51
|
Pyne A, Pfeil MP, Bennett I, Ravi J, Iavicoli P, Lamarre B, Roethke A, Ray S, Jiang H, Bella A, Reisinger B, Yin D, Little B, Muñoz-García JC, Cerasoli E, Judge PJ, Faruqui N, Calzolai L, Henrion A, Martyna GJ, Grovenor CRM, Crain J, Hoogenboom BW, Watts A, Ryadnov MG. Engineering monolayer poration for rapid exfoliation of microbial membranes. Chem Sci 2016; 8:1105-1115. [PMID: 28451250 PMCID: PMC5369539 DOI: 10.1039/c6sc02925f] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 09/25/2016] [Indexed: 12/04/2022] Open
Abstract
A novel mechanism of monolayer poration leading to the rapid exfoliation and lysis of microbial membranes is reported.
The spread of bacterial resistance to traditional antibiotics continues to stimulate the search for alternative antimicrobial strategies. All forms of life, from bacteria to humans, are postulated to rely on a fundamental host defense mechanism, which exploits the formation of open pores in microbial phospholipid bilayers. Here we predict that transmembrane poration is not necessary for antimicrobial activity and reveal a distinct poration mechanism that targets the outer leaflet of phospholipid bilayers. Using a combination of molecular-scale and real-time imaging, spectroscopy and spectrometry approaches, we introduce a structural motif with a universal insertion mode in reconstituted membranes and live bacteria. We demonstrate that this motif rapidly assembles into monolayer pits that coalesce during progressive membrane exfoliation, leading to bacterial cell death within minutes. The findings offer a new physical basis for designing effective antibiotics.
Collapse
Affiliation(s)
- Alice Pyne
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK . .,London Centre for Nanotechnology and Department of Physics and Astronomy , University College London , London WC1E 6BT , UK
| | - Marc-Philipp Pfeil
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK . .,Department of Biochemistry , University of Oxford , Oxford OX1 3QU , UK
| | - Isabel Bennett
- London Centre for Nanotechnology and Department of Physics and Astronomy , University College London , London WC1E 6BT , UK
| | - Jascindra Ravi
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| | - Patrizia Iavicoli
- European Commission , Joint Research Centre , Institute for Health and Consumer Protection , Ispra (VA) , Italy
| | - Baptiste Lamarre
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| | - Anita Roethke
- Physikalisch-Technische Bundesanstalt , 38116 Braunschweig , Germany
| | - Santanu Ray
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| | - Haibo Jiang
- Centre for Microscopy , Characterisation and Analysis , The University of Western Australia , Crawley , Western Australia 6009 , Australia
| | - Angelo Bella
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| | - Bernd Reisinger
- Physikalisch-Technische Bundesanstalt , 38116 Braunschweig , Germany
| | - Daniel Yin
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK . .,Department of Biochemistry , University of Oxford , Oxford OX1 3QU , UK
| | - Benjamin Little
- School of Physics and Astronomy , University of Edinburgh , Edinburgh EH9 3JZ , UK
| | | | - Eleonora Cerasoli
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| | - Peter J Judge
- Department of Biochemistry , University of Oxford , Oxford OX1 3QU , UK
| | - Nilofar Faruqui
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| | - Luigi Calzolai
- European Commission , Joint Research Centre , Institute for Health and Consumer Protection , Ispra (VA) , Italy
| | - Andre Henrion
- Physikalisch-Technische Bundesanstalt , 38116 Braunschweig , Germany
| | - Glenn J Martyna
- IBM T. J. Watson Research Center , Yorktown Heights , NY 10598 , USA
| | | | - Jason Crain
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK . .,School of Physics and Astronomy , University of Edinburgh , Edinburgh EH9 3JZ , UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology and Department of Physics and Astronomy , University College London , London WC1E 6BT , UK
| | - Anthony Watts
- Department of Biochemistry , University of Oxford , Oxford OX1 3QU , UK
| | - Maxim G Ryadnov
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| |
Collapse
|
52
|
Di Meo F, Fabre G, Berka K, Ossman T, Chantemargue B, Paloncýová M, Marquet P, Otyepka M, Trouillas P. In silico pharmacology: Drug membrane partitioning and crossing. Pharmacol Res 2016; 111:471-486. [PMID: 27378566 DOI: 10.1016/j.phrs.2016.06.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023]
Abstract
Over the past decade, molecular dynamics (MD) simulations have become particularly powerful to rationalize drug insertion and partitioning in lipid bilayers. MD simulations efficiently support experimental evidences, with a comprehensive understanding of molecular interactions driving insertion and crossing. Prediction of drug partitioning is discussed with respect to drug families (anesthetics; β-blockers; non-steroidal anti-inflammatory drugs; antioxidants; antiviral drugs; antimicrobial peptides). To accurately evaluate passive permeation coefficients turned out to be a complex theoretical challenge; however the recent methodological developments based on biased MD simulations are particularly promising. Particular attention is paid to membrane composition (e.g., presence of cholesterol), which influences drug partitioning and permeation. Recent studies concerning in silico models of membrane proteins involved in drug transport (influx and efflux) are also reported here. These studies have allowed gaining insight in drug efflux by, e.g., ABC transporters at an atomic resolution, explicitly accounting for the mandatory forces induced by the surrounded lipid bilayer. Large-scale conformational changes were thoroughly analyzed.
