51
|
Sharma J, Singh B, Agrawal AK, Bansal AK. Correlationship of Drug-Polymer Miscibility, Molecular Relaxation and Phase Behavior of Dipyridamole Amorphous Solid Dispersions. J Pharm Sci 2020; 110:1470-1479. [PMID: 33333143 DOI: 10.1016/j.xphs.2020.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 01/20/2023]
Abstract
In present work, a correlationship among quantitative drug-polymer miscibility, molecular relaxation and phase behavior of the dipyridamole (DPD) amorphous solid dispersions (ASDs), prepared with co-povidone (CP), hydroxypropyl methylcellulose phthalate (HPMC P) and hydroxypropyl methylcellulose acetate succinate (HPMC AS) has been investigated. Miscibility predicted using melting point depression approach for DPD with CP, HPMC P and HPMC AS at 25 °C was 0.93% w/w, 0.55% w/w and 0.40% w/w, respectively. Stretched relaxation time (τβ) for DPD ASDs, measured using modulated differential scanning calorimetry (MDSC) at common degree of undercooling, was in the order of DPD- CP > DPD-HPMC P > DPD-HPMC AS ASDs. Phase behavior of 12 months aged (25 ± 5 °C and 0% RH) spray dried 60% w/w ASDs was tracked using MDSC. Initial ASD samples had homogeneous phase revealed by single glass transition temperature (Tg) in the MDSC. MDSC study of aged ASDs revealed single-phase DPD-CP ASD, amorphous-amorphous and amorphous-crystalline phase separated DPD-HPMC P and DPD-HPMC AS ASDs, respectively. The results were supported by X-ray micro computed tomography and confocal laser scanning microscopy studies. This study demonstrated a profound influence of drug-polymer miscibility on molecular mobility and phase behavior of ASDs. This knowledge can help in designing "physical stable" ASDs.
Collapse
Affiliation(s)
- Jagadish Sharma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Punjab, 160062, India
| | - Balwant Singh
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Ashish Kumar Agrawal
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Punjab, 160062, India.
| |
Collapse
|
52
|
Zhang Z, Dong L, Guo J, Li L, Tian B, Zhao Q, Yang J. Prediction of the physical stability of amorphous solid dispersions: relationship of aging and phase separation with the thermodynamic and kinetic models along with characterization techniques. Expert Opin Drug Deliv 2020; 18:249-264. [PMID: 33112679 DOI: 10.1080/17425247.2021.1844181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Solid dispersion has been considered to be one of the most promising methods for improving the solubility and bioavailability of insoluble drugs. However, the physical stability of solid dispersions (SDs), including its aging and recrystallization, or phase separation, has always been one of the most challenging problems in the process of formulation development and storage.Areas covered: The high energy state of SDs is one of the primary reasons for the poor physical stability. The factors affecting the physical stability of SDs have been described from the perspective of thermodynamics and kinetics, and the corresponding theoretical model is put forward. We briefly summarize several commonly used techniques to characterize the thermodynamic and kinetic properties of SDs. Specific measures to improve the physical stability of SDs have been proposed from the perspective of prescription screening, process parameters, and storage conditions.Expert opinion: The separation of the drug from the polymer, the formation, and migration of drug crystals will cause the SDs to shift toward the direction of energy reduction, which is the intrinsic cause of instability. Furthermore, computational simulation can be used for efficient and rapid screening suitable for the excipients to improve the physical stability of SDs.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Luning Dong
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Jueshuo Guo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Li Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Bin Tian
- Department of Pharmaceutical Sciences, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, People's Republic of China
| | - Qipeng Zhao
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| |
Collapse
|
53
|
Ougi K, Okada K, Leong KH, Hayashi Y, Kumada S, Onuki Y. Effect of the molecular mobility of water adsorbed by disintegrants on storage-induced hydrolytic degradation of acetylsalicylic acid incorporated into tablets under humid conditions. Eur J Pharm Sci 2020; 154:105502. [DOI: 10.1016/j.ejps.2020.105502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/10/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
|
54
|
Yin J, Huang C, Guan H, Pang Z, Su Y, Kong X. In situ solid-state NMR characterization of pharmaceutical materials: An example of drug-polymer thermal mixing. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:1049-1054. [PMID: 31846098 DOI: 10.1002/mrc.4982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Pharmaceutical amorphous solid dispersions, a multicomponent system prepared by dispersing drug substances into polymeric matrix via thermal and mechanical processes, represent a major platform to deliver the poorly water-soluble drug. Microscopic properties of drug-polymer contacts play mechanistic roles in manipulating long-term physical stability as well as dissolution profiles. Although solid-state nuclear magnetic resonance has been utilized as an indispensable tool to probe structural details, previous studies are limited to ex situ characterizations. Our work provides likely the first documented example to investigate comelting of ketoconazole and polyacrylic acid, as a model system, in an in situ manner. Their physical mixture is melted and mixed in the solid-state nuclear magnetic resonance rotor under magic angle spinning at up to approximately 400 K. Critical structural events of molecular miscibility and interaction have been successfully identified. These results design and evaluate the instrumental and experimental protocols for real-time characterizations of the comelting of pharmaceutical materials.
Collapse
Affiliation(s)
- Jinglin Yin
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chengbin Huang
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ, 07033
| | - Hanxi Guan
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenfeng Pang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ, 07033
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
55
|
Banerjee M, Brettmann B. Combining Surface Templating and Confinement for Controlling Pharmaceutical Crystallization. Pharmaceutics 2020; 12:E995. [PMID: 33092148 PMCID: PMC7589131 DOI: 10.3390/pharmaceutics12100995] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Poor water solubility is one of the major challenges to the development of oral dosage forms containing active pharmaceutical ingredients (APIs). Polymorphism in APIs leads to crystals with different surface wettabilities and free energies, which can lead to different dissolution properties. Crystal size and habit further contribute to this variability. An important focus in pharmaceutical research has been on controlling the drug form to improve the solubility and thus bioavailability of APIs. In this regard, heterogeneous crystallization on surfaces and crystallization under confinement have become prominent forms of controlling polymorphism and drug crystal size and habits; however there has not been a thorough review into the emerging field of combining these approaches to control crystallization. This tutorial-style review addresses the major advances that have been made in controlling API forms using combined crystallization methods. By designing templates that not only control the surface functionality but also enable confinement of particles within a porous structure, these combined systems have the potential to provide better control over drug polymorph formation and crystal size and habit. This review further provides a perspective on the future of using a combined crystallization approach and suggests that combining surface templating with confinement provides the advantage of both techniques to rationally design systems for API nucleation.
