51
|
Mechanistic insight to ROS and Apoptosis regulated cytotoxicity inferred by Green synthesized CuO nanoparticles from Calotropis gigantea to Embryonic Zebrafish. Sci Rep 2017; 7:16284. [PMID: 29176605 PMCID: PMC5701131 DOI: 10.1038/s41598-017-16581-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/14/2017] [Indexed: 01/30/2023] Open
Abstract
With the rapid development of nanotechnology, much has been anticipated with copper oxide nanoparticles (CuO NP) due to their extensive industrial and commercial application. However, it has raised concern over the environmental safety and human health effects. In this study, CuO nanoparticles were synthesized using the green method with floral extract of Calotropis gigantea and characterized by standard physiochemical techniques like DLS, Zeta potential determination, UV- Visible Spectroscopy, XRD, FTIR, FESEM, and TEM. Mechanistic cytotoxicity studies were performed using experimental and computational assays including morphological analysis, hatching, and viability rate analysis along with ROS and apoptosis analysis. Physiochemical characterization of CuO NP determined the size and zeta potential of synthesized nanoparticles to be 30 ± 09 nm to 40 ± 2 nm and -38 mV ± 12 mV respectively. Cytotoxicity evaluation with Zebrafish revealed malfunctioned organ development with differential viability and hatching rate at 48 hpf and 72 hpf with LC50 of 175 ± 10 mg/l. Computational analysis depicted the influential role of CuO nanoparticles on zebrafish embryo's he1a, sod1 and p53 functional expression through hydrophobic and hydrogen bond interaction with amino acid residues. Study demonstrated valuable information of cytotoxic impact which can be influential in further studies of their eco-toxicological effects.
Collapse
|
52
|
Verma SK, Panda PK, Jha E, Suar M, Parashar SKS. Altered physiochemical properties in industrially synthesized ZnO nanoparticles regulate oxidative stress; induce in vivo cytotoxicity in embryonic zebrafish by apoptosis. Sci Rep 2017; 7:13909. [PMID: 29066782 PMCID: PMC5655687 DOI: 10.1038/s41598-017-14039-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/04/2017] [Indexed: 11/22/2022] Open
Abstract
This study investigates the in vivo cytotoxicity of ZnO nanoparticles synthesized at industrial scale with embryonic Zebrafish. Industrial synthesis of ZnO nanoparticles was mimicked at lab scale by high energy ball milling technique by milling bulk ZnO particles for 15 h. Synthesized 7 h and 10 h ZnO nanoparticles showed significant alteration of size, zeta potential and optical properties in comparison to Bulk ZnO. Mortality and hatching rate in Zebrafish embryos were influenced by these alterations. Size and charge dependent effect of ZnO nanoparticles exposure on physiology and development of Zebrafish embryos were evident by malfunctioned organ development and abnormal heartbeat rate. Similar dependency on quenching of ROS due to influential hydrogen bond interaction with glycine residue of Sod1 oxidative stress protein and increased apoptosis were observed in cells. The study revealed the mechanism of cytotoxicity in exposed embryonic Zebrafish as an effect of accumulation and internalization inside cells instigating to generation of hypoxic condition and interference with the normal adaptive stress regulation signaling pathways leading towards enhanced apoptosis. The study revealed hidden size and charge dependent in vivo cytotoxicity mechanism of ZnO nanoparticles in Zebrafish embryos insight of the environmental and clinical importance of attention on industrially synthesized ZnO nanoparticles.
Collapse
Affiliation(s)
- Suresh K Verma
- School of Biotechnology, KIIT University, 751024, Bhubaneswar, India
| | | | - Ealisha Jha
- School of Biotechnology, KIIT University, 751024, Bhubaneswar, India
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, 751024, Bhubaneswar, India.
| | - S K S Parashar
- School of Applied Sciences, KIIT University, 751024, Bhubaneswar, India.
| |
Collapse
|
53
|
Wang X, Liu Y, Wang J, Nie Y, Chen S, Hei TK, Deng Z, Wu L, Zhao G, Xu A. Amplification of arsenic genotoxicity by TiO2 nanoparticles in mammalian cells: new insights from physicochemical interactions and mitochondria. Nanotoxicology 2017; 11:978-995. [DOI: 10.1080/17435390.2017.1388861] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xinan Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui, PR China
| | - Yun Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui, PR China
| | - Juan Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui, PR China
| | - Yaguang Nie
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui, PR China
| | - Shaopeng Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui, PR China
| | - Tom K. Hei
- Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, New York, USA
| | - Zhaoxiang Deng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Lijun Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui, PR China
| | - Guoping Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui, PR China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui, PR China
| |
Collapse
|
54
|
Yan J, Lai CH, Lung SCC, Wang WC, Huang CC, Chen GW, Suo G, Choug CT, Lin CH. Carbon black aggregates cause endothelial dysfunction by activating ROCK. JOURNAL OF HAZARDOUS MATERIALS 2017; 338:66-75. [PMID: 28531660 DOI: 10.1016/j.jhazmat.2017.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/18/2017] [Accepted: 05/13/2017] [Indexed: 06/07/2023]
Abstract
Carbon black nanoparticles (CBNs) have been associated with the progression of atherosclerosis. CBNs normally enter the bloodstream and crosslink together to form agglomerates. However, most studies have used nano-sized CB particles to clarify the involvement of CBN exposure in CBN-induced endothelial dysfunction. Herein, we studied endothelial toxicity of CBN aggregates (CBA) to human EA.hy926 vascular cells. Cell viability, lactate dehydrogenase leakage, and oxidative stress were affected by the highest concentration of CBA. Moreover, transmission electron microscopic results showed that CBA entered cells through membrane enclosed vesicles. Rho-associated kinase (ROCK) is involved in regulating vascular diseases. Thus, we co-treated with the of ROCK inhibitor Y-27632 to study whether other adverse effects caused by CBA are related to activating ROCK. As expected, co-treatment with Y-27632 attenuated CBA-induced cytoskeletal damage, dysfunction of the endothelial barrier, and expression of inflammatory factors. Taken together, these results demonstrate that aggregated CBNs can cause endothelial dysfunction possibly by activating ROCK.
Collapse
Affiliation(s)
- Junyan Yan
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chia-Hsiang Lai
- Department of Safety Health and Environmental Engineering, Central Taiwan University of Science and Technology, Taichung, 40601, Taiwan
| | | | - Wen-Cheng Wang
- Research Center for Environmental Changes, Academia Sinica, Taipei 11529, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Guan-Wen Chen
- Department of Food Science, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Guangli Suo
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Cheng-Tai Choug
- Department of Biotechnology, National Formosa University, Yunlin, 63208, Taiwan
| | - Chia-Hua Lin
- Department of Biotechnology, National Formosa University, Yunlin, 63208, Taiwan.
| |
Collapse
|
55
|
Boyes WK, Thornton BLM, Al-Abed SR, Andersen CP, Bouchard DC, Burgess RM, Hubal EAC, Ho KT, Hughes MF, Kitchin K, Reichman JR, Rogers KR, Ross JA, Rygiewicz PT, Scheckel KG, Thai SF, Zepp RG, Zucker RM. A comprehensive framework for evaluating the environmental health and safety implications of engineered nanomaterials. Crit Rev Toxicol 2017; 47:767-810. [DOI: 10.1080/10408444.2017.1328400] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- William K. Boyes
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Brittany Lila M. Thornton
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Souhail R. Al-Abed
- National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Christian P. Andersen
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, OR, USA
| | - Dermont C. Bouchard
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA, USA
| | - Robert M. Burgess
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Narragansett, RI, USA
| | - Elaine A. Cohen Hubal
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kay T. Ho
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Narragansett, RI, USA
| | - Michael F. Hughes
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kirk Kitchin
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jay R. Reichman
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, OR, USA
| | - Kim R. Rogers
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jeffrey A. Ross
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Paul T. Rygiewicz
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, OR, USA
| | - Kirk G. Scheckel
- National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Sheau-Fung Thai
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Richard G. Zepp
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA, USA
| | - Robert M. Zucker
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
56
|
Jayaram DT, Runa S, Kemp ML, Payne CK. Nanoparticle-induced oxidation of corona proteins initiates an oxidative stress response in cells. NANOSCALE 2017; 9:7595-7601. [PMID: 28537609 PMCID: PMC5703216 DOI: 10.1039/c6nr09500c] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs), used as pigments and photocatalysts, are ubiquitous in our daily lives. Previous work has observed cellular oxidative stress in response to the UV-excitation of photocatalytic TiO2 NPs. In comparison, most human exposure to TiO2 NPs takes place in the dark, in the lung following inhalation or in the gut following consumption of TiO2 NP food pigment. Our spectroscopic characterization shows that both photocatalytic and food grade TiO2 NPs, in the dark, generate low levels of reactive oxygen species (ROS), specifically hydroxyl radicals and superoxides. These ROS oxidize serum proteins that form a corona of proteins on the NP surface. This protein layer is the interface between the NP and the cell. An oxidized protein corona triggers an oxidative stress response, detected with PCR and western blotting. Surface modification of TiO2 NPs to increase or decrease surface defects correlates with ROS generation and oxidative stress, suggesting that NP surface defects, likely oxygen vacancies, are the underlying cause of TiO2 NP-induced oxidative stress.