Collapse
Affiliation(s)
- Florent Di Meo
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Gabin Fabre
- LCSN, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Karel Berka
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Tahani Ossman
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Benjamin Chantemargue
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France; Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Markéta Paloncýová
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Pierre Marquet
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Michal Otyepka
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Patrick Trouillas
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France; Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic.
| |
Collapse
|
53
|
Zhang L, Rajendram M, Weibel DB, Yethiraj A, Cui Q. Ionic Hydrogen Bonds and Lipid Packing Defects Determine the Binding Orientation and Insertion Depth of RecA on Multicomponent Lipid Bilayers. J Phys Chem B 2016; 120:8424-37. [PMID: 27095675 DOI: 10.1021/acs.jpcb.6b02164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We describe a computational and experimental approach for probing the binding properties of the RecA protein at the surface of anionic membranes. Fluorescence measurements indicate that RecA behaves differently when bound to phosphatidylglycerol (PG)- and cardiolipin (CL)-containing liposomes. We use a multistage computational protocol that integrates an implicit membrane/solvent model, the highly mobile mimetic membrane model, and the full atomistic membrane model to study how different anionic lipids perturb RecA binding to the membrane. With anionic lipids studied here, the binding interface involves three key regions: the N-terminal helix, the DNA binding loop L2, and the M-M7 region. The nature of binding involves both electrostatic interactions between cationic protein residues and lipid polar/charged groups and insertion of hydrophobic residues. The L2 loop contributes more to membrane insertion than the N-terminal helix. More subtle aspects of RecA-membrane interaction are influenced by specific properties of anionic lipids. Ionic hydrogen bonds between the carboxylate group in phosphatidylserine and several lysine residues in the C-terminal region of RecA stabilize the parallel (∥) binding orientation, which is not locally stable on PG- and CL-containing membranes despite similarity in the overall charge density. Lipid packing defects, which are more prevalent in the presence of conical lipids, are observed to enhance the insertion depth of hydrophobic motifs. The computational finding that RecA binds in a similar orientation to PG- and CL-containing membranes is consistent with the fact that PG alone is sufficient to induce RecA polar localization, although CL might be more effective because of its tighter binding to RecA. The different fluorescence behaviors of RecA upon binding to PG- and CL-containing liposomes is likely due to the different structures and flexibility of the C-terminal region of RecA when it binds to different anionic phospholipids.
Collapse
Affiliation(s)
- Leili Zhang
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Manohary Rajendram
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Douglas B Weibel
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.,Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States.,Department of Biomedical Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Arun Yethiraj
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
54
|
Pöyry S, Vattulainen I. Role of charged lipids in membrane structures - Insight given by simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2322-2333. [PMID: 27003126 DOI: 10.1016/j.bbamem.2016.03.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 01/28/2023]
Abstract
Lipids and proteins are the main components of cell membranes. It is becoming increasingly clear that lipids, in addition to providing an environment for proteins to work in, are in many cases also able to modulate the structure and function of those proteins. Particularly charged lipids such as phosphatidylinositols and phosphatidylserines are involved in several examples of such effects. Molecular dynamics simulations have proved an invaluable tool in exploring these aspects. This so-called computational microscope can provide both complementing explanations for the experimental results and guide experiments to fruitful directions. In this paper, we review studies that have utilized molecular dynamics simulations to unravel the roles of charged lipids in membrane structures. We focus on lipids as active constituents of the membranes, affecting both general membrane properties as well as non-lipid membrane components, mainly proteins. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Sanja Pöyry
- Department of Physics, Tampere University of Technology, POB 692, FI-33101 Tampere, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, POB 692, FI-33101 Tampere, Finland; MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark; Department of Physics, University of Helsinki, POB 64, FI-00014 Helsinki, Finland.