Collapse
Affiliation(s)
- Manali Banerjee
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Blair Brettmann
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
56
|
Shi Q, Li F, Yeh S, Wang Y, Xin J. Physical stability of amorphous pharmaceutical solids: Nucleation, crystal growth, phase separation and effects of the polymers. Int J Pharm 2020; 590:119925. [PMID: 33011255 DOI: 10.1016/j.ijpharm.2020.119925] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 01/03/2023]
Abstract
Compared to their crystalline forms, amorphous pharmaceutical solids present marvelous potential and advantages for effectively improving the oral bioavailability of poorly water-soluble drugs. A central issue in developing amorphous pharmaceutical solids is the stability against crystallization, which is particularly important for maintaining their advantages in solubility and dissolution rate. This review provides a comprehensive overview of recent studies focusing on the physical stability of amorphous pharmaceutical solids affected by nucleation, crystal growth, phase separation and the addition of polymers. Moreover, we highlight the novel technologies and theories in the field of amorphous pharmaceutical solids. Meanwhile, the challenges and strategies in maintaining the physical stability of amorphous pharmaceutical solids are also discussed. With a better understanding of physical stability, the more robust amorphous pharmaceutical formulations with desired pharmaceutical performance would be easier to achieve.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Fang Li
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Stacy Yeh
- Department of Cancer Biology, School of Medicine, Wake Forest University, Winston Salem 27103, USA
| | - Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Junbo Xin
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| |
Collapse
|
57
|
Li N, Cape JL, Mankani BR, Zemlyanov DY, Shepard KB, Morgen MM, Taylor LS. Water-Induced Phase Separation of Spray-Dried Amorphous Solid Dispersions. Mol Pharm 2020; 17:4004-4017. [PMID: 32931293 PMCID: PMC7539301 DOI: 10.1021/acs.molpharmaceut.0c00798] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Spray
drying is widely used in the manufacturing of amorphous solid
dispersion (ASD) systems due to its fast drying rate, enabling kinetic
trapping of the drug in amorphous form. Spray-drying conditions, such
as solvent composition, can have a profound impact on the properties
of spray-dried dispersions. In this study, the phase behavior of spray-dried
dispersions from methanol and methanol–water mixtures was assessed
using ritonavir and copovidone [poly(vinylpyrrolidone-co-vinyl acetate)
(PVPVA)] as dispersion components. The resultant ASDs were characterized
using differential scanning calorimetry (DSC), fluorescence spectroscopy,
X-ray photoelectron spectroscopy (XPS), as well as surface-normalized
dissolution rate (SNDR) measurements. Quaternary phase diagrams were
calculated using a four-component Flory–Huggins model. It was
found that the addition of water to the solvent system can lead to
phase separation during the spray-drying process. A 10:90 H2O/MeOH solvent system caused a minor extent of phase separation.
Phase heterogeneity in the 50 and 75% drug loading ASDs prepared from
this spray solvent can be detected using DSC but not with other techniques
used. The 25% drug loading system did not show phase heterogeneity
in solid-state characterization but exhibited a compromised dissolution
rate compared to that of the miscible ASD prepared from H2O-free solvent. This is possibly due to the formation of slow-releasing
drug-rich phases upon phase separation. ASDs prepared with a 60:40
H2O/MeOH solvent mixture showed phase heterogeneity with
all analytical methods used. The surface composition of dispersion
particles as measured by fluorescence spectroscopy and XPS showed
good agreement, suggesting surface drug enrichment of the spray-dried
ASD particles prepared from this solvent system. Calculated phase
diagrams and drying trajectories were consistent with experimental
observations, suggesting that small variations in solvent composition
may cause significant changes in ASD phase behavior during drying.
These findings should aid in spray-drying process development for
ASD manufacturing and can be applied broadly to assess the risk of
phase separation for spray-drying systems using mixed organic solvents
or other solvent-based processes.
Collapse
Affiliation(s)
- Na Li
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.,Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road Unit 3092, Storrs, Connecticut 06269, United States
| | - Jonathan L Cape
- Research & Development, Lonza Pharma and Biotech, 1201 NW Wall Street, Suite 200, Bend, Oregon 97703, United States
| | - Bharat R Mankani
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.,MarqMetrix Inc., Emerald Landing, 2157 N Northlake Way #240, Seattle, Washington 98103, United States
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kimberly B Shepard
- Research & Development, Lonza Pharma and Biotech, 1201 NW Wall Street, Suite 200, Bend, Oregon 97703, United States
| | - Michael M Morgen
- Research & Development, Lonza Pharma and Biotech, 1201 NW Wall Street, Suite 200, Bend, Oregon 97703, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
58
|
Kaur N, Young VG, Su Y, Suryanarayanan R. Partial Dehydration of Levothyroxine Sodium Pentahydrate in a Drug Product Environment: Structural Insights into Stability. Mol Pharm 2020; 17:3915-3929. [DOI: 10.1021/acs.molpharmaceut.0c00661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Navpreet Kaur
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota—Twin Cities, 9-177 WDH, 308 Harvard Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Victor G. Young
- Department of Chemistry, X-Ray Crystallographic Laboratory, LeClaire-Dow Chemical Instrumentation Facility, University of Minnesota—Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Raj Suryanarayanan
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota—Twin Cities, 9-177 WDH, 308 Harvard Street Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
59
|
Han J, Wei Y, Lu Y, Wang R, Zhang J, Gao Y, Qian S. Co-amorphous systems for the delivery of poorly water-soluble drugs: recent advances and an update. Expert Opin Drug Deliv 2020; 17:1411-1435. [DOI: 10.1080/17425247.2020.1796631] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiawei Han
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yan Lu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Runze Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
60
|
Stueber D, Dance ZEX. Component Quantification in Solids with the Mixture Analysis Using References Method. Anal Chem 2020; 92:11095-11102. [PMID: 32628013 DOI: 10.1021/acs.analchem.0c01045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quantifying components in solid mixtures composed of the same chemical species exhibiting different physical forms represents a difficult challenge in many areas of chemistry. The development of small-molecule active pharmaceutical ingredients (APIs) is a classic example. APIs predominantly exhibit polymorphism and the propensity to form solvates and hydrates. The various API phases typically display different physical properties affecting chemical stability, processability, and bioperformance. Accordingly, API development critically relies on characterizing and quantifying the relevant API forms in complex mixtures in the presence of each other and in the presence of excipients. Presented here is a new solid-state-NMR-based quantification method for components in solid mixtures: mixture analysis using references (MAR). The method utilizes weighted pure component reference spectra in a linear combination fitting procedure to reproduce the corresponding mixture spectrum. The results yield the respective component contributions to the mixture composition. Using several model systems of varying complexity, the applicability and performance of the MAR analysis utilizing 13C and 19F cross-polarization magic-angle-spinning data are evaluated. Finally, the MAR method is compared to one of the most commonly applied traditional quantification methods. The results demonstrate that MAR performs with the same high accuracy as conventional methods. However, MAR exhibits clear efficiency advantages over conventional methods by requiring significantly less overall time (experimental and computational) and displaying remarkable robustness and general applicability. The MAR quantification protocol as presented here can easily be applied to nonpharmaceutical molecular systems in other branches of chemistry.
Collapse
Affiliation(s)
- Dirk Stueber
- Department of Analytical Research and Development, Merck Research Laboratories, Merck & Company, Inc., Rahway, New Jersey 07065, United States
| | - Zachary E X Dance
- Department of Analytical Research and Development, Merck Research Laboratories, Merck & Company, Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
61
|
Duan P, Lamm MS, Yang F, Xu W, Skomski D, Su Y, Schmidt-Rohr K. Quantifying Molecular Mixing and Heterogeneity in Pharmaceutical Dispersions at Sub-100 nm Resolution by Spin Diffusion NMR. Mol Pharm 2020; 17:3567-3580. [DOI: 10.1021/acs.molpharmaceut.0c00592] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Pu Duan
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Matthew S. Lamm
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Fengyuan Yang
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Daniel Skomski
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
62
|
Solid State NMR Study of the Mixing Degree Between Ginkgo Biloba Extract and a Soy-Lecithin-Phosphatidylserine in a Composite Prepared by the Phytosome® Method. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s42250-020-00165-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractLeaves extract of Ginkgo biloba, known in China since the most ancient times, has been widely used in the area of senile dementia thanks to its improving effects on cognitive function. A promising formulation of this botanical ingredient consists in a Ginkgo biloba-soy-lecithin-phosphatidylserine association obtained by the Phytosome® process. The precise assessment of the mixing degree between Ginkgo biloba and soy-lecithin-phosphatidylserine in this formulation is an important piece of information for understanding the reasons of its final performances. To this aim in the present study we carried out for the first time a Solid State Nuclear Magnetic Resonance investigation on Ginkgo biloba-soy-lecithin-phosphatidylserine association, on its constituents and on a mechanical mixture. The analysis of different observables highlighted a very intimate mixing (domains of single components not larger than 60 nm) of Ginkgo biloba and soy-lecithin-phosphatidylserine in their association obtained by Phytosome® process, together with a slight modification of their molecular dynamics, not observed in the case of the mechanical mixture.