Collapse
Affiliation(s)
- Dhanya T Jayaram
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | | | | | |
Collapse
|
57
|
Alinovi R, Goldoni M, Pinelli S, Ravanetti F, Galetti M, Pelosi G, De Palma G, Apostoli P, Cacchioli A, Mutti A, Mozzoni P. Titanium dioxide aggregating nanoparticles induce autophagy and under-expression of microRNA 21 and 30a in A549 cell line: A comparative study with cobalt(II, III) oxide nanoparticles. Toxicol In Vitro 2017; 42:76-85. [PMID: 28400205 DOI: 10.1016/j.tiv.2017.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/14/2017] [Accepted: 04/07/2017] [Indexed: 12/22/2022]
Abstract
The toxicity of TiO2 nanoparticles (NPs) is controversial, while it is widely accepted for Co3O4 NPs. We present a comparative study concerning the uptake of these NPs and their effect on cytoplasmic organelles and autophagy in a human lung carcinoma cell line (A549), including assays on the expression of autophagy-related microRNAs. The NP accumulation caused a fast dose- and time-dependent change of flow cytometry physical parameters particularly after TiO2 NP exposure. The intracellular levels of metals confirmed it, but the Co concentration was ten times higher than that of Ti. Both NPs caused neither necrosis nor apoptosis, but cytotoxicity was mainly evident for Co3O4 NPs in the first 72h. TiO2 NPs caused autophagy, contrarily to Co3O4 NPs. Furthermore, a significant and persistent downregulation of miRNA-21 and miRNA-30a was observed only in TiO2 NPs-treated cultures. The expression of miRNA-155 was similar for both NPs. Oxidative stress was evident only for Co3O4 NPs, while both NPs perturbed endoplasmic reticulum and p-53 expression. In conclusion, the oxidative stress caused by Co3O4 NPs can influence energy homeostasis and hamper the ability to detoxify and to repair the resulting damage, thus preventing the induction of autophagy, while TiO2 NPs elicit autophagy also under sub-toxic conditions.
Collapse
Affiliation(s)
- Rossella Alinovi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Matteo Goldoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesca Ravanetti
- Department of Medical Veterinary Sciences, Unit of Normal Veterinary Anatomy, University of Parma, Parma, Italy
| | - Maricla Galetti
- Italian Workers' Compensation Authority (INAIL) Research Center, Parma, Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giuseppe De Palma
- Section of Public Health and Human Sciences, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Pietro Apostoli
- Section of Public Health and Human Sciences, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Antonio Cacchioli
- Department of Medical Veterinary Sciences, Unit of Normal Veterinary Anatomy, University of Parma, Parma, Italy
| | - Antonio Mutti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Mozzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
58
|
Ghosh M, Öner D, Duca RC, Cokic SM, Seys S, Kerkhofs S, Van Landuyt K, Hoet P, Godderis L. Cyto-genotoxic and DNA methylation changes induced by different crystal phases of TiO 2-np in bronchial epithelial (16-HBE) cells. Mutat Res 2017; 796:1-12. [PMID: 28212500 DOI: 10.1016/j.mrfmmm.2017.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 11/28/2016] [Accepted: 01/19/2017] [Indexed: 12/21/2022]
Abstract
With the increase in use of TiO2-np, a better understanding of their safety is important. In the present study the effect of different crystal phases of TiO2-np (anatase, rutile and anatase: rutile mixture; 20-26nm) were studied for cyto-genotoxicity and global DNA methylation and hydroxymethylation. Cytotoxic response was observed at a concentration of 25μg/ml for the particles tested. Results of comet and micronucleus (with and without CytB) assays revealed significant genotoxic effect of these particles. Flow cytometry revealed cell cycle arrest in the S-phase. Based on the results, toxicity of the particles could be correlated with their physico-chemical properties (i.e. smaller size and hydrodynamic diameter and larger surface area), anatase form being the most toxic. From the results of the cyto-genotoxicity assays, concentrations were determined for the epigenetic study. Effect on global DNA methylation and hydroxymethylation levels were studied at cyto-genotoxic (25μg/ml), genotoxic (12.5μg/ml) and sub cyto-genotoxic (3.25μg/ml) concentrations using LC-MS/MS analysis. Though no significant changes were observed for 3h treatment schedule; significant hypomethylation were observed at 24h for anatase (significant at 3.25 and 25μg/ml), rutile (significant at 3.25 and 25μg/ml) and anatase: rutile mixture (significant at 25μg/ml) forms. The results suggest that epigenetic changes could occur at sub cyto-genotoxic concentrations. And hence for complete characterization of nanoparticle toxicity, epigenetic studies should be performed along with conventional toxicity testing methods.
Collapse
Affiliation(s)
- Manosij Ghosh
- K.U.Leuven, Department of Public Health and Primary Care, Centre Environment & Health, B-3000 Leuven, Belgium.
| | - Deniz Öner
- K.U.Leuven, Department of Public Health and Primary Care, Centre Environment & Health, B-3000 Leuven, Belgium
| | - Radu-Corneliu Duca
- K.U.Leuven, Department of Public Health and Primary Care, Centre Environment & Health, B-3000 Leuven, Belgium
| | - Stevan M Cokic
- Department of Oral Health Sciences, KU Leuven BIOMAT, 3000 Leuven, Belgium
| | - Sven Seys
- K.U.Leuven, Department of Immunology and Microbiology, Leuven, Belgium
| | - Stef Kerkhofs
- Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200f, Heverlee, Leuven, Belgium
| | | | - Peter Hoet
- K.U.Leuven, Department of Public Health and Primary Care, Centre Environment & Health, B-3000 Leuven, Belgium
| | - Lode Godderis
- K.U.Leuven, Department of Public Health and Primary Care, Centre Environment & Health, B-3000 Leuven, Belgium; Idewe, External Service for Prevention and Protection at Work, B-3001, Heverlee, Belgium.
| |
Collapse
|
59
|
Biola-Clier M, Beal D, Caillat S, Libert S, Armand L, Herlin-Boime N, Sauvaigo S, Douki T, Carriere M. Comparison of the DNA damage response in BEAS-2B and A549 cells exposed to titanium dioxide nanoparticles. Mutagenesis 2016; 32:161-172. [DOI: 10.1093/mutage/gew055] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
60
|
Proquin H, Rodríguez-Ibarra C, Moonen CGJ, Urrutia Ortega IM, Briedé JJ, de Kok TM, van Loveren H, Chirino YI. Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: contribution of micro and nano-sized fractions. Mutagenesis 2016; 32:139-149. [PMID: 27789654 DOI: 10.1093/mutage/gew051] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Since 1969, the European Union approves food-grade titanium dioxide (TiO2), also known as E171 colouring food additive. E171 is a mixture of micro-sized particles (MPs) and nano-sized particles (NPs). Previous studies have indicated adverse effects of oral exposure to E171, i.e. facilitation of colon tumour growth. This could potentially be partially mediated by the capacity to induce reactive oxygen species (ROS). The aim of the present study is to determine whether E171 exposure induces ROS formation and DNA damage in an in vitro model using human Caco-2 and HCT116 cells and to investigate the contribution of the separate MPs and NPs TiO2 fractions to these effects. After suspension of the particles in Hanks' balanced salt solution buffer and cell culture medium with either bovine serum albumin (BSA) or foetal bovine serum, characterization of the particles was performed by dynamic light scattering, ROS formation was determined by electron spin/paramagnetic resonance spectroscopy and DNA damage was determined by the comet and micronucleus assays. The results showed that E171, MPs and NPs are stable in cell culture medium with 0.05% BSA. The capacity for ROS generation in a cell-free environment was highest for E171, followed by NPs and MPs. Only MPs were capable to induce ROS formation in exposed Caco-2 cells. E171, MPs and NPs all induced single-strand DNA breaks. Chromosome damage was shown to be induced by E171, as tested with the micronucleus assay in HCT116 cells. In conclusion, E171 has the capability to induce ROS formation in a cell-free environment and E171, MPs and NPs have genotoxic potential. The capacity of E171 to induce ROS formation and DNA damage raises concerns about potential adverse effects associated with E171 (TiO2) in food.
Collapse
Affiliation(s)
- Héloïse Proquin
- Department of Toxicogenomics, GROW Institute of Oncology and Developmental Biology, Maastricht University, P.O. Box 616, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands,
| | - Carolina Rodríguez-Ibarra
- Unidad de Biomedicina, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autonoma de Mexico (UNAM), Estado de Mexico, Mexico and
| | - Carolyn G J Moonen
- Department of Toxicogenomics, GROW Institute of Oncology and Developmental Biology, Maastricht University, P.O. Box 616, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Ismael M Urrutia Ortega
- Unidad de Biomedicina, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autonoma de Mexico (UNAM), Estado de Mexico, Mexico and.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Estado de Mexico 04510, Mexico
| | - Jacob J Briedé
- Department of Toxicogenomics, GROW Institute of Oncology and Developmental Biology, Maastricht University, P.O. Box 616, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Theo M de Kok
- Department of Toxicogenomics, GROW Institute of Oncology and Developmental Biology, Maastricht University, P.O. Box 616, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Henk van Loveren
- Department of Toxicogenomics, GROW Institute of Oncology and Developmental Biology, Maastricht University, P.O. Box 616, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autonoma de Mexico (UNAM), Estado de Mexico, Mexico and
| |
Collapse
|
61
|
Hu X, Li D, Gao Y, Mu L, Zhou Q. Knowledge gaps between nanotoxicological research and nanomaterial safety. ENVIRONMENT INTERNATIONAL 2016; 94:8-23. [PMID: 27203780 DOI: 10.1016/j.envint.2016.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
With the wide research and application of nanomaterials in various fields, the safety of nanomaterials attracts much attention. An increasing number of reports in the literature have shown the adverse effects of nanomaterials, representing the quick development of nanotoxicology. However, many studies in nanotoxicology have not reflected the real nanomaterial safety, and the knowledge gaps between nanotoxicological research and nanomaterial safety remain large. Considering the remarkable influence of biological or environmental matrices (e.g., biological corona) on nanotoxicity, the situation of performing nanotoxicological experiments should be relevant to the environment and humans. Given the possibility of long-term and low-concentration exposure of nanomaterials, the reversibility of and adaptation to nanotoxicity, and the transgenerational effects should not be ignored. Different from common pollutants, the specific analysis methodology for nanotoxicology need development and exploration furthermore. High-throughput assay integrating with omics was highlighted in the present review to globally investigate nanotoxicity. In addition, the biological responses beyond individual levels, special mechanisms and control of nanotoxicity deserve more attention. The progress of nanotoxicology has been reviewed by previous articles. This review focuses on the blind spots in nanotoxicological research and provides insight into what we should do in future work to support the healthy development of nanotechnology and the evaluation of real nanomaterial safety.
