51
|
Chen XR, Li YM, Li X, Xuan J, Zhou HP, Tian YP, Li F. An "Umpolung Relay" Strategy: One-Pot, Twice Polarity Inversion Cascade Synthesis of Diversified [60]Fulleroindoles. Org Lett 2021; 23:1302-1308. [PMID: 33522830 DOI: 10.1021/acs.orglett.0c04290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An "umpolung relay" strategy, which includes an one-pot, twice polarity inversion cascade of C60 via carbanion and carbocation polarity reversed relay pathway, has been developed for the synthesis of a diverse range of novel [60]fulleroindole derivatives.
Collapse
Affiliation(s)
- Xin-Rui Chen
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Department of Chemistry, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Ying-Meng Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Department of Chemistry, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Xiang Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Department of Chemistry, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Department of Chemistry, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Hong-Ping Zhou
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Department of Chemistry, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Yu-Peng Tian
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Department of Chemistry, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Fei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Department of Chemistry, Anhui University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
52
|
Li K, Fong D, Meichsner E, Adronov A. A Survey of Strain-Promoted Azide-Alkyne Cycloaddition in Polymer Chemistry. Chemistry 2021; 27:5057-5073. [PMID: 33017499 DOI: 10.1002/chem.202003386] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Indexed: 02/06/2023]
Abstract
Highly efficient reactions that enable the assembly of molecules into complex structures have driven extensive progress in synthetic chemistry. In particular, reactions that occur under mild conditions and in benign solvents, while producing no by-products and rapidly reach completion are attracting significant attention. Amongst these, the strain-promoted azide-alkyne cycloaddition, involving various cyclooctyne derivatives reacting with azide-bearing molecules, has gained extensive popularity in organic synthesis and bioorthogonal chemistry. This reaction has also recently gained momentum in polymer chemistry, where it has been used to decorate, link, crosslink, and even prepare polymer chains. This survey highlights key achievements in the use of this reaction to produce a variety of polymeric constructs for disparate applications.
Collapse
Affiliation(s)
- Kelvin Li
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| | - Darryl Fong
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| | - Eric Meichsner
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| | - Alex Adronov
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| |
Collapse
|
53
|
Ðorđević L, Casimiro L, Demitri N, Baroncini M, Silvi S, Arcudi F, Credi A, Prato M. Light‐Controlled Regioselective Synthesis of Fullerene Bis‐Adducts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Luka Ðorđević
- Department of Chemical and Pharmaceutical Sciences & INSTM, UdR Trieste University of Trieste via Licio Giorgieri 1 34127 Trieste Italy
- Present address: Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Present address: Simpson Querrey Institute Northwestern University 303 E. Superior Chicago IL 60611 USA
| | - Lorenzo Casimiro
- CLAN—Center for Light Activated Nanostructures Università di Bologna and Consiglio Nazionale delle Ricerche via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica “G. Ciamician” Università di Bologna via Selmi 2 40127 Bologna Italy
- Present address: Supramolecular and Macromolecular Photochemistry and Photophysics ENS Paris-Saclay CNRS Université Paris-Saclay 61 Avenue du Président Wilson 94235 Cachan France
| | - Nicola Demitri
- Elettra—Sincrotrone Trieste S.S. 14 Km 163.5 in Area Science Park 34149 Basovizza Italy
| | - Massimo Baroncini
- CLAN—Center for Light Activated Nanostructures Università di Bologna and Consiglio Nazionale delle Ricerche via Gobetti 101 40129 Bologna Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari Università di Bologna viale Fanin 44 40127 Bologna Italy
| | - Serena Silvi
- CLAN—Center for Light Activated Nanostructures Università di Bologna and Consiglio Nazionale delle Ricerche via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica “G. Ciamician” Università di Bologna via Selmi 2 40127 Bologna Italy
| | - Francesca Arcudi
- Department of Chemical and Pharmaceutical Sciences & INSTM, UdR Trieste University of Trieste via Licio Giorgieri 1 34127 Trieste Italy
- Present address: Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Alberto Credi
- CLAN—Center for Light Activated Nanostructures Università di Bologna and Consiglio Nazionale delle Ricerche via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale “Toso Montanari” Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences & INSTM, UdR Trieste University of Trieste via Licio Giorgieri 1 34127 Trieste Italy
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE) Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 20014 Donostia San Sebastián Spain
- Basque Foundation for Science Ikerbasque Bilbao 48013 Spain
| |
Collapse
|
54
|
Nie C, Stadtmüller M, Parshad B, Wallert M, Ahmadi V, Kerkhoff Y, Bhatia S, Block S, Cheng C, Wolff T, Haag R. Heteromultivalent topology-matched nanostructures as potent and broad-spectrum influenza A virus inhibitors. SCIENCE ADVANCES 2021; 7:7/1/eabd3803. [PMID: 33523846 PMCID: PMC7775783 DOI: 10.1126/sciadv.abd3803] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/09/2020] [Indexed: 05/28/2023]
Abstract
Here, we report the topology-matched design of heteromultivalent nanostructures as potent and broad-spectrum virus entry inhibitors based on the host cell membrane. Initially, we investigate the virus binding dynamics to validate the better binding performance of the heteromultivalent moieties as compared to homomultivalent ones. The heteromultivalent binding moieties are transferred to nanostructures with a bowl-like shape matching the viral spherical surface. Unlike the conventional homomultivalent inhibitors, the heteromultivalent ones exhibit a half maximal inhibitory concentration of 32.4 ± 13.7 μg/ml due to the synergistic multivalent effects and the topology-matched shape. At a dose without causing cellular toxicity, >99.99% reduction of virus propagation has been achieved. Since multiple binding sites have also been identified on the S protein of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), we envision that the use of heteromultivalent nanostructures may also be applied to develop a potent inhibitor to prevent coronavirus infection.
