51
|
Li L, Wang X, Li X, Shi H, Wang F, Zhang Y, Li X. Combinatorial Engineering of Mevalonate Pathway and Diterpenoid Synthases in Escherichia coli for cis-Abienol Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6523-6531. [PMID: 31117507 DOI: 10.1021/acs.jafc.9b02156] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Identification of diterpene synthase-encoding genes together with synthetic biology technology offers an opportunity for the biosynthesis of cis-abienol. The methylerythritol phosphate (MEP) and the mevalonate (MVA) pathways were both engineered for cis-abienol production in Escherichia coli, which improved the cis-abienol yield by approximately 7-fold and 31-fold, respectively, compared to the yield obtained by overexpression of the MEP pathway alone or the original MEP pathway. Furthermore, systematic optimization of cis-abienol biosynthesis was performed, such as diterpene synthase screening and two-phase cultivation. The combination of bifunctional class I/II cis-abienol synthase from Abies balsamea ( AbCAS) and class II abienol synthase from Salvia sclarea ( SsTPS2) was found to be the most effective. By using isopropyl myristate as a solvent in two-phase cultivation, cis-abienol production reached 634.7 mg/L in a fed-batch bioreactor. This work shows the possibility of E. coli utilizing glucose as a carbon source for cis-abienol biosynthesis through a modified pathway.
Collapse
Affiliation(s)
- Lei Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass , Nanjing Forestry University , Nanjing 210037 , China
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals , Nanjing Forestry University , Nanjing 210037 , China
- College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Xun Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass , Nanjing Forestry University , Nanjing 210037 , China
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals , Nanjing Forestry University , Nanjing 210037 , China
- College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Xinyang Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass , Nanjing Forestry University , Nanjing 210037 , China
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals , Nanjing Forestry University , Nanjing 210037 , China
- College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Hao Shi
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration , Huaiyin Institute of Technology , Huaian 223003 , China
| | - Fei Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass , Nanjing Forestry University , Nanjing 210037 , China
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals , Nanjing Forestry University , Nanjing 210037 , China
- College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Yu Zhang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass , Nanjing Forestry University , Nanjing 210037 , China
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals , Nanjing Forestry University , Nanjing 210037 , China
- College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Xun Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass , Nanjing Forestry University , Nanjing 210037 , China
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals , Nanjing Forestry University , Nanjing 210037 , China
- College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , China
| |
Collapse
|
52
|
Stepwise increase in the production of 13R-manoyl oxide through metabolic engineering of Saccharomyces cerevisiae. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
53
|
|
54
|
Johnson SR, Bhat WW, Bibik J, Turmo A, Hamberger B, Evolutionary Mint Genomics Consortium, Hamberger B. A database-driven approach identifies additional diterpene synthase activities in the mint family (Lamiaceae). J Biol Chem 2019; 294:1349-1362. [PMID: 30498089 PMCID: PMC6349103 DOI: 10.1074/jbc.ra118.006025] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/12/2018] [Indexed: 12/30/2022] Open
Abstract
Members of the mint family (Lamiaceae) accumulate a wide variety of industrially and medicinally relevant diterpenes. We recently sequenced leaf transcriptomes from 48 phylogenetically diverse Lamiaceae species. Here, we summarize the available chemotaxonomic and enzyme activity data for diterpene synthases (diTPSs) in the Lamiaceae and leverage the new transcriptomes to explore the diTPS sequence and functional space. Candidate genes were selected with an intent to evenly sample the sequence homology space and to focus on species in which diTPS transcripts were found, yet from which no diterpene structures have been previously reported. We functionally characterized nine class II diTPSs and 10 class I diTPSs from 11 distinct plant species and found five class II activities, including two novel activities, as well as a spectrum of class I activities. Among the class II diTPSs, we identified a neo-cleroda-4(18),13E-dienyl diphosphate synthase from Ajuga reptans, catalyzing the likely first step in the biosynthesis of a variety of insect-antifeedant compounds. Among the class I diTPSs was a palustradiene synthase from Origanum majorana, leading to the discovery of specialized diterpenes in that species. Our results provide insights into the diversification of diterpene biosynthesis in the mint family and establish a comprehensive foundation for continued investigation of diterpene biosynthesis in the Lamiaceae.
Collapse
Affiliation(s)
- Sean R Johnson
- Departments of Biochemistry and Molecular Biology, East Lansing, Michigan 48824
| | - Wajid Waheed Bhat
- Departments of Biochemistry and Molecular Biology, East Lansing, Michigan 48824; Pharmacology and Toxicology, East Lansing, Michigan 48824
| | - Jacob Bibik
- Departments of Biochemistry and Molecular Biology, East Lansing, Michigan 48824
| | - Aiko Turmo
- Departments of Biochemistry and Molecular Biology, East Lansing, Michigan 48824
| | - Britta Hamberger
- Departments of Biochemistry and Molecular Biology, East Lansing, Michigan 48824
| | | | - Björn Hamberger
- Departments of Biochemistry and Molecular Biology, East Lansing, Michigan 48824.
| |
Collapse
|
55
|
Comparative proteomic analyses of Hyphozyma roseonigra ATCC 20624 in response to sclareol. Braz J Microbiol 2019; 50:79-84. [PMID: 30645731 DOI: 10.1007/s42770-019-00040-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 04/03/2018] [Indexed: 10/27/2022] Open
Abstract
Sclareol is an important intermediate for ambroxide synthesis industries. Hyphozyma roseonigra ATCC 20624 was the only reported strain capable of degrading sclareol to the main product of sclareol glycol, which is the precursor of ambroxide. To date, knowledge is lacking about the effects of sclareol on cells and the proteins involved in sclareol metabolism. Comparative proteomic analyses were conducted on the strain H. roseonigra ATCC 20624 by using sclareol or glucose as the sole carbon source. A total of 79 upregulated protein spots with a > 2.0-fold difference in abundance on 2-D gels under sclareol stress conditions were collected for further identification. Seventy spots were successfully identified and finally integrated into 30 proteins. The upregulated proteins under sclareol stress are involved in carbon metabolism and nitrogen metabolism, and replication, transcription, and translation processes. Eighteen upregulated spots were identified as aldehyde dehydrogenases, which indicating that aldehyde dehydrogenases might play an important role in sclareol metabolism. Overall, this study may lay the fundamentals for further cell engineering to improve sclareol glycol production.
Collapse
|
56
|
Karunanithi PS, Zerbe P. Terpene Synthases as Metabolic Gatekeepers in the Evolution of Plant Terpenoid Chemical Diversity. FRONTIERS IN PLANT SCIENCE 2019; 10:1166. [PMID: 31632418 PMCID: PMC6779861 DOI: 10.3389/fpls.2019.01166] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/26/2019] [Indexed: 05/18/2023]
Abstract
Terpenoids comprise tens of thousands of small molecule natural products that are widely distributed across all domains of life. Plants produce by far the largest array of terpenoids with various roles in development and chemical ecology. Driven by selective pressure to adapt to their specific ecological niche, individual species form only a fraction of the myriad plant terpenoids, typically representing unique metabolite blends. Terpene synthase (TPS) enzymes are the gatekeepers in generating terpenoid diversity by catalyzing complex carbocation-driven cyclization, rearrangement, and elimination reactions that enable the transformation of a few acyclic prenyl diphosphate substrates into a vast chemical library of hydrocarbon and, for a few enzymes, oxygenated terpene scaffolds. The seven currently defined clades (a-h) forming the plant TPS family evolved from ancestral triterpene synthase- and prenyl transferase-type enzymes through repeated events of gene duplication and subsequent loss, gain, or fusion of protein domains and further functional diversification. Lineage-specific expansion of these TPS clades led to variable family sizes that may range from a single TPS gene to families of more than 100 members that may further function as part of modular metabolic networks to maximize the number of possible products. Accompanying gene family expansion, the TPS family shows a profound functional plasticity, where minor active site alterations can dramatically impact product outcome, thus enabling the emergence of new functions with minimal investment in evolving new enzymes. This article reviews current knowledge on the functional diversity and molecular evolution of the plant TPS family that underlies the chemical diversity of bioactive terpenoids across the plant kingdom.