Collapse
Affiliation(s)
- Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Dandan Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yue Gao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Li Mu
- Institute of Agro-Environmental Protection, Ministry of Agriculture, Tianjin 300191, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
62
|
Vergaro V, Aldieri E, Fenoglio I, Marucco A, Carlucci C, Ciccarella G. Surface reactivity and in vitro toxicity on human bronchial epithelial cells (BEAS-2B) of nanomaterials intermediates of the production of titania-based composites. Toxicol In Vitro 2016; 34:171-178. [DOI: 10.1016/j.tiv.2016.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 01/24/2023]
|
63
|
Brandt EG, Agosta L, Lyubartsev AP. Reactive wetting properties of TiO2 nanoparticles predicted by ab initio molecular dynamics simulations. NANOSCALE 2016; 8:13385-13398. [PMID: 27341183 DOI: 10.1039/c6nr02791a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity.
Collapse
Affiliation(s)
- Erik G Brandt
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
| | | | | |
Collapse
|
64
|
Di Bucchianico S, Cappellini F, Le Bihanic F, Zhang Y, Dreij K, Karlsson HL. Genotoxicity of TiO2 nanoparticles assessed by mini-gel comet assay and micronucleus scoring with flow cytometry. Mutagenesis 2016; 32:127-137. [PMID: 27382040 PMCID: PMC5180169 DOI: 10.1093/mutage/gew030] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The widespread production and use of nanoparticles calls for faster and more reliable methods to assess their safety. The main aim of this study was to investigate the genotoxicity of three reference TiO2 nanomaterials (NM) within the frame of the FP7-NANoREG project, with a particular focus on testing the applicability of mini-gel comet assay and micronucleus (MN) scoring by flow cytometry. BEAS-2B cells cultured under serum-free conditions were exposed to NM100 (anatase, 50–150nm), NM101 (anatase, 5–8nm) and NM103 (rutile, 20–28nm) for 3, 24 or 48h mainly at concentrations 1–30 μg/ml. In the mini-gel comet assay (eight gels per slide), we included analysis of (i) DNA strand breaks, (ii) oxidised bases (Fpg-sensitive sites) and (iii) light-induced DNA damage due to photocatalytic activity. Furthermore, MN assays were used and we compared the results of more high-throughput MN scoring with flow cytometry to that of cytokinesis-block MN cytome assay scored manually using a microscope. Various methods were used to assess cytotoxic effects and the results showed in general no or low effects at the doses tested. A weak genotoxic effect of the tested TiO2 materials was observed with an induction of oxidised bases for all three materials of which NM100 was the most potent. When the comet slides were briefly exposed to lab light, a clear induction of DNA strand breaks was observed for the anatase materials, but not for the rutile. This highlights the risk of false positives when testing photocatalytically active materials if light is not properly avoided. A slight increase in MN formation for NM103 was observed in the different MN assays at the lower doses tested (1 and 5 μg/ml). We conclude that mini-gel comet assay and MN scoring using flow cytometry successfully can be used to efficiently study cytotoxic and genotoxic properties of nanoparticles.
Collapse
Affiliation(s)
- Sebastiano Di Bucchianico
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 77 Stockholm, Sweden and
| | - Francesca Cappellini
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 77 Stockholm, Sweden and
| | - Florane Le Bihanic
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 77 Stockholm, Sweden and
| | - Yuning Zhang
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 77 Stockholm, Sweden and.,Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, School of Chemical Science and Engineering, Teknikringen 42, 100 44 Stockholm, Sweden
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 77 Stockholm, Sweden and
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 77 Stockholm, Sweden and
| |
Collapse
|
65
|
Kazimirova A, Peikertova P, Barancokova M, Staruchova M, Tulinska J, Vaculik M, Vavra I, Kukutschova J, Filip P, Dusinska M. Automotive airborne brake wear debris nanoparticles and cytokinesis-block micronucleus assay in peripheral blood lymphocytes: A pilot study. ENVIRONMENTAL RESEARCH 2016; 148:443-449. [PMID: 27131798 DOI: 10.1016/j.envres.2016.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/11/2016] [Accepted: 04/18/2016] [Indexed: 06/05/2023]
Abstract
Motor vehicle exhaust and non-exhaust processes play a significant role in environmental pollution, as they are a source of the finest particulate matter. Emissions from non-exhaust processes include wear-products of brakes, tires, automotive hardware, road surface, and traffic signs, but still are paid little attention to. Automotive friction composites for brake pads are composite materials which may consist of potentially hazardous materials and there is a lack of information regarding the potential influence of the brake wear debris (BWD) on the environment, especially on human health. Thus, we focused our study on the genotoxicity of the airborne fraction of BWD using a brake pad model representing an average low-metallic formulation available in the EU market. BWD was generated in the laboratory by a full-scale brake dynamometer and characterized by Raman microspectroscopy, scanning electron microscopy, and transmission electron microscopy showing that it contains nano-sized crystalline metal-based particles. Genotoxicity tested in human lymphocytes in different testing conditions showed an increase in frequencies of micronucleated binucleated cells (MNBNCs) exposed for 48h to BWD nanoparticles (NPs) (with 10% of foetal calf serum in culture medium) compared with lymphocytes exposed to medium alone, statistically significant only at the concentration 3µg/cm(2) (p=0.032).
Collapse
Affiliation(s)
- Alena Kazimirova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia.
| | - Pavlina Peikertova
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic; IT4Innovations, VŠB - Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
| | - Magdalena Barancokova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Marta Staruchova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Jana Tulinska
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Miroslav Vaculik
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Ivo Vavra
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic; Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 03 Bratislava, Slovakia
| | - Jana Kukutschova
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Peter Filip
- Department of Mechanical Engineering and Energy Processes, Southern Illinois University, Lincoln Drive 1263, 62901 Carbondale, USA
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2007 Kjeller, Norway
| |
Collapse
|
66
|
Zheng X, Su Y, Chen Y, Wan R, Li M, Huang H, Li X. Carbon nanotubes affect the toxicity of CuO nanoparticles to denitrification in marine sediments by altering cellular internalization of nanoparticle. Sci Rep 2016; 6:27748. [PMID: 27279546 PMCID: PMC4899749 DOI: 10.1038/srep27748] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/23/2016] [Indexed: 12/25/2022] Open
Abstract
Denitrification is an important pathway for nitrate transformation in marine sediments, and this process has been observed to be negatively affected by engineered nanomaterials. However, previous studies only focused on the potential effect of a certain type of nanomaterial on microbial denitrification. Here we show that the toxicity of CuO nanoparticles (NPs) to denitrification in marine sediments is highly affected by the presence of carbon nanotubes (CNTs). It was found that the removal efficiency of total NOX−-N (NO3−-N and NO2−-N) in the presence of CuO NPs was only 62.3%, but it increased to 81.1% when CNTs appeared in this circumstance. Our data revealed that CuO NPs were more easily attached to CNTs rather than cell surface because of the lower energy barrier (3.5 versus 36.2 kT). Further studies confirmed that the presence of CNTs caused the formation of large, incompact, non-uniform dispersed, and more negatively charged CuO-CNTs heteroaggregates, and thus reduced the nanoparticle internalization by cells, leading to less toxicity to metabolism of carbon source, generation of reduction equivalent, and activities of nitrate reductase and nitrite reductase. These results indicate that assessing nanomaterial-induced risks in real circumstances needs to consider the “mixed” effects of nanomaterials.
Collapse
Affiliation(s)
- Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinglong Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Rui Wan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Mu Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xu Li
- Department of Civil Engineering, University of Nebraska-Lincoln, 844 North 16th Street, Lincoln, Nebraska 68588-6105, United States
| |
Collapse
|
67
|
Hu G, Cun X, Ruan S, Shi K, Wang Y, Kuang Q, Hu C, Xiao W, He Q, Gao H. Utilizing G2/M retention effect to enhance tumor accumulation of active targeting nanoparticles. Sci Rep 2016; 6:27669. [PMID: 27273770 PMCID: PMC4897711 DOI: 10.1038/srep27669] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/23/2016] [Indexed: 11/21/2022] Open
Abstract
In recent years, active targeting strategies by ligand modification have emerged to enhance tumor accumulation of NP, but their clinical application was strictly restricted due to the complex preparation procedures, poor stability and serious toxicity. An effective and clinical translational strategy is required to satisfy the current problems. Interestingly, the internalization of NP is intimately related with cell cycle and the expression of receptors is not only related with cancer types but also cell cycle progression. So the cellular uptake of ligand modified NP may be related with cell cycle. However, few investigations were reported about the relationship between cell cycle and the internalization of ligand modified NP. Herein, cellular uptake of folic acid (FA) modified NP after utilizing chemotherapeutic to retain the tumor cells in G2/M phase was studied and a novel strategy was designed to enhance the active targeting effect. In our study, docetaxel (DTX) notably synchronized cells in G2/M phase and pretreatment with DTX highly improved in vitro and in vivo tumor cell targeting effect of FA decorated NP (FANP). Since FA was a most common used tumor active targeting ligand, we believe that this strategy possesses broader prospects in clinical application for its simplicity and effectiveness.