Collapse
Affiliation(s)
- Chuanxiong Nie
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestr. 10, 13353 Berlin, Germany
| | - Marlena Stadtmüller
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestr. 10, 13353 Berlin, Germany
| | - Badri Parshad
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Matthias Wallert
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Vahid Ahmadi
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Yannic Kerkhoff
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Sumati Bhatia
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Stephan Block
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Thorsten Wolff
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestr. 10, 13353 Berlin, Germany.
| | - Rainer Haag
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| |
Collapse
|
55
|
Ma J, Liu TX, Zhang P, Zhang C, Zhang G. Palladium-catalyzed domino spirocyclization of [60]fullerene: synthesis of diverse [60]fullerene-fused spiro[4,5]/[5,5] derivatives. Chem Commun (Camb) 2021; 57:49-52. [PMID: 33244545 DOI: 10.1039/d0cc07143a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Herein a new, general and practical method for the spirocyclization of [60]fullerene through a palladium-catalyzed domino Heck/C-H activation reaction is presented. A wide range of novel [60]fullerene-fused spirocyclic derivatives can be easily and flexibly synthesized with a broad substrate scope and excellent functional-group tolerance. A plausible mechanism involving an alkyl Pd(ii) species as a key intermediate has been proposed.
Collapse
Affiliation(s)
- Jinliang Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | | | | | | | | |
Collapse
|
56
|
Tharayil A, Rajakumari R, Kumar A, Choudhary MD, Palit P, Thomas S. New insights into application of nanoparticles in the diagnosis and screening of novel coronavirus (SARS-CoV-2). EMERGENT MATERIALS 2021; 4:101-117. [PMID: 33817553 PMCID: PMC8010296 DOI: 10.1007/s42247-021-00182-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/03/2021] [Indexed: 05/15/2023]
Abstract
Novel coronavirus disease 2019 (COVID-19) is by far the worst pandemic disease in the current millennium. The first human-to-human transmission was observed in December 2019 in China and is caused by the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has infected millions of people within months across the globe. SARS-CoV-2 is a spike protein enveloped virus with particle-like characteristics and a diameter of 60-140 nm. Real-time PCR, reverse transcriptase PCR, isothermal PCR, immunological-based detection technique and nano-based diagnostic system have been explained for the identification and differentiation of different types of virus including SARS-COV-2. Synthetic nanoparticles can closely mimic the virus and interact strongly with its virulent proteins due to their morphological similarities. Some of the antiviral nanomaterials are also discussed, for example zinc oxide nanoparticle is an antiviral agent with a tetrapod morphology that mimics the cell surface by interacting with the viral capsid. It suppressed the viral proteins upon UV radiation due to reaction caused by photocatalysis. Hence, nanoparticle-based strategies for tackling viruses have immense potential. The second part of the review points to the latest in vitro and in vivo procedures for screening viral particles and the usage of nanoparticles in diagnostic and therapeutics. This would be beneficial for early detection and assists for the safe and effective therapeutic management of COVID-19.
