51
|
Jiang W, Zhang H, An Y, Mao Y, Wang Z, Liu Y, Wang P, Zheng Z, Wei W, Dai Y, Cheng H, Huang B. Free-Standing Nanoarrays with Energetic Electrons and Active Sites for Efficient Plasmon-Driven Ammonia Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201269. [PMID: 35567335 DOI: 10.1002/smll.202201269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/30/2022] [Indexed: 06/15/2023]
Abstract
Direct ammonia (NH3 ) synthesis from water and atmospheric nitrogen using sunlight provides an energy-sustainable and carbon-neutral alternative to the Haber-Bosch process. However, the development of such a route with high performance is impeded by the lack of effective charge transfer and abundant active sites to initiate the nitrogen reduction reaction (NRR). Here, the authors report efficient plasmon-induced photoelectrochemical (PEC) NH3 synthesis on the hierarchical free-standing Au/Kx MoO3 /Mo/Kx MoO3 /Au nanoarrays. Endowed with energetically hot electrons and catalytically active sites, the plasmonic nanoarrays exhibit an efficient PEC NH3 synthesis rate of 9.6 µg cm-2 h-1 under visible light irradiation, which is among the highest PEC NRR systems. This work demonstrates the rationally designed plasmonic nanoarrays for highly efficient NH3 synthesis, which paves a new path for PEC catalytic reactions driven by surface plasmons and future monolithic PEC devices for direct artificial photosynthesis.
Collapse
Affiliation(s)
- Weiyi Jiang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Haona Zhang
- School of Physics, Shandong University, Jinan, 250100, China
| | - Yang An
- Institute for Innovative Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Yuyin Mao
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Wei Wei
- School of Physics, Shandong University, Jinan, 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan, 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
52
|
Utomo WP, Wu H, Ng YH. Modulating the Active Sites of Oxygen-Deficient TiO 2 by Copper Loading for Enhanced Electrocatalytic Nitrogen Reduction to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200996. [PMID: 35460186 DOI: 10.1002/smll.202200996] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The electrocatalytic nitrogen reduction reaction (NRR) provides a sustainable route for NH3 synthesis. However, the process is plagued by the strong NN triple bond and high reaction barrier. Modification of catalyst surface to increase N2 adsorption and activation is crucial. Herein, copper nanoparticles are loaded on the oxygen-deficient TiO2 , which exhibits an enhanced NRR performance with NH3 yield of 13.6 µg mgcat -1 h-1 at -0.5 V versus reversible hydrogen electrode (RHE) and Faradaic efficiency of 17.9% at -0.4 V versus RHE compared to the pristine TiO2 . The enhanced performance is ascribed to the higher electrochemically active surface area, promoted electron transfer, and increased electron density originated from the strong metal-support interaction (SMSI) between Cu nanoparticles and oxygen-deficient TiO2 . The SMSI effect also results in lopsided local charge distribution, which polarizes the adsorbed N2 molecules for better activation. This work provides a facile strategy toward the electrocatalyst design for efficient NRR under ambient conditions.
Collapse
Affiliation(s)
- Wahyu Prasetyo Utomo
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Hao Wu
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, 518057, China
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, 518057, China
| |
Collapse
|
53
|
Jing P, Liu P, Hu M, Xu X, Liu B, Zhang J. Formation of Interfacial Cu-[O X ]-Ce Structures with Oxygen Vacancies for Enhanced Electrocatalytic Nitrogen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201200. [PMID: 35532198 DOI: 10.1002/smll.202201200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Electrochemical nitrogen reduction powered by renewable electricity is a promising strategy to produce ammonia. However, the lack of efficient yet cheap electrocatalysts remains the biggest challenge. Herein, hybrid Cu2 O-CeO2 -C nanorods are prepared on copper mesh through a metal-organic framework template route. The Cu-loaded Ce-MOF is thermally converted to Cu2 O-CeO2 heterojunctions with interfacial Cu-[OX ]-Ce structures embedded in carbon. Theoretical calculations reveal the lower formation energy of oxygen vacancies in Cu-[OX ]-Ce structures than in the Cu2 O or CeO2 phase. The Cu-[OX ]-Ce structures with oxygen vacancies enable the formation of interfacial electron-rich Cu(I) species which show significantly enhanced performance toward electrocatalytic nitrogen reduction with an NH3 yield of 6.37 × 10-3 µg s-1 cm-2 and a Faradaic efficiency of 18.21% in 0.10 m KOH at -0.3 V versus reversible hydrogen electrode. This work highlights the importance of modulation of charge distribution of Cu-based electrocatalysts to boost the activity toward nitrogen reduction.
Collapse
Affiliation(s)
- Peng Jing
- School of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Peixin Liu
- School of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Minghao Hu
- School of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Xuan Xu
- School of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Baocang Liu
- School of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jun Zhang
- School of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
- Inner Mongolia Academy of Science and Technology, Hohhot, 010010, P. R. China
| |
Collapse
|
54
|
Yang P, Guo H, Zhang F, Zhou Y, Niu X. 电催化合成氨反应原位表征技术研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
55
|
Gao K, Zhang C, Zhang Y, Zhou X, Gu S, Zhang K, Wang X, Song X. Oxygen vacancy engineering of novel ultrathin Bi 12O 17Br 2 nanosheets for boosting photocatalytic N 2 reduction. J Colloid Interface Sci 2022; 614:12-23. [PMID: 35078082 DOI: 10.1016/j.jcis.2022.01.084] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
The conversion of N2 to NH3 is one of the most promising processes in maintaining natural life and chemical production. Photocatalytic nitrogen reduction reaction (NRR) has the advantage of clean and sustainable, which is considered to be an ideal synthesis technology. In this work, we report the successful synthesis of Bi12O17Br2 ultrathin nanosheets through simple alkali treatment and solvothermal method. The Bi12O17Br2 ultrathin nanosheets can improve the separation of carriers and the transfer of photogenerated electrons to N2 molecules, thus improving the photocatalytic efficiency. Of note, the higher Bi/Br atomic ratio in Bi12O17Br2 is beneficial to broaden the light absorption edge, and the high concentration of O atoms is easy to produce oxygen vacancies on the surface during the synthesis process of Bi12O17Br2. The abundant oxygen vacancies and high specific surface area enable N2 molecules and water to have powerful chemical adsorption and activation. In addition, the photocatalytic reduction of N2 to NH3 in pure water shows excellent and stable performance, and the average generation rate of NH3 reaches up to 620.5 μmol·L-1·h-1. This study discovers that rich oxygen vacancies and ultrathin morphology may have a significant part in the process of the photocatalytic nitrogen reduction reaction.
Collapse
Affiliation(s)
- Kaiyue Gao
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei, Anhui 230601, China
| | - Chengming Zhang
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei, Anhui 230601, China
| | - Yi Zhang
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei, Anhui 230601, China
| | - Xiaoyu Zhou
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei, Anhui 230601, China
| | - Shuo Gu
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei, Anhui 230601, China
| | - Kehua Zhang
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei, Anhui 230601, China
| | - Xiufang Wang
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei, Anhui 230601, China.
| | - Xiaojie Song
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei, Anhui 230601, China.
| |
Collapse
|
56
|
Guo B, Cheng X, Tang Y, Guo W, Deng S, Wu L, Fu X. Dehydrated UiO-66(SH) 2 : The Zr-O Cluster and Its Photocatalytic Role Mimicking the Biological Nitrogen Fixation. Angew Chem Int Ed Engl 2022; 61:e202117244. [PMID: 35083838 DOI: 10.1002/anie.202117244] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 12/20/2022]
Abstract
This work reports the dehydrated Zr-based MOF UiO-66(SH)2 as a visible-light-driven photocatalyst to mimic the biological N2 fixation process. The 15 N2 and other control experiments demonstrated that the new photocatalyst is highly efficient in converting N2 to ammonia. In-situ TGA, XPS, and EXAFS as well as first-principles simulations were used to demonstrate the role of the thermal treatment and the changes of the local structures around Zr due to the dehydration. It was shown that the dehydration opened a gate for the entry of N2 molecules into the [Zr6 O6 ] cluster where the strong N≡N bond was broken stepwise by μ-N-Zr type interactions driven by the photoelectrons aided by the protonation. This mechanism was discussed in comparison with the Lowe-Thorneley mechanism proposed for the MoFe nitrogenase, and with emphasis on the [Zr6 O6 ] cluster effect and the leading role of photoelectrons over the protonation. The results shed new light on understanding the catalytic mechanism of biological N2 fixation and open a new way to fix N2 under mild conditions.