Collapse
|
63
|
Sahakijpijarn S, Moon C, Ma X, Su Y, Koleng JJ, Dolocan A, Williams RO. Using thin film freezing to minimize excipients in inhalable tacrolimus dry powder formulations. Int J Pharm 2020; 586:119490. [PMID: 32603840 DOI: 10.1016/j.ijpharm.2020.119490] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/09/2023]
Abstract
We investigated the feasibility of preparing high-potency tacrolimus dry powder for inhalation using thin film freezing (TFF). We found that using ultra-rapid freezing can increase drug loading up to 95% while maintaining good aerosol performance. Drug loading affected the specific surface area and moisture sorption of TFF formulations, but it did not affect the chemical stability, physical stability, and dissolution of tacrolimus. Tacrolimus remained amorphous after storage at 40 °C/75% RH, and 25 °C/60% RH for up to 6 months. Lactose functioned as a bulking agent, and it had little to no effect as a stabilizer for amorphous tacrolimus due to a lack of interaction between the drug and excipient. Additionally, the aerosol performance of TFF tacrolimus/lactose (95/5) did not significantly change after six months of storage at 25 °C/60% RH. For processing parameters, the solids content and the processing temperature did not affect the aerosol performance of tacrolimus. Furthermore, both low- and high-resistance RS01 showed optimal and consistent aerosol performance over the 1-4 kPa pressure drop range. In conclusion, TFF is a suitable technology for producing inhalable powder that contain high drug loading and have less flow rate dependence.
Collapse
Affiliation(s)
- Sawittree Sahakijpijarn
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Chaeho Moon
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA; TFF Pharmaceuticals, Inc., Austin, TX, USA
| | - Xiangyu Ma
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Yongchao Su
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - Andrei Dolocan
- The University of Texas at Austin, Texas Materials Institute, Austin, TX, USA
| | - Robert O Williams
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA.
| |
Collapse
|
64
|
Kapourani A, Chatzitheodoridou M, Kontogiannopoulos KN, Barmpalexis P. Experimental, Thermodynamic, and Molecular Modeling Evaluation of Amorphous Simvastatin-Poly(vinylpyrrolidone) Solid Dispersions. Mol Pharm 2020; 17:2703-2720. [PMID: 32520564 DOI: 10.1021/acs.molpharmaceut.0c00413] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A crucial step for the selection of proper amorphous solid dispersion (ASD) matrix carriers is the in-depth assessment of drug/polymer physicochemical properties. In this context, the present study extends the work of previously published attempts by evaluating the formation of simvastatin (SIM)-poly(vinylpyrrolidone) (PVP) ASDs with the aid of thermodynamic and molecular modeling. Specifically, the implementation of both Flory-Huggins lattice theory and molecular dynamics (MD) simulations was able to predict the miscibility between the two components (a finding that was experimentally verified via differential scanning calorimetry (DSC) and hot stage polarized microscopy), while a complete temperature-concentration phase-transition profile was constructed, leading to the identification of the thermodynamically metastable and unstable ASD zones. Furthermore, as in the case of previously published reports, the analysis of the ASDs via Fourier transform infrared spectroscopy did not clarify the type and extent of observed molecular interactions. Hence, in the present study, a computer-based MD simulation model was developed for the first time in order to gain an insight into the properties of the observed interactions. MD amorphous assemblies of SIM, PVP, and their mixtures were initially developed, and the calculated glass transition temperatures were in close agreement with experimentally obtained results, indicating that the developed models could be considered as realistic representations of the actual systems. Furthermore, molecular interactions evaluation via radial distribution function and radius of gyration analysis revealed that increasing SIM content results in a significant PVP chain shrinkage, which eventually leads to SIM-SIM amorphous intermolecular interactions, leading to the formation of amorphous drug zones. Finally, MD-based results were experimentally verified via DSC.
Collapse
Affiliation(s)
- Afroditi Kapourani
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Melina Chatzitheodoridou
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantinos N Kontogiannopoulos
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.,Ecoresources P.C., 15-17 Giannitson-Santaroza Str., Thessaloniki 54627, Greece
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
65
|
Singh B, Singh B. Graft copolymerization of polyvinylpyrollidone onto Azadirachta indica gum polysaccharide in the presence of crosslinker to develop hydrogels for drug delivery applications. Int J Biol Macromol 2020; 159:264-275. [PMID: 32422260 DOI: 10.1016/j.ijbiomac.2020.05.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/03/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022]
Abstract
In this work, graft-copolymerization of poly vinylpyrollidone onto Azadirachta indica gum polysaccharide in the presence of crosslinker has been carried out to prepare the hydrogel for use in drug delivery. The polymers were characterized by cryo-SEM, AFM, FTIR, and 13C NMR. The gel strength, cross-link density, mesh size, thrombogenicity, antioxidant and mucoadhesion properties of the gum-PVP hydrogels were determined along with the evaluation of drug release profile of methyl prednisolone, a colonic anti-inflammatory agent, from the drug loaded hydrogels. Cryo SEM images showed the porous crosslinked structure of the polymer network. The drug release from the polymer followed non-Fickian diffusion mechanism. The polymers showed 71.47 ± 4.63% haemo-compatibility and 05.52 ± 0.59 Nmm gel strength. The value of DPPH radical scavenging assay (73.16 ± 04.85%) indicated that the gum-PVP polymers are antioxidant. The results of biocompatibility, antioxidant activity, mucoadhesion and drug release properties of the polymers inferred the use of this drug carrier for colonic drug delivery.