Collapse
Affiliation(s)
- Abhimanyu Tharayil
- School of Energy Materials, Mahatma Gandhi University, Kerala, 686560 India
| | - R. Rajakumari
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kerala, 686560 India
| | - Amresh Kumar
- Department of Life Sciences and Bioinformatics, Assam University, Silchar, India
| | | | - Parth Palit
- Department of Pharmaceutical Sciences, Assam University, Silchar, India
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kerala, 686560 India
- School of Chemical Sciences, Mahatma Gandhi University, Kerala, 686560 India
| |
Collapse
|
57
|
Sengupta J, Hussain CM. Carbon nanomaterials to combat virus: A perspective in view of COVID-19. CARBON TRENDS 2021; 2:100019. [PMID: 38620887 PMCID: PMC7834913 DOI: 10.1016/j.cartre.2020.100019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 05/12/2023]
Abstract
The rapid outbreaks of lethal viruses necessitate the development of novel antiviral substance. Besides the conventional antiviral substances, biocompatible nanomaterials also have significant potential in combating the virus at various stages of infection. Carbon nanomaterials have an impressive record against viruses and can deal with many crucial healthcare issues. In accordance with the published literature, biocompatible carbon nanomaterials have a promising prospect as an antiviral substance. Subsequently, the antiviral properties of different carbon nanomaterials namely fullerene, carbon nanotube, carbon dot and graphene oxide have been reviewed.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science Jogesh Chandra Chaudhuri College (Affiliated to University of Calcutta), Kolkata 700033, West Bengal, India
| | | |
Collapse
|
58
|
Salta J, Arp FF, Kühne C, Reissig H. Multivalent 1,2,3‐Triazole‐Linked Carbohydrate Mimetics by Huisgen–Meldal‐Sharpless Cycloadditions of an Azidopyran. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Joana Salta
- Institut für Chemie und Biochemie Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Fabian F. Arp
- Institut für Chemie und Biochemie Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Christian Kühne
- Institut für Laboratoriumsmedizin Klinische Chemie und Pathobiochemie Charité‐Universitätsmedizin Berlin Augustenburger Platz 1 13353 Berlin Germany
| | - Hans‐Ulrich Reissig
- Institut für Chemie und Biochemie Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
| |
Collapse
|
59
|
Fuertes-Espinosa C, Pujals M, Ribas X. Supramolecular Purification and Regioselective Functionalization of Fullerenes and Endohedral Metallofullerenes. Chem 2020. [DOI: 10.1016/j.chempr.2020.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
60
|
|
61
|
Palacios-Corella M, Ramos-Soriano J, Souto M, Ananias D, Calbo J, Ortí E, Illescas BM, Clemente-León M, Martín N, Coronado E. Hexakis-adducts of [60]fullerene as molecular scaffolds of polynuclear spin-crossover molecules. Chem Sci 2020; 12:757-766. [PMID: 34163809 PMCID: PMC8178998 DOI: 10.1039/d0sc05875k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A family of hexakis-substituted [60]fullerene adducts endowed with the well-known tridentate 2,6-bis(pyrazol-1-yl)pyridine (bpp) ligand for spin-crossover (SCO) systems has been designed and synthesized. It has been experimentally and theoretically demonstrated that these molecular scaffolds are able to form polynuclear SCO complexes in solution. UV-vis and fluorescence spectroscopy studies have allowed monitoring of the formation of up to six Fe(ii)–bpp SCO complexes. In addition, DFT calculations have been performed to model the different complexation environments and simulate their electronic properties. The complexes retain SCO properties in the solid state exhibiting both thermal- and photoinduced spin transitions, as confirmed by temperature-dependent magnetic susceptibility and Raman spectroscopy measurements. The synthesis of these complexes demonstrates that [60]fullerene hexakis-adducts are excellent and versatile platforms to develop polynuclear SCO systems in which a fullerene core is surrounded by a SCO molecular shell. Polynuclear spin-crossover molecules showing both thermal and photoinduced spin transitions have been prepared using a [60]fullerene hexakis-adduct endowed with Fe(ii) complexes of tridentate 2,6-bis(pyrazol-1-yl)pyridine (bpp) ligand.![]()
Collapse
Affiliation(s)
- Mario Palacios-Corella
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Catedrático José Beltrán 2 46980 Paterna Spain
| | - Javier Ramos-Soriano
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense 28040 Madrid Spain
| | - Manuel Souto
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Catedrático José Beltrán 2 46980 Paterna Spain .,CICECO-Aveiro Institute of Materials, Department of Chemistry, Universidade de Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Duarte Ananias
- CICECO-Aveiro Institute of Materials, Department of Chemistry, Universidade de Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Joaquín Calbo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Catedrático José Beltrán 2 46980 Paterna Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Catedrático José Beltrán 2 46980 Paterna Spain
| | - Beatriz M Illescas
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense 28040 Madrid Spain
| | - Miguel Clemente-León
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Catedrático José Beltrán 2 46980 Paterna Spain
| | - Nazario Martín
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense 28040 Madrid Spain.,IMDEA-Nanoscience C/Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Catedrático José Beltrán 2 46980 Paterna Spain
| |
Collapse
|
62
|
Kraevaya OA, Peregudov AS, Fedorova NE, Klimova RR, Godovikov IA, Mishchenko DV, Shestakov AF, Schols D, Kushch AA, Troshin PA. Thiophene-based water-soluble fullerene derivatives as highly potent antiherpetic pharmaceuticals. Org Biomol Chem 2020; 18:8702-8708. [PMID: 33084716 DOI: 10.1039/d0ob01826k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report the Friedel-Crafts arylation of chlorofullerenes C60Cl6 and C70Cl8 with thiophene-based methyl esters. While C60Cl6 formed expected Cs-C60R5Cl products, C70Cl8 demonstrated a tendency for both substitution of chlorine atoms and addition of an extra thiophene unit, thus forming Cs-C70R8 and C1-C70R9H compounds. The synthesized water-soluble C60 and C70 fullerene derivatives with thiophene-based addends demonstrated high activity against a broad range of viruses, including human immunodeficiency virus, influenza virus, cytomegalovirus, and herpes simplex virus. The record activity of C70 fullerene derivatives against herpes simplex virus together with low toxicity in mice makes them promising candidates for the development of novel non-nucleoside antiherpetic drugs.