Collapse
Affiliation(s)
- Binbin Guo
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Xiyue Cheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Yu Tang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Wei Guo
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Shuiquan Deng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Ling Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
57
|
Deng L, Wang L, Wei G, Yuan H, Xie J, Chen Y. Efficient electrocatalytic reduction of N2 to ammonia at ambient conditions with municipal sludge-derived porous carbon codoped with multiple heteroatoms. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
58
|
Zhang Z, Li F, Li G, Li R, Wang Y, Wang Y, Zhang X, Zhang L, Li F, Liu J, Fan C. Cu-doped MIL-101(Fe) with enhanced photocatalytic nitrogen fixation performance. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
59
|
Wei Y, Jiang W, Liu Y, Bai X, Hao D, Ni BJ. Recent advances in photocatalytic nitrogen fixation and beyond. NANOSCALE 2022; 14:2990-2997. [PMID: 35166288 DOI: 10.1039/d2nr00198e] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The traditional synthesis of ammonia is an industrial process with high energy consumption that is not environmentally friendly; thus, it is urgent to develop cost-effective approaches to synthesize ammonia under ambient conditions. In recent years, the photochemical synthesis of ammonia has become a hot research frontier. In this mini review, we summarize the recent advances in materials sciences for photocatalytic nitrogen fixation. Beyond nitrogen fixation, we talk about an alternative for artificial ammonia synthesis and coupling reactions with other reactions for the synthesis of other high-value chemicals. The results and findings of this review will help the development of ammonia synthesis and the synthesis of other high-value chemicals.
Collapse
Affiliation(s)
- Yunxia Wei
- College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, Gansu, 730070, China
| | - Wenjun Jiang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
| | - Yang Liu
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaojuan Bai
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Derek Hao
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Ultimo, NSW 2007, Australia.
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Ultimo, NSW 2007, Australia.
| |
Collapse
|
60
|
Devasenathipathy R, Wang JZ, Xiao YH, Rani KK, Lin JD, Zhang YM, Zhan C, Zhou JZ, Wu DY, Tian ZQ. Plasmonic Photoelectrochemical Coupling Reactions of para-Aminobenzoic Acid on Nanostructured Gold Electrodes. J Am Chem Soc 2022; 144:3821-3832. [PMID: 35199991 DOI: 10.1021/jacs.1c10447] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Surface plasmon resonance (SPR) bridges photonics and photoelectrochemistry by providing an effective interaction between absorption and confinement of light to surface electrons of plasmonic metal nanostructures (PMNs). SPR enhances the Raman intensity enormously in surface-enhanced Raman spectroscopy (SERS) and leads to the plasmon-mediated chemical reaction on the surface of nanostructured metal electrodes. To observe variations in chemical reactivity and selectivity, we studied the SPR photoelectrochemical reactions of para-aminobenzoic acid (PABA) on nanostructured gold electrodes. The head-to-tail coupling product "4-[(4-imino-2,5-cyclohexadien-1-ylidene)amino]benzoic acid (ICBA)" and the head-to-head coupling product p,p'-azodibenzoate (ADBA) were obtained from PABA adsorbed on PMN-modified gold electrodes. In particular, under acidic and neutral conditions, ICBA was obtained as the main product, and ADBA was obtained as the minor product. At the same time, under basic conditions, ADBA was obtained as the major product, and ICBA was obtained as the minor product. We have also provided sufficient evidence for the oxidation of the tail-to-tail coupling reaction product that occurred in a nonaqueous medium rather than in an aqueous medium. The above finding was validated by the cyclic voltammetry, SERS, and theoretical calculation results of possible reaction intermediates, namely, 4-aminophenlylenediamine, 4-hydroxyphenlylenediamine, and benzidine. The theoretical adsorption model and experimental results indicated that PABA has been adsorbed as para-aminobenzoate on the gold cluster in a bidentate configuration. This work offers a new view toward the modulation of selective surface catalytic coupling reactions on PMN, which benefits the hot carrier transfer efficiency at photoelectrochemical interfaces.
Collapse
Affiliation(s)
- Rajkumar Devasenathipathy
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Jia-Zheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Yuan-Hui Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Karuppasamy Kohila Rani
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Jian-De Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Yi-Miao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Chao Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Jian-Zhang Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
61
|
Guo B, Cheng X, Tang Y, Guo W, Deng S, Wu L, Fu X. Dehydrated UiO‐66(SH)
2
: The Zr−O Cluster and Its Photocatalytic Role Mimicking the Biological Nitrogen Fixation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Binbin Guo
- State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou Fujian 350116 China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P.R. China
| | - Xiyue Cheng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P.R. China
| | - Yu Tang
- State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou Fujian 350116 China
| | - Wei Guo
- State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou Fujian 350116 China
| | - Shuiquan Deng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P.R. China
| | - Ling Wu
- State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou Fujian 350116 China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P.R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
62
|
Shen R, Liu Y, Wen H, Wu X, Han G, Yue X, Mehdi S, Liu T, Cao H, Liang E, Li B. Engineering Bimodal Oxygen Vacancies and Pt to Boost the Activity Toward Water Dissociation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105588. [PMID: 34889521 DOI: 10.1002/smll.202105588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Water dissociation is the rate-limiting step of several energy-related reactions due to the high energy barrier required for breaking the oxygen-hydrogen bond. In this work, a bimodal oxygen vacancy (VO ) catalysis strategy is adopted to boost the efficient water dissociation on Pt nanoparticles. The single facet-exposed TiO2 surface and NiOx nanocluster possess two modes of VO different from each other. In ammonia borane hydrolysis, the highest catalytic activity among Pt-based materials is achieved with the turnover frequency of 618 min-1 under alkaline-free conditions at 298 K. Theoretical simulation and characterization analyses reveal that the bimodal VO significantly promotes the water dissociation in two ways. First, an ensemble-inducing effect of Pt and VO in TiO2 drives the activation of water molecules. Second, an electron promoter effect induced by the electron transfer from VO in NiOx to Pt further enhances the ability of Pt to dissociate water and ammonia borane. This insight into bimodal VO catalysis establishes a new avenue to rationally design heterogeneous catalytic materials in the energy chemistry field.
Collapse
Affiliation(s)
- Ruofan Shen
- School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- College of Science, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China
| | - Hao Wen
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Guosheng Han
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xinzheng Yue
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Sehrish Mehdi
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Department of Chemistry, The Women University, Kutchery Campus, L.M.Q. Road, Multan, 66000, Pakistan
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Huaqiang Cao
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Erjun Liang
- School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Baojun Li
- School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| |
Collapse
|
63
|
Liu Y, Ye X, Li R, Tao Y, Zhang C, Lian Z, Zhang D, Li G. Boosting the photocatalytic nitrogen reduction to ammonia through adsorption-plasmonic synergistic effects. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
64
|
Pt/TiO2– nanofibrous aerogel for effective nitrogen reduction: A simple strategy for simultaneous Pt formation and TiO2– vacancy engineering. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
65
|
Kaushik R, Singh PK, Halder A. Modulation strategies in titania photocatalyst for energy recovery and environmental remediation. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
66
|
Li F, Liu H, Chen W, Su Y, Chen W, Zhi J, Li Y. Light induced ammonia synthesis by crystalline polyoxometalate-based hybrid frameworks coupled with the Sv-1T MoS 2 cocatalyst. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01003h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of crystalline polyoxometalate-based hybrid frameworks coupled with rich sulfur vacancy 1T MoS2 through the hydrothermal growth strategy are presented towards light induced ammonia synthesis.