Collapse
Affiliation(s)
- Prema S Karunanithi
- Department of Plant Biology, University of California Davis, Davis, CA, United States
| | - Philipp Zerbe
- Department of Plant Biology, University of California Davis, Davis, CA, United States
| |
Collapse
|
57
|
Liu Y, Jing SX, Luo SH, Li SH. Non-volatile natural products in plant glandular trichomes: chemistry, biological activities and biosynthesis. Nat Prod Rep 2019; 36:626-665. [PMID: 30468448 DOI: 10.1039/c8np00077h] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The investigation methods, chemistry, bioactivities, and biosynthesis of non-volatile natural products involving 489 compounds in plant glandular trichomes are reviewed.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- P. R. China
| | - Shu-Xi Jing
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- P. R. China
| | - Shi-Hong Luo
- College of Bioscience and Biotechnology
- Shenyang Agricultural University
- Shenyang
- P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- P. R. China
| |
Collapse
|
58
|
Kumar Y, Khan F, Rastogi S, Shasany AK. Genome-wide detection of terpene synthase genes in holy basil (Ocimum sanctum L.). PLoS One 2018; 13:e0207097. [PMID: 30444870 PMCID: PMC6239295 DOI: 10.1371/journal.pone.0207097] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/24/2018] [Indexed: 11/19/2022] Open
Abstract
Holy basil (Ocimum sanctum L.) and sweet basil (Ocimum basilicum L.) are the most commonly grown basil species in India for essential oil production and biosynthesis of potentially volatile and non-volatile phytomolecules with commercial significance. The aroma, flavor and pharmaceutical value of Ocimum species is a significance of its essential oil, which contains most of the monoterpenes and sesquiterpenes. A large number of plants have been studied for characterization and identification of terpene synthase genes, involved in terpenoids biosynthesis. The goal of this study is to discover and identify the putative functional terpene synthase genes in O. sanctum. HMMER search was performed by using a set of 13 well sequenced and annotated plant genomes including the newly sequenced genome of O. sanctum with Pfam-A database locally, using HMMER 3.0 hmmsearch for the two Pfam domains (PF01397 and PF03936). Using this search method 81 putative terpene synthases genes (OsaTPS) were identified in O. sanctum; the study further reveals 47 OsaTPS were putatively functional genes, 19 partial OsaTPS, and 15 OsaTPS as probably pseudogenes. All these identified OsaTPS genes were compared with other plant species, and phylogenetic analysis reveals the subfamily classification of OsaTPS in TPS-a, -b, -c, -e, -f and TPS-g subfamilies clusters. This genome-wide identification of OsaTPS genes, their phylogenetic analysis and secondary metabolite pathway mapping predictions together provide a comprehensive understanding of the TPS gene family in Ocimum sanctum and offer opportunities for the characterization and functional validation of numbers of terpene synthase genes.
Collapse
Affiliation(s)
- Yogesh Kumar
- Metabolic and Structural Biology Dept, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow (U.P.), INDIA
| | - Feroz Khan
- Metabolic and Structural Biology Dept, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow (U.P.), INDIA
- * E-mail:
| | - Shubhra Rastogi
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow (U.P.), INDIA
| | - Ajit Kumar Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow (U.P.), INDIA
| |
Collapse
|
59
|
Zhang H, Jin B, Bu J, Guo J, Chen T, Ma Y, Tang J, Cui G, Huang L. Transcriptomic Insight into Terpenoid Biosynthesis and Functional Characterization of Three Diterpene Synthases in Scutellaria barbata. Molecules 2018; 23:molecules23112952. [PMID: 30424547 PMCID: PMC6278268 DOI: 10.3390/molecules23112952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 11/30/2022] Open
Abstract
Scutellaria barbata (Lamiaceae) is an important medicinal herb widely used in China, Korea, India, and other Asian countries. Neo-clerodane diterpenoids are the largest known group of Scutellaria diterpenoids and show promising cytotoxic activity against several cancer cell lines. Here, Illumina-based deep transcriptome analysis of flowers, the aerial parts (leaf and stem), and roots of S. barbata was used to explore terpenoid-related genes. In total, 121,958,564 clean RNA-sequence reads were assembled into 88,980 transcripts, with an average length of 1370 nt and N50 length of 2144 nt, indicating high assembly quality. We identified nearly all known terpenoid-related genes (33 genes) involved in biosynthesis of the terpenoid backbone and 14 terpene synthase genes which generate skeletons for different terpenoids. Three full length diterpene synthase genes were functionally identified using an in vitro assay. SbTPS8 and SbTPS9 were identified as normal-CPP and ent-CPP synthase, respectively. SbTPS12 reacts with SbTPS8 to produce miltiradiene. Furthermore, SbTPS12 was proven to be a less promiscuous class I diterpene synthase. These results give a comprehensive understanding of the terpenoid biosynthesis in S. barbata and provide useful information for enhancing the production of bioactive neo-clerodane diterpenoids through genetic engineering.
Collapse
Affiliation(s)
- Huabei Zhang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Baolong Jin
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Junling Bu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Juan Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Tong Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Ying Ma
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jinfu Tang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Guanghong Cui
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
60
|
Wang X, Zhang X, Yao Q, Hua D, Qin J. WITHDRAWN: Comparative proteomic analyses of Hyphozyma roseonigra ATCC 20624 in response to sclareol. Braz J Microbiol 2018; 49 Suppl 1:160-165. [PMID: 29773508 PMCID: PMC6328719 DOI: 10.1016/j.bjm.2018.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 03/01/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022] Open
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published in BJM, 50 (2019) 79–84, http://dx.doi.org/10.1007/S42770-019-00040-2 The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
| | | | | | - Dongliang Hua
- Shandong Academy of Sciences, Energy Research Institute, Key Laboratory for Biomass Gasification Technology of Shandong Province, Jinan, China
| | | |
Collapse
|
61
|
Vermaas JV, Bentley GJ, Beckham GT, Crowley MF. Membrane Permeability of Terpenoids Explored with Molecular Simulation. J Phys Chem B 2018; 122:10349-10361. [DOI: 10.1021/acs.jpcb.8b08688] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Josh V. Vermaas
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Gayle J. Bentley
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Gregg T. Beckham
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Michael F. Crowley
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
62
|
Schulte S, Potter KC, Lemke C, Peters RJ. Catalytic Bases and Stereocontrol in Lamiaceae Class II Diterpene Cyclases. Biochemistry 2018; 57:3473-3479. [PMID: 29787239 DOI: 10.1021/acs.biochem.8b00193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plants from the widespread Lamiaceae family produce many labdane-related diterpenoids, a number of which serve medicinal roles, and whose biosynthesis is initiated by class II diterpene cyclases (DTCs). These enzymes utilize a general acid-base catalyzed cyclo-isomerization reaction to produce various stereoisomers of the eponymous labdaenyl carbocation intermediate, which can then undergo rearrangement and/or the addition of water prior to terminating deprotonation. Identification of the pair of residues that cooperatively serve as the catalytic base in the DTCs that produce ent-copalyl diphosphate (CPP) required for gibberellin phytohormone biosynthesis in all vascular plants has led to insight into the addition of water as well as rearrangement. Lamiaceae plants generally contain an additional DTC that produces the enantiomeric normal CPP, as well as others that yield hydroxylated products derived from the addition of water. Here the catalytic base in these DTCs was investigated. Notably, changing two adjacent residues that seem to serve as the catalytic base in the normal CPP synthase from Salvia miltiorrhiza (SmCPS) to the residues found in the closely related perigrinol diphosphate synthase from Marrubium vulgare (MvPPS), which produces a partially rearranged and hydroxylated product derived from the distinct syn stereoisomer of labdaenyl+, altered the product outcome in an unexpected fashion. Specifically, the relevant SmCPS:H315N/T316V double mutant produces terpentedienyl diphosphate, which is derived from complete substituent rearrangement of syn rather than normal labdaenyl+. Accordingly, alteration of the residues that normally serve as the catalytic base surprisingly can impact stereocontrol.