Collapse
Affiliation(s)
- Olga A Kraevaya
- Skolkovo Institute of Science and Technology, Nobel St. 3, Moscow, 143026, Russia. and IPCP RAS, Semenov Prospect 1, Chernogolovka, 142432, Russia
| | | | - Natalia E Fedorova
- Honored Academician N.F.Gamaleya National Research Centre for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Gamaleya St. 18, 123098, Moscow, Russia
| | - Regina R Klimova
- Honored Academician N.F.Gamaleya National Research Centre for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Gamaleya St. 18, 123098, Moscow, Russia
| | | | | | - Alexander F Shestakov
- IPCP RAS, Semenov Prospect 1, Chernogolovka, 142432, Russia and Faculty of Fundamental Physics & Chemical Engineering, Moscow Lomonosov State University, GSP 1, 1-51 Leninskie Gory, Moscow 119991, Russia
| | - Dominique Schols
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Alla A Kushch
- Honored Academician N.F.Gamaleya National Research Centre for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Gamaleya St. 18, 123098, Moscow, Russia
| | - Pavel A Troshin
- Skolkovo Institute of Science and Technology, Nobel St. 3, Moscow, 143026, Russia. and IPCP RAS, Semenov Prospect 1, Chernogolovka, 142432, Russia
| |
Collapse
|
63
|
de la Cruz N, Sousa-Herves A, Rojo J. Glyconanogels as a versatile platform for the multivalent presentation of carbohydrates: From monosaccharides to dendritic glycostructures. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
64
|
Gallego I, Lostalé-Seijo I, Montenegro J. Stronger Together: Multivalent Phage Capsids Inhibit Virus Entry. Chembiochem 2020; 22:478-480. [PMID: 32856365 PMCID: PMC7461183 DOI: 10.1002/cbic.202000536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/26/2020] [Indexed: 11/09/2022]
Abstract
Antivirals are now more important than ever. To efficiently inhibit virus replication, antiviral multivalent strategies need sufficient affinity to overcome the excellent matching between the virus and its receptor. This report highlights a phage capsid scaffold strategy that can be used to precisely position sialic acid moieties to inhibit influenza A virus replication.
Collapse
Affiliation(s)
- Iván Gallego
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica, Universidade de Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Spain
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica, Universidade de Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica, Universidade de Santiago de Compostela, Campus Vida, 15782, Santiago de Compostela, Spain
| |
Collapse
|
65
|
Budhadev D, Poole E, Nehlmeier I, Liu Y, Hooper J, Kalverda E, Akshath US, Hondow N, Turnbull WB, Pöhlmann S, Guo Y, Zhou D. Glycan-Gold Nanoparticles as Multifunctional Probes for Multivalent Lectin-Carbohydrate Binding: Implications for Blocking Virus Infection and Nanoparticle Assembly. J Am Chem Soc 2020; 142:18022-18034. [PMID: 32935985 DOI: 10.1021/jacs.0c06793] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multivalent lectin-glycan interactions are widespread in biology and are often exploited by pathogens to bind and infect host cells. Glycoconjugates can block such interactions and thereby prevent infection. The inhibition potency strongly depends on matching the spatial arrangement between the multivalent binding partners. However, the structural details of some key lectins remain unknown and different lectins may exhibit overlapping glycan specificity. This makes it difficult to design a glycoconjugate that can potently and specifically target a particular multimeric lectin for therapeutic interventions, especially under the challenging in vivo conditions. Conventional techniques such as surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) can provide quantitative binding thermodynamics and kinetics. However, they cannot reveal key structural information, e.g., lectin's binding site orientation, binding mode, and interbinding site spacing, which are critical to design specific multivalent inhibitors. Herein we report that gold nanoparticles (GNPs) displaying a dense layer of simple glycans are powerful mechanistic probes for multivalent lectin-glycan interactions. They can not only quantify the GNP-glycan-lectin binding affinities via a new fluorescence quenching method, but also reveal drastically different affinity enhancing mechanisms between two closely related tetrameric lectins, DC-SIGN (simultaneous binding to one GNP) and DC-SIGNR (intercross-linking with multiple GNPs), via a combined hydrodynamic size and electron microscopy analysis. Moreover, a new term, potential of assembly formation (PAF), has been proposed to successfully predict the assembly outcomes based on the binding mode between GNP-glycans and lectins. Finally, the GNP-glycans can potently and completely inhibit DC-SIGN-mediated augmentation of Ebola virus glycoprotein-driven cell entry (with IC50 values down to 95 pM), but only partially block DC-SIGNR-mediated virus infection. Our results suggest that the ability of a glycoconjugate to simultaneously block all binding sites of a target lectin is key to robust inhibition of viral infection.