| |
Collapse
|
55
|
A polyalanine peptide derived from polar fish with anti-infectious activities. Sci Rep 2016; 6:21385. [PMID: 26916401 PMCID: PMC4768251 DOI: 10.1038/srep21385] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/22/2016] [Indexed: 12/13/2022] Open
Abstract
Due to the growing concern about antibiotic-resistant microbial infections, increasing support has been given to new drug discovery programs. A promising alternative to counter bacterial infections includes the antimicrobial peptides (AMPs), which have emerged as model molecules for rational design strategies. Here we focused on the study of Pa-MAP 1.9, a rationally designed AMP derived from the polar fish Pleuronectes americanus. Pa-MAP 1.9 was active against Gram-negative planktonic bacteria and biofilms, without being cytotoxic to mammalian cells. By using AFM, leakage assays, CD spectroscopy and in silico tools, we found that Pa-MAP 1.9 may be acting both on intracellular targets and on the bacterial surface, also being more efficient at interacting with anionic LUVs mimicking Gram-negative bacterial surface, where this peptide adopts α-helical conformations, than cholesterol-enriched LUVs mimicking mammalian cells. Thus, as bacteria present varied physiological features that favor antibiotic-resistance, Pa-MAP 1.9 could be a promising candidate in the development of tools against infections caused by pathogenic bacteria.
Collapse
|
56
|
|
57
|
Libardo MDJ, Gorbatyuk VY, Angeles-Boza AM. Central Role of the Copper-Binding Motif in the Complex Mechanism of Action of Ixosin: Enhancing Oxidative Damage and Promoting Synergy with Ixosin B. ACS Infect Dis 2016; 2:71-81. [PMID: 27622949 DOI: 10.1021/acsinfecdis.5b00140] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ticks transmit multiple pathogens to different hosts without compromising their health. Their ability to evade microbial infections is largely a result of their effective innate immune response including various antimicrobial peptides. Therefore, a deep understanding of how ticks (and other arthropod vectors) control microbial loads could lead to the design of broad-spectrum antimicrobial agents. In this paper we study the role of the amino-terminal copper and nickel (ATCUN)-binding sequence in the peptide ixosin, isolated from the salivary glands of the hard tick Ixodes sinensis. Our results indicate that the ATCUN motif is not essential to the potency of ixosin, but is indispensable to its oxidative mechanism of action. Specifically, the ATCUN motif promotes dioxygen- and copper-dependent lipid (per)oxidation of bacterial membranes in a temporal fashion coinciding with the onset of bacterial death. Microscopy and studies on model membranes indicate that the oxidized phospholipids are utilized as potential targets of ixosin B (another tick salivary gland peptide) involving its delocalization to the bacterial membrane, thus resulting in a synergistic effect. Our proposed mechanism of action highlights the centrality of the ATCUN motif to ixosin's mechanism of action and demonstrates a novel way in which (tick) antimicrobial peptides (AMPs) utilize metal ions in its activity. This study suggests that ticks employ a variety of effectors to generate an amplified immune response, possibly justifying its vector competence.
Collapse
Affiliation(s)
- M. Daben J. Libardo
- Department of Chemistry, University of Connecticut, Unit 3060, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Vitaliy Y. Gorbatyuk
- Department of Chemistry, University of Connecticut, Unit 3060, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
- Biotechnology and Bioservices Center, University of Connecticut, Unit 3149, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Alfredo M. Angeles-Boza
- Department of Chemistry, University of Connecticut, Unit 3060, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
58
|
Smith AN, Long JR. Dynamic Nuclear Polarization as an Enabling Technology for Solid State Nuclear Magnetic Resonance Spectroscopy. Anal Chem 2016; 88:122-32. [PMID: 26594903 PMCID: PMC5704910 DOI: 10.1021/acs.analchem.5b04376] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Adam N Smith
- Department of Chemistry, University of Florida , 214 Leigh Hall, Gainesville, Florida 32611-7200, United States
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology, University of Florida , P. O. Box 100245, Gainesville, Florida 32610-0245, United States
| |
Collapse
|
59
|
Hayden RM, Goldberg GK, Ferguson BM, Schoeneck MW, Libardo MDJ, Mayeux SE, Shrestha A, Bogardus KA, Hammer J, Pryshchep S, Lehman HK, McCormick ML, Blazyk J, Angeles-Boza AM, Fu R, Cotten ML. Complementary Effects of Host Defense Peptides Piscidin 1 and Piscidin 3 on DNA and Lipid Membranes: Biophysical Insights into Contrasting Biological Activities. J Phys Chem B 2015; 119:15235-46. [DOI: 10.1021/acs.jpcb.5b09685] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Robert M. Hayden
- Department
of Chemistry, Hamilton College, Clinton, New York 13323, United States
| | - Gina K. Goldberg
- Department
of Chemistry, Hamilton College, Clinton, New York 13323, United States
| | - Bryan M. Ferguson
- Department
of Chemistry, Hamilton College, Clinton, New York 13323, United States
| | - Mason W. Schoeneck
- Department
of Chemistry, Hamilton College, Clinton, New York 13323, United States
| | - M. Daben J. Libardo
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Sophie E. Mayeux