Collapse
Affiliation(s)
- Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
| | - Baldev Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| |
Collapse
|
66
|
Li M, Meng F, Tsutsumi Y, Amoureux JP, Xu W, Lu X, Zhang F, Su Y. Understanding Molecular Interactions in Rafoxanide–Povidone Amorphous Solid Dispersions from Ultrafast Magic Angle Spinning NMR. Mol Pharm 2020; 17:2196-2207. [DOI: 10.1021/acs.molpharmaceut.0c00317] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mingyue Li
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Fan Meng
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
- Bruker Biospin, 34 Rue de l’Industrie, F-67166 Wissembourg, France
- Riken NMR Science and Development Division, Yokohama, 230-0045 Kanagawa Japan
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Xingyu Lu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Feng Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
67
|
Pajula K, Hyyryläinen J, Koistinen A, Leskinen JT, Korhonen O. Detection of amorphous-amorphous phase separation in small molecular co-amorphous mixtures with SEM-EDS. Eur J Pharm Biopharm 2020; 150:43-49. [DOI: 10.1016/j.ejpb.2020.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
|
68
|
Pisa E, Hughes LP, Wren SAC, Booth J, McCabe JF, Whittaker DTE, Mantle MD. NMR and Thermal Studies for the Characterization of Mass Transport and Phase Separation in Paracetamol/Copovidone Hot-Melt Extrusion Formulations. Mol Pharm 2020; 17:2021-2033. [DOI: 10.1021/acs.molpharmaceut.0c00188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Elena Pisa
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Leslie P. Hughes
- Global Product Development, AstraZeneca, Charter Way, Macclesfield SK10 2NA, U.K
| | - Stephen A. C. Wren
- Global Product Development, AstraZeneca, Charter Way, Macclesfield SK10 2NA, U.K
| | - Jonathan Booth
- Global Product Development, AstraZeneca, Charter Way, Macclesfield SK10 2NA, U.K
| | - James Francis McCabe
- Pharmaceutical Development, AstraZeneca, Charter Way, Macclesfield SK10 2NA, U.K
| | - David T. E. Whittaker
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Mick D. Mantle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
69
|
Jarrells TW, Zhang D, Li S, Munson EJ. Quantification of Monomer Units in Insoluble Polymeric Active Pharmaceutical Ingredients Using Solid-State NMR Spectroscopy I: Patiromer. AAPS PharmSciTech 2020; 21:116. [PMID: 32296974 DOI: 10.1208/s12249-020-01654-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/07/2020] [Indexed: 11/30/2022] Open
Abstract
Although extensive precautions are taken to limit batch-to-batch variation in pharmaceutical manufacturing, differences between lots may still exist, particularly in complex formulations. When polymerization is used in the production process, the potential for varying chain lengths and incorporation of different monomers increases the likelihood of batch-to-batch variation. This poses a significant challenge for demonstrating active pharmaceutical ingredient (API) sameness between the innovator and generic drug under development. Therefore, the ability to accurately analyze and quantify the relative amounts of active ingredients present in a formulated product is critically important. Solid-state nuclear magnetic resonance (SSNMR) spectroscopy was used to identify, quantify, and compare the relative amounts of the three polymer groups in the amorphous block copolymer drug, patiromer (Veltassa®). Techniques such as cross polarization (CP) and magic angle spinning were used to quantify each polymer group while the importance of understanding CP dynamics to obtain quantitative data was also addressed. It was found that the magnetization transfer rate and chemical shift anisotropy for different functional groups present in patiromer play a large role when optimizing parameters for spectral acquisition. Once accounted for, the average patiromer lot contained 90.9%, 7.6%, and 1.5% carboxylate, aromatic, and aliphatic blocks, respectively, with little lot-to-lot variation between different dosage strengths and expiration dates. SSNMR proved to be a sensitive analytical technique for evaluating and quantifying different monomer groups present in patiromer. This procedure may serve as a guide for similar quantitation studies on complex drug products and for demonstrating API sameness during generic drug development.
Collapse
|
70
|
Monschke M, Kayser K, Wagner KG. Processing of Polyvinyl Acetate Phthalate in Hot-Melt Extrusion-Preparation of Amorphous Solid Dispersions. Pharmaceutics 2020; 12:pharmaceutics12040337. [PMID: 32283725 PMCID: PMC7238276 DOI: 10.3390/pharmaceutics12040337] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 11/23/2022] Open
Abstract
The preparation of amorphous solid dispersions (ASDs) is a suitable approach to overcome solubility-limited absorption of poorly soluble drugs. In particular, pH-dependent soluble polymers have proven to be an excellently suitable carrier material for ASDs. Polyvinyl acetate phthalate (PVAP) is a polymer with a pH-dependent solubility, which is as yet not thoroughly characterized regarding its suitability for a hot-melt extrusion process. The objective of this study was to assess the processability of PVAP within a hot-melt extrusion process with the aim of preparing an ASD. Therefore, the influence of different process parameters (temperature, feed-rate) on the degree of degradation, solid-state and dissolution time of the neat polymer was studied. Subsequently, drug-containing ASDs with indomethacin (IND) and dipyridamole (DPD) were prepared, respectively, and analyzed regarding drug content, solid-state, non-sink dissolution performance and storage stability. PVAP was extrudable in combination with 10% (w/w) PEG 3000 as plasticizer. The dissolution time of PVAP was only slightly influenced by different process parameters. For IND no degradation occurred in combination with PVAP and single phased ASDs could be generated. The dissolution performance of the IND-PVAP ASD at pH 5.5 was superior and at pH 6.8 equivalent compared to commonly used polymers hydroxypropylmethylcellulose acetate succinate (HPMCAS) and Eudragit L100-55.
Collapse
|
71
|
Ueda K, Okada H, Zhao Z, Higashi K, Moribe K. Application of solid-state 13C relaxation time to prediction of the recrystallization inhibition strength of polymers on amorphous felodipine at low polymer loading. Int J Pharm 2020; 581:119300. [PMID: 32268185 DOI: 10.1016/j.ijpharm.2020.119300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/14/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
Abstract
The potential for inhibiting recrystallization with Eudragit® L (EUD-L), hypromellose acetate succinate (HPMC-AS), and polyvinylpyrrolidone-co-vinylacetate (PVP-VA) on amorphous felodipine (FLD) at low polymer loading was investigated in this study. The physical stabilities of the FLD/polymer amorphous solid dispersions (ASDs) were investigated through storage at 40 °C. The HPMC-AS and PVP-VA strongly inhibited FLD recrystallization, although EUD-L did not effectively inhibit the FLD recrystallization. The rotating frame 1H spin-lattice relaxation time (1H-T1ρ) measurement clarified that EUD-L was not well mixed with FLD in the ASD, which resulted in weak inhibition of recrystallization by EUD-L. In contrast, the HPMC-AS and PVP-VA were well mixed with the FLD in the ASDs. Solid-state 13C spin-lattice relaxation time (13C-T1) measurements at 40 °C showed that the molecular mobility of the FLD was strongly suppressed when mixed with polymer. The reduction in the molecular mobility of FLD was in the following order, starting with the least impact: FLD/EUD-L ASD, FLD/HPMC-AS ASD, and FLD/PVP-VA ASD. FLD mobility at the storage temperature, evaluated by 13C-T1, showed a good correlation with the physical stability of the amorphous FLD. The direct investigation of the molecular mobility of amorphous drugs at the storage temperature by solid-state NMR relaxation time measurement can be a useful tool in selecting the most effective crystallization inhibitor at low polymer loading.
Collapse
Affiliation(s)
- Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Hitomi Okada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Zhijing Zhao
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
72
|
Lu X, Tsutsumi Y, Huang C, Xu W, Byrn SR, Templeton AC, Buevich AV, Amoureux JP, Su Y. Molecular packing of pharmaceuticals analyzed with paramagnetic relaxation enhancement and ultrafast magic angle pinning NMR. Phys Chem Chem Phys 2020; 22:13160-13170. [DOI: 10.1039/d0cp02049d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Probing molecular details of fluorinated pharmaceutical compounds at a faster acquisition utilizing paramagnetic relaxation enhancement and better resolution from ultrafast magic angle spinning (νrot = 110 kHz) and high magnetic field (B0 = 18.8 T).