Collapse
Affiliation(s)
- Darshita Budhadev
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Emma Poole
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research and Faculty of Biology and Psychology, University of Göttingen, Göttingen 37073, Germany
| | - Yuanyuan Liu
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - James Hooper
- School of Food Science & Nutrition and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Elizabeth Kalverda
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Uchangi Satyaprasad Akshath
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research and Faculty of Biology and Psychology, University of Göttingen, Göttingen 37073, Germany
| | - Yuan Guo
- School of Food Science & Nutrition and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dejian Zhou
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
66
|
Ðorđević L, Casimiro L, Demitri N, Baroncini M, Silvi S, Arcudi F, Credi A, Prato M. Light-Controlled Regioselective Synthesis of Fullerene Bis-Adducts. Angew Chem Int Ed Engl 2020; 60:313-320. [PMID: 32722869 DOI: 10.1002/anie.202009235] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Indexed: 12/21/2022]
Abstract
Multi-functionalization and isomer-purity of fullerenes are crucial tasks for the development of their chemistry in various fields. In both current main approaches-tether-directed covalent functionalization and supramolecular masks-the control of regioselectivity requires multi-step synthetic procedures to prepare the desired tether or mask. Herein, we describe light-responsive tethers, containing an azobenzene photoswitch and two malonate groups, in the double cyclopropanation of [60]fullerene. The formation of the bis-adducts and their spectroscopic and photochemical properties, as well as the effect of azobenzene photoswitching on the regiochemistry of the bis-addition, have been studied. The behavior of the tethers depends on the geometry of the connection between the photoactive core and the malonate moieties. One tether lead to a strikingly different adduct distribution for the E and Z isomers, indicating that the covalent bis-functionalization of C60 can be controlled by light.
Collapse
Affiliation(s)
- Luka Ðorđević
- Department of Chemical and Pharmaceutical Sciences & INSTM, UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy.,Present address: Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,Present address: Simpson Querrey Institute, Northwestern University, 303 E. Superior, Chicago, IL, 60611, USA
| | - Lorenzo Casimiro
- CLAN-Center for Light Activated Nanostructures, Università di Bologna and Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129, Bologna, Italy.,Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, 40127, Bologna, Italy.,Present address: Supramolecular and Macromolecular Photochemistry and Photophysics, ENS Paris-Saclay, CNRS, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235, Cachan, France
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149, Basovizza, Italy
| | - Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures, Università di Bologna and Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129, Bologna, Italy.,Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, viale Fanin 44, 40127, Bologna, Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures, Università di Bologna and Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129, Bologna, Italy.,Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, 40127, Bologna, Italy
| | - Francesca Arcudi
- Department of Chemical and Pharmaceutical Sciences & INSTM, UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy.,Present address: Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures, Università di Bologna and Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129, Bologna, Italy.,Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, viale del Risorgimento 4, 40136, Bologna, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences & INSTM, UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy.,Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014, Donostia San Sebastián, Spain.,Basque Foundation for Science, Ikerbasque, Bilbao, 48013, Spain
| |
Collapse
|
67
|
Ortega MÁ, Guzmán Merino A, Fraile-Martínez O, Recio-Ruiz J, Pekarek L, G. Guijarro L, García-Honduvilla N, Álvarez-Mon M, Buján J, García-Gallego S. Dendrimers and Dendritic Materials: From Laboratory to Medical Practice in Infectious Diseases. Pharmaceutics 2020; 12:pharmaceutics12090874. [PMID: 32937793 PMCID: PMC7560085 DOI: 10.3390/pharmaceutics12090874] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases are one of the main global public health risks, predominantly caused by viruses, bacteria, fungi, and parasites. The control of infections is founded on three main pillars: prevention, treatment, and diagnosis. However, the appearance of microbial resistance has challenged traditional strategies and demands new approaches. Dendrimers are a type of polymeric nanoparticles whose nanometric size, multivalency, biocompatibility, and structural perfection offer boundless possibilities in multiple biomedical applications. This review provides the reader a general overview about the uses of dendrimers and dendritic materials in the treatment, prevention, and diagnosis of highly prevalent infectious diseases, and their advantages compared to traditional approaches. Examples of dendrimers as antimicrobial agents per se, as nanocarriers of antimicrobial drugs, as well as their uses in gene transfection, in vaccines or as contrast agents in imaging assays are presented. Despite the need to address some challenges in order to be used in the clinic, dendritic materials appear as an innovative tool with a brilliant future ahead in the clinical management of infectious diseases and many other health issues.