Collapse
Affiliation(s)
- Fengrui Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street No. 5268, Changchun, Jilin, 130024, P. R. China
| | - Hongru Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street No. 5268, Changchun, Jilin, 130024, P. R. China
| | - Weichao Chen
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street No. 5268, Changchun, Jilin, 130024, P. R. China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, 130103, China
| | - Ying Su
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street No. 5268, Changchun, Jilin, 130024, P. R. China
| | - Weilin Chen
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street No. 5268, Changchun, Jilin, 130024, P. R. China
| | - Jingjing Zhi
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street No. 5268, Changchun, Jilin, 130024, P. R. China
| | - Yangguang Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street No. 5268, Changchun, Jilin, 130024, P. R. China
| |
Collapse
|
67
|
Chen CL, Wang HY, Li JP, Long LS, Zheng L, Kong XJ. Assembling Lanthanide–Transition Metal Clusters on TiO2 for Photocatalytic Nitrogen Fixation. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00628f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ammonia synthesis using light with low energy consumption offers an effective solution for energy saving and environmental protection. Herein, an abundant oxygen vacancy photocatalyst was synthesized via the integration of...
Collapse
|
68
|
Bai H, Lam SH, Yang J, Cheng X, Li S, Jiang R, Shao L, Wang J. A Schottky-Barrier-Free Plasmonic Semiconductor Photocatalyst for Nitrogen Fixation in a "One-Stone-Two-Birds" Manner. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104226. [PMID: 34655458 DOI: 10.1002/adma.202104226] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Plasmonic photocatalysis has received much attention owing to attractive plasmonic enhancement effects in improving the solar-to-chemical conversion efficiency. However, the photocatalytic efficiencies have remained low mainly due to the short carrier lifetime caused by the rapid recombination of plasmon-generated hot charge carriers. Although plasmonic metal-semiconductor heterostructures can improve the separation of hot charge carriers, a large portion of the hot charge carriers are lost when they cross the Schottky barrier. Herein, a Schottky-barrier-free plasmonic semiconductor photocatalyst, MoO3- x , which allows for efficient N2 photofixation in a "one-stone-two-birds" manner, is demonstrated. The oxygen vacancies in MoO3- x serve as the "stone." They "kill two birds" by functioning as the active sites for the chemisorption of N2 molecules and inducing localized surface plasmon resonance for the generation of hot charge carriers. Benefiting from this unique strategy, plasmonic MoO3- x exhibits a remarkable photoreactivity for NH3 production up to the wavelength of 1064 nm with apparent quantum efficiencies over 1%, and a solar-to-ammonia conversion efficiency of 0.057% without any hole scavenger. This work shows the great potential of plasmonic semiconductors to be directly used for photocatalysis. The concept of the Schottky-barrier-free design will pave a new path for the rational design of efficient photocatalysts.
Collapse
Affiliation(s)
- Haoyuan Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Shiu Hei Lam
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jianhua Yang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Shasha Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ruibin Jiang
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing, 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
69
|
Kumar A, Choudhary P, Kumar A, Camargo PHC, Krishnan V. Recent Advances in Plasmonic Photocatalysis Based on TiO 2 and Noble Metal Nanoparticles for Energy Conversion, Environmental Remediation, and Organic Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2101638. [PMID: 34396695 DOI: 10.1002/smll.202101638] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/06/2021] [Indexed: 05/24/2023]
Abstract
Plasmonic photocatalysis has emerged as a prominent and growing field. It enables the efficient use of sunlight as an abundant and renewable energy source to drive a myriad of chemical reactions. For instance, plasmonic photocatalysis in materials comprising TiO2 and plasmonic nanoparticles (NPs) enables effective charge carrier separation and the tuning of optical response to longer wavelength regions (visible and near infrared). In fact, TiO2 -based materials and plasmonic effects are at the forefront of heterogeneous photocatalysis, having applications in energy conversion, production of liquid fuels, wastewater treatment, nitrogen fixation, and organic synthesis. This review aims to comprehensively summarize the fundamentals and to provide the guidelines for future work in the field of TiO2 -based plasmonic photocatalysis comprising the above-mentioned applications. The concepts and state-of-the-art description of important parameters including the formation of Schottky junctions, hot electron generation and transfer, near field electromagnetic enhancement, plasmon resonance energy transfer, scattering, and photothermal heating effects have been covered in this review. Synthetic approaches and the effect of various physicochemical parameters in plasmon-mediated TiO2 -based materials on performances are discussed. It is envisioned that this review may inspire and provide insights into the rational development of the next generation of TiO2 -based plasmonic photocatalysts with target performances and enhanced selectivities.
Collapse
Affiliation(s)
- Ajay Kumar
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Priyanka Choudhary
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Ashish Kumar
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Pedro H C Camargo
- University of Helsinki, Department of Chemistry, A.I. Virtasen aukio 1, Helsinki, Finland
| | - Venkata Krishnan
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
70
|
Feng C, Wu P, Li Q, Liu J, Wang D, Liu B, Wang T, Hu H, Xue G. Amorphization and defect engineering in constructing ternary composite Ag/PW 10V 2/am-TiO 2−x for enhanced photocatalytic nitrogen fixation. NEW J CHEM 2022. [DOI: 10.1039/d1nj05917c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ag/PW10V2/am-TiO2−x was designed by decorating OVs-enriched am-TiO2−x with Ag NPs and PW10V2. The formed Z-scheme heterojunction, Ag–am-TiO2−x interface and plentiful surface OVs account for its high photocatalytic efficiency in nitrogen fixation.
Collapse
Affiliation(s)
- Caiting Feng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an, 710127, P. R. China
| | - Panfeng Wu
- School of Chemistry and Chemical Engineering, Xi’an Shiyou University, Xi’an, 710065, P. R. China
| | - Qinlong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an, 710127, P. R. China
| | - Jiquan Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an, 710127, P. R. China
| | - Danjun Wang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry & Chemical Engineering, Yan’an University, Yan’an, 716000, P. R. China
| | - Bin Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an, 710127, P. R. China
| | - Tianyu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an, 710127, P. R. China
| | - Huaiming Hu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an, 710127, P. R. China
| | - Ganglin Xue
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an, 710127, P. R. China
| |
Collapse
|
71
|
Bharti K, Sadhu KK. Syntheses of metal oxide-gold nanocomposites for biological applications. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
72
|
Jia H, Yang Y, Dou Y, Li F, Zhao M, Zhang CY. (Plasmonic gold core)@(ultrathin ruthenium shell) nanostructures as antenna-reactor photocatalysts toward nitrogen photofixation. Chem Commun (Camb) 2021; 58:1013-1016. [PMID: 34950936 DOI: 10.1039/d1cc06014g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ruthenium (Ru) is known as the optimal metal catalyst for ammonia (NH3) synthesis, but the poor light-harvesting capability restricts its application in photocatalysis. Herein, we construct an antenna-reactor nanostructure through the controllable growth of an ultrathin Ru nanocluster shell with desired catalytic activity on the plasmonic gold (Au) nanoantennas. In this nanostructure, Au nanoantennas interact strongly with light to generate hot carriers, meanwhile Ru nanoclusters adsorb and activate N2, leading to the reduction of N2 to NH3 by the generated hot electrons. This antenna-reactor plasmonic photocatalyst exhibits shell-thickness-dependent photocatalytic activity toward nitrogen (N2) photofixation under visible and near-infrared light illumination.