- Department
of Chemistry, Hamilton College, Clinton, New York 13323, United States
| | - Akritee Shrestha
- Department
of Chemistry, Hamilton College, Clinton, New York 13323, United States
| | - Kimberly A. Bogardus
- Department
of Chemistry, Hamilton College, Clinton, New York 13323, United States
| | - Janet Hammer
- Department
of Biomedical Sciences, Ohio University, Athens, Ohio 45701, United States
| | - Sergey Pryshchep
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Herman K. Lehman
- Department
of Biology, Hamilton College, Clinton, New York 13323, United States
| | | | - Jack Blazyk
- Department
of Biomedical Sciences, Ohio University, Athens, Ohio 45701, United States
| | - Alfredo M. Angeles-Boza
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Myriam L. Cotten
- Department
of Chemistry, Hamilton College, Clinton, New York 13323, United States
| |
Collapse
|
60
|
Tian Y, Schwieters CD, Opella SJ, Marassi FM. A Practical Implicit Membrane Potential for NMR Structure Calculations of Membrane Proteins. Biophys J 2015; 109:574-85. [PMID: 26244739 PMCID: PMC4572468 DOI: 10.1016/j.bpj.2015.06.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/18/2015] [Accepted: 06/23/2015] [Indexed: 01/22/2023] Open
Abstract
The highly anisotropic environment of the lipid bilayer membrane imposes significant constraints on the structures and functions of membrane proteins. However, NMR structure calculations typically use a simple repulsive potential that neglects the effects of solvation and electrostatics, because explicit atomic representation of the solvent and lipid molecules is computationally expensive and impractical for routine NMR-restrained calculations that start from completely extended polypeptide templates. Here, we describe the extension of a previously described implicit solvation potential, eefxPot, to include a membrane model for NMR-restrained calculations of membrane protein structures in XPLOR-NIH. The key components of eefxPot are an energy term for solvation free energy that works together with other nonbonded energy functions, a dedicated force field for conformational and nonbonded protein interaction parameters, and a membrane function that modulates the solvation free energy and dielectric screening as a function of the atomic distance from the membrane center, relative to the membrane thickness. Initial results obtained for membrane proteins with structures determined experimentally in lipid bilayer membranes show that eefxPot affords significant improvements in structural quality, accuracy, and precision. Calculations with eefxPot are straightforward to implement and can be used to both fold and refine structures, as well as to run unrestrained molecular-dynamics simulations. The potential is entirely compatible with the full range of experimental restraints measured by various techniques. Overall, it provides a useful and practical way to calculate membrane protein structures in a physically realistic environment.
Collapse
Affiliation(s)
- Ye Tian
- Sanford-Burnham Medical Research Institute, La Jolla, California; Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Charles D Schwieters
- Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | | |
Collapse
|
61
|
Structure and membrane interactions of chionodracine, a piscidin-like antimicrobial peptide from the icefish Chionodraco hamatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1285-93. [DOI: 10.1016/j.bbamem.2015.02.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/23/2015] [Accepted: 02/27/2015] [Indexed: 12/24/2022]
|
62
|
Membrane interactions of phylloseptin-1, -2, and -3 peptides by oriented solid-state NMR spectroscopy. Biophys J 2015; 107:901-11. [PMID: 25140425 DOI: 10.1016/j.bpj.2014.07.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/30/2014] [Accepted: 07/07/2014] [Indexed: 01/10/2023] Open
Abstract
Phylloseptin-1, -2, and -3 are three members of the family of linear cationic antimicrobial peptides found in tree frogs. The highly homologous peptides encompass 19 amino acids, and only differ in the amino acid composition and charge at the six most carboxy-terminal residues. Here, we investigated how such subtle changes are reflected in their membrane interactions and how these can be correlated to their biological activities. To this end, the three peptides were labeled with stable isotopes, reconstituted into oriented phospholipid bilayers, and their detailed topology determined by a combined approach using (2)H and (15)N solid-state NMR spectroscopy. Although phylloseptin-2 and -3 adopt perfect in-plane alignments, the tilt angle of phylloseptin-1 deviates by 8° probably to assure a more water exposed localization of the lysine-17 side chain. Furthermore, different azimuthal angles are observed, positioning the amphipathic helices of all three peptides with the charged residues well exposed to the water phase. Interestingly, our studies also reveal that two orientation-dependent (2)H quadrupolar splittings from methyl-deuterated alanines and one (15)N amide chemical shift are sufficient to unambiguously determine the topology of phylloseptin-1, where quadrupolar splittings close to the maximum impose the most stringent angular restraints. As a result of these studies, a strategy is proposed where the topology of a peptide structure can be determined accurately from the labeling with (15)N and (2)H isotopes of only a few amino acid residues.