Collapse
Affiliation(s)
- Guanlian Hu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Xingli Cun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Shaobo Ruan
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Kairong Shi
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Yang Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Qifang Kuang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Chuan Hu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Wei Xiao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Qin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| |
Collapse
|
68
|
Song ZM, Wang L, Chen N, Cao A, Liu Y, Wang H. Biological effects of agglomerated multi-walled carbon nanotubes. Colloids Surf B Biointerfaces 2016; 142:65-73. [DOI: 10.1016/j.colsurfb.2016.02.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 02/15/2016] [Indexed: 11/28/2022]
|
69
|
Stoccoro A, Di Bucchianico S, Uboldi C, Coppedè F, Ponti J, Placidi C, Blosi M, Ortelli S, Costa AL, Migliore L. A panel of in vitro tests to evaluate genotoxic and morphological neoplastic transformation potential on Balb/3T3 cells by pristine and remediated titania and zirconia nanoparticles. Mutagenesis 2016; 31:511-29. [PMID: 27056944 DOI: 10.1093/mutage/gew015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The FP7 Sanowork project was aimed to minimise occupational hazard and exposure to engineered nanomaterials (ENM) through the surface modification in order to prevent possible health effects. In this frame, a number of nanoparticles (NP) have been selected, among which zirconium (ZrO2) and titanium (TiO2) dioxide. In this study, we tested ZrO2 NP and TiO2 NP either in their pristine (uncoated) form, or modified with citrate and/or silica on their surface. As benchmark material, Aeroxide® P25 was used. We assessed cytotoxicity, genotoxicity and induction of morphological neoplastic transformation of NP by using a panel of in vitro assays in an established mammalian cell line of murine origin (Balb/3T3). Cell viability was evaluated by means of colony-forming efficiency assay (CFE). Genotoxicity was investigated by cytokinesis-block micronucleus cytome assay (CBMN cyt) and comet assay, and by the use of the restriction enzymes EndoIII and Fpg, oxidatively damaged DNA was detected; finally, the morphological neoplastic transformation of NP was assayed in vitro by cell transformation assay (CTA). Our results show that the surface remediation has not been effective in modifying cyto- and genotoxic properties of the nanomaterials tested; indeed, in the case of remediation of zirconia and titania with citrate, there is a tendency to emphasise the toxic effects. The use of a panel of assays, such as those we have employed, allowing the evaluation of multiple endpoints, including cell transformation, seems particularly advisable especially in the case of long-term exposure effects in the same cell type.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Laboratory of Medical Genetics, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, Pisa 56126, Italy, Doctoral School in GeneticsOncology and Clinical MedicineDepartment of Medical BiotechnologiesUniversity of Siena, 53100 Siena, Italy
| | - Sebastiano Di Bucchianico
- Laboratory of Medical Genetics, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, Pisa 56126, Italy
| | - Chiara Uboldi
- Laboratory of Medical Genetics, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, Pisa 56126, Italy
| | - Fabio Coppedè
- Laboratory of Medical Genetics, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, Pisa 56126, Italy
| | - Jessica Ponti
- European Commission, Joint Research Centre (JRC), Institute for Health and Consumer Protection (IHCP), Nanobiosciences (NBS) Unit, via E. Fermi 2749, 21027 Ispra (VA), Italy
| | - Claudia Placidi
- Department of Pathology, Ospedale di Circolo and Department of Human Morphology, University of Insubria,via Ottorino Rossi 9, 21100 Varese, VA, Italy and
| | - Magda Blosi
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Simona Ortelli
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Anna Luisa Costa
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Lucia Migliore
- Laboratory of Medical Genetics, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, Pisa 56126, Italy,
| |
Collapse
|
70
|
Thai SF, Wallace KA, Jones CP, Ren H, Grulke E, Castellon BT, Crooks J, Kitchin KT. Differential Genomic Effects of Six Different TiO2Nanomaterials on Human Liver HepG2 Cells. J Biochem Mol Toxicol 2016; 30:331-41. [DOI: 10.1002/jbt.21798] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/21/2016] [Accepted: 01/30/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Sheau-Fung Thai
- National Health and Environmental Effects Research Laboratory; U.S. Environmental Protection Agency, Research Triangle Park; NC 27711 USA
| | - Kathleen A. Wallace
- National Health and Environmental Effects Research Laboratory; U.S. Environmental Protection Agency, Research Triangle Park; NC 27711 USA
| | - Carlton P. Jones
- National Health and Environmental Effects Research Laboratory; U.S. Environmental Protection Agency, Research Triangle Park; NC 27711 USA
| | - Hongzu Ren
- National Health and Environmental Effects Research Laboratory; U.S. Environmental Protection Agency, Research Triangle Park; NC 27711 USA
| | - Eric Grulke
- Department of Chemical & Materials Engineering; University of Kentucky; Lexington KY 40506 USA
| | - Benjamin T. Castellon
- National Health and Environmental Effects Research Laboratory; U.S. Environmental Protection Agency, Research Triangle Park; NC 27711 USA
| | - James Crooks
- National Health and Environmental Effects Research Laboratory; U.S. Environmental Protection Agency, Research Triangle Park; NC 27711 USA
| | - Kirk T. Kitchin
- National Health and Environmental Effects Research Laboratory; U.S. Environmental Protection Agency, Research Triangle Park; NC 27711 USA
| |
Collapse
|
71
|
Vranic S, Gosens I, Jacobsen NR, Jensen KA, Bokkers B, Kermanizadeh A, Stone V, Baeza-Squiban A, Cassee FR, Tran L, Boland S. Impact of serum as a dispersion agent for in vitro and in vivo toxicological assessments of TiO 2 nanoparticles. Arch Toxicol 2016; 91:353-363. [PMID: 26872950 DOI: 10.1007/s00204-016-1673-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 01/21/2016] [Indexed: 12/13/2022]
Abstract
Nanoparticles (NP) have a tendency to agglomerate after dispersion in physiological media, which can be prevented by the addition of serum. This may however result in modification of the toxic potential of particles due to the formation of protein corona. Our study aimed to analyze the role of serum that is added to improve the dispersion of 10 nm TiO2 NPs on in vitro and in vivo effects following the exposure via the respiratory route. We characterized NP size, surface charge, sedimentation rate, the presence of protein corona and the oxidant-generating capacity after NP dispersion in the presence/absence of serum. The effect of serum on NP internalization, cytotoxicity and pro-inflammatory responses was assessed in a human pulmonary cell line, NCI-H292. Serum in the dispersion medium led to a slower sedimentation, but an enhanced cellular uptake of TiO2 NPs. Despite this greater uptake, the pro-inflammatory response in NCI-H292 cells was lower after serum supplementation (used either as a dispersant or as a cell culture additive), which may be due to a reduced intrinsic oxidative potential of TiO2 NPs. Interestingly, serum could be added 2 h after the NP treatment without affecting the pro-inflammatory response. We also determined the acute pulmonary and hepatic toxicity in vivo 24 h after intratracheal instillation of TiO2 NPs in C57BL/6N mice. The use of serum resulted in an underestimation of the local acute inflammatory response in the lung, while a systemic response on glutathione reduction remained unaffected. In conclusion, serum as a dispersion agent for TiO2 NPs can lead to an underestimation of the acute pro-inflammatory response in vitro and in vivo. To avoid potential unwanted effects of dispersants and medium components, we recommend that the protocol of NM preparation should be thoroughly tested, and reflect as close as possible realistic exposure conditions.
Collapse
Affiliation(s)
- Sandra Vranic
- Univ Paris Diderot (Sorbonne Paris Cité), UMR 8251 CNRS, Unit of Functional and Adaptive Biology (BFA), Laboratory of Molecular and Cellular Responses to Xenobiotics, Univ Paris Diderot, 5 rue Thomas Mann, 75205, Paris cedex 13, France.,Nanomedicine Lab, Faculty of Medical and Human Sciences, University of Manchester, AV Hill Building, Upper Brook Street, Manchester, M13 9PT, UK
| | - Ilse Gosens
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Nicklas Raun Jacobsen
- Danish Centre for Nanosafety, National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Keld A Jensen
- Danish Centre for Nanosafety, National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Bas Bokkers
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Ali Kermanizadeh
- School of Life Sciences, Heriot-Watt University, John Muir building, Edinburgh, UK.,Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Vicki Stone
- School of Life Sciences, Heriot-Watt University, John Muir building, Edinburgh, UK
| | - Armelle Baeza-Squiban
- Univ Paris Diderot (Sorbonne Paris Cité), UMR 8251 CNRS, Unit of Functional and Adaptive Biology (BFA), Laboratory of Molecular and Cellular Responses to Xenobiotics, Univ Paris Diderot, 5 rue Thomas Mann, 75205, Paris cedex 13, France
| | - Flemming R Cassee
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Lang Tran
- Institute of Occupational Medicine, Edinburgh, UK
| | - Sonja Boland
- Univ Paris Diderot (Sorbonne Paris Cité), UMR 8251 CNRS, Unit of Functional and Adaptive Biology (BFA), Laboratory of Molecular and Cellular Responses to Xenobiotics, Univ Paris Diderot, 5 rue Thomas Mann, 75205, Paris cedex 13, France.