Collapse
Affiliation(s)
- Henglei Jia
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Yuanyuan Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Yanrong Dou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Fan Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Mengxuan Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
73
|
Chang F, Gao W, Guo J, Chen P. Emerging Materials and Methods toward Ammonia-Based Energy Storage and Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005721. [PMID: 33834538 DOI: 10.1002/adma.202005721] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Efficient storage and conversion of renewable energies is of critical importance to the sustainable growth of human society. With its distinguishing features of high hydrogen content, high energy density, facile storage/transportation, and zero-carbon emission, ammonia has been recently considered as a promising energy carrier for long-term and large-scale energy storage. Under this scenario, the synthesis, storage, and utilization of ammonia are key components for the implementation of ammonia-mediated energy system. Being different from fossil fuels, renewable energies normally have intermittent and variable nature, and thus pose demands on the improvement of existing technologies and simultaneously the development of alternative methods and materials for ammonia synthesis and storage. The energy release from ammonia in an efficient manner, on the other hand, is vital to achieve a sustainable energy supply and complete the nitrogen circle. Herein, recent advances in the thermal-, electro-, plasma-, and photocatalytic ammonia synthesis, ammonia storage or separation, ammonia thermal/electrochemical decomposition and conversion are summarized with the emphasis on the latest developments of new methods and materials (catalysts, electrodes, and sorbents) for these processes. The challenges and potential solutions are discussed.
Collapse
Affiliation(s)
- Fei Chang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wenbo Gao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jianping Guo
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Energy College, University of Chinese Academy of Sciences, Beijing, 100049, China
- Collaborative Innovation Center of Chemistry for Energy Materials, Dalian, 116023, China
| | - Ping Chen
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Energy College, University of Chinese Academy of Sciences, Beijing, 100049, China
- Collaborative Innovation Center of Chemistry for Energy Materials, Dalian, 116023, China
| |
Collapse
|
74
|
Yu F, Jing X, Wang Y, Sun M, Duan C. Hierarchically Porous Metal–Organic Framework/MoS
2
Interface for Selective Photocatalytic Conversion of CO
2
with H
2
O into CH
3
COOH. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fengyang Yu
- Zhang Dayu College of Chemistry State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Xu Jing
- Zhang Dayu College of Chemistry State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Yao Wang
- Zhang Dayu College of Chemistry State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Mingyang Sun
- Zhang Dayu College of Chemistry State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Chunying Duan
- Zhang Dayu College of Chemistry State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| |
Collapse
|
75
|
Yu F, Jing X, Wang Y, Sun M, Duan C. Hierarchically Porous Metal-Organic Framework/MoS 2 Interface for Selective Photocatalytic Conversion of CO 2 with H 2 O into CH 3 COOH. Angew Chem Int Ed Engl 2021; 60:24849-24853. [PMID: 34435428 DOI: 10.1002/anie.202108892] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 12/13/2022]
Abstract
Metal-organic frameworks (MOFs) provide a platform to design new heterogeneous catalysts for catalytic CO2 reduction, but selective formation of C2 valuable liquid fuel products remains a challenge. Herein, we propose a strategy to synthesize composites by integrating MoS2 nanosheets into hierarchically porous defective UiO-66 (d-UiO-66) to form Mo-O-Zr bimetallic sites on the interfaces between UiO-66 and MoS2 . The active interfaces are favorable for the efficient transfer of photo-generated charge carriers and for promoting the activity, whereas, the synergy of the components at the interfaces achieves selectivity for C2 production. The d-UiO-66/MoS2 composite facilitates the photo-catalytic conversion of gas phase CO2 and H2 O to CH3 COOH under visible light irradiation without any other adducts. The evolution rate and selectivity of CH3 COOH reached 39.0 μmol g-1 h-1 and 94 %, respectively, without any C1 products, suggesting a new approach for the design of highly efficient photocatalysts of CO2 for C2 production. Theoretical calculations demonstrate the charge-polarized Zr-O-Mo aided the C-C coupling process with the largely reduced energy barrier.
Collapse
Affiliation(s)
- Fengyang Yu
- Zhang Dayu College of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Xu Jing
- Zhang Dayu College of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Yao Wang
- Zhang Dayu College of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Mingyang Sun
- Zhang Dayu College of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Chunying Duan
- Zhang Dayu College of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
76
|
Plasmon‐Enhanced, Self‐Traced Nanomotors on the Surface of Silicon. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
77
|
Pang Y, Su C, Jia G, Xu L, Shao Z. Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction. Chem Soc Rev 2021; 50:12744-12787. [PMID: 34647937 DOI: 10.1039/d1cs00120e] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ammonia (NH3) is essential to serve as the biological building blocks for maintaining organism function, and as the indispensable nitrogenous fertilizers for increasing the yield of nutritious crops. The current Haber-Bosch process for industrial NH3 production is highly energy- and capital-intensive. In light of this, the electroreduction of nitrogen (N2) into valuable NH3, as an alternative, offers a sustainable pathway for the Haber-Bosch transition, because it utilizes renewable electricity and operates under ambient conditions. Identifying highly efficient electrocatalysts remains the priority in the electrochemical nitrogen reduction reaction (NRR), marking superior selectivity, activity, and stability. Two-dimensional (2D) nanomaterials with sufficient exposed active sites, high specific surface area, good conductivity, rich surface defects, and easily tunable electronic properties hold great promise for the adsorption and activation of nitrogen towards sustainable NRR. Therefore, this Review focuses on the fundamental principles and the key metrics being pursued in NRR. Based on the fundamental understanding, the recent efforts devoted to engineering protocols for constructing 2D electrocatalysts towards NRR are presented. Then, the state-of-the-art 2D electrocatalysts for N2 reduction to NH3 are summarized, aiming at providing a comprehensive overview of the structure-performance relationships of 2D electrocatalysts towards NRR. Finally, we propose the challenges and future outlook in this prospective area.
Collapse
Affiliation(s)
- Yingping Pang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, China.
| | - Chao Su
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, China. .,WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia.
| | - Guohua Jia
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Liqiang Xu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, China.
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia. .,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
78
|
Yang J, Zheng J, Ai R, Lai Y, Chow TH, Shao L, Wang J. Plasmon-Enhanced, Self-Traced Nanomotors on the Surface of Silicon. Angew Chem Int Ed Engl 2021; 60:24958-24967. [PMID: 34535946 DOI: 10.1002/anie.202108487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/29/2021] [Indexed: 11/09/2022]
Abstract
Light-driven nanomotors have attracted much attention due to their potential applications. The movement of conventional nanomotors typically occurs in the solution phase, which limits their application fields. Utilizing visible light to drive nanomotors at the solid-liquid interface represents a grand challenge due to the large friction force between the nanomotor and the solid surface. Based on the attractive plasmon resonance of Au nanocrystals, for the first time, plasmon-enhanced Au nanocrystal-based nanomotors moving at the silicon-aqueous solution interface have been developed. Such nanomotors move with a clear trace engraved on the Si surface, representing an excellent and exceptional self-traced nanomotor system. In addition, the nanomotor trace on the Si surface also provides a unique and promising approach to the fabrication of nanoscale Si patterns, which is central to many applications, including microelectronics, sensing, information storage, and optoelectronics.
Collapse
Affiliation(s)
- Jianhua Yang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yunhe Lai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Tsz Him Chow
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing, 100193, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
79
|
Singh B, Gawande MB, Kute AD, Varma RS, Fornasiero P, McNeice P, Jagadeesh RV, Beller M, Zbořil R. Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chem Rev 2021; 121:13620-13697. [PMID: 34644065 DOI: 10.1021/acs.chemrev.1c00158] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supported single-metal atom catalysts (SACs) are constituted of isolated active metal centers, which are heterogenized on inert supports such as graphene, porous carbon, and metal oxides. Their thermal stability, electronic properties, and catalytic activities can be controlled via interactions between the single-metal atom center and neighboring heteroatoms such as nitrogen, oxygen, and sulfur. Due to the atomic dispersion of the active catalytic centers, the amount of metal required for catalysis can be decreased, thus offering new possibilities to control the selectivity of a given transformation as well as to improve catalyst turnover frequencies and turnover numbers. This review aims to comprehensively summarize the synthesis of Fe-SACs with a focus on anchoring single atoms (SA) on carbon/graphene supports. The characterization of these advanced materials using various spectroscopic techniques and their applications in diverse research areas are described. When applicable, mechanistic investigations conducted to understand the specific behavior of Fe-SACs-based catalysts are highlighted, including the use of theoretical models.