Collapse
Affiliation(s)
- Samuel Schulte
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology , Iowa State University , Ames , Iowa 50011 , United States
| | - Kevin C Potter
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology , Iowa State University , Ames , Iowa 50011 , United States
| | - Cody Lemke
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology , Iowa State University , Ames , Iowa 50011 , United States
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology , Iowa State University , Ames , Iowa 50011 , United States
| |
Collapse
|
63
|
Eichhorn E, Locher E, Guillemer S, Wahler D, Fourage L, Schilling B. Biocatalytic Process for (−)-Ambrox Production Using Squalene Hopene Cyclase. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800132] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Eric Eichhorn
- Givaudan Schweiz AG; Ueberlandstrasse 138 8600 Dübendorf Switzerland
| | - Esther Locher
- Givaudan Schweiz AG; Ueberlandstrasse 138 8600 Dübendorf Switzerland
| | - Sabrina Guillemer
- Protéus SA; 70, allée Graham Bell, Parc Georges Besse 30035 Nîmes Cedex 1 France
- PCAS; 2-8 rue de Rouen 78440 Porcheville France
| | - Denis Wahler
- Protéus SA; 70, allée Graham Bell, Parc Georges Besse 30035 Nîmes Cedex 1 France
- Givaudan France SAS; 3 rue des Satellites 31400 Toulouse France
| | - Laurent Fourage
- Protéus SA; 70, allée Graham Bell, Parc Georges Besse 30035 Nîmes Cedex 1 France
- Total RC Stratégie Développement Recherche; 2 Place Jean Millier 92078 Paris La Défense France
| | - Boris Schilling
- Givaudan Schweiz AG; Ueberlandstrasse 138 8600 Dübendorf Switzerland
| |
Collapse
|
64
|
Hirte M, Meese N, Mertz M, Fuchs M, Brück TB. Insights Into the Bifunctional Aphidicolan-16-ß-ol Synthase Through Rapid Biomolecular Modeling Approaches. Front Chem 2018; 6:101. [PMID: 29692986 PMCID: PMC5902962 DOI: 10.3389/fchem.2018.00101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/20/2018] [Indexed: 01/23/2023] Open
Abstract
Diterpene synthases catalyze complex, multi-step C-C coupling reactions thereby converting the universal, aliphatic precursor geranylgeranyl diphosphate into diverse olefinic macrocylces that form the basis for the structural diversity of the diterpene natural product family. Since catalytically relevant crystal structures of diterpene synthases are scarce, homology based biomolecular modeling techniques offer an alternative route to study the enzyme's reaction mechanism. However, precise identification of catalytically relevant amino acids is challenging since these models require careful preparation and refinement techniques prior to substrate docking studies. Targeted amino acid substitutions in this protein class can initiate premature quenching of the carbocation centered reaction cascade. The structural characterization of those alternative cyclization products allows for elucidation of the cyclization reaction cascade and provides a new source for complex macrocyclic synthons. In this study, new insights into structure and function of the fungal, bifunctional Aphidicolan-16-ß-ol synthase were achieved using a simplified biomolecular modeling strategy. The applied refinement methodologies could rapidly generate a reliable protein-ligand complex, which provides for an accurate in silico identification of catalytically relevant amino acids. Guided by our modeling data, ACS mutations lead to the identification of the catalytically relevant ACS amino acid network I626, T657, Y658, A786, F789, and Y923. Moreover, the ACS amino acid substitutions Y658L and D661A resulted in a premature termination of the cyclization reaction cascade en-route from syn-copalyl diphosphate to Aphidicolan-16-ß-ol. Both ACS mutants generated the diterpene macrocycle syn-copalol and a minor, non-hydroxylated labdane related diterpene, respectively. Our biomolecular modeling and mutational studies suggest that the ACS substrate cyclization occurs in a spatially restricted location of the enzyme's active site and that the geranylgeranyl diphosphate derived pyrophosphate moiety remains in the ACS active site thereby directing the cyclization process. Our cumulative data confirm that amino acids constituting the G-loop of diterpene synthases are involved in the open to the closed, catalytically active enzyme conformation. This study demonstrates that a simple and rapid biomolecular modeling procedure can predict catalytically relevant amino acids. The approach reduces computational and experimental screening efforts for diterpene synthase structure-function analyses.
Collapse
Affiliation(s)
- Max Hirte
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Nicolas Meese
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Michael Mertz
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Monika Fuchs
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Thomas B Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Munich, Germany
| |
Collapse
|
65
|
Jia M, O’Brien TE, Zhang Y, Siegel JB, Tantillo DJ, Peters RJ. Changing Face: A Key Residue for the Addition of Water by Sclareol Synthase. ACS Catal 2018; 8:3133-3137. [PMID: 29713562 DOI: 10.1021/acscatal.8b00121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sclareol synthase from Salvia sclarea (SsSS) naturally acts on 8α-hydroxy-copalyl diphosphate (1), stereoselectively adding water to produce (13R)-sclareol (2a), and similarly yields hydroxylated products with manifold other such bicyclic diterpene precursors. Here a key residue for this addition of water was identified. Strikingly, substitution with glutamine switches stereochemical outcome with 1, leading to selective production of (13S)-sclareol (2b). Moreover, changes to the stereospecificity of water addition with the structurally closely-related substrate copalyl diphosphate (4) could be accomplished with alternative substitutions. Thus, this approach is expected to provide biosynthetic access to both epimers of 13-hydroxylated derivatives of manifold labdane-related diterpenes.
Collapse
Affiliation(s)
- Meirong Jia
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Terrence E. O’Brien
- Department of Chemistry, University of California−Davis, Davis, California 95616, United States
| | - Yue Zhang
- Department of Chemistry, University of California−Davis, Davis, California 95616, United States
| | - Justin B. Siegel
- Department of Chemistry, University of California−Davis, Davis, California 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California−Davis, Davis, California 95616, United States
- Genome Center, University of California−Davis, Davis, California 95616, United States
| | - Dean J. Tantillo
- Department of Chemistry, University of California−Davis, Davis, California 95616, United States
| | - Reuben J. Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
66
|
Schempp FM, Drummond L, Buchhaupt M, Schrader J. Microbial Cell Factories for the Production of Terpenoid Flavor and Fragrance Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2247-2258. [PMID: 28418659 DOI: 10.1021/acs.jafc.7b00473] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Terpenoid flavor and fragrance compounds are of high interest to the aroma industry. Microbial production offers an alternative sustainable access to the desired terpenoids independent of natural sources. Genetically engineered microorganisms can be used to synthesize terpenoids from cheap and renewable resources. Due to its modular architecture, terpenoid biosynthesis is especially well suited for the microbial cell factory concept: a platform host engineered for a high flux toward the central C5 prenyl diphosphate precursors enables the production of a broad range of target terpenoids just by varying the pathway modules converting the C5 intermediates to the product of interest. In this review typical terpenoid flavor and fragrance compounds marketed or under development by biotech and aroma companies are given, and the specificities of the aroma market are discussed. The main part of this work focuses on key strategies and recent advances to engineer microbes to become efficient terpenoid producers.
Collapse
Affiliation(s)
- Florence M Schempp
- DECHEMA-Forschungsinstitut, Industrial Biotechnology , Theodor-Heuss-Allee 25 , 60486 Frankfurt am Main , Germany
| | - Laura Drummond
- DECHEMA-Forschungsinstitut, Industrial Biotechnology , Theodor-Heuss-Allee 25 , 60486 Frankfurt am Main , Germany
| | - Markus Buchhaupt
- DECHEMA-Forschungsinstitut, Industrial Biotechnology , Theodor-Heuss-Allee 25 , 60486 Frankfurt am Main , Germany
| | - Jens Schrader
- DECHEMA-Forschungsinstitut, Industrial Biotechnology , Theodor-Heuss-Allee 25 , 60486 Frankfurt am Main , Germany
| |
Collapse
|
67
|
Eriksson A, Kürten C, Syrén P. Protonation-Initiated Cyclization by a Class II Terpene Cyclase Assisted by Tunneling. Chembiochem 2017; 18:2301-2305. [PMID: 28980755 PMCID: PMC5725671 DOI: 10.1002/cbic.201700443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Indexed: 02/03/2023]
Abstract
Terpenes represent one of the most diversified classes of natural products with potent biological activities. The key to the myriad of polycyclic terpene skeletons with crucial functions in organisms from all kingdoms of life are terpene cyclase enzymes. These biocatalysts enable stereospecific cyclization of relatively simple, linear, prefolded polyisoprenes by highly complex, partially concerted, electrophilic cyclization cascades that remain incompletely understood. Herein, additional mechanistic light is shed on terpene biosynthesis by kinetic studies in mixed H2 O/D2 O buffers of a class II bacterial ent-copalyl diphosphate synthase. Mass spectrometry determination of the extent of deuterium incorporation in the bicyclic product, reminiscent of initial carbocation formation by protonation, resulted in a large kinetic isotope effect of up to seven. Kinetic analysis at different temperatures confirmed that the isotope effect was independent of temperature, which is consistent with hydrogen tunneling.