Collapse
Affiliation(s)
- Miguel Ángel Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Tumour Registry, Pathological Anatomy Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Alberto Guzmán Merino
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Judith Recio-Ruiz
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Luis G. Guijarro
- Department of Systems Biology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain;
- Networking Research Centre on Hepatic and Digestive Diseases (CIBER-EHD), 28029 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology and Medicine Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Tumour Registry, Pathological Anatomy Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Sandra García-Gallego
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28801 Alcalá de Henares, Spain;
- Correspondence:
| |
Collapse
|
68
|
Reina G, Peng S, Jacquemin L, Andrade AF, Bianco A. Hard Nanomaterials in Time of Viral Pandemics. ACS NANO 2020; 14:9364-9388. [PMID: 32667191 PMCID: PMC7376974 DOI: 10.1021/acsnano.0c04117] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/15/2020] [Indexed: 05/05/2023]
Abstract
The SARS-Cov-2 pandemic has spread worldwide during 2020, setting up an uncertain start of this decade. The measures to contain infection taken by many governments have been extremely severe by imposing home lockdown and industrial production shutdown, making this the biggest crisis since the second world war. Additionally, the continuous colonization of wild natural lands may touch unknown virus reservoirs, causing the spread of epidemics. Apart from SARS-Cov-2, the recent history has seen the spread of several viral pandemics such as H2N2 and H3N3 flu, HIV, and SARS, while MERS and Ebola viruses are considered still in a prepandemic phase. Hard nanomaterials (HNMs) have been recently used as antimicrobial agents, potentially being next-generation drugs to fight viral infections. HNMs can block infection at early (disinfection, entrance inhibition) and middle (inside the host cells) stages and are also able to mitigate the immune response. This review is focused on the application of HNMs as antiviral agents. In particular, mechanisms of actions, biological outputs, and limitations for each HNM will be systematically presented and analyzed from a material chemistry point-of-view. The antiviral activity will be discussed in the context of the different pandemic viruses. We acknowledge that HNM antiviral research is still at its early stage, however, we believe that this field will rapidly blossom in the next period.
Collapse
Affiliation(s)
- Giacomo Reina
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572,
University of Strasbourg ISIS, 67000 Strasbourg,
France
| | - Shiyuan Peng
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572,
University of Strasbourg ISIS, 67000 Strasbourg,
France
| | - Lucas Jacquemin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572,
University of Strasbourg ISIS, 67000 Strasbourg,
France
| | - Andrés Felipe Andrade
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572,
University of Strasbourg ISIS, 67000 Strasbourg,
France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572,
University of Strasbourg ISIS, 67000 Strasbourg,
France
| |
Collapse
|
69
|
Liang L, Ahamed A, Ge L, Fu X, Lisak G. Advances in Antiviral Material Development. Chempluschem 2020; 85:2105-2128. [PMID: 32881384 PMCID: PMC7461489 DOI: 10.1002/cplu.202000460] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
The rise in human pandemics demands prudent approaches in antiviral material development for disease prevention and treatment via effective protective equipment and therapeutic strategy. However, the current state of the antiviral materials research is predominantly aligned towards drug development and its related areas, catering to the field of pharmaceutical technology. This review distinguishes the research advances in terms of innovative materials exhibiting antiviral activities that take advantage of fast-developing nanotechnology and biopolymer technology. Essential concepts of antiviral principles and underlying mechanisms are illustrated, followed with detailed descriptions of novel antiviral materials including inorganic nanomaterials, organic nanomaterials and biopolymers. The biomedical applications of the antiviral materials are also elaborated based on the specific categorization. Challenges and future prospects are discussed to facilitate the research and development of protective solutions and curative treatments.
Collapse
Affiliation(s)
- Lili Liang
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Interdisciplinary Graduate ProgramNanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Ashiq Ahamed
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
- Laboratory of Molecular Science and EngineeringJohan Gadolin Process Chemistry Centre Åbo Akademi UniversityFI-20500Turku/ÅboFinland
| | - Liya Ge
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Xiaoxu Fu
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Grzegorz Lisak
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| |
Collapse
|
70
|
Almagro L, Lemos R, Makowski K, Rodríguez H, Ortiz O, Cáceres W, Herranz MÁ, Molero D, Martínez‐Álvarez R, Suárez M, Martín N. [60]Fullerene Hybrids Bearing “Steroid Wings”: A Joined Experimental and Theoretical Investigation. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Luis Almagro
- Laboratorio de Síntesis Orgánica Facultad de Química Universidad de la Habana 10400 La Habana Cuba
| | - Reinier Lemos
- Laboratorio de Síntesis Orgánica Facultad de Química Universidad de la Habana 10400 La Habana Cuba
| | - Kamil Makowski
- School of Chemical Sciences and Engineering Yachay Tech University 100119 Urququi Ecuador
| | - Hortensia Rodríguez
- School of Chemical Sciences and Engineering Yachay Tech University 100119 Urququi Ecuador
| | - Orlando Ortiz
- Laboratorio de Síntesis Orgánica Facultad de Química Universidad de la Habana 10400 La Habana Cuba
| | - William Cáceres
- Laboratorio de Síntesis Orgánica Facultad de Química Universidad de la Habana 10400 La Habana Cuba
| | - M. Ángeles Herranz
- Departamento de Química Orgánica Facultad de Ciencias Químicas Universidad Complutense de Madrid 28040 Madrid Spain
| | - Dolores Molero
- CAI RMN Universidad Complutense de Madrid 28040 Madrid Spain
| | - Roberto Martínez‐Álvarez
- Departamento de Química Orgánica Facultad de Ciencias Químicas Universidad Complutense de Madrid 28040 Madrid Spain
| | - Margarita Suárez