Collapse
Affiliation(s)
- Baljeet Singh
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193 Portugal
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Arun D Kute
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamiciam, INSTM Trieste Research Unit and ICCOM-CNR Trieste Research Unit, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Peter McNeice
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.,Department of Chemistry, REVA University, Bangalore 560064, India
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic.,CEET Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
80
|
Niu X, Shi A, Sun D, Xiao S, Zhang T, Zhou Z, Li X, Wang J. Photocatalytic Ammonia Synthesis: Mechanistic Insights into N 2 Activation at Oxygen Vacancies under Visible Light Excitation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03407] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xianghong Niu
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Anqi Shi
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Dazhong Sun
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shanshan Xiao
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Tingbo Zhang
- School of Physics, Southeast University, Nanjing 211189, China
| | - Zhaobo Zhou
- School of Physics, Southeast University, Nanjing 211189, China
| | - Xing’ao Li
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing 211189, China
- Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
81
|
Zhang Y, Guo W, Zhang Y, Wei WD. Plasmonic Photoelectrochemistry: In View of Hot Carriers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006654. [PMID: 33977588 DOI: 10.1002/adma.202006654] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Utilizing plasmon-generated hot carriers to drive chemical reactions has emerged as a popular topic in solar photocatalysis. However, a complete description of the underlying mechanism of hot-carrier transfer in photochemical processes remains elusive, particularly for those involving hot holes. Photoelectrochemistry enables to localize hot holes on photoanodes and hot electrons on photocathodes and thus offers an approach to separately explore the hole-transfer dynamics and electron-transfer dynamics. This review summarizes a comprehensive understanding of both hot-hole and hot-electron transfers from photoelectrochemical studies on plasmonic electrodes. Additionally, working principles and applications of spectroelectrochemistry are discussed for plasmonic materials. It is concluded that photoelectrochemistry provides a powerful toolbox to gain mechanistic insights into plasmonic photocatalysis.
Collapse
Affiliation(s)
- Yuchao Zhang
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, FL, 32611, USA
| | - Wenxiao Guo
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, FL, 32611, USA
| | - Yunlu Zhang
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, FL, 32611, USA
| | - Wei David Wei
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
82
|
Jiang D, Zhou Y, Zhang Q, Song Q, Zhou C, Shi X, Li D. Synergistic Integration of AuCu Co-Catalyst with Oxygen Vacancies on TiO 2 for Efficient Photocatalytic Conversion of CO 2 to CH 4. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46772-46782. [PMID: 34555906 DOI: 10.1021/acsami.1c14371] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photocatalytic reduction of CO2 toward eight-electron CH4 product with simultaneously high conversion efficiency and selectivity remains great challenging owing to the sluggish charge separation and transfer kinetics and lack of active sites for the adsorption and activation of reactants. Herein, a defective TiO2 nanosheet photocatalyst simultaneously equipped with AuCu alloy co-catalyst and oxygen vacancies (AuCu-TiO2-x NSs) was rationally designed and fabricated for the selective conversion of CO2 into CH4. The experimental results demonstrated that the AuCu alloy co-catalyst not only effectively promotes the separation of photogenerated electron-hole pairs but also acts as synergistic active sites for the reduction of CO2. The oxygen vacancies in TiO2 contribute to the separation of charge carriers and, more importantly, promote the oxidation of H2O, thus providing rich protons to promote the deep reduction of CO2 to CH4. Consequently, the optimal AuCu-TiO2-x nanosheets (NSs) photocatalyst achieves a CO2 reduction selectivity toward CH4 up to 90.55%, significantly higher than those of TiO2-x NSs (31.82%), Au-TiO2-x NSs (38.74%), and Cu-TiO2-x NSs (66.11%). Furthermore, the CH4 evolution rate over the AuCu-TiO2-x NSs reaches 22.47 μmol·g-1·h-1, which is nearly twice that of AuCu-TiO2 NSs (12.10 μmol·g-1·h-1). This research presents a unique insight into the design and synthesis of photocatalyst with oxygen vacancies and alloy metals as the co-catalyst for the highly selective deep reduction of CO2.
Collapse
Affiliation(s)
- Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yimeng Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qianxiao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qi Song
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changjian Zhou
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiangli Shi
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Di Li
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
83
|
Fang Y, Cao Y, Tan B, Chen Q. Oxygen and Titanium Vacancies in a BiOBr/MXene-Ti 3C 2 Composite for Boosting Photocatalytic N 2 Fixation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42624-42634. [PMID: 34467762 DOI: 10.1021/acsami.1c08888] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Solar energy can be used as "green" energy by photocatalysis for the nitrogen fixation under the atmospheric conditions compared with the traditional energy-intensive industrial production of ammonia. However, the complex kinetics and high reaction barriers greatly hinder the development of the photocatalytic N2 reduction reaction. Herein, a BiOBr/MXene-Ti3C2 composite catalyst is prepared by the simple electrostatic adsorption and self-assembly method. The as-prepared 10 wt % BiOBr/Ti3C2 exhibits the best performance for N2 fixation to NH3 by photocatalysis. The evolution rate of NH3 is up to 234.6 μmol·g-1·h-1, which is approximately 48.8 times and 52.4 times higher than those of pure BiOBr and Ti3C2, respectively. It is found that the designed double vacancies of oxygen and titanium for BiOBr/Ti3C2 composites, with the availability of localized electrons, have the ability to adsorb and activate N2, which can be efficiently reduced to NH3 by the interfacial electrons transferred from the excited BiOBr/Ti3C2 composite. In addition, the results of in situ Fourier transform infrared show the generation of NxHy species by the continuous protonation processes. Moreover, titanium vacancy (VTi) induces a strong absorption energy for nitrogen atoms on the surface of BiOBr/Ti3C2 according to the density functional theory calculations. In particular, the P-electron feedback caused by VTi could effectively promote the weakening of the N≡N triple bond and elongate the N2 bond length by ∼31.6%. This work might provide new insights into the synergistic effect of double defects and inspiration for the rational design of catalysts by defect engineering in the field of catalytic synthesis of ammonia.
Collapse
Affiliation(s)
- Yu Fang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Yang Cao
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Bihui Tan
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Qianlin Chen
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Institute of Advanced Technology, Guizhou University, Guiyang 550025, China
| |
Collapse
|
84
|
Li R, Zhang CC, Wang D, Hu YF, Li YL, Xie W. Reaction pathway change on plasmonic Au nanoparticles studied by surface-enhanced Raman spectroscopy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
85
|
Chang B, Guo Y, Wu D, Li L, Yang B, Wang J. Plasmon-enabled N 2 photofixation on partially reduced Ti 3C 2 MXene. Chem Sci 2021; 12:11213-11224. [PMID: 34522319 PMCID: PMC8386658 DOI: 10.1039/d1sc02772g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/20/2021] [Indexed: 12/25/2022] Open
Abstract
Benefiting from the superior conductivity, rich surface chemistry and tunable bandgap, Ti3C2 MXene has become a frontier cocatalyst material for boosting the efficiency of semiconductor photocatalysts. It has been theoretically predicted to be an ideal material for N2 fixation. However, the realization of N2 photofixation with Ti3C2 as a host photocatalyst has so far remained experimentally challenging. Herein, we report on a sandwich-like plasmon- and an MXene-based photocatalyst made of Au nanospheres and layered Ti3C2, and demonstrate its efficient N2 photofixation in pure water under ambient conditions. The abundant low-valence Ti (Ti(4-x)+) sites in partially reduced Ti3C2 (r-Ti3C2) produced by surface engineering through H2 thermal reduction effectively capture and activate N2, while Au nanospheres offer plasmonic hot electrons to reduce the activated N2 into NH3. The Ti(4-x)+ active sites and plasmon-generated hot electrons work in tandem to endow r-Ti3C2/Au with remarkably enhanced N2 photofixation activity. Importantly, r-Ti3C2/Au exhibits ultrahigh selectivity without the occurrence of competing H2 evolution. This work opens up a promising route for the rational design of efficient MXene-based photocatalysts.