Collapse
Affiliation(s)
- Adam Eriksson
- School of Chemical Science and EngineeringKTH Royal Institute of Technology100 44StockholmSweden
| | - Charlotte Kürten
- Science for Life LaboratoryKTH Royal Institute of TechnologySchool of BiotechnologyDivision of Proteomics171 21StockholmSweden
| | - Per‐Olof Syrén
- School of Chemical Science and EngineeringKTH Royal Institute of Technology100 44StockholmSweden
- Science for Life LaboratoryKTH Royal Institute of TechnologySchool of BiotechnologyDivision of Proteomics171 21StockholmSweden
| |
Collapse
|
68
|
Wang C, Zada B, Wei G, Kim SW. Metabolic engineering and synthetic biology approaches driving isoprenoid production in Escherichia coli. BIORESOURCE TECHNOLOGY 2017; 241:430-438. [PMID: 28599221 DOI: 10.1016/j.biortech.2017.05.168] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 05/20/2023]
Abstract
Isoprenoids comprise the largest family of natural organic compounds with many useful applications in the pharmaceutical, nutraceutical, and industrial fields. Rapid developments in metabolic engineering and synthetic biology have facilitated the engineering of isoprenoid biosynthetic pathways in Escherichia coli to induce high levels of production of many different isoprenoids. In this review, the stem pathways for synthesizing isoprene units as well as the branch pathways deriving diverse isoprenoids from the isoprene units have been summarized. The review also highlights the metabolic engineering efforts made for the biosynthesis of hemiterpenoids, monoterpenoids, sesquiterpenoids, diterpenoids, carotenoids, retinoids, and coenzyme Q10 in E. coli. Perspectives and future directions for the synthesis of novel isoprenoids, decoration of isoprenoids using cytochrome P450 enzymes, and secretion or storage of isoprenoids in E. coli have also been included.
Collapse
Affiliation(s)
- Chonglong Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Bakht Zada
- Division of Applied Life Science (BK21 Plus), PMBBRC, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Gongyuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Plus), PMBBRC, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
69
|
Hare SR, Farnham JM, Tantillo DJ. Putative biosynthetic cycloadditions en route to the diterpenoid (+)-chatancin. Tetrahedron 2017. [DOI: 10.1016/j.tet.2016.11.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
70
|
Korman TP, Opgenorth PH, Bowie JU. A synthetic biochemistry platform for cell free production of monoterpenes from glucose. Nat Commun 2017; 8:15526. [PMID: 28537253 PMCID: PMC5458089 DOI: 10.1038/ncomms15526] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/03/2017] [Indexed: 12/25/2022] Open
Abstract
Cell-free systems designed to perform complex chemical conversions of biomass to biofuels or commodity chemicals are emerging as promising alternatives to the metabolic engineering of living cells. Here we design a system comprises 27 enzymes for the conversion of glucose into monoterpenes that generates both NAD(P)H and ATP in a modified glucose breakdown module and utilizes both cofactors for building terpenes. Different monoterpenes are produced in our system by changing the terpene synthase enzyme. The system is stable for the production of limonene, pinene and sabinene, and can operate continuously for at least 5 days from a single addition of glucose. We obtain conversion yields >95% and titres >15 g l-1. The titres are an order of magnitude over cellular toxicity limits and thus difficult to achieve using cell-based systems. Overall, these results highlight the potential of synthetic biochemistry approaches for producing bio-based chemicals.
Collapse
Affiliation(s)
- Tyler P Korman
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, California 90095-1570, USA
| | - Paul H Opgenorth
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, California 90095-1570, USA
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, California 90095-1570, USA
| |
Collapse
|
71
|
|
72
|
Chen X, Berim A, Dayan FE, Gang DR. A (-)-kolavenyl diphosphate synthase catalyzes the first step of salvinorin A biosynthesis in Salvia divinorum. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1109-1122. [PMID: 28204567 PMCID: PMC5441855 DOI: 10.1093/jxb/erw493] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Salvia divinorum (Lamiaceae) is an annual herb used by indigenous cultures of Mexico for medicinal and ritual purposes. The biosynthesis of salvinorin A, its major bioactive neo-clerodane diterpenoid, remains virtually unknown. This investigation aimed to identify the enzyme that catalyzes the first reaction of salvinorin A biosynthesis, the formation of (-)-kolavenyl diphosphate [(-)-KPP], which is subsequently dephosphorylated to afford (-)-kolavenol. Peltate glandular trichomes were identified as the major and perhaps exclusive site of salvinorin accumulation in S. divinorum. The trichome-specific transcriptome was used to identify candidate diterpene synthases (diTPSs). In vitro and in planta characterization of a class II diTPS designated as SdKPS confirmed its activity as (-)-KPP synthase and its involvement in salvinorin A biosynthesis. Mutation of a phenylalanine into histidine in the active site of SdKPS completely converts the product from (-)-KPP into ent-copalyl diphosphate. Structural elements were identified that mediate the natural formation of the neo-clerodane backbone by this enzyme and suggest how SdKPS and other diTPSs may have evolved from ent-copalyl diphosphate synthase.
Collapse
Affiliation(s)
- Xiaoyue Chen
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164,USA
| | - Anna Berim
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164,USA
| | - Franck E Dayan
- Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523-1177, USA
| | - David R Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164,USA
| |
Collapse
|
73
|
Affiliation(s)
- Elisabetta Brenna
- Politecnico di Milano; Dipartimento di Chimica, Materiali, Ingegneria Chimica “Giulio Natta”; Via Mancinelli 7 20131 Milano Italy
| | - Fabio Parmeggiani
- Politecnico di Milano; Dipartimento di Chimica, Materiali, Ingegneria Chimica “Giulio Natta”; Via Mancinelli 7 20131 Milano Italy
| |
Collapse
|
74
|
Jezierska S, Van Bogaert INA. Crossing boundaries: the importance of cellular membranes in industrial biotechnology. J Ind Microbiol Biotechnol 2016; 44:721-733. [PMID: 27837352 DOI: 10.1007/s10295-016-1858-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/30/2016] [Indexed: 01/04/2023]
Abstract
How small molecules cross cellular membranes is an often overlooked issue in an industrial microbiology and biotechnology context. This is to a large extent governed by the technical difficulties to study these transport systems or by the lack of knowledge on suitable efflux pumps. This review emphasizes the importance of microbial cellular membranes in industrial biotechnology by highlighting successful strategies of membrane engineering towards more resistant and hence better performing microorganisms, as well as transporter and other engineering strategies for increased efflux of primary and secondary metabolites. Furthermore, the benefits and limitations of eukaryotic subcellular compartmentalization are discussed, as well as the biotechnological potential of membrane vesicles.
Collapse
Affiliation(s)
- Sylwia Jezierska
- Laboratory for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Inge N A Van Bogaert
- Laboratory for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
75
|
Mafu S, Fischer E, Addison JB, Riberio Barbosana I, Zerbe P. Substitution of Two Active-Site Residues Alters C9-Hydroxylation in a Class II Diterpene Synthase. Chembiochem 2016; 17:2304-2307. [PMID: 27735121 DOI: 10.1002/cbic.201600419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Indexed: 11/06/2022]
Abstract
Diterpenes form a vast and diverse class of natural products of both ecological and economic importance. Class II diterpene synthase (diTPS) enzymes control the committed biosynthetic reactions underlying diterpene chemical diversity. Homology modelling with site-directed mutagenesis identified two active-site residues in the horehound (Marrubium vulgare) class II diTPS peregrinol diphosphate synthase (MvCPS1); residue substitutions abolished the unique MvCPS1-catalysed water-capture reaction at C9 and redirected enzyme activity toward formation of an alternative product, halima-5(10),13-dienyl diphosphate. These findings contributed new insight into the steric interactions that govern diTPS-catalysed regiospecific oxygenation reactions and highlight the feasibility of diTPS engineering to provide a broader spectrum of bioactive diterpene natural products.
Collapse
Affiliation(s)
- Sibongile Mafu
- Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Emil Fischer
- Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.,Present address: The Scripps Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - J Bennett Addison
- Department of Chemistry, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Isabel Riberio Barbosana
- Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.,Present address: Federal University of Ceara, Mister Hull Avenue, 60455-760, Fortaleza, Brazil
| | - Philipp Zerbe
- Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
76
|
Abstract
Terpenoids are a very prominent class of natural compounds produced in diverse genera of plants, fungi, algae and sponges. They gained significant pharmaceutical value since prehistoric times, due to their broad spectrum of medical applications. The fragrant leaves of Eucalyptus trees are a rich source of terpenoids. Therefore this review starts by summarizing the main terpenoid compounds present in Eucalyptus globulus, E. citriodora, E. radiata and E. resinifera and describing their biosynthetic pathways. Of the enormous number of pharmaceutically important terpenoids, this paper also reviews some well established and recently discovered examples and discusses their medical applications. In this context, the synthetic processes for (–)-menthol, (–)- cis-carveol, (+)-artemisinine, (+)-merrilactone A and (–)-sclareol are presented. The tricyclic sesquiterpene (–)-englerin A isolated from the stem bark of the Phyllanthus engleri plant ( Euphorbiaceae) is highly active against certain renal cancer cell lines. In addition, recent studies showed that englerin A is also a potent and selective activator of TRPC4 and TRPC5 calcium channels. These important findings were the motivation for several renowned research labs to achieve a total synthesis of (–)-englerin A. Two prominent examples – Christmann and Metz – are compared and discussed in detail.