Collapse
|
63
|
Opella SJ. Solid-state NMR and membrane proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:129-37. [PMID: 25681966 PMCID: PMC4372479 DOI: 10.1016/j.jmr.2014.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/17/2014] [Accepted: 11/30/2014] [Indexed: 05/15/2023]
Abstract
The native environment for a membrane protein is a phospholipid bilayer. Because the protein is immobilized on NMR timescales by the interactions within a bilayer membrane, solid-state NMR methods are essential to obtain high-resolution spectra. Approaches have been developed for both unoriented and oriented samples, however, they all rest on the foundation of the most fundamental aspects of solid-state NMR, and the chemical shift and homo- and hetero-nuclear dipole-dipole interactions. Solid-state NMR has advanced sufficiently to enable the structures of membrane proteins to be determined under near-native conditions in phospholipid bilayers.
Collapse
Affiliation(s)
- Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
64
|
Wang G, Mishra B, Lau K, Lushnikova T, Golla R, Wang X. Antimicrobial peptides in 2014. Pharmaceuticals (Basel) 2015; 8:123-50. [PMID: 25806720 PMCID: PMC4381204 DOI: 10.3390/ph8010123] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/13/2022] Open
Abstract
This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.
Collapse
Affiliation(s)
- Guangshun Wang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| | - Biswajit Mishra
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Kyle Lau
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Tamara Lushnikova
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Radha Golla
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Xiuqing Wang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
- Institute of Clinical Laboratory, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
65
|
Chen WF, Huang SY, Liao CY, Sung CS, Chen JY, Wen ZH. The use of the antimicrobial peptide piscidin (PCD)-1 as a novel anti-nociceptive agent. Biomaterials 2015; 53:1-11. [PMID: 25890701 DOI: 10.1016/j.biomaterials.2015.02.069] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/10/2015] [Accepted: 02/15/2015] [Indexed: 02/09/2023]
Abstract
The antimicrobial peptide piscidin (PCD)-1 has been reported to have antibacterial and immunomodulatory functions. Here, we investigated the anti-neuropathic properties of PCD-1, in order to determine its potential as a compound to alleviate pain. Treatment with PCD-1 suppressed the inflammatory proteins COX-2 and iNOS in murine macrophage (RAW264.7) and microglial (BV2) cell lines stimulated by lipopolysaccharide (LPS). For studies of the effect of PCD-1 in vivo, mononeuropathy in rats was induced by chronic constriction injury (CCI), and the resulting anti-nociceptive behaviors were compared between CCI controls and CCI rats given intrathecal injections of PCD-1. Much like gabapentin, PCD-1 exerts anti-nociceptive effects against thermal hyperalgesia, with a median effective dose (ED50) of 9.5 μg in CCI rats. In CCI rats, PCD-1 exerted effects against mechanical and cold allodynia, thermal hyperalgesia, and weight-bearing deficits. Furthermore, CCI-mediated activation of microglia and astrocytes in the dorsal horn of the lumbar spinal cord were decreased by PCD-1. In addition, PCD-1 suppressed up-regulation of interleukin-1β (IL-1β) and phosphorylated mammalian target of rapamycin (phospho-mTOR) in CCI rats. Finally, CCI-induced down-regulation of transforming growth factor-β1 (TGF-β1) in rats was attenuated by injection of PCD-1. Taken together, the present findings demonstrate that the marine antimicrobial peptide PCD-1 has anti-nociceptive effects, and thus may have potential for development as an alternative pain-alleviating agent.
Collapse
Affiliation(s)
- Wu-Fu Chen
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta Pei Rd, Kaohsiung 833, Taiwan; Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta Pei Rd, Kaohsiung 833, Taiwan
| | - Shi-Ying Huang
- Center for Neuroscience, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan
| | - Chang-Yi Liao
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan
| | - Chun-Sung Sung
- Department of Anesthesiology, Taipei Veterans General Hospital, 201 Sec 2, Shih-Pai Rd, Taipei 112, Taiwan; School of Medicine, National Yang-Ming University, 155 Sec 2, Li-Nong St, Taipei 112, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd, Jiaushi, Ilan 262, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan; Marine Biomedical Laboratory and Center for Translational Biopharmaceuticals, Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan.