| |
Collapse
|
72
|
Wilson CL, Natarajan V, Hayward SL, Khalimonchuk O, Kidambi S. Mitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles. NANOSCALE 2015; 7:18477-88. [PMID: 26274697 PMCID: PMC4636459 DOI: 10.1039/c5nr03646a] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles are currently the second most produced engineered nanomaterial in the world with vast usage in consumer products leading to recurrent human exposure. Animal studies indicate significant nanoparticle accumulation in the brain while cellular toxicity studies demonstrate negative effects on neuronal cell viability and function. However, the toxicological effects of nanoparticles on astrocytes, the most abundant cells in the brain, have not been extensively investigated. Therefore, we determined the sub-toxic effect of three different TiO2 nanoparticles (rutile, anatase and commercially available P25 TiO2 nanoparticles) on primary rat cortical astrocytes. We evaluated some events related to astrocyte functions and mitochondrial dysregulation: (1) glutamate uptake; (2) redox signaling mechanisms by measuring ROS production; (3) the expression patterns of dynamin-related proteins (DRPs) and mitofusins 1 and 2, whose expression is central to mitochondrial dynamics; and (4) mitochondrial morphology by MitoTracker® Red CMXRos staining. Anatase, rutile and P25 were found to have LC50 values of 88.22 ± 10.56 ppm, 136.0 ± 31.73 ppm and 62.37 ± 9.06 ppm respectively indicating nanoparticle specific toxicity. All three TiO2 nanoparticles induced a significant loss in glutamate uptake indicative of a loss in vital astrocyte function. TiO2 nanoparticles also induced an increase in reactive oxygen species generation, and a decrease in mitochondrial membrane potential, suggesting mitochondrial damage. TiO2 nanoparticle exposure altered expression patterns of DRPs at low concentrations (25 ppm) and apoptotic fission at high concentrations (100 ppm). TiO2 nanoparticle exposure also resulted in changes to mitochondrial morphology confirmed by mitochondrial staining. Collectively, our data provide compelling evidence that TiO2 nanoparticle exposure has potential implications in astrocyte-mediated neurological dysfunction.
Collapse
Affiliation(s)
- Christina L Wilson
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, NE 68588, USA.
| | | | | | | | | |
Collapse
|
73
|
Characterisation and cytotoxic screening of metal oxide nanoparticles putative of interest to oral healthcare formulations in non-keratinised human oral mucosa cells in vitro. Toxicol In Vitro 2015; 30:402-11. [PMID: 26432707 DOI: 10.1016/j.tiv.2015.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/26/2015] [Accepted: 09/20/2015] [Indexed: 11/22/2022]
Abstract
Nanoparticles are increasingly being utilised in the innovation of consumer product formulations to improve their characteristics; however, established links between their properties, dose and cytotoxicity are not well defined. The purpose of this study was to screen four different nanomaterials of interest to oral care product development in the absence of stabilisers, alongside their respective bulk equivalents, within a non-keratinised oral epithelial cell model (H376). Particle morphology and size were characterised using scanning electron microscopy (SEM) and dynamic light scattering (DLS). The H376 model showed that zinc oxide (ZnO) was the most cytotoxic material at concentrations exceeding 0.031% w/v, as assessed using the lactate dehydrogenase (LDH) and dimethylthiazolyl-diphenyl-tetrazolium-bromide (MTT) assays. ZnO cytotoxicity does not appear to be dependent upon size of the particle; a result supported by SEM of cell-particle interactions. Differences in cytotoxicity were observed between the bulk and nanomaterial forms of hydroxyapatite and silica (SiO2); titanium dioxide (TiO2) was well tolerated in both forms at the doses tested. Overall, nano-size effects have some impact on the cytotoxicity of a material; however, these may not be as significant as chemical composition or surface properties. Our data highlights the complexities involved at the nano-scale, in both the characterisation of materials and in relation to cytotoxic properties exerted on oral epithelial cells.
Collapse
|
74
|
Moore TL, Rodriguez-Lorenzo L, Hirsch V, Balog S, Urban D, Jud C, Rothen-Rutishauser B, Lattuada M, Petri-Fink A. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev 2015; 44:6287-6305. [PMID: 26056687 DOI: 10.1039/c4cs00487f] [Citation(s) in RCA: 641] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanomaterials are finding increasing use for biomedical applications such as imaging, diagnostics, and drug delivery. While it is well understood that nanoparticle (NP) physico-chemical properties can dictate biological responses and interactions, it has been difficult to outline a unifying framework to directly link NP properties to expected in vitro and in vivo outcomes. When introduced to complex biological media containing electrolytes, proteins, lipids, etc., nanoparticles (NPs) are subjected to a range of forces which determine their behavior in this environment. One aspect of NP behavior in biological systems that is often understated or overlooked is aggregation. NP aggregation will significantly alter in vitro behavior (dosimetry, NP uptake, cytotoxicity), as well as in vivo fate (pharmacokinetics, toxicity, biodistribution). Thus, understanding the factors driving NP colloidal stability and aggregation is paramount. Furthermore, studying biological interactions with NPs at the nanoscale level requires an interdisciplinary effort with a robust understanding of multiple characterization techniques. This review examines the factors that determine NP colloidal stability, the various efforts to stabilize NP in biological media, the methods to characterize NP colloidal stability in situ, and provides a discussion regarding NP interactions with cells.
Collapse
Affiliation(s)
- Thomas L Moore
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland.
| | | | - Vera Hirsch
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland.
| | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland.
| | - Dominic Urban
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland.
| | - Corinne Jud
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland.
| | | | - Marco Lattuada
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland.
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland.
- Chemistry Department, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
75
|
Franchi LP, Manshian BB, de Souza TA, Soenen SJ, Matsubara EY, Rosolen JM, Takahashi CS. Cyto- and genotoxic effects of metallic nanoparticles in untransformed human fibroblast. Toxicol In Vitro 2015; 29:1319-31. [DOI: 10.1016/j.tiv.2015.05.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/25/2015] [Accepted: 05/16/2015] [Indexed: 02/06/2023]
|
76
|
Møller P, Hemmingsen JG, Jensen DM, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Cao Y, Kermanizadeh A, Klingberg H, Christophersen DV, Hersoug LG, Loft S. Applications of the comet assay in particle toxicology: air pollution and engineered nanomaterials exposure. Mutagenesis 2015; 30:67-83. [PMID: 25527730 DOI: 10.1093/mutage/geu035] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Exposure to ambient air particles is associated with elevated levels of DNA strand breaks (SBs) and endonuclease III, formamidopyrimidine DNA glycosylase (FPG) and oxoguanine DNA glycosylase-sensitive sites in cell cultures, animals and humans. In both animals and cell cultures, increases in SB and in oxidatively damaged DNA are seen after exposure to a range of engineered nanomaterials (ENMs), including carbon black, carbon nanotubes, fullerene C60, ZnO, silver and gold. Exposure to TiO2 has generated mixed data with regard to SB and oxidatively damaged DNA in cell cultures. Nanosilica does not seem to be associated with generation of FPG-sensitive sites in cell cultures, while large differences in SB generation between studies have been noted. Single-dose airway exposure to nanosized carbon black and multi-walled carbon nanotubes in animal models seems to be associated with elevated DNA damage levels in lung tissue in comparison to similar exposure to TiO2 and fullerene C60. Oral exposure has been associated with augmented DNA damage levels in cells of internal organs, although the doses have been typically very high. Intraveneous and intraperitoneal injection of ENMs have shown contradictory results dependent on the type of ENM and dose in each set of experiments. In conclusion, the exposure to both combustion-derived particles and ENMs is associated with increased levels of DNA damage in the comet assay. Particle size, composition and crystal structure of ENM are considered important determinants of toxicity, whereas their combined contributions to genotoxicity in the comet assay are yet to be thoroughly investigated.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Jette Gjerke Hemmingsen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Ditte Marie Jensen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Pernille Høgh Danielsen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Dorina Gabriela Karottki
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Kim Jantzen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Yi Cao
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Ali Kermanizadeh
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Henrik Klingberg
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Daniel Vest Christophersen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Lars-Georg Hersoug
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Steffen Loft
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| |
Collapse
|
77
|
Sha B, Gao W, Cui X, Wang L, Xu F. The potential health challenges of TiO2nanomaterials. J Appl Toxicol 2015; 35:1086-101. [DOI: 10.1002/jat.3193] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/10/2015] [Accepted: 05/10/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Baoyong Sha
- School of Basic Medical Science; Xi'an Medical University; Xi'an 710021 China
- Bioinspired Engineering & Biomechanics Center (BEBC); Xi'an Jiaotong University; Xi'an 710049 China
| | - Wei Gao
- Department of Anesthesiology; the First Affiliated Hospital of Xi'an Jiaotong University Health Science Center; Xi'an 710061 China
| | - Xingye Cui
- Bioinspired Engineering & Biomechanics Center (BEBC); Xi'an Jiaotong University; Xi'an 710049 China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
| | - Lin Wang
- Bioinspired Engineering & Biomechanics Center (BEBC); Xi'an Jiaotong University; Xi'an 710049 China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
| | - Feng Xu
- Bioinspired Engineering & Biomechanics Center (BEBC); Xi'an Jiaotong University; Xi'an 710049 China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
| |
Collapse
|
78
|
Corradi S, Dakou E, Yadav A, Thomassen LCJ, Kirsch-Volders M, Leyns L. Morphological observation of embryoid bodies completes the in vitro evaluation of nanomaterial embryotoxicity in the embryonic stem cell test (EST). Toxicol In Vitro 2015; 29:1587-96. [PMID: 26093180 DOI: 10.1016/j.tiv.2015.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/25/2015] [Accepted: 06/16/2015] [Indexed: 01/13/2023]
Abstract
The wide and frequent use of engineered nanomaterials (NMs) raises serious concerns about their safety for human health. Our aim is to evaluate the embryotoxic potential of silver, uncoated and coated zinc oxide, titanium dioxide and silica NMs through the embryonic stem cell test (EST). EST is a validated in vitro assay that permits classification of chemicals into three classes (non, weakly or strongly embryotoxic). Because of the peculiar physico-chemical characteristics of NMs, we first adapted and simplified the differentiation protocol. To verify the efficiency of this adapted protocol we screened 3 well-characterized chemicals (5-fluorouracil, hydroxyurea and saccharin). Next, we assessed the embryotoxic potential of NMs. Our data showed that silver NM is classified as a strong embryotoxic compound, while coated and uncoated zinc oxide, titanium and silica NMs as weak embryotoxic compounds. In addition, we observed daily the formation and growth of embryoid bodies (EBs). We showed that multiple EBs formed in each well starting from 50 μg/ml of SiO2 while EB formation was inhibited starting from 20 μg/ml of ZnO NMs. This has never been reported with chemicals and could pose a risk of wrongly evaluating the NMs embryotoxic potential. For NMs, morphological observation of EBs can provide valuable information on early differentiation effects. Finally, we suggest that the prediction model should be revised for the assessment of NMs embryotoxicity.
