inhibitors with improved resistance profiles have been proposed during the review period. The general concepts that are incorporated into most design strategies include maximizing the interactions with the backbone and conserved side chains of the enzyme while minimizing inhibitor size and maintaining conformational flexibility to allow for modified binding modes.
Collapse
|
81
|
New approaches to HIV protease inhibitor drug design II: testing the substrate envelope hypothesis to avoid drug resistance and discover robust inhibitors. Curr Opin HIV AIDS 2009; 3:642-6. [PMID: 19373036 DOI: 10.1097/coh.0b013e3283136cee] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Drug resistance results when the balance between the binding of inhibitors and the turnover of substrates is perturbed in favor of the substrates. Resistance is quite widespread to the HIV-1 protease inhibitors permitting the protease to process its 10 different substrates. This processing of the substrates permits the virus HIV-1 to mature and become infectious. The design of HIV-1 protease inhibitors that closely fit within the substrate-binding region is proposed to be a strategy to avoid drug resistance. RECENT FINDINGS Cocrystal structures of HIV-1 protease with its substrates define an overlapping substrate-binding region or substrate envelope. Novel HIV-1 protease inhibitors that were designed to fit within this substrate envelope were found to retain high binding affinity and have a flat binding profile against a panel of drug-resistant HIV-1 proteases. SUMMARY The avoidance of drug resistance needs to be considered in the initial design of inhibitors to quickly evolving targets such as HIV-1 protease. Using a detailed knowledge of substrate binding appears to be a promising strategy for achieving this goal to obtain robust HIV-1 protease inhibitors.
Collapse
|
82
|
Current and Novel Inhibitors of HIV Protease. Viruses 2009; 1:1209-39. [PMID: 21994591 PMCID: PMC3185513 DOI: 10.3390/v1031209] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/07/2009] [Accepted: 12/07/2009] [Indexed: 12/25/2022] Open
Abstract
The design, development and clinical success of HIV protease inhibitors represent one of the most remarkable achievements of molecular medicine. This review describes all nine currently available FDA-approved protease inhibitors, discusses their pharmacokinetic properties, off-target activities, side-effects, and resistance profiles. The compounds in the various stages of clinical development are also introduced, as well as alternative approaches, aiming at other functional domains of HIV PR. The potential of these novel compounds to open new way to the rational drug design of human viruses is critically assessed.
Collapse
|
83
|
Weber IT, Agniswamy J. HIV-1 Protease: Structural Perspectives on Drug Resistance. Viruses 2009; 1:1110-36. [PMID: 21994585 PMCID: PMC3185505 DOI: 10.3390/v1031110] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 12/18/2022] Open
Abstract
Antiviral inhibitors of HIV-1 protease are a notable success of structure-based drug design and have dramatically improved AIDS therapy. Analysis of the structures and activities of drug resistant protease variants has revealed novel molecular mechanisms of drug resistance and guided the design of tight-binding inhibitors for resistant variants. The plethora of structures reveals distinct molecular mechanisms associated with resistance: mutations that alter the protease interactions with inhibitors or substrates; mutations that alter dimer stability; and distal mutations that transmit changes to the active site. These insights will inform the continuing design of novel antiviral inhibitors targeting resistant strains of HIV.
Collapse
Affiliation(s)
- Irene T Weber
- Department of Biology, Molecular Basis of Disease Program, Georgia State University, Atlanta, GA 30303, USA; E-Mail:
| | | |
Collapse
|
84
|
Huggins DJ, Altman MD, Tidor B. Evaluation of an inverse molecular design algorithm in a model binding site. Proteins 2009; 75:168-86. [PMID: 18831031 DOI: 10.1002/prot.22226] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Computational molecular design is a useful tool in modern drug discovery. Virtual screening is an approach that docks and then scores individual members of compound libraries. In contrast to this forward approach, inverse approaches construct compounds from fragments, such that the computed affinity, or a combination of relevant properties, is optimized. We have recently developed a new inverse approach to drug design based on the dead-end elimination and A* algorithms employing a physical potential function. This approach has been applied to combinatorially constructed libraries of small-molecule ligands to design high-affinity HIV-1 protease inhibitors (Altman et al., J Am Chem Soc 2008;130:6099-6013). Here we have evaluated the new method using the well-studied W191G mutant of cytochrome c peroxidase. This mutant possesses a charged binding pocket and has been used to evaluate other design approaches. The results show that overall the new inverse approach does an excellent job of separating binders from nonbinders. For a few individual cases, scoring inaccuracies led to false positives. The majority of these involve erroneous solvation energy estimation for charged amines, anilinium ions, and phenols, which has been observed previously for a variety of scoring algorithms. Interestingly, although inverse approaches are generally expected to identify some but not all binders in a library, due to limited conformational searching, these results show excellent coverage of the known binders while still showing strong discrimination of the nonbinders.
Collapse
Affiliation(s)
- David J Huggins
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
85
|
Jorissen RN, Reddy GSKK, Ali A, Altman MD, Chellappan S, Anjum SG, Tidor B, Schiffer CA, Rana TM, Gilson MK. Additivity in the analysis and design of HIV protease inhibitors. J Med Chem 2009; 52:737-54. [PMID: 19193159 DOI: 10.1021/jm8009525] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We explore the applicability of an additive treatment of substituent effects to the analysis and design of HIV protease inhibitors. Affinity data for a set of inhibitors with a common chemical framework were analyzed to provide estimates of the free energy contribution of each chemical substituent. These estimates were then used to design new inhibitors whose high affinities were confirmed by synthesis and experimental testing. Derivations of additive models by least-squares and ridge-regression methods were found to yield statistically similar results. The additivity approach was also compared with standard molecular descriptor-based QSAR; the latter was not found to provide superior predictions. Crystallographic studies of HIV protease-inhibitor complexes help explain the perhaps surprisingly high degree of substituent additivity in this system, and allow some of the additivity coefficients to be rationalized on a structural basis.
Collapse
Affiliation(s)
- Robert N Jorissen
- Center for Advanced Research in Biotechnology, UMBI, 9600 Gudelsky Drive, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|