Collapse
Affiliation(s)
| | | | | | - Wei Xu
- MRL, Merck & Co., Inc
- Kenilworth
- USA
| | - Stephen R. Byrn
- Department of Industrial and Physical Pharmacy
- College of Pharmacy
- Purdue University
- Indiana 47907
- USA
| | | | | | | | - Yongchao Su
- MRL, Merck & Co., Inc
- Kenilworth
- USA
- Department of Industrial and Physical Pharmacy
- College of Pharmacy
| |
Collapse
|
73
|
Zhang R, Nishiyama Y, Ramamoorthy A. Exploiting heterogeneous time scale of dynamics to enhance 2D HETCOR solid-state NMR sensitivity. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 309:106615. [PMID: 31669793 DOI: 10.1016/j.jmr.2019.106615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/11/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Multidimensional solid-state NMR spectroscopy plays a significant role in offering atomic-level insights into molecular systems. In particular, heteronuclear chemical shift correlation (HETCOR) experiments could provide local chemical and structural information in terms of spatial heteronuclear proximity and through-bond connectivity. In solid state, the transfer of magnetization between heteronuclei, a key step in HETCOR experiments, is usually achieved using cross-polarization (CP) or insensitive nuclei enhanced by polarization transfer (INEPT) depending on the sample characteristics and magic-angle-spinning (MAS) frequency. But, for a multiphase system constituting molecular components that differ in their time scales of mobilities, CP efficiency is pretty low for mobile components because of the averaging of heteronuclear dipolar couplings whereas INEPT is inefficient for immobile components due to the short T2 and can yield through-space connectivity due to strong proton spin diffusion for immobile components especially under moderate spinning speeds. Herein, in this study we present two 2D pulse sequences that enable the sequential acquisition of 13C/1H HETCOR NMR spectra for the rigid and mobile components by taking full advantage of the abundant proton magnetization in a single experiment with barely increasing the overall experimental time. In particular, the 13C-detected HETCOR experiment could be applied under slow MAS conditions, where a multiple-pulse sequence is typically employed to enhance 1H spectral resolution in the indirect dimension. In contrast, the 1H-detected HETCOR experiment should be applied under ultrafast MAS, where CP and heteronuclear nuclear Overhauser effect (NOE) polarization transfer are combined to enhance 13C signal intensities for mobile components. These pulse sequences are experimentally demonstrated on two model systems to obtain 2D 13C/1H chemical shift correlation spectra of rigid and mobile components independently and separately. These pulse sequences can be used for dynamics based spectral editing and resonance assignments. Therefore, we believe the proposed 2D HETCOR NMR pulse sequences will be beneficial for the structural studies of heterogeneous systems containing molecular components that differ in their time scale of motions for understanding the interplay of structures and properties.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, Biomedical Engineering, Maromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Yusuke Nishiyama
- NMR Science and Development Division, RIKEN SPring-8 Center, Nanocrystallography Unit, RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, Biomedical Engineering, Maromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
74
|
Kapourani A, Vardaka E, Katopodis K, Kachrimanis K, Barmpalexis P. Rivaroxaban polymeric amorphous solid dispersions: Moisture-induced thermodynamic phase behavior and intermolecular interactions. Eur J Pharm Biopharm 2019; 145:98-112. [PMID: 31698042 DOI: 10.1016/j.ejpb.2019.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022]
Abstract
The present study evaluates the physical stability and intermolecular interactions of Rivaroxaban (RXB) amorphous solid dispersions (ASDs) in polymeric carriers via thermodynamic modelling and molecular simulations. Specifically, the Flory-Huggins (FH) lattice solution theory was used to construct thermodynamic phase diagrams of RXB ASDs in four commonly used polymeric carriers (i.e. copovidone, coPVP, povidone, PVP, Soluplus, SOL and hypromellose acetate succinate, HPMCAS), which were stored under 0%, 60% and 75% relative humidity (RH) conditions. In order to verify the phase boundaries predicted by FH modelling (i.e. truly amorphous zone, amorphous-amorphous demixing zones and amorphous-API recrystallization zones), samples of ASDs were examined via polarized light microscopy after storage for up to six months at various RH conditions. Results showed a good agreement between the theoretical and the experimental approaches (i.e. coPVP and PVP resulted in less physically-stable ASDs compared to SOL and HPMCAS) indicating that the proposed FH-based modelling may be a useful tool in predicting long-term physical stability in high humidity conditions. In addition, molecular dynamics (MD) simulations were employed in order to interpret the observed differences in physical stability. Results, which were verified via differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR), suggested the formation of similar intermolecular interactions in all cases, indicating that the interaction with moisture water plays a more crucial role in ASD physical stability compared to the formation of intermolecular interactions between ASD components.
Collapse
Affiliation(s)
- Afroditi Kapourani
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Elisavet Vardaka
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantinos Katopodis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Kyriakos Kachrimanis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
75
|
Sarpal K, Delaney S, Zhang GGZ, Munson EJ. Phase Behavior of Amorphous Solid Dispersions of Felodipine: Homogeneity and Drug–Polymer Interactions. Mol Pharm 2019; 16:4836-4851. [DOI: 10.1021/acs.molpharmaceut.9b00731] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kanika Sarpal
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Sean Delaney
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Geoff G. Z. Zhang
- Drug Product Development, Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Eric J. Munson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| |
Collapse
|
76
|
Nguyen KTT, Frijlink HW, Hinrichs WLJ. Inhomogeneous Distribution of Components in Solid Protein Pharmaceuticals: Origins, Consequences, Analysis, and Resolutions. J Pharm Sci 2019; 109:134-153. [PMID: 31606540 DOI: 10.1016/j.xphs.2019.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/21/2022]
Abstract
Successful development of stable solid protein formulations usually requires the addition of one or several excipients to achieve optimal stability. In these products, there is a potential risk of an inhomogeneous distribution of the various ingredients, specifically the ratio of protein and stabilizer may vary. Such inhomogeneity can be detrimental for stability but is mostly neglected in literature. In the past, it was challenging to analyze inhomogeneous component distribution, but recent advances in analytical techniques have revealed new options to investigate this phenomenon. This paper aims to review fundamental aspects of the inhomogeneous distribution of components of freeze-dried and spray-dried protein formulations. Four key topics will be presented and discussed, including the sources of component inhomogeneity, its consequences on protein stability, the analytical methods to reveal component inhomogeneity, and possible solutions to prevent or mitigate inhomogeneity.
Collapse
Affiliation(s)
- Khanh T T Nguyen
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9700 RB Groningen, the Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9700 RB Groningen, the Netherlands
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9700 RB Groningen, the Netherlands.
| |
Collapse
|
77
|
Ricarte RG, Van Zee NJ, Li Z, Johnson LM, Lodge TP, Hillmyer MA. Recent Advances in Understanding the Micro- and Nanoscale Phenomena of Amorphous Solid Dispersions. Mol Pharm 2019; 16:4089-4103. [PMID: 31487183 DOI: 10.1021/acs.molpharmaceut.9b00601] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many pharmaceutical drugs in the marketplace and discovery pipeline suffer from poor aqueous solubility, thereby limiting their effectiveness for oral delivery. The use of an amorphous solid dispersion (ASD), a mixture of an active pharmaceutical ingredient and a polymer excipient, greatly enhances the aqueous dissolution performance of a drug without the need for chemical modification. Although this method is versatile and scalable, deficient understanding of the interactions between drugs and polymers inhibits ASD rational design. This current Review details recent progress in understanding the mechanisms that control ASD performance. In the solid-state, the use of high-resolution theoretical, computational, and experimental tools resolved the influence of drug/polymer phase behavior and dynamics on stability during storage. During dissolution in aqueous media, novel characterization methods revealed that ASDs can form complex nanostructures, which maintain and improve supersaturation of the drug. The studies discussed here illustrate that nanoscale phenomena, which have been directly observed and quantified, strongly affect the stability and bioavailability of ASD systems, and provide a promising direction for optimizing drug/polymer formulations.
Collapse
Affiliation(s)
- Ralm G Ricarte
- Molecular, Macromolecular Chemistry, and Materials Laboratory, CNRS, ESPCI-Paris , PSL Research University , 10 Rue Vauquelin , 75005 Paris , France
| | | | | | | | | | | |
Collapse
|
78
|
Medarević D, Djuriš J, Barmpalexis P, Kachrimanis K, Ibrić S. Analytical and Computational Methods for the Estimation of Drug-Polymer Solubility and Miscibility in Solid Dispersions Development. Pharmaceutics 2019; 11:pharmaceutics11080372. [PMID: 31374926 PMCID: PMC6722809 DOI: 10.3390/pharmaceutics11080372] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 01/21/2023] Open
Abstract
The development of stable solid dispersion formulations that maintain desired improvement of drug dissolution rate during the entire shelf life requires the analysis of drug-polymer solubility and miscibility. Only if the drug concentration is below the solubility limit in the polymer, the physical stability of solid dispersions is guaranteed without risk for drug (re)crystallization. If the drug concentration is above the solubility, but below the miscibility limit, the system is stabilized through intimate drug-polymer mixing, with additional kinetic stabilization if stored sufficiently below the mixture glass transition temperature. Therefore, it is of particular importance to assess the drug-polymer solubility and miscibility, to select suitable formulation (a type of polymer and drug loading), manufacturing process, and storage conditions, with the aim to ensure physical stability during the product shelf life. Drug-polymer solubility and miscibility can be assessed using analytical methods, which can detect whether the system is single-phase or not. Thermodynamic modeling enables a mechanistic understanding of drug-polymer solubility and miscibility and identification of formulation compositions with the expected formation of the stable single-phase system. Advance molecular modeling and simulation techniques enable getting insight into interactions between the drug and polymer at the molecular level, which determine whether the single-phase system formation will occur or not.