Collapse
Affiliation(s)
- Binbin Chang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Yanzhen Guo
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College Zhengzhou 450006 China
| | - Donghai Wu
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College Zhengzhou 450006 China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Baocheng Yang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College Zhengzhou 450006 China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong Shatin Hong Kong SAR China
| |
Collapse
|
86
|
Chu H, Zheng S, Li Y, Xu K, Hong Q, Li T, Ren W, Li S, Mei Z, Pan F. Tuning the exposure of BiVO 4-{010} facets to enhance the N 2 photofixation performance. RSC Adv 2021; 11:28908-28911. [PMID: 35478558 PMCID: PMC9038164 DOI: 10.1039/d1ra02739e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/06/2021] [Indexed: 01/06/2023] Open
Abstract
Effective separation of photoexcited carriers and chemisorption of the N2 molecule are two key issues to efficient nitrogen photofixation. The spatial charge separation of BiVO4 with anisotropic exposed facets, namely the transfer of photoexcited electrons and holes to {010} and {110} facets, respectively, helps to enhance the separation ability of photogenerated carriers. Theoretical calculation results predict that a surface oxygen vacancy is easier to form on the (010) facet than on the (110) facet of BiVO4. Accordingly, in this study, enhanced N2 photofixation performance has been achieved for the first time by tuning the exposure of {010} facets of BiVO4. Effective separation of photoexcited carriers and chemisorption of the N2 molecule are two key issues to efficient nitrogen photofixation.![]()
Collapse
Affiliation(s)
- Honghao Chu
- School of Advanced Materials, Peking University, Shenzhen Graduate School Shenzhen China
| | - Shisheng Zheng
- School of Advanced Materials, Peking University, Shenzhen Graduate School Shenzhen China
| | - Yang Li
- School of Advanced Materials, Peking University, Shenzhen Graduate School Shenzhen China
| | - Kuanda Xu
- School of Advanced Materials, Peking University, Shenzhen Graduate School Shenzhen China
| | - Qingshui Hong
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Engineering, Chongqing University Chongqing China
| | - Tangyi Li
- School of Advanced Materials, Peking University, Shenzhen Graduate School Shenzhen China
| | - Wenju Ren
- School of Advance Manufacturing Engineering, Chongqing University of Posts and Telcommunications Chongqing China
| | - Shunning Li
- School of Advanced Materials, Peking University, Shenzhen Graduate School Shenzhen China
| | - Zongwei Mei
- School of Advanced Materials, Peking University, Shenzhen Graduate School Shenzhen China
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School Shenzhen China .,Chemistry and Chemical Engineering Guangdong Laboratory Shantou China
| |
Collapse
|
87
|
Frank M, Bulut Y, Czympiel L, Weißing R, Nahrstedt V, Wilhelm M, Grosch M, Raauf A, Verma A, Fischer T, Mathur S. Piezo-enhanced activation of dinitrogen for room temperature production of ammonia. NANOTECHNOLOGY 2021; 32:465601. [PMID: 34348241 DOI: 10.1088/1361-6528/ac1a96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The catalytic conversion of nitrogen to ammonia remains an energy-intensive process, demanding advanced concepts for nitrogen fixation. The major obstacle of nitrogen fixation lies in the intrinsically high bond energy (941 kJ mol-1) of the N≡N molecule and the absence of a permanent dipole in N2. This kinetic barrier is addressed in this study by an efficient piezo-enhanced gold catalysis as demonstrated by the room temperature reduction of dinitrogen into ammonia. Au nanostructures were immobilized on thin film piezoelectric support of potassium sodium niobate (K0.5Na0.5NbO3, KNN) by chemical vapor deposition of a new Au(III) precursor [Me2Au(PyTFP)(H2O)]1(PyTFP = (Z)-3,3,3-trifluoro-1-(pyridin-2-yl)-prop-1-en-2-olate) that exhibited high volatility (60 °C, 10-3mbar) and clean decomposition mechanism to produce well adherent elemental gold films on KNN and Ti substrates. The gold-functionalized KNN films served as an efficient catalytic system for ammonia production with a Faradaic efficiency of 18.9% achieved upon ultrasonic actuation. Our results show that the spontaneous polarization of piezoelectric materials under external electrical fields augments the sluggish electron transfer kinetics by creating instant dipoles in adsorbed N2molecules to deliver a piezo-enhanced catalytic system promising for sustained activation of dinitrogen molecules.
Collapse
Affiliation(s)
- Michael Frank
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, D-50939 Cologne, Germany
| | - Yusuf Bulut
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, D-50939 Cologne, Germany
| | - Lisa Czympiel
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, D-50939 Cologne, Germany
| | - Rene Weißing
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, D-50939 Cologne, Germany
| | - Vanessa Nahrstedt
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, D-50939 Cologne, Germany
| | - Michael Wilhelm
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, D-50939 Cologne, Germany
| | - Matthias Grosch
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, D-50939 Cologne, Germany
| | - Aida Raauf
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, D-50939 Cologne, Germany
| | - Anjneya Verma
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, D-50939 Cologne, Germany
| | - Thomas Fischer
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, D-50939 Cologne, Germany
| | - Sanjay Mathur
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, D-50939 Cologne, Germany
| |
Collapse
|
88
|
Liu Y, Lu J, Zhang Q, Bai Y, Pang X, Wang S, Bai H, Fan W. Charge-transfer dynamics at a Ag/Ni-MOF/Cu 2O heterostructure in photoelectrochemical NH 3 production. Chem Commun (Camb) 2021; 57:8031-8034. [PMID: 34291250 DOI: 10.1039/d1cc01672e] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ag-decorated ultrathin Ni-MOF on Cu2O was fabricated for the first time. The charge-transfer dynamics at the heterostructure was studied by ultrafast transient absorption spectroscopy in depth. An NH3 yield rate of 4.63 μg h-1 cm-2 with a faradaic efficiency of 24.3% has been achieved. DFT calculations further supported to further comprehend the nitrogen reduction reaction mechanism.
Collapse
Affiliation(s)
- Ying Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Feng X, Liu D, Yan B, Shao M, Hao Z, Yuan G, Yu H, Zhang Y. Highly Active PdO/Mn
3
O
4
/CeO
2
Nanocomposites Supported on One Dimensional Halloysite Nanotubes for Photoassisted Thermal Catalytic Methane Combustion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xilan Feng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Dapeng Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Baolin Yan
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Mingzhe Shao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Zhimin Hao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Guobao Yuan
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Haohan Yu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Yu Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing 100191 P. R. China
| |
Collapse
|
90
|
Choe S, Kim SM, Lee Y, Seok J, Jung J, Lee JS, Jang YJ. Rational design of photocatalysts for ammonia production from water and nitrogen gas. NANO CONVERGENCE 2021; 8:22. [PMID: 34338913 PMCID: PMC8329108 DOI: 10.1186/s40580-021-00273-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Photocatalytic N2 reduction has emerged as one of the most attractive routes to produce NH3 as a useful commodity for chemicals used in industries and as a carbon-free energy source. Recently, significant progress has been made in understanding, exploring, and designing efficient photocatalyst. In this review, we outline the important mechanistic and experimental procedures for photocatalytic NH3 production. In addition, we review effective strategies on development of photocatalysts. Finally, our analyses on the characteristics and modifications of photocatalysts have been summarized, based on which we discuss the possible future research directions, particularly on preparing more efficient catalysts. Overall, this review provides insights on improving photocatalytic NH3 production and designing solar-driven chemical conversions.