| |
Collapse
|
66
|
Strandberg E, Ulrich AS. AMPs and OMPs: Is the folding and bilayer insertion of β-stranded outer membrane proteins governed by the same biophysical principles as for α-helical antimicrobial peptides? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1944-54. [PMID: 25726906 DOI: 10.1016/j.bbamem.2015.02.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/13/2015] [Accepted: 02/18/2015] [Indexed: 11/24/2022]
Abstract
The folding and function of membrane proteins is controlled not only by specific but also by unspecific interactions with the constituent lipids. In this review, we focus on the influence of the spontaneous lipid curvature on the folding and insertion of peptides and proteins in membranes. Amphiphilic α-helical peptides, as represented by various antimicrobial sequences, are compared with β-barrel proteins, which are found in the outer membrane of Gram-negative bacteria. It has been shown that cationic amphiphilic peptides are always surface-bound in lipids with a negative spontaneous curvature like POPC, i.e. they are oriented parallel to the membrane plane. On the other hand, in lipids like DMPC with a positive curvature, these peptides can get tilted or completely inserted in a transmembrane state. Remarkably, the folding and spontaneous membrane insertion of β-barrel outer membrane proteins also proceeds more easily in lipids with a positive intrinsic curvature, while it is hampered by negative curvature. We therefore propose that a positive spontaneous curvature of the lipids promotes the ability of a surface-bound molecule to insert more deeply into the bilayer core, irrespective of the conformation, size, or shape of the peptide, protein, or folding intermediate. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Erik Strandberg
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O.B. 3640, 76021 Karlsruhe, Germany
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O.B. 3640, 76021 Karlsruhe, Germany; KIT, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| |
Collapse
|
67
|
Abstract
The rapid spread of drug-resistant pathogenic microbial strains has created an urgent need for the development of new anti-infective molecules, having different mechanism of action in comparison to existing drugs. Natural antimicrobial peptides (AMPs) represent a novel class of molecules with a broad spectrum of activity and a low rate in inducing bacterial resistance. In particular, linear alpha-helical cationic antimicrobial peptides are among the most widespread membrane-disruptive AMPs in nature, representing a particularly successful structural arrangement of the innate defense against microbes. However, until now, many AMPs have failed in clinical trials because of several drawbacks that strongly limit their applicability such as degradation, cytotoxicity, and high production cost. Thus, to overcome the limitations of native peptides, a rational in silico approach to AMPs design becomes a promising strategy that drastically reduce production costs and the time required for evaluation of activity and toxicity. This chapter focuses on the strategies and methods for de novo design of potentially active AMPs. In particular, statistical-based design strategies and MD methods for modelling AMPs are elucidated.
Collapse
Affiliation(s)
- Giuseppe Maccari
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | | | | |
Collapse
|
68
|
Lee E, Shin A, Kim Y. Anti-inflammatory activities of cecropin A and its mechanism of action. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 88:31-44. [PMID: 25319409 DOI: 10.1002/arch.21193] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cecropin A is a novel 37-residue cecropin-like antimicrobial peptide isolated from the cecropia moth, Hyalophora cecropia. We have demonstrated that cecropin A is an antibacterial agent and have investigated its mode of action. In this study, we show that cecropin A has potent antimicrobial activity against 2 multidrug resistant organisms-Acinetobacter baumanii and-Pseudomonas aeruginosa. Interactions between cecropin A and membrane phospholipids were studied using tryptophan blue shift experiments. Cecropin A has a strong interaction with bacterial cell mimetic membranes. These results imply that cecropin A has selectivity for bacterial cells. To address the potential the rapeutic efficacy of cecropin A, its anti-inflammatory activities and mode of action in mouse macrophage-derived RAW264.7 cells stimulated with lipopolysaccharide (LPS) were examined. Cecropin A suppressed nitrite production, mTNF-α, mIL-1β, mMIP-1, and mMIP-2 cytokine release in LPS-stimulated RAW264.7 cells. Furthermore, cecropin A inhibited intracellular cell signaling via the ERK, JNK, and p38 MAPK pathway, leading to the prevention of COX-2 expression in LPS-stimulated RAW264.7 cells. These results strongly suggest that cecropin A should be investigated as a potential agent for the prevention and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Eunjung Lee
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | | | | |
Collapse
|
69
|
Lee E, Shin A, Jeong KW, Jin B, Jnawali HN, Shin S, Shin SY, Kim Y. Role of phenylalanine and valine10 residues in the antimicrobial activity and cytotoxicity of piscidin-1. PLoS One 2014; 9:e114453. [PMID: 25473836 PMCID: PMC4256409 DOI: 10.1371/journal.pone.0114453] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/07/2014] [Indexed: 11/18/2022] Open
Abstract