Collapse
Affiliation(s)
- Djordje Medarević
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Jelena Djuriš
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Kyriakos Kachrimanis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Svetlana Ibrić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
79
|
Abstract
Stabilization technology of glass structures is of great interest in the field of pharmaceutical science, as it may prevent poorly soluble candidate compounds from dropping out of the pipeline. Cooling rate from the melt has been recognized as one parameter to alter the energy state of the glass; however, the relationship between the physicochemical properties of glass and stabilization efficiency of the cooling rate has not been clarified yet. We have investigated the effect of cooling rate on the thermodynamic parameters of 13 pharmaceutical glasses, to find features of the compounds that are closely related to the stabilization efficiency. We have also analyzed the structural differences between slowly cooled and annealed glasses based on Fourier-transform infrared spectra and relaxation enthalpy. Although the degree of stabilization was lower for slowly cooled glasses compared to that for vapor-deposited ones, slow cooling was found to be a prominent method for producing stable glass and is applicable to bulk materials. In this observation, a strong correlation between fragility and the number of rotatable bonds was also found.
Collapse
Affiliation(s)
- Kohsaku Kawakami
- International Center for Materials Nanoarchitectonics , National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| |
Collapse
|
80
|
Okada K, Hirai D, Hayashi Y, Kumada S, Kosugi A, Onuki Y. T2 Relaxation Study to Evaluate the Crystalline State of Indomethacin Containing Solid Dispersions Using Time-Domain NMR. Chem Pharm Bull (Tokyo) 2019; 67:580-586. [DOI: 10.1248/cpb.c19-00163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kotaro Okada
- Department of Pharmaceutical Technology, Graduate School of Medical and Pharmaceutical Science, University of Toyama
| | - Daijiro Hirai
- Nichi-Iko Pharmaceutical Co., Ltd., Formulation Development Department
| | - Yoshihiro Hayashi
- Department of Pharmaceutical Technology, Graduate School of Medical and Pharmaceutical Science, University of Toyama
- Nichi-Iko Pharmaceutical Co., Ltd., Formulation Development Department
| | - Shungo Kumada
- Nichi-Iko Pharmaceutical Co., Ltd., Formulation Development Department
| | - Atsushi Kosugi
- Nichi-Iko Pharmaceutical Co., Ltd., Formulation Development Department
| | - Yoshinori Onuki
- Department of Pharmaceutical Technology, Graduate School of Medical and Pharmaceutical Science, University of Toyama
| |
Collapse
|
81
|
|
82
|
Partridge TA, Ahmed M, Choudhary SB, van der Walle CF, Patel SM, Bishop SM, Mantle MD. Application of Magnetic Resonance to Assess Lyophilized Drug Product Reconstitution. Pharm Res 2019; 36:71. [PMID: 30903389 PMCID: PMC6430757 DOI: 10.1007/s11095-019-2591-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/17/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE Dynamic in-situ proton (1H) magnetic resonance imaging (MRI) and 1H T2-relaxometry experiments are described in an attempt to: (i) understand the physical processes, that occur during the reconstitution of lyophilized bovine serum albumin (BSA) and monoclonal antibody (mAb) proteins; and (ii) objectify the reconstitution time. METHODS Rapid two-dimensional 1H MRI and diffusion weighted MRI were used to study the temporal changes in solids dissolution and characterise water mass transport characteristics. One-shot T2 relaxation time measurements were also acquired in an attempt to quantify the reconstitution time. Both MRI data and T2-relaxation data were compared to standard visual observations currently adopted by industry. The 1H images were further referenced to MRI calibration data to give quantitative values of protein concentration and, percentage of remaining undissolved solids. RESULTS An algorithmic analysis of the 1H T2-relaxation data shows it is possible to classify the reconstitution event into three regimes (undissolved, transitional and dissolved). Moreover, a combined analysis of the 2D 1H MRI and 1H T2-relaxation data gives a unique time point that characterises the onset of a reconstituted protein solution within well-defined error bars. These values compared favourably with those from visual observations. Diffusion weighted MRI showed that low concentration BSA and mAb samples showed distinct liquid-liquid phase separation attributed to two liquid layers with significant density differences. CONCLUSIONS T2 relaxation time distributions (whose interpretation is validated from the 2D 1H MR images) provides a quick and effective framework to build objective, quantitative descriptors of the reconstitution process that facilitate the interpretation of subjective visual observations currently adopted as the standard practice industry.
Collapse
Affiliation(s)
- Thomas A Partridge
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Mahammad Ahmed
- Conjugation Group, Spirogen Ltd, QMB Innovation Centre, 42 New Road, London, E1 2AX, 20878, UK
| | - Sureshkumar B Choudhary
- Dosage Form Design and Development, AstraZeneca, One Medimmune Way, Gaithersburg, MD, 20878, USA
| | - Christopher F van der Walle
- Dosage Form Design and Development, Spirogen Ltd, Sir Aaron Klug Building, Granta Park, Cambridge, CB21 6GH, UK
| | - Sajal M Patel
- Dosage Form Design and Development, AstraZeneca, One Medimmune Way, Gaithersburg, MD, 20878, USA
| | - Steven M Bishop
- Dosage Form Design and Development, AstraZeneca, One Medimmune Way, Gaithersburg, MD, 20878, USA
| | - Mick D Mantle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| |
Collapse
|
83
|
Ma X, Huang S, Lowinger MB, Liu X, Lu X, Su Y, Williams RO. Influence of mechanical and thermal energy on nifedipine amorphous solid dispersions prepared by hot melt extrusion: Preparation and physical stability. Int J Pharm 2019; 561:324-334. [PMID: 30858115 DOI: 10.1016/j.ijpharm.2019.03.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Abstract
Hot melt extrusion (HME) has been used to prepare solid dispersions, especially molecularly dispersed amorphous solid dispersions (ASDs) for solubility enhancement purposes. The energy generated by the extruder in the form of mechanical and thermal output enables the dispersion and dissolution of crystalline drugs in polymeric carriers. However, the impact of this thermal and mechanical energy on ASD systems remains unclear. We selected a model ASD system containing nifedipine (NIF) and polyvinylpyrrolidone vinyl acetate (PVP/VA 64) to investigate how different types of energy input affect the preparation and physical stability of ASDs. Formulations were prepared using a Leistritz Nano-16 extruder, and we varied the screw design, barrel temperature, screw speed, and feed rate to control the mechanical and thermal energy input. Specific mechanical energy (SME) was calculated to quantitate the mechanical energy input, and the thermal energy was estimated using barrel temperature. We find that both mechanical and thermal energy inputs affect the conversion of crystalline NIF into an amorphous form, and they also affect the level of mixing and the degree of homogeneity in NIF ASDs. However, for small size extruders (e.g., Leistritz Nano-16), thermal energy is more efficient than mechanical energy in preparing NIF ASDs that have better stability.