Collapse
Affiliation(s)
- Seokwoo Choe
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sung Min Kim
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Yeji Lee
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jin Seok
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jiyong Jung
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jae Sung Lee
- Department of Energy and Chemical Engineering, Ulsan National Institute and Science and Technology, 50, UNIST-gil, Ulsan, 44919, Republic of Korea.
| | - Youn Jeong Jang
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
91
|
Zheng Z, Wang T, Han F, Yang Q, Li B. Synthesis of Ni modified Au@CdS core-shell nanostructures for enhancing photocatalytic coproduction of hydrogen and benzaldehyde under visible light. J Colloid Interface Sci 2021; 606:47-56. [PMID: 34388572 DOI: 10.1016/j.jcis.2021.07.150] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
The development of visible light responsive photocatalysts for simultaneous production of hydrogen (H2) fuel and value-added chemicals is greatly promising to solve the energy and environmental issues by improving the utilization efficiency of solar energy. Herein, the three-component Ni/(Au@CdS) core-shell nanostructures were constructed by the hydrothermal synthesis followed with photodeposition. The intimate integration of plasmonic Au nanospheres and visible-light responsive CdS shells modified with Ni cocatalyst facilitated the generation and separation of electron-hole pairs as well as reduced the overpotential of hydrogen evolution. The Ni/(Au@CdS) photocatalyst exhibited excellent performance toward the selective transformation of benzyl alcohol under anaerobic conditions, and the yields of H2 and benzaldehyde reached up to 3882 and 4242 μmol·g-1·h-1, respectively. The apparent quantum efficiency (AQE) was determined to be 4.09% under the irradiation of 420 nm. The systematic studies have verified the synergy of plasmonic effect and metal cocatalyst on enhancing the photocatalysis. This work highlights the desirable design and potential application of plasmonic photocatalysts for solar-driven coproduction of H2 fuel and high-value chemicals.
Collapse
Affiliation(s)
- Ziqiang Zheng
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ting Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fang Han
- Anhui Entry-Exit Inspection and Quarantine Technical Center, 329 Tunxi Road, Hefei, Anhui 230029, China
| | - Qing Yang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Benxia Li
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
92
|
Niu XY, Jiang SL, Zhang Q. Photocatalytic N2 fixation by plasmonic Mo-doped TiO2 semiconductor. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2105088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Xiao-you Niu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shen-long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Qun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
93
|
Xin Y, Wang S, Yuan H, Hou T, Zhu W, Liu Y, Yao Y, Zhang W, Liang S, Wang L. Atomic-level insights into the activation of nitrogen via hydrogen-bond interaction toward nitrogen photofixation. Chem 2021. [DOI: 10.1016/j.chempr.2021.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
94
|
Li S, Huang H, Shao L, Wang J. How to Utilize Excited Plasmon Energy Efficiently. ACS NANO 2021; 15:10759-10768. [PMID: 34137261 DOI: 10.1021/acsnano.1c02627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plasmonic nanoparticles can concentrate electromagnetic fields at the nanoscale and function as a powerful intermediary to enhance light-matter interactions. They have been widely employed for solar energy harvesting, photocatalysis, medicine, sensing, imaging, spectroscopy, optics, and optoelectronics. In this Perspective, we provide a brief overview of research progress in the utilization of excited plasmon energy, with emphasis on the charge- and energy-transfer processes. We discuss important factors that affect the charge- and energy-transfer efficiencies and present open questions and major challenges in the efficient utilization of excited plasmon energy.
Collapse
Affiliation(s)
- Shasha Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen 518109, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - He Huang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lei Shao
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen 518109, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
95
|
Feng X, Liu D, Yan B, Shao M, Hao Z, Yuan G, Yu H, Zhang Y. Highly Active PdO/Mn 3 O 4 /CeO 2 Nanocomposites Supported on One Dimensional Halloysite Nanotubes for Photoassisted Thermal Catalytic Methane Combustion. Angew Chem Int Ed Engl 2021; 60:18552-18556. [PMID: 34159698 DOI: 10.1002/anie.202107226] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Indexed: 11/08/2022]
Abstract
In this work, we have successfully triggered the aqueous auto-redox reactions between reductive Ce(OH)3 and oxidative MnO4 - /Pd2+ ions to form PdO/Mn3 O4 /CeO2 (PMC) nanocomposites. PMC could spontaneously self-assemble into compact encapsulation on the surface of halloysite nanotubes (HNTs) to form the final one dimensional HNTs supported PMCs (HPMC). It is identified that there exists strong synergistic effects among the components of PdO, Mn3 O4 , and CeO2 , and hence HPMC could show excellent performance on photoassisted thermal catalytic CH4 combustion that its light-off temperature was sharply reduced to be 180 °C under visible light irradiation. Based on detailed studies, it is found that the catalytic reaction process well follows the classic MVK mechanism, and adsorption/activation of O2 into active oxygen species (O*) should be the rate-determining step for CH4 conversion.
Collapse
Affiliation(s)
- Xilan Feng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Dapeng Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Baolin Yan
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Mingzhe Shao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Zhimin Hao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Guobao Yuan
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Haohan Yu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yu Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
96
|
Ziegenbalg D, Zander J, Marschall R. Photocatalytic Nitrogen Reduction: Challenging Materials with Reaction Engineering. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dirk Ziegenbalg
- Institute of Chemical Engineering Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Judith Zander
- Department of Chemistry University of Bayreuth Universitätsstrasse 30 95447 Bayreuth Germany
| | - Roland Marschall
- Department of Chemistry University of Bayreuth Universitätsstrasse 30 95447 Bayreuth Germany
| |
Collapse
|
97
|
Nazemi M, Panikkanvalappil SR, Liao CK, Mahmoud MA, El-Sayed MA. Role of Femtosecond Pulsed Laser-Induced Atomic Redistribution in Bimetallic Au-Pd Nanorods on Optoelectronic and Catalytic Properties. ACS NANO 2021; 15:10241-10252. [PMID: 34032116 DOI: 10.1021/acsnano.1c02347] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Utilizing solar energy for chemical transformations has attracted a growing interest in promoting the clean and modular chemical synthesis approach and addressing the limitations of conventional thermocatalytic systems. Under light irradiation, noble metal nanoparticles, particularly those characterized by localized surface plasmon resonance, commonly known as plasmonic nanoparticles, generate a strong electromagnetic field, excited hot carriers, and photothermal heating. Plasmonic nanoparticles enabling efficient absorption of light in the visible range have moderate catalytic activities. However, the catalytic performance of a plasmonic nanoparticle can be significantly enhanced by incorporating a highly catalytically active metal domain onto its surface. In this study, we demonstrate that femtosecond laser-induced atomic redistribution of metal domains in bimetallic Au-Pd nanorods (NRs) can enhance its photocurrent response by 2-fold compared to parent Au-Pd NRs. We induce structure changes on Au-Pd NRs by irradiating them with a femtosecond pulsed laser at 808 nm to precisely redistribute Pd atoms on AuNR surfaces, resulting in modified electronic and optical properties and, thereby, enhanced catalytic activity. We also investigate the trade-off between the effect of light absorption and catalytic activity by optimizing the structure and composition of bimetallic Au-Pd nanoparticles. This work provides insight into the design of hybrid plasmonic-catalytic nanostructures with well-tailored geometry, composition, and structure for solar-fuel-based applications.