- Laboratorio de Síntesis Orgánica Facultad de Química Universidad de la Habana 10400 La Habana Cuba
| | - Nazario Martín
- Departamento de Química Orgánica Facultad de Ciencias Químicas Universidad Complutense de Madrid 28040 Madrid Spain
| |
Collapse
|
71
|
Zhou Y, Tong T, Jiang X, Fang L, Wu Y, Liang J, Xiao S. GSH-ZnS Nanoparticles Exhibit High-Efficiency and Broad-Spectrum Antiviral Activities via Multistep Inhibition Mechanisms. ACS APPLIED BIO MATERIALS 2020; 3:4809-4819. [PMID: 35021727 DOI: 10.1021/acsabm.0c00332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite the good biocompatibility and antibacterial activity of zinc sulfide nanoparticles (ZnS NPs), whether they possess antiviral activity is still unclear. Here, GSH-modified ZnS NPs (GSH-ZnS NPs) were synthesized and their significant antiviral activity was demonstrated using the Arteriviridae family RNA virus, porcine reproductive and respiratory syndrome virus (PRRSV), as a model. Mechanistically, GSH-ZnS NPs were shown to reduce PRRSV-induced ROS production to prevent PRRSV multiplication, with no activating effect on the interferon (IFN) signal pathway, the first defense line against virus infection. Furthermore, isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomic analysis of GSH-ZnS NP-treated cells revealed the involvement of numerous crucial proteins in virus proliferation, with vitronectin (VTN) being confirmed as an efficient PRRSV antagonist here. Furthermore, GSH-ZnS NPs were found to have potent antiviral effects on the Herpesviridae family DNA virus, pseudorabies virus (PRV), the Coronaviridae family positive-sense RNA virus, porcine epidemic diarrhea virus (PEDV), and the Rhabdoviridae family negative-stranded RNA virus, vesicular stomatitis virus (VSV), indicating their broad-spectrum antiviral activity against viruses from different families with various genome types. Overall, GSH-ZnS NP is a prospective candidate for the development of antiviral nanomaterials and may serve as a model for investigation of potential host restriction factors in combination with proteomics.
Collapse
Affiliation(s)
- Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Ting Tong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xiaohan Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yuan Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Jiangong Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
72
|
Siposova K, Petrenko VI, Ivankov OI, Musatov A, Bulavin LA, Avdeev MV, Kyzyma OA. Fullerenes as an Effective Amyloid Fibrils Disaggregating Nanomaterial. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32410-32419. [PMID: 32598133 DOI: 10.1021/acsami.0c07964] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nowadays, determining the disassembly mechanism of amyloids under nanomaterials action is a crucial issue for their successful future use in therapy of neurodegenerative and overall amyloid-related diseases. In this study, the antiamyloid disassembly activity of fullerenes C60 and C70 dispersed in 1-methyl-2-pyrrolidinone (NMP) toward amyloid fibrils preformed from lysozyme and insulin was investigated using a combination of different experimental techniques. Thioflavin T fluorescence assay and atomic force microscopy were applied for monitoring of disaggregation activity of fullerenes. It was demonstrated that both types of fullerene-based complexes are very effective in disassembling preformed fibrils, and characterized by the low apparent half-maximal disaggregation concentration (DC50) in the range of ∼22-30 μg mL-1. Small-angle neutron scattering was employed to monitor the different stages of the disassembly process with respect to the size and morphology of the aggregates. Based on the obtained results, a possible disassembly mechanism for amyloid fibrils interacting with fullerene/NMP complexes was proposed. The study is a principal step in understanding of the fullerenes destruction mechanism of the protein amyloids, as well as providing valuable information on how macromolecules can be engineered to disassemble unwanted amyloid aggregates by different mechanisms.
Collapse
Affiliation(s)
- Katarina Siposova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Reg. Russia
| | - Viktor I Petrenko
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Oleksandr I Ivankov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Reg. Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Andrey Musatov
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Leonid A Bulavin
- Faculty of Physics, Taras Shevchenko National University of Kyiv, Hlushkova Avenue 4, 03127 Kyiv, Ukraine
| | - Mikhail V Avdeev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Reg. Russia
- State University "Dubna", Universitetskaya 19, 141982 Dubna, Moscow Reg. Russia
| | - Olena A Kyzyma
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Reg. Russia
- Faculty of Physics, Taras Shevchenko National University of Kyiv, Hlushkova Avenue 4, 03127 Kyiv, Ukraine
| |
Collapse
|
73
|
Innocenzi P, Stagi L. Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective. Chem Sci 2020; 11:6606-6622. [PMID: 33033592 PMCID: PMC7499860 DOI: 10.1039/d0sc02658a] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/13/2020] [Indexed: 12/19/2022] Open
Abstract
The appearance of new and lethal viruses and their potential threat urgently requires innovative antiviral systems. In addition to the most common and proven pharmacological methods, nanomaterials can represent alternative resources to fight viruses at different stages of infection, by selective action or in a broad spectrum. A fundamental requirement is non-toxicity. However, biocompatible nanomaterials have very often little or no antiviral activity, preventing their practical use. Carbon-based nanomaterials have displayed encouraging results and can present the required mix of biocompatibility and antiviral properties. In the present review, the main candidates for future carbon nanometric antiviral systems, namely graphene, carbon dots and fullerenes, have been critically analysed. In general, different carbon nanostructures allow several strategies to be applied. Some of the materials have peculiar antiviral properties, such as singlet oxygen emission, or the capacity to interfere with virus enzymes. In other cases, nanomaterials have been used as a platform for functional molecules able to capture and inhibit viral activity. The use of carbon-based biocompatible nanomaterials as antivirals is still an almost unexplored field, while the published results show promising prospects.