Collapse
Affiliation(s)
- Xiangyu Ma
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, 78712 Austin, TX, USA
| | - Siyuan Huang
- Small Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company, 46221 Indianapolis, IN, USA
| | - Michael B Lowinger
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, 78712 Austin, TX, USA; Merck Research Laboratories, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ 07065, USA
| | - Xu Liu
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, 78712 Austin, TX, USA
| | - Xingyu Lu
- Merck Research Laboratories, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ 07065, USA
| | - Yongchao Su
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, 78712 Austin, TX, USA; Merck Research Laboratories, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ 07065, USA
| | - Robert O Williams
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, 78712 Austin, TX, USA.
| |
Collapse
|
84
|
Ito T, Okada K, Leong KH, Hirai D, Hayashi Y, Kumada S, Kosugi A, Onuki Y. A Time-Domain NMR Study of the State of Water in Wet Granules with Different Fillers and Its Contribution to the Wet Granulation Process and to the Characteristics of Granules. Chem Pharm Bull (Tokyo) 2019; 67:271-276. [DOI: 10.1248/cpb.c18-00888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Terushi Ito
- Department of Pharmaceutical Technology, Graduate School of Medical and Pharmaceutical Science, University of Toyama
| | - Kotaro Okada
- Department of Pharmaceutical Technology, Graduate School of Medical and Pharmaceutical Science, University of Toyama
| | - Kok Hoong Leong
- Department of Pharmacy, Faculty of Medicine, University of Malaya
| | - Daijiro Hirai
- Nichi-Iko Pharmaceutical Co., Ltd., Formulation Development Department
| | - Yoshihiro Hayashi
- Department of Pharmaceutical Technology, Graduate School of Medical and Pharmaceutical Science, University of Toyama
- Nichi-Iko Pharmaceutical Co., Ltd., Formulation Development Department
| | - Shungo Kumada
- Nichi-Iko Pharmaceutical Co., Ltd., Formulation Development Department
| | - Atsushi Kosugi
- Nichi-Iko Pharmaceutical Co., Ltd., Formulation Development Department
| | - Yoshinori Onuki
- Department of Pharmaceutical Technology, Graduate School of Medical and Pharmaceutical Science, University of Toyama
| |
Collapse
|
85
|
Okada K, Hirai D, Hayashi Y, Kumada S, Kosugi A, Onuki Y. A Novel Approach to Evaluate Amorphous-to-Crystalline Transformation of Active Pharmaceutical Ingredients in Solid Dispersion Using Time-Domain NMR. Chem Pharm Bull (Tokyo) 2019; 67:265-270. [DOI: 10.1248/cpb.c18-00887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kotaro Okada
- Department of Pharmaceutical Technology, Graduate School of Medical and Pharmaceutical Science, University of Toyama
| | - Daijiro Hirai
- Nichi-Iko Pharmaceutical Co., Ltd., Formulation Development Department
| | - Yoshihiro Hayashi
- Department of Pharmaceutical Technology, Graduate School of Medical and Pharmaceutical Science, University of Toyama
- Nichi-Iko Pharmaceutical Co., Ltd., Formulation Development Department
| | - Shungo Kumada
- Nichi-Iko Pharmaceutical Co., Ltd., Formulation Development Department
| | - Atsushi Kosugi
- Nichi-Iko Pharmaceutical Co., Ltd., Formulation Development Department
| | - Yoshinori Onuki
- Department of Pharmaceutical Technology, Graduate School of Medical and Pharmaceutical Science, University of Toyama
| |
Collapse
|
86
|
Molecular modelling and simulation of fusion-based amorphous drug dispersions in polymer/plasticizer blends. Eur J Pharm Sci 2019; 130:260-268. [PMID: 30735824 DOI: 10.1016/j.ejps.2019.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/20/2018] [Accepted: 02/03/2019] [Indexed: 11/22/2022]
Abstract
A realistic molecular description of amorphous drug-polymer-plasticizer matrices, suitable for the preparation of amorphous solid dispersions (ASDs) with the aid of fusion-based techniques, was evaluated. Specifically, the incorporation of two model drugs (i.e. ibuprofen, IBU, and carbamazepine, CBZ) having substantially different thermal properties and glass forming ability, on the molecular representation of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (SOL)/polyethylene glycol (PEG, working as a plasticizer) molecular and thermal properties were evaluated with the aid of classical molecular dynamics (MD) and docking simulations. Results showed good agreement between molecular modelling estimations and experimentally determined properties. Specifically, the computed Tg values that resulted from MD simulations for IBU-SOL/PEG and CBZ-SOL/PEG (53.8 and 54.2 °C, respectively) were in reasonable agreement with the corresponding values resulting from differential scanning calorimetry (DSC) measurements (49.8 and 50.1 °C), while both molecular modelling and experimental obtained results suggested miscibility among system components. Additionally, interactions between CBZ and SOL observed during MD simulations were verified by FTIR analysis, while MD simulations of the hydration process suggested strong molecular interactions between IBU-SOL and CBZ-SOL.
Collapse
|
87
|
Can drug release rate from implants be tailored using poly(urethane) mixtures? Int J Pharm 2019; 557:390-401. [DOI: 10.1016/j.ijpharm.2018.11.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/14/2022]
|
88
|
Okada K, Hirai D, Kumada S, Kosugi A, Hayashi Y, Onuki Y. 1H NMR Relaxation Study to Evaluate the Crystalline State of Active Pharmaceutical Ingredients Containing Solid Dosage Forms Using Time Domain NMR. J Pharm Sci 2019; 108:451-456. [DOI: 10.1016/j.xphs.2018.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/08/2018] [Accepted: 09/19/2018] [Indexed: 11/30/2022]
|
89
|
Shi Q, Moinuddin SM, Cai T. Advances in coamorphous drug delivery systems. Acta Pharm Sin B 2019; 9:19-35. [PMID: 30766775 PMCID: PMC6361732 DOI: 10.1016/j.apsb.2018.08.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/11/2018] [Accepted: 08/12/2018] [Indexed: 01/18/2023] Open
Abstract
In recent years, the coamorphous drug delivery system has been established as a promising formulation approach for delivering poorly water-soluble drugs. The coamorphous solid is a single-phase system containing an active pharmaceutical ingredient (API) and other low molecular weight molecules that might be pharmacologically relevant APIs or excipients. These formulations exhibit considerable advantages over neat crystalline or amorphous material, including improved physical stability, dissolution profiles, and potentially enhanced therapeutic efficacy. This review provides a comprehensive overview of coamorphous drug delivery systems from the perspectives of preparation, physicochemical characteristics, physical stability, in vitro and in vivo performance. Furthermore, the challenges and strategies in developing robust coamorphous drug products of high quality and performance are briefly discussed.
Collapse
Key Words
- API, active pharmaceutical ingredient;
- AUC, area under plasma concentrations-time curve
- BCS, bio-pharmaceutics classification systems
- Bioavailability
- Characterization
- Cmax, maximum plasma concentration
- Coamorphous
- Css, plasma concentration at steady state
- DSC, differential scanning calorimetry
- DVS, dynamic vapor sorption
- Dc, relative degree of crystallization
- Dissolution
- FT-IR, fourier transform infrared spectroscopy
- HME, hot melt extrusion
- HPLC, high performance liquid chromatography
- IDR, intrinsic dissolution rate
- LFRS, low-frequency Raman spectroscopy
- LLPS, liquid—liquid phase separation
- MTDSC, modulated temperature differential scanning calorimetry
- NMR, nuclear magnetic resonance
- P-gp, P-glycoprotein
- PXRD, powder X-ray diffraction
- Physical stability
- Preparation
- RH, relative humidity
- SEM, scanning electron microscope
- TGA, thermogravimetric analysis
- Tg, glass transition temperature
- Tmax, time of maximum plasma concentration
- UV, ultraviolet spectroscopy
Collapse
Affiliation(s)
| | | | - Ting Cai
- Corresponding author. Tel.: +86 25 83271123.
| |
Collapse
|
90
|
Skrdla PJ, Floyd PD, Dell'Orco PC. Predicted amorphous solubility and dissolution rate advantages following moisture sorption: Case studies of indomethacin and felodipine. Int J Pharm 2019; 555:100-108. [DOI: 10.1016/j.ijpharm.2018.11.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/01/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022]
|
91
|
Zhong Z, Yang X, Wang BH, Yao YF, Guo B, Yu L, Huang Y, Xu J. Solvent-polymer guest exchange in a carbamazepine inclusion complex: structure, kinetics and implication for guest selection. CrystEngComm 2019. [DOI: 10.1039/c8ce01766b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solvent–polymer guest exchange in a carbamazepine inclusion complex in a stirred solution was studied and a mechanism was proposed.