Collapse
Affiliation(s)
- Mohammadreza Nazemi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Sajanlal R Panikkanvalappil
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02210, United States
| | - Chih-Kai Liao
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Mahmoud A Mahmoud
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Mostafa A El-Sayed
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
98
|
Shang S, Xiong W, Yang C, Johannessen B, Liu R, Hsu HY, Gu Q, Leung MKH, Shang J. Atomically Dispersed Iron Metal Site in a Porphyrin-Based Metal-Organic Framework for Photocatalytic Nitrogen Fixation. ACS NANO 2021; 15:9670-9678. [PMID: 34024096 DOI: 10.1021/acsnano.0c10947] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rational design of photocatalysts for efficient nitrogen (N2) fixation at ambient conditions is important for revolutionizing ammonia production and quite challenging because the great difficulty lies in the adsorption and activation of the inert N2. Inspired by a biological molecule, chlorophyll, featuring a porphyrin structure as the photosensitizer and enzyme nitrogenase featuring an iron (Fe) atom as a favorable binding site for N2via π-backbonding, here we developed a porphyrin-based metal-organic framework (PMOF) with Fe as the active center as an artificial photocatalyst for N2 reduction reaction (NRR) under ambient conditions. The PMOF features aluminum (Al) as metal node imparting high stability and Fe incorporated and atomically dispersed by residing at each porphyrin ring promoting the adsorption and the activation of N2, termed Al-PMOF(Fe). Compared with the pristine Al-PMOF, Al-PMOF(Fe) exhibits a substantial enhancement in NH3 yield (635 μg g-1cat.) and production rate (127 μg h-1 g-1cat.) of 82% and 50%, respectively, on par with the best-performing MOF-based NRR catalysts. Three cycles of photocatalytic NRR experimental results corroborate a stable photocatalytic activity of Al-PMOF(Fe). The combined experimental and theoretical results reveal that the Fe-N site in Al-PMOF(Fe) is the active photocatalytic center that can mitigate the difficulty of the rate-determining step in photocatalytic NRR. The possible reaction pathways of NRR on Al-PMOF(Fe) were established. Our study of porphyrin-based MOF for the photocatalytic NRR will provide insight into the rational design of catalysts for artificial photosynthesis.
Collapse
Affiliation(s)
- Shanshan Shang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing first Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen 518057, People's Republic of China
| | - Wei Xiong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Chao Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China
| | - Bernt Johannessen
- Australian Synchrotron (ANSTO), 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Rugeng Liu
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing first Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen 518057, People's Republic of China
| | - Hsien-Yi Hsu
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing first Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen 518057, People's Republic of China
| | - Qinfen Gu
- Australian Synchrotron (ANSTO), 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Michael K H Leung
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Jin Shang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing first Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen 518057, People's Republic of China
| |
Collapse
|
99
|
Bo Y, Wang H, Lin Y, Yang T, Ye R, Li Y, Hu C, Du P, Hu Y, Liu Z, Long R, Gao C, Ye B, Song L, Wu X, Xiong Y. Altering Hydrogenation Pathways in Photocatalytic Nitrogen Fixation by Tuning Local Electronic Structure of Oxygen Vacancy with Dopant. Angew Chem Int Ed Engl 2021; 60:16085-16092. [PMID: 33963658 DOI: 10.1002/anie.202104001] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/27/2021] [Indexed: 01/06/2023]
Abstract
To avoid the energy-consuming step of direct N≡N bond cleavage, photocatalytic N2 fixation undergoing the associative pathways has been developed for mild-condition operation. However, it is a fundamental yet challenging task to gain comprehensive understanding on how the associative pathways (i.e., alternating vs. distal) are influenced and altered by the fine structure of catalysts, which eventually holds the key to significantly promote the practical implementation. Herein, we introduce Fe dopants into TiO2 nanofibers to stabilize oxygen vacancies and simultaneously tune their local electronic structure. The combination of in situ characterizations with first-principles simulations reveals that the modulation of local electronic structure by Fe dopants turns the hydrogenation of N2 from associative alternating pathway to associative distal pathway. This work provides fresh hints for rationally controlling the reaction pathways toward efficient photocatalytic nitrogen fixation.
Collapse
Affiliation(s)
- Yanan Bo
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, and, CAS Center for Excellence in Nanoscience Institution, University of Science and Technology of China, Hefei, Anhui, 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, 350 Shushanhu Rd., Hefei, Anhui, 230031, China
| | - Haiyun Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, and, CAS Center for Excellence in Nanoscience Institution, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yunxiang Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, and, CAS Center for Excellence in Nanoscience Institution, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Tian Yang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Run Ye
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Li
- Institute for New Energy Materials & Low-Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China
| | - Canyu Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, and, CAS Center for Excellence in Nanoscience Institution, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Pengye Du
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, and, CAS Center for Excellence in Nanoscience Institution, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yangguang Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, and, CAS Center for Excellence in Nanoscience Institution, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhi Liu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201203, China
| | - Ran Long
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, and, CAS Center for Excellence in Nanoscience Institution, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chao Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, and, CAS Center for Excellence in Nanoscience Institution, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Bangjiao Ye
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Li Song
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, and, CAS Center for Excellence in Nanoscience Institution, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaojun Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, and, CAS Center for Excellence in Nanoscience Institution, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, and, CAS Center for Excellence in Nanoscience Institution, University of Science and Technology of China, Hefei, Anhui, 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, 350 Shushanhu Rd., Hefei, Anhui, 230031, China
| |
Collapse
|
100
|
Bo Y, Wang H, Lin Y, Yang T, Ye R, Li Y, Hu C, Du P, Hu Y, Liu Z, Long R, Gao C, Ye B, Song L, Wu X, Xiong Y. Altering Hydrogenation Pathways in Photocatalytic Nitrogen Fixation by Tuning Local Electronic Structure of Oxygen Vacancy with Dopant. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yanan Bo
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science National Synchrotron Radiation Laboratory, and CAS Center for Excellence in Nanoscience Institution University of Science and Technology of China Hefei Anhui 230026 China
- Institute of Energy Hefei Comprehensive National Science Center 350 Shushanhu Rd. Hefei Anhui 230031 China
| | - Haiyun Wang
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science National Synchrotron Radiation Laboratory, and CAS Center for Excellence in Nanoscience Institution University of Science and Technology of China Hefei Anhui 230026 China
| | - Yunxiang Lin
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science National Synchrotron Radiation Laboratory, and CAS Center for Excellence in Nanoscience Institution University of Science and Technology of China Hefei Anhui 230026 China
| | - Tian Yang
- State Key Laboratory of Functional Materials for Informatics Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Run Ye
- State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China Hefei Anhui 230026 China
| | - Yu Li
- Institute for New Energy Materials & Low-Carbon Technologies Tianjin University of Technology Tianjin 300384 China
| | - Canyu Hu
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science National Synchrotron Radiation Laboratory, and CAS Center for Excellence in Nanoscience Institution University of Science and Technology of China Hefei Anhui 230026 China
| | - Pengye Du
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science National Synchrotron Radiation Laboratory, and CAS Center for Excellence in Nanoscience Institution University of Science and Technology of China Hefei Anhui 230026 China
| | - Yangguang Hu
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science National Synchrotron Radiation Laboratory, and CAS Center for Excellence in Nanoscience Institution University of Science and Technology of China Hefei Anhui 230026 China
| | - Zhi Liu
- State Key Laboratory of Functional Materials for Informatics Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201203 China
| | - Ran Long
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science National Synchrotron Radiation Laboratory, and CAS Center for Excellence in Nanoscience Institution University of Science and Technology of China Hefei Anhui 230026 China
| | - Chao Gao
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science National Synchrotron Radiation Laboratory, and CAS Center for Excellence in Nanoscience Institution University of Science and Technology of China Hefei Anhui 230026 China
| | - Bangjiao Ye
- State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China Hefei Anhui 230026 China
| | - Li Song
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science National Synchrotron Radiation Laboratory, and CAS Center for Excellence in Nanoscience Institution University of Science and Technology of China Hefei Anhui 230026 China
| | - Xiaojun Wu
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science National Synchrotron Radiation Laboratory, and CAS Center for Excellence in Nanoscience Institution University of Science and Technology of China Hefei Anhui 230026 China
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) School of Chemistry and Materials Science National Synchrotron Radiation Laboratory, and CAS Center for Excellence in Nanoscience Institution University of Science and Technology of China Hefei Anhui 230026 China
- Institute of Energy Hefei Comprehensive National Science Center 350 Shushanhu Rd. Hefei Anhui 230031 China
| |
Collapse
|