Collapse
Affiliation(s)
- Rolf Jaeger
- Formerly Institute of Organic Chemistry, Kiel University, Otto-Hahn-Platz, 24098 Kiel, Germany
| | - Eckehard Cuny
- Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Darmstadt Technical University, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|
77
|
Jia M, Potter KC, Peters RJ. Extreme promiscuity of a bacterial and a plant diterpene synthase enables combinatorial biosynthesis. Metab Eng 2016; 37:24-34. [PMID: 27060773 DOI: 10.1016/j.ymben.2016.04.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/25/2016] [Accepted: 04/06/2016] [Indexed: 11/30/2022]
Abstract
Diterpenes are widely distributed across many biological kingdoms, where they serve a diverse range of physiological functions, and some have significant industrial utility. Their biosynthesis involves class I diterpene synthases (DTSs), whose activity can be preceded by that of class II diterpene cyclases (DTCs). Here, a modular metabolic engineering system was used to examine the promiscuity of DTSs. Strikingly, both a bacterial and plant DTS were found to exhibit extreme promiscuity, reacting with all available precursors with orthogonal activity, producing an olefin or hydroxyl group, respectively. Such DTS promiscuity enables combinatorial biosynthesis, with remarkably high yields for these unoptimized non-native enzymatic combinations (up to 15mg/L). Indeed, it was possible to readily characterize the 13 unknown products. Notably, 16 of the observed diterpenes were previously inaccessible, and these results provide biosynthetic routes that are further expected to enable assembly of more extended pathways to produce additionally elaborated 'non-natural' diterpenoids.
Collapse
Affiliation(s)
- Meirong Jia
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Kevin C Potter
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
78
|
Abstract
Synthetic biology approaches achieving the reconstruction of specific plant natural product biosynthetic pathways in dedicated microbial "chassis" have provided access to important industrial compounds (e.g., artemisinin, resveratrol, vanillin). However, the potential of such production systems to facilitate elucidation of plant biosynthetic pathways has been underexplored. Here we report on the application of a modular terpene production platform in the characterization of the biosynthetic pathway leading to the potent antioxidant carnosic acid and related diterpenes in Salvia pomifera and Rosmarinus officinalis.Four cytochrome P450 enzymes are identified (CYP76AH24, CYP71BE52, CYP76AK6, and CYP76AK8), the combined activities of which account for all of the oxidation events leading to the biosynthesis of the major diterpenes produced in these plants. This approach develops yeast as an efficient tool to harness the biotechnological potential of the numerous sequencing datasets that are increasingly becoming available through transcriptomic or genomic studies.
Collapse
|
79
|
Leavell MD, McPhee DJ, Paddon CJ. Developing fermentative terpenoid production for commercial usage. Curr Opin Biotechnol 2016; 37:114-119. [DOI: 10.1016/j.copbio.2015.10.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/11/2015] [Accepted: 10/26/2015] [Indexed: 10/22/2022]
|
80
|
Willrodt C, Hoschek A, Bühler B, Schmid A, Julsing MK. Decoupling production from growth by magnesium sulfate limitation boosts de novo limonene production. Biotechnol Bioeng 2015; 113:1305-14. [PMID: 26574166 DOI: 10.1002/bit.25883] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/08/2015] [Indexed: 01/23/2023]
Abstract
The microbial production of isoprenoids has recently developed into a prime example for successful bottom-up synthetic biology or top-down systems biology strategies. Respective fermentation processes typically rely on growing recombinant microorganisms. However, the fermentative production of isoprenoids has to compete with cellular maintenance and growth for carbon and energy. Non-growing but metabolically active E. coli cells were evaluated in this study as alternative biocatalyst configurations to reduce energy and carbon loss towards biomass formation. The use of non-growing cells in an optimized fermentation medium resulted in more than fivefold increased specific limonene yields on cell dry weight and glucose, as compared to the traditional growing-cell-approach. Initially, the stability of the resting-cell activity was limited. This instability was overcome via the optimization of the minimal fermentation medium enabling high and stable limonene production rates for up to 8 h and a high specific yield of ≥50 mg limonene per gram cell dry weight. Omitting MgSO4 from the fermentation medium was very promising to prohibit growth and allow high productivities. Applying a MgSO4 -limitation also improved limonene formation by growing cells during non-exponential growth involving a reduced biomass yield on glucose and a fourfold increase in specific limonene yields on biomass as compared to non-limited cultures. The control of microbial growth via the medium composition was identified as a key but yet underrated strategy for efficient isoprenoid production. Biotechnol. Bioeng. 2016;113: 1305-1314. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christian Willrodt
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.,Department of Biochemical and Chemical Engineering, Laboratory of Chemical Biotechnology, TU Dortmund University, Dortmund, Germany
| | - Anna Hoschek
- Department of Biochemical and Chemical Engineering, Laboratory of Chemical Biotechnology, TU Dortmund University, Dortmund, Germany
| | - Bruno Bühler
- Department of Biochemical and Chemical Engineering, Laboratory of Chemical Biotechnology, TU Dortmund University, Dortmund, Germany
| | - Andreas Schmid
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Mattijs K Julsing
- Department of Biochemical and Chemical Engineering, Laboratory of Chemical Biotechnology, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
81
|
Harris GG, Lombardi PM, Pemberton TA, Matsui T, Weiss TM, Cole KE, Köksal M, Murphy FV, Vedula LS, Chou WK, Cane DE, Christianson DW. Structural Studies of Geosmin Synthase, a Bifunctional Sesquiterpene Synthase with αα Domain Architecture That Catalyzes a Unique Cyclization-Fragmentation Reaction Sequence. Biochemistry 2015; 54:7142-55. [PMID: 26598179 PMCID: PMC4674366 DOI: 10.1021/acs.biochem.5b01143] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Geosmin synthase from Streptomyces coelicolor (ScGS) catalyzes an unusual, metal-dependent terpenoid cyclization and fragmentation reaction sequence. Two distinct active sites are required for catalysis: the N-terminal domain catalyzes the ionization and cyclization of farnesyl diphosphate to form germacradienol and inorganic pyrophosphate (PPi), and the C-terminal domain catalyzes the protonation, cyclization, and fragmentation of germacradienol to form geosmin and acetone through a retro-Prins reaction. A unique αα domain architecture is predicted for ScGS based on amino acid sequence: each domain contains the metal-binding motifs typical of a class I terpenoid cyclase, and each domain requires Mg(2+) for catalysis. Here, we report the X-ray crystal structure of the unliganded N-terminal domain of ScGS and the structure of its complex with three Mg(2+) ions and alendronate. These structures highlight conformational changes required for active site closure and catalysis. Although neither full-length ScGS nor constructs of the C-terminal domain could be crystallized, homology models of the C-terminal domain were constructed on the basis of ∼36% sequence identity with the N-terminal domain. Small-angle X-ray scattering experiments yield low-resolution molecular envelopes into which the N-terminal domain crystal structure and the C-terminal domain homology model were fit, suggesting possible αα domain architectures as frameworks for bifunctional catalysis.
Collapse
Affiliation(s)
- Golda G. Harris
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323 United States
| | - Patrick M. Lombardi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323 United States
| | - Travis A. Pemberton
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323 United States
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, P.O. Box 20450, Stanford, CA 94309 United States
| | - Thomas M. Weiss
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, P.O. Box 20450, Stanford, CA 94309 United States
| | - Kathryn E. Cole
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323 United States
| | - Mustafa Köksal
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323 United States
| | - Frank V. Murphy
- Northeastern Collaborative Access Team/Cornell University, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 United States
| | - L. Sangeetha Vedula
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323 United States
| | - Wayne K.W. Chou
- Department of Chemistry, Brown University, Box H, Providence, RI 02912-9108 United States
| | - David E. Cane
- Department of Chemistry, Brown University, Box H, Providence, RI 02912-9108 United States
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323 United States,Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA 02138 United States,Author to whom correspondence should be sent: Tel. (215) 898-5714;
| |
Collapse
|
82
|
Zerbe P, Bohlmann J. Enzymes for synthetic biology of ambroxide-related diterpenoid fragrance compounds. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:427-47. [PMID: 25846965 DOI: 10.1007/10_2015_308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Ambrox and related ambroxides are highly priced in the fragrance industry, and valued for their delicate odor and fixative properties. Historically, ambrox was obtained from ambergris, a waxy excretion produced by sperm whales, now an endangered species. Synthetic ambroxides have replaced ambergris in perfume manufacture. Plant labdane diterpenoids can serve as starting material for ambroxide synthesis. Among these, the diterpene alcohol sclareol is the major industrial precursor obtained from cultivated clary sage (Salvia sclarea). In plants, a large family of diterpene synthase (diTPS) enzymes controls key reactions in diterpenoid biosynthesis. Advanced metabolite profiling and high-throughput sequencing of fragrant and medicinal plants have accelerated discovery of novel diTPS functions, providing a resource for combinatorial synthetic biology and metabolic engineering approaches. This chapter highlights recent progress on the discovery, characterization, and engineering of plant diTPSs with potential uses in ambroxide production. It features biosynthesis of sclareol, cis-abienol, and diterpene resin acids, as sources of genes and enzymes for diterpenoid bioproducts.