Collapse
Affiliation(s)
- Sara Corradi
- Laboratory of Cell Genetics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Eleni Dakou
- Laboratory of Cell Genetics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Ajay Yadav
- Laboratory of Cell Genetics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Leen C J Thomassen
- Lab4U, Katholieke Universiteit Leuven campus Diepenbeek, Agoralaan gebouw B, 3590 Diepenbeek, Belgium
| | | | - Luc Leyns
- Laboratory of Cell Genetics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium.
| |
Collapse
|
79
|
Zijno A, De Angelis I, De Berardis B, Andreoli C, Russo MT, Pietraforte D, Scorza G, Degan P, Ponti J, Rossi F, Barone F. Different mechanisms are involved in oxidative DNA damage and genotoxicity induction by ZnO and TiO2 nanoparticles in human colon carcinoma cells. Toxicol In Vitro 2015; 29:1503-12. [PMID: 26079941 DOI: 10.1016/j.tiv.2015.06.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/27/2015] [Accepted: 06/12/2015] [Indexed: 11/17/2022]
Abstract
In this work we investigated the genotoxicity of zinc oxide and titanium dioxide nanoparticles (ZnO NPs; TiO2 NPs) induced by oxidative stress on human colon carcinoma cells (Caco-2 cells). We measured free radical production in acellular conditions by Electron Paramagnetic Resonance technique and genotoxicity by micronucleus and Comet assays. Oxidative DNA damage was assessed by modified Comet assay and by measuring 8-oxodG steady state levels. The repair kinetics of DNA oxidation as well as the expression levels of hOGG1 were also analyzed. Even if both NPs were able to produce ROS in acellular conditions and to increase 8-oxodG levels in Caco-2 cells, only ZnO NPs resulted genotoxic inducing micronuclei and DNA damage. Furthermore, Caco-2 cells exposed to ZnO NPs were not able to repair the oxidative DNA damage that was efficiently repaired after TiO2 NPs treatment, through OGG1 involvement. These results indicate that the high oxidant environment caused by ZnO NPs in our cellular model can induce DNA damage and affect the repair pathways.
Collapse
Affiliation(s)
- Andrea Zijno
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma, Italy
| | - Isabella De Angelis
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma, Italy
| | - Barbara De Berardis
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma, Italy
| | - Cristina Andreoli
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma, Italy
| | - Maria Teresa Russo
- National Center for Chemicals, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma, Italy
| | - Donatella Pietraforte
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma, Italy
| | - Giuseppe Scorza
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma, Italy
| | - Paolo Degan
- S.C. Mutagenesis, IRCCS AOU San Martino, IST (Istituto Nazionale per la Ricerca sul Cancro), CBA Torre A2, L.go R. Benzi 10, Genova, Italy
| | - Jessica Ponti
- European Commission, Joint Research Centre (JRC), Institute for Health and Consumer Protection, Nanobiosciences Unit, Ispra, VA, Italy
| | - Francois Rossi
- European Commission, Joint Research Centre (JRC), Institute for Health and Consumer Protection, Nanobiosciences Unit, Ispra, VA, Italy
| | - Flavia Barone
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma, Italy.
| |
Collapse
|
80
|
Karlsson HL, Di Bucchianico S, Collins AR, Dusinska M. Can the comet assay be used reliably to detect nanoparticle-induced genotoxicity? ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:82-96. [PMID: 25488706 DOI: 10.1002/em.21933] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/17/2014] [Indexed: 06/04/2023]
Abstract
The comet assay is a sensitive method to detect DNA strand breaks as well as oxidatively damaged DNA at the level of single cells. Today the assay is commonly used in nano-genotoxicology. In this review we critically discuss possible interactions between nanoparticles (NPs) and the comet assay. Concerns for such interactions have arisen from the occasional observation of NPs in the "comet head", which implies that NPs may be present while the assay is being performed. This could give rise to false positive or false negative results, depending on the type of comet assay endpoint and NP. For most NPs, an interaction that substantially impacts the comet assay results is unlikely. For photocatalytically active NPs such as TiO2 , on the other hand, exposure to light containing UV can lead to increased DNA damage. Samples should therefore not be exposed to such light. By comparing studies in which both the comet assay and the micronucleus assay have been used, a good consistency between the assays was found in general (69%); consistency was even higher when excluding studies on TiO2 NPs (81%). The strong consistency between the comet and micronucleus assays for a range of different NPs-even though the two tests measure different endpoints-implies that both can be trusted in assessing the genotoxicity of NPs, and that both could be useful in a standard battery of test methods.
Collapse
Affiliation(s)
- Hanna L Karlsson
- Nanosafety and Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
81
|
Medina-Reyes EI, Bucio-López L, Freyre-Fonseca V, Sánchez-Pérez Y, García-Cuéllar CM, Morales-Bárcenas R, Pedraza-Chaverri J, Chirino YI. Cell cycle synchronization reveals greater G2/M-phase accumulation of lung epithelial cells exposed to titanium dioxide nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3976-3982. [PMID: 25422119 DOI: 10.1007/s11356-014-3871-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/16/2014] [Indexed: 06/04/2023]
Abstract
Titanium dioxide has been classified in the 2B group as a possible human carcinogen by the International Agency for Research on Cancer, and amid concerns of its exposure, cell cycle alterations are an important one. However, several studies show inconclusive effects, mainly because it is difficult to compare cell cycle effects caused by TiO2 nanoparticle (NP) exposure between different shapes and sizes of NP, cell culture types, and time of exposure. In addition, cell cycle is frequently analyzed without cell cycle synchronization, which may also mask some effects. We hypothesized that synchronization after TiO2 NP exposure could reveal dissimilar cell cycle progression when compared with unsynchronized cell population. To test our hypothesis, we exposed lung epithelial cells to 1 and 10 μg/cm(2) TiO2 NPs for 7 days and one population was synchronized by serum starvation and inhibition of ribonucleotide reductase using hydroxyurea. Another cell population was exposed to TiO2 NPs under the same experimental conditions, but after treatments, cell cycle was analyzed without synchronization. Our results showed that TiO2 NP-exposed cells without synchronization had no changes in cell cycle distribution; however, cell population synchronized after 1 and 10 μg/cm(2) TiO2 NP treatment showed a 1.5-fold and 1.66-fold increase, respectively, in proliferation. Synchronized cells also reveal a faster capability of TiO2 NP-exposed cells to increase cell population in the G2/M phase in the following 9 h after synchronization. We conclude that synchronization discloses a greater percentage of cells in the G2/M phase and higher proliferation than TiO2 NP-synchronized cells.
Collapse
Affiliation(s)
- Estefany I Medina-Reyes
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, CP 54059, Estado de México, México
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Golbamaki N, Rasulev B, Cassano A, Marchese Robinson RL, Benfenati E, Leszczynski J, Cronin MTD. Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. NANOSCALE 2015; 7:2154-98. [PMID: 25580680 DOI: 10.1039/c4nr06670g] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanotechnology has rapidly entered into human society, revolutionized many areas, including technology, medicine and cosmetics. This progress is due to the many valuable and unique properties that nanomaterials possess. In turn, these properties might become an issue of concern when considering potentially uncontrolled release to the environment. The rapid development of new nanomaterials thus raises questions about their impact on the environment and human health. This review focuses on the potential of nanomaterials to cause genotoxicity and summarizes recent genotoxicity studies on metal oxide/silica nanomaterials. Though the number of genotoxicity studies on metal oxide/silica nanomaterials is still limited, this endpoint has recently received more attention for nanomaterials, and the number of related publications has increased. An analysis of these peer reviewed publications over nearly two decades shows that the test most employed to evaluate the genotoxicity of these nanomaterials is the comet assay, followed by micronucleus, Ames and chromosome aberration tests. Based on the data studied, we concluded that in the majority of the publications analysed in this review, the metal oxide (or silica) nanoparticles of the same core chemical composition did not show different genotoxicity study calls (i.e. positive or negative) in the same test, although some results are inconsistent and need to be confirmed by additional experiments. Where the results are conflicting, it may be due to the following reasons: (1) variation in size of the nanoparticles; (2) variations in size distribution; (3) various purities of nanomaterials; (4) variation in surface areas for nanomaterials with the same average size; (5) differences in coatings; (6) differences in crystal structures of the same types of nanomaterials; (7) differences in size of aggregates in solution/media; (8) differences in assays; (9) different concentrations of nanomaterials in assay tests. Indeed, due to the observed inconsistencies in the recent literature and the lack of adherence to appropriate, standardized test methods, reliable genotoxicity assessment of nanomaterials is still challenging.