Piscidin-1 (Pis-1) is a linear antibacterial peptide derived from mast cells of aquacultured hybrid striped bass that comprises 22 amino acids with a phenylalanine-rich amino-terminus. Pis-1 exhibits potent antibacterial activity against pathogens but is not selective for distinguishing between bacterial and mammalian cells. To determine the key residues for its antibacterial activity and those for its cytotoxicity, we investigated the role of each Phe residue near the N-terminus as well as the Val10 residue located near the boundary of the hydrophobic and hydrophilic sectors of the helical wheel diagram. Fluorescence dye leakage and tryptophan fluorescence experiments were used to study peptide-lipid interactions, showing comparable depths of insertion of substituted peptides in different membranes. Phe2 was found to be the most deeply inserted phenylalanine in both bacterial- and mammalian-mimic membranes. Each Phe was substituted with Ala or Lys to investigate its functional role. Phe2 plays key roles in the cytotoxicity as well as the antibacterial activities of Pis-1, and Phe6 is essential for the antibacterial activities of Pis-1. We also designed and synthesized a piscidin analog, Pis-V10K, in which Lys was substituted for Val10, resulting in an elevated amphipathic α-helical structure. Pis-V10K showed similar antibacterial activity (average minimum inhibitory concentration (MIC) = 1.6 µM) to Pis-1 (average MIC = 1.5 µM). However, it exhibited much lower cytotoxicity than Pis-1. Lys10-substituted analogs, Pis-F1K/V10K, Pis-F2K/V10K, and Pis-F6K/V10K in which Lys was substituted for Phe retained antibacterial activity toward standard and drug-resistant bacterial strains with novel bacterial cell selectivity. They exert anti-inflammatory activities via inhibition of nitric oxide production, TNF-α secretion, and MIP-1 and MIP-2 production. They may disrupt the binding of LPS to toll-like receptors, eventually suppressing MAPKs-mediated signaling pathways. These peptides may be good candidates for the development of peptide antibiotics with potent antibacterial activity but without cytotoxicity.
Collapse
Affiliation(s)
- Eunjung Lee
- Department of Bioscience and Biotechnology, Bio-Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Areum Shin
- Department of Bioscience and Biotechnology, Bio-Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Ki-Woong Jeong
- Department of Bioscience and Biotechnology, Bio-Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Bongwhan Jin
- Department of Bioscience and Biotechnology, Bio-Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Hum Nath Jnawali
- Department of Bioscience and Biotechnology, Bio-Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Soyoung Shin
- Department of Bioscience and Biotechnology, Bio-Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Song Yub Shin
- Research Center for Proteineous Materials and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju, Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Bio-Molecular Informatics Center, Konkuk University, Seoul, Korea
- * E-mail:
| |
Collapse
|
70
|
Sarukhanyan E, Milano G, Roccatano D. Cosolvent, ions, and temperature effects on the structural properties of cecropin A-Magainin 2 hybrid peptide in solutions. Biopolymers 2014; 103:1-14. [DOI: 10.1002/bip.22529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 07/08/2014] [Accepted: 07/21/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Edita Sarukhanyan
- School of Engineering and Science, Jacobs University Bremen; Campus Ring 1 D-28759 Bremen Germany
- Dipartimento di Chimica e Biologia and NANOMATES; Research Centre for NANOMAterials and nanoTEchnology at Università di Salerno; I-84084 via Ponte don Melillo Fisciano (SA) Italy
| | - Giuseppe Milano
- Dipartimento di Chimica e Biologia and NANOMATES; Research Centre for NANOMAterials and nanoTEchnology at Università di Salerno; I-84084 via Ponte don Melillo Fisciano (SA) Italy
- IMAST Scarl-Technological District in Polymer and Composite Engineering; P.le Fermi 1 80055 Portici (NA) Italy
| | - Danilo Roccatano
- School of Engineering and Science, Jacobs University Bremen; Campus Ring 1 D-28759 Bremen Germany
| |
Collapse
|
71
|
Perrin BS, Sodt AJ, Cotten ML, Pastor RW. The Curvature Induction of Surface-Bound Antimicrobial Peptides Piscidin 1 and Piscidin 3 Varies with Lipid Chain Length. J Membr Biol 2014; 248:455-67. [PMID: 25292264 DOI: 10.1007/s00232-014-9733-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/18/2014] [Indexed: 12/11/2022]
Abstract
The initial steps of membrane disruption by antimicrobial peptides (AMPs) involve binding to bacterial membranes in a surface-bound (S) orientation. To evaluate the effects of lipid composition on the S state, molecular dynamics simulations of the AMPs piscidin 1 (p1) and piscidin 3 (p3) were carried out in four different bilayers: 3:1 DMPC/DMPG, 3:1 POPC/POPG, 1:1 POPE/POPG, and 4:1 POPC/cholesterol. In all cases, the addition of 1:40 piscidin caused thinning of the bilayer, though thinning was least for DMPC/DMPG. The peptides also insert most deeply into DMPC/DMPG, spanning the region from the bilayer midplane to the headgroups, and thereby only mildly disrupting the acyl chains. In contrast, the peptides insert less deeply in the palmitoyl-oleoyl containing membranes, do not reach the midplane, and substantially disrupt the chains, i.e., the neighboring acyl chains bend under the peptide, forming a basket-like conformation. Curvature free energy derivatives calculated from the simulation pressure profiles reveal that the peptides generate positive curvature in membranes with palmitoyl and oleoyl chains but negative curvature in those with myristoyl chains. Curvature inductions predicted with a continuum elastic model follow the same trends, though the effect is weaker, and a small negative curvature induction is obtained in POPC/POPG. These results do not directly speak to the relative stability of the inserted (I) states or ease of pore formation, which requires the free energy pathway between the S and I states. Nevertheless, they do highlight the importance of lipid composition and acyl chain packing.