Collapse
Affiliation(s)
- Philipp Zerbe
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada,
| | | |
Collapse
|
83
|
Plant diterpene synthases: exploring modularity and metabolic diversity for bioengineering. Trends Biotechnol 2015; 33:419-28. [DOI: 10.1016/j.tibtech.2015.04.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 11/22/2022]
|
84
|
Forti L, Di Mauro S, Cramarossa MR, Filippucci S, Turchetti B, Buzzini P. Non-Conventional Yeasts Whole Cells as Efficient Biocatalysts for the Production of Flavors and Fragrances. Molecules 2015; 20:10377-98. [PMID: 26053491 PMCID: PMC6272320 DOI: 10.3390/molecules200610377] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 12/25/2022] Open
Abstract
The rising consumer requests for natural flavors and fragrances have generated great interest in the aroma industry to seek new methods to obtain fragrance and flavor compounds naturally. An alternative and attractive route for these compounds is based on bio-transformations. In this review, the application of biocatalysis by Non Conventional Yeasts (NCYs) whole cells for the production of flavor and fragrances is illustrated by a discussion of the production of different class of compounds, namely Aldehydes, Ketones and related compounds, Alcohols, Lactones, Terpenes and Terpenoids, Alkenes, and Phenols.
Collapse
Affiliation(s)
- Luca Forti
- Department of Life Sciences, University of Modena & Reggio Emilia, via G. Campi 103, Modena 41125, Italy.
| | - Simone Di Mauro
- Department of Agricultural, Environmental and Food Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, Perugia 06121, Italy.
| | - Maria Rita Cramarossa
- Department of Life Sciences, University of Modena & Reggio Emilia, via G. Campi 103, Modena 41125, Italy.
| | - Sara Filippucci
- Department of Agricultural, Environmental and Food Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, Perugia 06121, Italy.
| | - Benedetta Turchetti
- Department of Agricultural, Environmental and Food Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, Perugia 06121, Italy.
| | - Pietro Buzzini
- Department of Agricultural, Environmental and Food Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, Perugia 06121, Italy.
| |
Collapse
|
85
|
Trikka FA, Nikolaidis A, Athanasakoglou A, Andreadelli A, Ignea C, Kotta K, Argiriou A, Kampranis SC, Makris AM. Iterative carotenogenic screens identify combinations of yeast gene deletions that enhance sclareol production. Microb Cell Fact 2015; 14:60. [PMID: 25903744 PMCID: PMC4413541 DOI: 10.1186/s12934-015-0246-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/17/2015] [Indexed: 02/05/2023] Open
Abstract
Background Terpenoids (isoprenoids) have numerous applications in flavors, fragrances, drugs and biofuels. The number of microbially produced terpenoids is increasing as new biosynthetic pathways are being elucidated. However, efforts to improve terpenoid production in yeast have mostly taken advantage of existing knowledge of the sterol biosynthetic pathway, while many additional factors may affect the output of the engineered system. Results Aiming to develop a yeast strain that can support high titers of sclareol, a diterpene of great importance for the perfume industry, we sought to identify gene deletions that improved carotenoid, and thus potentially sclareol, production. Using a carotenogenic screen, the best 100 deletion mutants, out of 4,700 mutant strains, were selected to create a subset for further analysis. To identify combinations of deletions that cooperate to further boost production, iterative carotenogenic screens were applied, and each time the top performing gene deletions were further ranked according to the number of genetic and physical interactions known for each specific gene. The gene selected in each round was deleted and the resulting strain was employed in a new round of selection. This approach led to the development of an EG60 derived haploid strain combining six deletions (rox1, dos2, yer134c, vba5, ynr063w and ygr259c) and exhibiting a 40-fold increase in carotenoid and 12-fold increase in sclareol titers, reaching 750 mg/L sclareol in shake flask cultivation. Conclusion Using an iterative approach, we identified novel combinations of yeast gene deletions that improve carotenoid and sclareol production titers without compromising strain growth and viability. Most of the identified deletions have not previously been implicated in sterol pathway control. Applying the same approach using a different starting point could yield alternative sets of deletions with similar or improved outcome. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0246-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fotini A Trikka
- Institute of Applied Biosciences/CERTH, P.O. Box 60361, Thermi, 57001, Thessaloniki, Greece.
| | - Alexandros Nikolaidis
- Institute of Applied Biosciences/CERTH, P.O. Box 60361, Thermi, 57001, Thessaloniki, Greece.
| | - Anastasia Athanasakoglou
- Institute of Applied Biosciences/CERTH, P.O. Box 60361, Thermi, 57001, Thessaloniki, Greece. .,Department of Biochemistry, School of Medicine, University of Crete, P.O. Box 2208, Heraklion, 71003, Greece.
| | - Aggeliki Andreadelli
- Institute of Applied Biosciences/CERTH, P.O. Box 60361, Thermi, 57001, Thessaloniki, Greece.
| | - Codruta Ignea
- Department of Biochemistry, School of Medicine, University of Crete, P.O. Box 2208, Heraklion, 71003, Greece.
| | - Konstantia Kotta
- Institute of Applied Biosciences/CERTH, P.O. Box 60361, Thermi, 57001, Thessaloniki, Greece.
| | - Anagnostis Argiriou
- Institute of Applied Biosciences/CERTH, P.O. Box 60361, Thermi, 57001, Thessaloniki, Greece.
| | - Sotirios C Kampranis
- Department of Biochemistry, School of Medicine, University of Crete, P.O. Box 2208, Heraklion, 71003, Greece.
| | - Antonios M Makris
- Institute of Applied Biosciences/CERTH, P.O. Box 60361, Thermi, 57001, Thessaloniki, Greece.
| |
Collapse
|
86
|
Castillo A, Silva L, Briones D, Quílez del Moral JF, Barrero AF. Collective Synthesis of Natural Products Sharing the Dihydro-γ-Ionone Core. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
87
|
Sun J, Alper HS. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production. ACTA ACUST UNITED AC 2015; 42:423-36. [DOI: 10.1007/s10295-014-1539-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/06/2014] [Indexed: 12/11/2022]
Abstract
Abstract
A plethora of successful metabolic engineering case studies have been published over the past several decades. Here, we highlight a collection of microbially produced chemicals using a historical framework, starting with titers ranging from industrial scale (more than 50 g/L), to medium-scale (5–50 g/L), and lab-scale (0–5 g/L). Although engineered Escherichia coli and Saccharomyces cerevisiae emerge as prominent hosts in the literature as a result of well-developed genetic engineering tools, several novel native-producing strains are gaining attention. This review catalogs the current progress of metabolic engineering towards production of compounds such as acids, alcohols, amino acids, natural organic compounds, and others.