Collapse
Affiliation(s)
- Nazanin Golbamaki
- Laboratory of Environmental Chemistry and Toxicology at the Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
83
|
Effect of particle agglomeration in nanotoxicology. Arch Toxicol 2015; 89:659-75. [PMID: 25618546 DOI: 10.1007/s00204-015-1460-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/08/2015] [Indexed: 12/27/2022]
Abstract
The emission of engineered nanoparticles (ENPs) into the environment in increasing quantity and variety raises a general concern regarding potential effects on human health. Compared with soluble substances, ENPs exhibit additional dimensions of complexity, that is, they exist not only in various sizes, shapes and chemical compositions but also in different degrees of agglomeration. The effect of the latter is the topic of this review in which we explore and discuss the role of agglomeration on toxicity, including the fate of nanomaterials after their release and the biological effects they may induce. In-depth investigations of the effect of ENP agglomeration on human health are still rare, but it may be stated that outside the body ENP agglomeration greatly reduces human exposure. After uptake, agglomeration of ENPs reduces translocation across primary barriers such as lungs, skin or the gastrointestinal tract, preventing exposure of "secondary" organs. In analogy, also cellular ENP uptake and intracellular distribution are affected by agglomeration. However, agglomeration may represent a risk factor if it occurs after translocation across the primary barriers, and ENPs are able to accumulate within the tissue and thus reduce clearance efficiency.
Collapse
|
84
|
Demir E, Akça H, Turna F, Aksakal S, Burgucu D, Kaya B, Tokgün O, Vales G, Creus A, Marcos R. Genotoxic and cell-transforming effects of titanium dioxide nanoparticles. ENVIRONMENTAL RESEARCH 2015; 136:300-308. [PMID: 25460650 DOI: 10.1016/j.envres.2014.10.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/16/2014] [Accepted: 10/27/2014] [Indexed: 06/04/2023]
Abstract
The in vitro genotoxic and the soft-agar anchorage independent cell transformation ability of titanium dioxide nanoparticles (nano-TiO2) and its microparticulated form has been evaluated in human embryonic kidney (HEK293) and in mouse embryonic fibroblast (NIH/3T3) cells. Nano-TiO2 of two different sizes (21 and 50 nm) were used in this study. The comet assay, with and without the use of FPG enzyme, the micronucleus assay and the soft-agar colony assay were used. For both the comet assay and the frequency of micronuclei a statistically significant induction of DNA damage, was observed at the highest dose tested (1000 µg/mL). No oxidative DNA damage induction was observed when the comet assay was complemented with the use of FPG enzyme. Furthermore, long-term exposure to nano-TiO2 has also proved to induce cell-transformation promoting cell-anchorage independent growth in soft-agar. Results were similar for the two nano-TiO2 sizes. Negative results were obtained when the microparticulated form of TiO2 was tested, indicating the existence of important differences between the microparticulated and nanoparticulated forms. As a conclusion it should be indicated that the observed genotoxic/tranforming effects were only detected at the higher dose tested (1000 µg/mL) what play down the real risk of environmental exposures to this nanomaterial.
Collapse
Affiliation(s)
- Eşref Demir
- Akdeniz University, Faculty of Sciences, Department of Biology, 07058 Antalya, Turkey; Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Hakan Akça
- Medical Biology Department, School of Medicine, Pamukkale University, Kinikli, Denizli, Turkey
| | - Fatma Turna
- Akdeniz University, Faculty of Sciences, Department of Biology, 07058 Antalya, Turkey
| | - Sezgin Aksakal
- Akdeniz University, Faculty of Sciences, Department of Biology, 07058 Antalya, Turkey
| | - Durmuş Burgucu
- Antalya Technopark Babylife Cord Blood Bank and Stem Cell Research Center, 07058 Antalya, Turkey
| | - Bülent Kaya
- Akdeniz University, Faculty of Sciences, Department of Biology, 07058 Antalya, Turkey
| | - Onur Tokgün
- Medical Biology Department, School of Medicine, Pamukkale University, Kinikli, Denizli, Turkey
| | - Gerard Vales
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Amadeu Creus
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Spain; CIBER Epidemiología y Salud Pública, ISCIII, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Spain; CIBER Epidemiología y Salud Pública, ISCIII, Spain.
| |
Collapse
|
85
|
Alinovi R, Goldoni M, Pinelli S, Campanini M, Aliatis I, Bersani D, Lottici PP, Iavicoli S, Petyx M, Mozzoni P, Mutti A. Oxidative and pro-inflammatory effects of cobalt and titanium oxide nanoparticles on aortic and venous endothelial cells. Toxicol In Vitro 2014; 29:426-37. [PMID: 25526690 DOI: 10.1016/j.tiv.2014.12.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 11/17/2022]
Abstract
Ultra-fine particles have recently been included among the risk factors for the development of endothelium inflammation and atherosclerosis, and cobalt (CoNPs) and titanium oxide nanoparticles (TiNPs) have attracted attention because of their wide range of applications. We investigated their toxicity profiles in two primary endothelial cell lines derived from human aorta (HAECs) and human umbilical vein (HUVECs) by comparing cell viability, oxidative stress, the expression of adhesion molecules and the release of chemokines during NP exposure. Both NPs were very rapidly internalised, and significantly increased adhesion molecule (ICAM-1, VCAM-1, E-selectin) mRNA and protein levels and the release of monocyte chemoattractant protein-1 (MCP-1) and interleukin 8 (IL-8). However, unlike the TiNPs, the CoNPs also induced time- and concentration-dependent metabolic impairment and oxidative stress without any evident signs of cell death or the induction of apoptosis. There were differences between the HAECs and HUVECs in terms of the extent of oxidative stress-related enzyme and vascular adhesion molecule expression, ROS production, and pro-inflammatory cytokine release despite the similar rate of NP internalisation, thus indicating endothelium heterogeneity in response to exogenous stimuli. Our data indicate that NPs can induce endothelial inflammatory responses via various pathways not involving only oxidative stress.
Collapse
Affiliation(s)
- Rossella Alinovi
- Department of Clinical and Experimental Medicine, University of Parma, Italy
| | - Matteo Goldoni
- Department of Clinical and Experimental Medicine, University of Parma, Italy.
| | - Silvana Pinelli
- Department of Clinical and Experimental Medicine, University of Parma, Italy
| | | | - Irene Aliatis
- Department of Physics and Earth Sciences, University of Parma, Italy
| | - Danilo Bersani
- Department of Physics and Earth Sciences, University of Parma, Italy
| | | | - Sergio Iavicoli
- Italian Workers' Compensation Authority (INAIL), Research Area, Department of Occupational Hygiene, Rome, Italy
| | - Marta Petyx
- Italian Workers' Compensation Authority (INAIL), Research Area, Department of Occupational Hygiene, Rome, Italy
| | - Paola Mozzoni
- Department of Clinical and Experimental Medicine, University of Parma, Italy; Italian Workers' Compensation Authority (INAIL), Research Center at the University of Parma, Italy
| | - Antonio Mutti
- Department of Clinical and Experimental Medicine, University of Parma, Italy
| |
Collapse
|
86
|
Surface hydroxyl groups direct cellular response on amorphous and anatase TiO 2 nanodots. Colloids Surf B Biointerfaces 2014; 123:68-74. [DOI: 10.1016/j.colsurfb.2014.08.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/01/2014] [Accepted: 08/24/2014] [Indexed: 01/01/2023]
|
87
|
Vidic J, Haque F, Guigner JM, Vidy A, Chevalier C, Stankic S. Effects of water and cell culture media on the physicochemical properties of ZnMgO nanoparticles and their toxicity toward mammalian cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11366-11374. [PMID: 25184703 DOI: 10.1021/la501479p] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
ZnMgO nanoparticles have shown potential for medical applications as an efficient antibacterial agent. In this work, we investigate the effect of water and two commonly used cell culture media on the physicochemical properties of ZnMgO nanoparticles in correlation with their cytotoxicity. In vacuum, ZnMgO nanopowder consists of MgO (nanocubes) and ZnO (nanotetrapods and nanorods) particles. Upon exposure to water or the Luria-Bertani solution, ZnO characteristic shapes were not observable while MgO nanocubes transformed into octahedral form. In addition, water caused morphological alternations in form of disordered and fragmented structures. This effect was directly reflected in UV/vis absorption properties of ZnMgO, implying that formation of new states within the band gap of ZnO and redistribution of specific sites on MgO surfaces occurs in the presence of water. In mammalian culture cell medium, ZnMgO nanoparticles were shapeless, agglomerated, and coated with surrounding proteins. Serum albumin was found to adsorb as a major but not the only protein. Adsorbed albumin mainly preserved its α-helix secondary structure. Finally, the cytotoxicity of ZnMgO was shown to strongly depend on the environment: in the presence of serum proteins ZnMgO nanopowder was found to be safe for mammalian cells while highly toxic in a serum-free medium or a medium containing only albumin. Our results demonstrate that nanostructured ZnMgO reaches living cells with modified morphology and surface structure when compared to as-synthesized particles kept in vacuum. In addition, its biocompatibility can be modulated by proteins from biological environment.