Collapse
Affiliation(s)
- Plinio Innocenzi
- Department of Chemistry and Pharmacy , Laboratory of Materials Science and Nanotechnology , CR-INSTM , University of Sassari , via Vienna 2 , Sassari , 07100 , Italy . ;
| | - Luigi Stagi
- Department of Chemistry and Pharmacy , Laboratory of Materials Science and Nanotechnology , CR-INSTM , University of Sassari , via Vienna 2 , Sassari , 07100 , Italy . ;
| |
Collapse
|
74
|
Chen L, Liang J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110924. [PMID: 32409074 PMCID: PMC7195146 DOI: 10.1016/j.msec.2020.110924] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 01/04/2023]
Abstract
Research on highly effective antiviral drugs is essential for preventing the spread of infections and reducing losses. Recently, many functional nanoparticles have been shown to possess remarkable antiviral ability, such as quantum dots, gold and silver nanoparticles, nanoclusters, carbon dots, graphene oxide, silicon materials, polymers and dendrimers. Despite their difference in antiviral mechanism and inhibition efficacy, these functional nanoparticles-based structures have unique features as potential antiviral candidates. In this topical review, we highlight the antiviral efficacy and mechanism of these nanoparticles. Specifically, we introduce various methods for analyzing the viricidal activity of functional nanoparticles and the latest advances in antiviral functional nanoparticles. Furthermore, we systematically describe the advantages and disadvantages of these functional nanoparticles in viricidal applications. Finally, we discuss the challenges and prospects of antiviral nanostructures. This topic review covers 132 papers and will enrich our knowledge about the antiviral efficacy and mechanism of various functional nanoparticles.
Collapse
Affiliation(s)
- Lu Chen
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiangong Liang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
75
|
Yu W, Li B, Zhang Y, Yan Q, Yan J. Discovery of a Fullerene-Polyoxometalate Hybrid Exhibiting Enhanced Photocurrent Response. Inorg Chem 2020; 59:5266-5270. [PMID: 32250606 DOI: 10.1021/acs.inorgchem.0c00188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A new C60-polyoxometalate compound was synthesized by a C60 derivative with a {SiW11Mn} cluster connecting through a coordination bond and characterized. The photocurrent response test showed great improvement of this new compound compared to C60 and the polyoxometalate precursor, which could be used as a potential photoelectric material.
Collapse
Affiliation(s)
- Weidong Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Bin Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Yin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Qianwen Yan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Jun Yan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.,Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, Hunan, P. R. China
| |
Collapse
|
76
|
de la Cruz N, Ramos-Soriano J, Reina JJ, de Paz JL, Thépaut M, Fieschi F, Sousa-Herves A, Rojo J. Influence of the reducing-end anomeric configuration of the Man9 epitope on DC-SIGN recognition. Org Biomol Chem 2020; 18:6086-6094. [DOI: 10.1039/d0ob01380c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The anomeric configuration of the reducing end of Man9 does not influence the binding to DC-SIGN.
Collapse
Affiliation(s)
- Noelia de la Cruz
- Glycosystems Laboratory
- Instituto de Investigaciones Químicas (IIQ)
- CSIC – Universidad de Sevilla
- Seville 41092
- Spain
| | - Javier Ramos-Soriano
- Glycosystems Laboratory
- Instituto de Investigaciones Químicas (IIQ)
- CSIC – Universidad de Sevilla
- Seville 41092
- Spain
| | - José J. Reina
- Glycosystems Laboratory
- Instituto de Investigaciones Químicas (IIQ)
- CSIC – Universidad de Sevilla
- Seville 41092
- Spain
| | - José L. de Paz
- Glycosystems Laboratory
- Instituto de Investigaciones Químicas (IIQ)
- CSIC – Universidad de Sevilla
- Seville 41092
- Spain
| | - Michel Thépaut
- Univ. Grenoble Alpes
- CNRS
- CEA
- Institut de Biologie Structurale
- 38000 Grenoble
| | - Franck Fieschi
- Univ. Grenoble Alpes
- CNRS
- CEA
- Institut de Biologie Structurale
- 38000 Grenoble
| | - Ana Sousa-Herves
- Glycosystems Laboratory
- Instituto de Investigaciones Químicas (IIQ)
- CSIC – Universidad de Sevilla
- Seville 41092
- Spain
| | - Javier Rojo
- Glycosystems Laboratory
- Instituto de Investigaciones Químicas (IIQ)
- CSIC – Universidad de Sevilla
- Seville 41092
- Spain
| |
Collapse
|