Collapse
Affiliation(s)
- Jie Sun
- grid.89336.37 0000000419369924 McKetta Department of Chemical Engineering The University of Texas at Austin 200 E Dean Keeton St. Stop C0400 78712 Austin TX USA
| | - Hal S Alper
- grid.89336.37 0000000419369924 McKetta Department of Chemical Engineering The University of Texas at Austin 200 E Dean Keeton St. Stop C0400 78712 Austin TX USA
- grid.89336.37 0000000419369924 Institute for Cellular and Molecular Biology The University of Texas at Austin 2500 Speedway Avenue 78712 Austin TX USA
| |
Collapse
|
88
|
Ignea C, Ioannou E, Georgantea P, Loupassaki S, Trikka FA, Kanellis AK, Makris AM, Roussis V, Kampranis SC. Reconstructing the chemical diversity of labdane-type diterpene biosynthesis in yeast. Metab Eng 2015; 28:91-103. [DOI: 10.1016/j.ymben.2014.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/09/2014] [Accepted: 12/02/2014] [Indexed: 01/08/2023]
|
89
|
Pateraki I, Heskes AM, Hamberger B. Cytochromes P450 for Terpene Functionalisation and Metabolic Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:107-39. [DOI: 10.1007/10_2014_301] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
90
|
Ignea C, Trikka FA, Nikolaidis AK, Georgantea P, Ioannou E, Loupassaki S, Kefalas P, Kanellis AK, Roussis V, Makris AM, Kampranis SC. Efficient diterpene production in yeast by engineering Erg20p into a geranylgeranyl diphosphate synthase. Metab Eng 2015; 27:65-75. [DOI: 10.1016/j.ymben.2014.10.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 08/01/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
|
91
|
Schewe H, Mirata MA, Schrader J. Bioprocess engineering for microbial synthesis and conversion of isoprenoids. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:251-86. [PMID: 25893480 DOI: 10.1007/10_2015_321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Isoprenoids represent a natural product class essential to living organisms. Moreover, industrially relevant isoprenoid molecules cover a wide range of products such as pharmaceuticals, flavors and fragrances, or even biofuels. Their often complex structure makes chemical synthesis a difficult and expensive task and extraction from natural sources is typically low yielding. This has led to intense research for biotechnological production of isoprenoids by microbial de novo synthesis or biotransformation. Here, metabolic engineering, including synthetic biology approaches, is the key technology to develop efficient production strains in the first place. Bioprocess engineering, particularly in situ product removal (ISPR), is the second essential technology for the development of industrial-scale bioprocesses. A number of elaborate bioreactor and ISPR designs have been published to target the problems of isoprenoid synthesis and conversion, such as toxicity and product inhibition. However, despite the many exciting applications of isoprenoids, research on isoprenoid-specific bioprocesses has mostly been, and still is, limited to small-scale proof-of-concept approaches. This review presents and categorizes different ISPR solutions for biotechnological isoprenoid production and also addresses the main challenges en route towards industrial application.
Collapse
Affiliation(s)
- Hendrik Schewe
- DECHEMA Research Institute, Biochemical Engineering, Frankfurt, Germany
| | | | | |
Collapse
|
92
|
Exploring the interactions between isoprenoid chain and labdenediol diphosphate synthase based on molecular docking and quartz crystal microbalance. J Mol Model 2014; 20:2527. [PMID: 25472483 DOI: 10.1007/s00894-014-2527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
Many natural products and biosynthetic intermediates contain isoprenoid chains. Isoprenoid chains are believed to interact with some proteins in the biological systems, but such interactions remain poorly understood. Here labdenediol diphosphate synthase (LPPS) was used as a model to explore the molecular interactions involving isoprenoid chains. Both homology modeling and docking simulation results indicated that binding form between isoprenoid chain and LPPS is dominated by hydrophobic forces in one binding site. The interactions were also examined via quartz crystal microbalance (QCM) technology using synthetic isoprenoid chain-contained probes. The binding constant (1.51 μM(-1)), binding site number (n = 1) and key amino acid residues (Y196, F262, W266, F301, F308, W398, W439, and Y445) were obtained. Both computational and QCM results suggested that LPPS interacts strongly with farnesyl and geranylgeranyl groups. These interactions are primarily caused by hydrophobic and π-π interaction nature. Together, this study provided insightful information to understand molecular interactions between isoprenoid chains and proteins.
Collapse
|
93
|
Microbial Synthesis of the Forskolin Precursor Manoyl Oxide in an Enantiomerically Pure Form. Appl Environ Microbiol 2014; 80:7258-65. [PMID: 25239892 DOI: 10.1128/aem.02301-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/11/2014] [Indexed: 11/20/2022] Open
Abstract
Forskolin is a promising medicinal compound belonging to a plethora of specialized plant metabolites that constitute a rich source of bioactive high-value compounds. A major obstacle for exploitation of plant metabolites is that they often are produced in small amounts and in plants difficult to cultivate. This may result in insufficient and unreliable supply leading to fluctuating and high sales prices. Hence, substantial efforts and resources have been invested in developing sustainable and reliable supply routes based on microbial cell factories. Here, we report microbial synthesis of (13R)-manoyl oxide, a proposed intermediate in the biosynthesis of forskolin and other medically important labdane-type terpenoids. Process optimization enabled synthesis of enantiomerically pure (13R)-manoyl oxide as the sole metabolite, providing a pure compound in just two steps with a yield of 10 mg/liter. The work presented here demonstrates the value of a standardized bioengineering pipeline and the large potential of microbial cell factories as sources for sustainable synthesis of complex biochemicals.
Collapse
|
94
|
Zerbe P, Chiang A, Dullat H, O'Neil-Johnson M, Starks C, Hamberger B, Bohlmann J. Diterpene synthases of the biosynthetic system of medicinally active diterpenoids in Marrubium vulgare. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:914-27. [PMID: 24990389 DOI: 10.1111/tpj.12589] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/27/2014] [Accepted: 06/10/2014] [Indexed: 05/03/2023]
Abstract
Marrubium vulgare (Lamiaceae) is a medicinal plant whose major bioactive compounds, marrubiin and other labdane-related furanoid diterpenoids, have potential applications as anti-diabetics, analgesics or vasorelaxants. Metabolite and transcriptome profiling of M. vulgare leaves identified five different candidate diterpene synthases (diTPSs) of the TPS-c and TPS-e/f clades. We describe the in vitro and in vivo functional characterization of the M. vulgare diTPS family. In addition to MvEKS ent-kaurene synthase of general metabolism, we identified three diTPSs of specialized metabolism: MvCPS3 (+)-copalyl diphosphate synthase, and the functional diTPS pair MvCPS1 and MvELS. In a sequential reaction, MvCPS1 and MvELS produce a unique oxygenated diterpene scaffold 9,13-epoxy-labd-14-ene en route to marrubiin and an array of related compounds. In contrast with previously known diTPSs that introduce a hydroxyl group at carbon C-8 of the labdane backbone, the MvCPS1-catalyzed reaction proceeds via oxygenation of an intermediate carbocation at C-9, yielding the bicyclic peregrinol diphosphate. MvELS belongs to a subgroup of the diTPS TPS-e/f clade with unusual βα-domain architecture. MvELS is active in vitro and in vivo with three different prenyl diphosphate substrates forming the marrubiin precursor 9,13-epoxy-labd-14-ene, as identified by nuclear magnetic resonance (NMR) analysis, manoyl oxide and miltiradiene. MvELS fills a central position in the biosynthetic system that forms the foundation for the diverse repertoire of Marrubium diterpenoids. Co-expression of MvCPS1 and MvELS in engineered E. coli and Nicotiana benthamiana offers opportunities for producing precursors for an array of biologically active diterpenoids.
Collapse
Affiliation(s)
- Philipp Zerbe
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | | | | | | | | | | | | |
Collapse
|
95
|
Jackson AJ, Hershey DM, Chesnut T, Xu M, Peters RJ. Biochemical characterization of the castor bean ent-kaurene synthase(-like) family supports quantum chemical view of diterpene cyclization. PHYTOCHEMISTRY 2014; 103:13-21. [PMID: 24810014 PMCID: PMC4062354 DOI: 10.1016/j.phytochem.2014.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/04/2014] [Accepted: 04/10/2014] [Indexed: 05/20/2023]
Abstract
It has become apparent that plants have extensively diversified their arsenal of labdane-related diterpenoids (LRDs), in part via gene duplication and neo-functionalization of the ancestral ent-kaurene synthase (KS) required for gibberellin metabolism. For example, castor bean (Ricinus communis) was previously shown to produce an interesting set of biosynthetically related diterpenes, specifically ent-sandracopimaradiene, ent-beyerene, and ent-trachylobane, in addition to ent-kaurene, using four separate diterpene synthases, albeit these remain unidentified. Notably, despite mechanistic similarity of the underlying reaction to that catalyzed by KSs, ent-beyerene and ent-trachylobane synthases have not yet been identified. Given our interest in LRD biosynthesis, and the recent availability of the castor bean genome sequence, a synthetic biology approach was applied to biochemically characterize the four KS(-like) enzymes [KS(L)s] found in Ricinus communis [i.e., the RcKS(L)s]. In particular, using bacteria engineered to produce the relevant ent-copalyl diphosphate precursor and synthetic genes based on the predicted RcKS(L)s, although this ultimately required correction of a "splicing" error in one of the predicted genes, highlighting the dependence of such a synthetic biology approach on accurate gene sequences. Nevertheless, it is possible to assign each of the four RcKS(L)s to one of the previously observed diterpene synthase activities, providing access to functionally enzymes. Intriguingly, the product distribution of the RcKS(L)s seems to support the distinct diterpene synthase reaction mechanism proposed by quantum chemical calculations, rather than the classically proposed pathway.