Collapse
Affiliation(s)
- Zhi Zhong
- Key Laboratory of Advanced Materials (MOE)
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Xiaotong Yang
- Key Laboratory of Advanced Materials (MOE)
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Bi-Heng Wang
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
- China
| | - Ye-Feng Yao
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
- China
| | - Baohua Guo
- Key Laboratory of Advanced Materials (MOE)
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Lian Yu
- School of Pharmacy and Department of Chemistry
- University of Wisconsin-Madison
- Madison
- USA
| | - Yanbin Huang
- Key Laboratory of Advanced Materials (MOE)
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Jun Xu
- Key Laboratory of Advanced Materials (MOE)
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
92
|
Karmakar PD, Seesala VS, Pal A, Dhara S, Chatterjee S, Pal S. Synthesis of RAFT-Mediated Amphiphilic Graft Copolymeric Micelle Using Dextran and Poly (Oleic Acid) toward Oral Delivery of Nifedipine. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Puja Das Karmakar
- Department of Applied Chemistry; Indian Institute of Technology (ISM); Dhanbad 826004 India
| | - Venkata Sundeep Seesala
- Biomaterials and Tissue Engineering Laboratory; School of Medical Science and Technology, Indian Institute of Technology; Kharagpur 721302 India
| | - Aniruddha Pal
- Department of Applied Chemistry; Indian Institute of Technology (ISM); Dhanbad 826004 India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory; School of Medical Science and Technology, Indian Institute of Technology; Kharagpur 721302 India
| | - Soumit Chatterjee
- Department of Applied Chemistry; Indian Institute of Technology (ISM); Dhanbad 826004 India
| | - Sagar Pal
- Department of Applied Chemistry; Indian Institute of Technology (ISM); Dhanbad 826004 India
| |
Collapse
|
93
|
Hanada M, Jermain SV, Lu X, Su Y, Williams RO. Predicting physical stability of ternary amorphous solid dispersions using specific mechanical energy in a hot melt extrusion process. Int J Pharm 2018; 548:571-585. [DOI: 10.1016/j.ijpharm.2018.07.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 11/15/2022]
|
94
|
Ellenberger DJ, Miller DA, Kucera SU, Williams RO. Generation of a Weakly Acidic Amorphous Solid Dispersion of the Weak Base Ritonavir with Equivalent In Vitro and In Vivo Performance to Norvir Tablet. AAPS PharmSciTech 2018; 19:1985-1997. [PMID: 29869311 DOI: 10.1208/s12249-018-1060-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/03/2018] [Indexed: 11/30/2022] Open
Abstract
Ritonavir is an anti-viral compound that has also been employed extensively as a CYP3A4 and P-glycoprotein (Pgp) inhibitor to boost the pharmacokinetic performance of compounds that undergo first pass metabolism. For use in combination products, there is a desire to minimize the mass contribution of the ritonavir system to reduce patient pill burden in these combination products. In this study, KinetiSol® processing was utilized to produce an amorphous solid dispersion of ritonavir at two times the drug load of the commercially available form of ritonavir, and the composition was subsequently developed into a tablet dosage form. The amorphous intermediate was demonstrated to be amorphous by X-ray powder diffraction and 13C solid-state nuclear magnetic resonance and an intimately mixed single-phase system by modulated differential scanning calorimetry and 1H T1/1H T1ρ solid-state nuclear magnetic resonance relaxation. In vitro transmembrane flux analysis showed similar permeation rates for the KinetiSol-made tablet and the reference tablet dosage form, Norvir®. In vivo pharmacokinetic comparison between the two dosage forms resulted in equivalent exposure with approximately 20% Cmax reduction for the KinetiSol tablet. These performance gains were realized with a concurrent reduction in dosage form mass of 45%.
Collapse
|
95
|
Thrane LW, Berglund EA, Wilking JN, Vodak D, Seymour JD. NMR Relaxometry to Characterize the Drug Structural Phase in a Porous Construct. Mol Pharm 2018; 15:2614-2620. [DOI: 10.1021/acs.molpharmaceut.8b00144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Linn W. Thrane
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana 59717-3920, United States
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Emily A. Berglund
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana 59717-3920, United States
| | - James N. Wilking
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana 59717-3920, United States
| | - David Vodak
- Bend Research Incorporated, Lonza, Bend, Oregon 97701, United States
| | - Joseph D. Seymour
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana 59717-3920, United States
| |
Collapse
|
96
|
Knapik-Kowalczuk J, Tu W, Chmiel K, Rams-Baron M, Paluch M. Co-Stabilization of Amorphous Pharmaceuticals—The Case of Nifedipine and Nimodipine. Mol Pharm 2018; 15:2455-2465. [DOI: 10.1021/acs.molpharmaceut.8b00308] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Justyna Knapik-Kowalczuk
- Institute of Physics, University of Silesia, ul. Pułku Piechoty 1a, 41-500 Chorzów, Poland
- SMCEBI, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Wenkang Tu
- Institute of Physics, University of Silesia, ul. Pułku Piechoty 1a, 41-500 Chorzów, Poland
- SMCEBI, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Krzysztof Chmiel
- Institute of Physics, University of Silesia, ul. Pułku Piechoty 1a, 41-500 Chorzów, Poland
- SMCEBI, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Marzena Rams-Baron
- Institute of Physics, University of Silesia, ul. Pułku Piechoty 1a, 41-500 Chorzów, Poland
- SMCEBI, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia, ul. Pułku Piechoty 1a, 41-500 Chorzów, Poland
- SMCEBI, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| |
Collapse
|
97
|
Bhardwaj V, Trasi NS, Zemlyanov DY, Taylor LS. Surface area normalized dissolution to study differences in itraconazole-copovidone solid dispersions prepared by spray-drying and hot melt extrusion. Int J Pharm 2018; 540:106-119. [DOI: 10.1016/j.ijpharm.2018.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/31/2018] [Accepted: 02/04/2018] [Indexed: 01/27/2023]
|
98
|
Solid-State NMR Investigation of Drug-Excipient Interactions and Phase Behavior in Indomethacin-Eudragit E Amorphous Solid Dispersions. Pharm Res 2018; 35:65. [DOI: 10.1007/s11095-018-2364-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/08/2018] [Indexed: 11/26/2022]
|
99
|
Impact of Drug-Polymer Miscibility on Enthalpy Relaxation of Irbesartan Amorphous Solid Dispersions. Pharm Res 2018; 35:29. [DOI: 10.1007/s11095-017-2296-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
|
100
|
Investigating phase separation in amorphous solid dispersions via Raman mapping. Int J Pharm 2018; 535:245-252. [DOI: 10.1016/j.ijpharm.2017.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 11/23/2022]
|