Collapse
Affiliation(s)
- B Scott Perrin
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | | |
Collapse
|
72
|
Chen W, Cotten ML. Expression, purification, and micelle reconstitution of antimicrobial piscidin 1 and piscidin 3 for NMR studies. Protein Expr Purif 2014; 102:63-8. [PMID: 25131859 DOI: 10.1016/j.pep.2014.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 12/28/2022]
Abstract
Piscidin 1 and piscidin 3, which were discovered in the mast cells of hybrid striped sea bass, are homologous antimicrobial peptides that are active against drug-resistant bacteria. Piscidin 1, the more antimicrobial and hemolytic peptide, also has anti-HIV-1 and anti-cancer properties. To understand the reasons underlying the different biological activities of the two peptides and identify principles to design antimicrobial drugs with improved efficacy and lower toxicity, their atomic-level structures must be obtained under physiologically-relevant conditions. High-resolution backbone structures of both piscidins exist in the presence of hydrated phospholipid bilayers but full structures that include the side chains are missing. Here, the piscidins 1 and 3 genes were cloned into the TrpLE vector. The corresponding TrpLE-piscidin fusion partners were expressed in Escherichiacoli and recovered from inclusion bodies. Following steps that included Ni-NTA chromatography, cyanogen bromide cleavage of the fusion proteins, and reverse-phase HPLC, purified piscidins 1 and 3 were recovered in very good yield and characterized by NMR. High quality (15)N-(1)H HSQC spectra of piscidins 1 and 3 bound to SDS micelles were collected, demonstrating the feasibility of producing and purifying the isotopically-labeled piscidin peptides required to determine their full structures by multidimensional NMR spectroscopy.
Collapse
Affiliation(s)
- Wen Chen
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, United States
| | - Myriam L Cotten
- Department of Chemistry, Hamilton College, 198 College Hill Road, Clinton, NY 13323, United States.
| |
Collapse
|
73
|
The cooperative behaviour of antimicrobial peptides in model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2870-81. [PMID: 25046254 DOI: 10.1016/j.bbamem.2014.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/27/2014] [Accepted: 07/01/2014] [Indexed: 01/24/2023]
Abstract
A systematic analysis of the hypothesis of the antimicrobial peptides' (AMPs) cooperative action is performed by means of full atomistic molecular dynamics simulations accompanied by circular dichroism experiments. Several AMPs from the aurein family (2.5,2.6, 3.1), have a similar sequence in the first ten amino acids, are investigated in different environments including aqueous solution, trifluoroethanol (TFE), palmitoyloleoylphosphatidylethanolamine (POPE), and palmitoyloleoylphosphatidylglycerol (POPG) lipid bilayers. It is found that the cooperative effect is stronger in aqueous solution and weaker in TFE. Moreover, in the presence of membranes, the cooperative effect plays an important role in the peptide/lipid bilayer interaction. The action of AMPs is a competition of the hydrophobic interactions between the side chains of the peptides and the hydrophobic region of lipid molecules, as well as the intra peptide interaction. The aureins 2.5-COOH and 2.6-COOH form a hydrophobic aggregate to minimize the interaction between the hydrophobic group and the water. Once that the peptides reach the water/lipid interface the hydrophobic aggregate becomes smaller and the peptides start to penetrate into the membrane. In contrast, aurein 3.1-COOH forms only a transient aggregate which disintegrates once the peptides reached the membrane, and it shows no cooperativity in membrane penetration.
Collapse
|