Collapse
Affiliation(s)
- Alana J Jackson
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - David M Hershey
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Taylor Chesnut
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Meimei Xu
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Reuben J Peters
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
96
|
Boycheva S, Daviet L, Wolfender JL, Fitzpatrick TB. The rise of operon-like gene clusters in plants. TRENDS IN PLANT SCIENCE 2014; 19:447-59. [PMID: 24582794 DOI: 10.1016/j.tplants.2014.01.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/19/2014] [Accepted: 01/30/2014] [Indexed: 05/18/2023]
Abstract
Gene clusters are common features of prokaryotic genomes also present in eukaryotes. Most clustered genes known are involved in the biosynthesis of secondary metabolites. Although horizontal gene transfer is a primary source of prokaryotic gene cluster (operon) formation and has been reported to occur in eukaryotes, the predominant source of cluster formation in eukaryotes appears to arise de novo or through gene duplication followed by neo- and sub-functionalization or translocation. Here we aim to provide an overview of the current knowledge and open questions related to plant gene cluster functioning, assembly, and regulation. We also present potential research approaches and point out the benefits of a better understanding of gene clusters in plants for both fundamental and applied plant science.
Collapse
Affiliation(s)
- Svetlana Boycheva
- Department of Botany and Plant Biology, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland
| | - Laurent Daviet
- Biotechnology Department, Corporate R&D Division, FIRMENICH SA, 1211 Geneva 4, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
97
|
Papaefthimiou D, Papanikolaou A, Falara V, Givanoudi S, Kostas S, Kanellis AK. Genus Cistus: a model for exploring labdane-type diterpenes' biosynthesis and a natural source of high value products with biological, aromatic, and pharmacological properties. Front Chem 2014; 2:35. [PMID: 24967222 PMCID: PMC4052220 DOI: 10.3389/fchem.2014.00035] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/23/2014] [Indexed: 11/13/2022] Open
Abstract
The family Cistaceae (Angiosperm, Malvales) consists of 8 genera and 180 species, with 5 genera native to the Mediterranean area (Cistus, Fumara, Halimium, Helianthemum, and Tuberaria). Traditionally, a number of Cistus species have been used in Mediterranean folk medicine as herbal tea infusions for healing digestive problems and colds, as extracts for the treatment of diseases, and as fragrances. The resin, ladano, secreted by the glandular trichomes of certain Cistus species contains a number of phytochemicals with antioxidant, antibacterial, antifungal, and anticancer properties. Furthermore, total leaf aqueous extracts possess anti-influenza virus activity. All these properties have been attributed to phytochemicals such as terpenoids, including diterpenes, labdane-type diterpenes and clerodanes, phenylpropanoids, including flavonoids and ellagitannins, several groups of alkaloids and other types of secondary metabolites. In the past 20 years, research on Cistus involved chemical, biological and phylogenetic analyses but recent investigations have involved genomic and molecular approaches. Our lab is exploring the biosynthetic machinery that generates terpenoids and phenylpropanoids, with a goal to harness their numerous properties that have applications in the pharmaceutical, chemical and aromatic industries. This review focuses on the systematics, botanical characteristics, geographic distribution, chemical analyses, biological function and biosynthesis of major compounds, as well as genomic analyses and biotechnological approaches of the main Cistus species found in the Mediterranean basin, namely C. albidus, C. creticus, C. crispus, C. parviflorus, C. monspeliensis, C. populifolius, C. salviifolius, C. ladanifer, C. laurifolius, and C. clusii.
Collapse
Affiliation(s)
- Dimitra Papaefthimiou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Antigoni Papanikolaou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Vasiliki Falara
- Department of Chemical Engineering, Delaware Biotechnology Institute, University of DelawareNewark, DE, USA
| | - Stella Givanoudi
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Stefanos Kostas
- Department of Floriculture, School of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Angelos K. Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of ThessalonikiThessaloniki, Greece
| |
Collapse
|
98
|
Potter K, Criswell J, Zi J, Stubbs A, Peters RJ. Novel Product Chemistry from Mechanistic Analysis of
ent
‐Copalyl Diphosphate Synthases from Plant Hormone Biosynthesis. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Kevin Potter
- Dept. Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011 (USA)
| | - Jared Criswell
- Dept. Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011 (USA)
| | - Jiachen Zi
- Dept. Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011 (USA)
| | - Alisha Stubbs
- Dept. Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011 (USA)
| | - Reuben J. Peters
- Dept. Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011 (USA)
| |
Collapse
|
99
|
Potter K, Criswell J, Zi J, Stubbs A, Peters RJ. Novel product chemistry from mechanistic analysis of ent-copalyl diphosphate synthases from plant hormone biosynthesis. Angew Chem Int Ed Engl 2014; 53:7198-202. [PMID: 24862907 DOI: 10.1002/anie.201402911] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/08/2014] [Indexed: 11/08/2022]
Abstract
An active-site water molecule coordinated by conserved histidine and asparagine residues seems to serve as the catalytic base in all ent-copalyl diphosphate synthases (CPSs). When these residues are substituted by alanine, the mutant CPSs produce stereochemically novel ent-8-hydroxy-CPP. Given the requisite presence of CPSs in all land plants for gibberellin phytohormone biosynthesis, such plasticity presumably underlies the observed extensive diversification of the resulting labdane-related diterpenoids.
Collapse
Affiliation(s)
- Kevin Potter
- Dept. Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011 (USA)
| | | | | | | | | |
Collapse
|
100
|
Brückner K, Božić D, Manzano D, Papaefthimiou D, Pateraki I, Scheler U, Ferrer A, de Vos RCH, Kanellis AK, Tissier A. Characterization of two genes for the biosynthesis of abietane-type diterpenes in rosemary (Rosmarinus officinalis) glandular trichomes. PHYTOCHEMISTRY 2014; 101:52-64. [PMID: 24569175 DOI: 10.1016/j.phytochem.2014.01.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/15/2014] [Accepted: 01/31/2014] [Indexed: 05/03/2023]
Abstract
Rosemary (Rosmarinus officinalis) produces the phenolic diterpenes carnosic acid and carnosol, which, in addition to their general antioxidant activities, have recently been suggested as potential ingredients for the prevention and treatment of neurodegenerative diseases. Little is known about the biosynthesis of these diterpenes. Here we show that the biosynthesis of phenolic diterpenes in rosemary predominantly takes place in the glandular trichomes of young leaves, and used this feature to identify the first committed steps. Thus, a copalyl diphosphate synthase (RoCPS1) and two kaurene synthase-like (RoKSL1 and RoKSL2) encoding genes were identified and characterized. Expression in yeast (Saccharomyces cerevisiae) and Nicotiana benthamiana demonstrate that RoCPS1 converts geranylgeranyl diphosphate (GGDP) to copalyl diphosphate (CDP) of normal stereochemistry and that both RoKSL1 and RoKSL2 use normal CDP to produce an abietane diterpene. Comparison to the already characterized diterpene synthase from Salvia miltiorrhiza (SmKSL) demonstrates that the product of RoKSL1 and RoKSL2 is miltiradiene. Expression analysis supports a major contributing role for RoKSL2. Like SmKSL and the sclareol synthase from Salvia sclarea, RoKSL1/2 are diterpene synthases of the TPS-e group which have lost the internal gamma-domain. Furthermore, phylogenetic analysis indicates that RoKSL1 and RoKSL2 belong to a distinct group of KSL enzymes involved in specialized metabolism which most likely emerged before the dicot-monocot split.
Collapse
Affiliation(s)
- Kathleen Brückner
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, Weinberg 3, 06120 Halle-Saale, Germany
| | - Dragana Božić
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - David Manzano
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra-Cerdanyola del Vallés, 08193 Barcelona, Spain; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Dimitra Papaefthimiou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Irini Pateraki
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra-Cerdanyola del Vallés, 08193 Barcelona, Spain; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Ulschan Scheler
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, Weinberg 3, 06120 Halle-Saale, Germany
| | - Albert Ferrer
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra-Cerdanyola del Vallés, 08193 Barcelona, Spain; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Ric C H de Vos
- Plant Research International, Wageningen University and Research Centre, The Netherlands; Netherlands Metabolomics Centre, The Netherlands
| | - Angelos K Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Alain Tissier
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, Weinberg 3, 06120 Halle-Saale, Germany.
| |
Collapse
|