Collapse
Affiliation(s)
- Jasmina Vidic
- Virologie et Immunologie Moléculaires, Institut de la Recherche Agronomique, UR 892, Bât. Biotechnologies, Jouy en Josas F-78350, France
| | | | | | | | | | | |
Collapse
|
88
|
Vales G, Rubio L, Marcos R. Long-term exposures to low doses of titanium dioxide nanoparticles induce cell transformation, but not genotoxic damage in BEAS-2B cells. Nanotoxicology 2014; 9:568-78. [PMID: 25238462 DOI: 10.3109/17435390.2014.957252] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There is a great interest in a better knowledge of the health effects caused by nanomaterials exposures and, in particular to those induced by titanium dioxide nanoparticles (nano-TiO2) due to its high use and increasing presence in the environment. To add new information on its potential genotoxic/carcinogenic risk, we have carried out experiments using chronic exposures (up to 4 weeks), low doses, and the BEAS-2B cell line that, as a human bronchial epithelium cells, can be considered a good cell target. Cell uptake has been assessed by transmission electron microscopy (TEM) and flow cytometry (FC); genotoxicity was evaluated using the comet and the micronucleus (MN) assays; and cell-transforming ability was evaluated using the soft-agar assay to detect anchorage-independent cell growth. Results show an important cell uptake at all the tested doses and sampling times used (except for 1 µg/mL and 24-h exposure). Nevertheless, no genotoxic effects were observed in the comet and in the MN assays. This lack of genotoxic effect agrees with the FC results showing no induction of intracellular reactive oxygen species (ROS), the data from the comet assay with formamidopyrimidine DNA glycosylase (FPG) enzyme showing no induction of oxidized bases, and the lack of induction of expression of heme-oxygenase (HO-1) gene both at the RNA and protein level. On the contrary, significant increases in the number of clones growing in an anchorage-independent way were observed. This study would indicate a potential carcinogenic risk associated to nano-TiO2 exposure, not mediated by a genotoxic mechanism.
Collapse
Affiliation(s)
- Gerard Vales
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona , Bellaterra , Spain , and
| | | | | |
Collapse
|
89
|
Ursini CL, Cavallo D, Fresegna AM, Ciervo A, Maiello R, Tassone P, Buresti G, Casciardi S, Iavicoli S. Evaluation of cytotoxic, genotoxic and inflammatory response in human alveolar and bronchial epithelial cells exposed to titanium dioxide nanoparticles. J Appl Toxicol 2014; 34:1209-19. [PMID: 25224607 DOI: 10.1002/jat.3038] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/16/2014] [Accepted: 05/26/2014] [Indexed: 12/21/2022]
Abstract
The toxicity of titanium dioxide nanoparticles (TiO2 -NPs), used in several applications, seems to be influenced by their specific physicochemical characteristics. Cyto-genotoxic and inflammatory effects induced by a mixture of 79% anatase/21% rutile TiO2 -NPs were investigated in human alveolar (A549) and bronchial (BEAS-2B) cells exposed to 1-40 µg ml(-1) 30 min, 2 and 24 h to assess potential pulmonary toxicity. The specific physicochemical properties such as crystallinity, NP size and shape, agglomerate size, surface charge and specific surface area (SSA) were analysed. Cytotoxic effects were studied by evaluating cell viability using the WST1 assay and membrane damage using LDH analysis. Direct/oxidative DNA damage was assessed by the Fpg-comet assay and the inflammatory potential was evaluated as interleukin (IL)-6, IL-8 and tumour necrosis factor (TNF)-α release by enzyme-linked immunosorbant assay (ELISA). In A549 cells no significant viability reduction and moderate membrane damage, only at the highest concentration, were detected, whereas BEAS-2B cells showed a significant viability reduction and early membrane damage starting from 10 µg ml(-1) . Direct/oxidative DNA damage at 40 µg ml(-1) and increased IL-6 release at 5 µg ml(-1) were found only in A549 cells after 2 h. The secretion of pro-inflammatory cytokine IL-6, involved in the early acute inflammatory response, and oxidative DNA damage indicate the promotion of early and transient oxidative-inflammatory effects of tested TiO2 -NPs on human alveolar cells. The findings show a higher susceptibility of normal bronchial cells to cytotoxic effects and higher responsiveness of transformed alveolar cells to genotoxic, oxidative and early inflammatory effects induced by tested TiO2 -NPs. This different cell behaviour after TiO2 -NPs exposure suggests the use of both cell lines and multiple end-points to elucidate NP toxicity on the respiratory system.
Collapse
Affiliation(s)
- Cinzia Lucia Ursini
- INAIL - Italian Workers' Compensation Authority - Research Area, Department of Occupational Medicine, via Fontana Candida 1, 00040, Monteporzio Catone, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Nanoparticle size matters in the formation of plasma protein coronas on Fe3O4 nanoparticles. Colloids Surf B Biointerfaces 2014; 121:354-61. [DOI: 10.1016/j.colsurfb.2014.06.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 11/24/2022]
|
91
|
Prasad RY, Simmons SO, Killius MG, Zucker RM, Kligerman AD, Blackman CF, Fry RC, Demarini DM. Cellular interactions and biological responses to titanium dioxide nanoparticles in HepG2 and BEAS-2B cells: role of cell culture media. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:336-342. [PMID: 24446152 DOI: 10.1002/em.21848] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 12/13/2013] [Accepted: 12/18/2013] [Indexed: 06/03/2023]
Abstract
We showed previously that exposure of human lung cells (BEAS-2B) to TiO2 nanoparticles (nano-TiO2 ) produced micronuclei (MN) only when the final concentration of protein in the cell-culture medium was at least 1%. Nanoparticles localize in the liver; thus, we exposed human liver cells (HepG2) to nano-TiO2 and found the same requirement for MN induction. Nano-TiO2 also formed small agglomerates in medium containing as little as 1% protein and caused cellular interaction as measured by side scatter by flow cytometry and DNA damage (comet assay) in HepG2 cells. Nano-TiO2 also increased the activity of the inflammatory factor NFkB but not of AP1 in a reporter-gene HepG2 cell line. Suspension of nano-TiO2 in medium containing 0.1% protein was sufficient for induction of MN by the nanoparticles in either BEAS-2B or HepG2 cells as long the final concentration of protein in the cell-culture medium was at least 1%.
Collapse
Affiliation(s)
- Raju Y Prasad
- Student Services Contractor, U.S. Environmental Protection Agency, Research Triangle, North Carolina; Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Chen T, Yan J, Li Y. Genotoxicity of titanium dioxide nanoparticles. J Food Drug Anal 2014; 22:95-104. [PMID: 24673907 PMCID: PMC9359145 DOI: 10.1016/j.jfda.2014.01.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/16/2013] [Accepted: 12/21/2013] [Indexed: 11/01/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2-NPs, <100 nm) are increasingly being used in pharmaceuticals and cosmetics due to the unique properties derived from their small sizes. However, their large surface-area to mass ratio and high redox potential may negatively impact human health and the environment. TiO2-NPs can cause inflammation, pulmonary damage, fibrosis, and lung tumors and they are possibly carcinogenic to humans. Because cancer is a disease involving mutation, there are a large number of studies on the genotoxicity of TiO2-NPs. In this article, we review the results that have been reported in the literature, with a focus on data generated from the standard genotoxicity assays. The data include genotoxicity results from the Ames test, in vitro and in vivo Comet assay, in vitro and in vivo micronucleus assay, sister chromatid exchange assay, mammalian cell hypoxanthine-guanine phosphoribosyl transferase gene assay, the wing somatic mutation and recombination assay, and the mouse phosphatidylinositol glycan, class A gene assay. Inconsistent results have been found in these assays, with both positive and negative responses being reported. The in vitro systems for assessing the genotoxicity of TiO2-NPs have generated a greater number of positive results than the in vivo systems, and tests for DNA and chromosome damage have produced more positive results than the assays measuring gene mutation. Nearly all tests for measuring the mutagenicity of TiO2-NPs were negative. The current data indicate that the genotoxicity of TiO2-NPs is mediated mainly through the generation of oxidative stress in cells.
Collapse
|
93
|
Jin S, Wang Y, Zhu H, Wang Y, Zhao S, Zhao M, Liu J, Wu J, Gao W, Peng S. Nanosized aspirin-Arg-Gly-Asp-Val: delivery of aspirin to thrombus by the target carrier Arg-Gly-Asp-Val tetrapeptide. ACS NANO 2013; 7:7664-73. [PMID: 23931063 DOI: 10.1021/nn402171v] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Resistance and nonresponse to aspirin dramatically decreases its therapeutic efficacy. To overcome this issue, a small-molecule thrombus-targeting drug delivery system, aspirin-Arg-Gly-Asp-Val (A-RGDV), is developed by covalently linking Arg-Gly-Asp-Val tetrapeptide with aspirin. The 2D ROESY NMR and ESI-MS spectra support a molecular model of an A-RGDV tetramer. Transmission electron microscopy images suggest that the tetramer spontaneously assembles to nanoparticles (ranging from 5 to 50 nm in diameter) in water. Scanning electron microscopy images and atomic force microscopy images indicate that the smaller nanoparticles of A-RGDV further assemble to bigger particles that are stable in rat blood. The delivery investigation implies that in rat blood A-RGDV is able to keep its molecular integrity, while in a thrombus it releases aspirin. The in vitro antiplatelet aggregation assay suggests that A-RGDV selectively inhibits arachidonic acid induced platelet aggregation. The mechanisms of action probably include releasing aspirin, modifying cyclic oxidase, and decreasing the expression of GPIIb/IIIa. The in vivo assay demonstrates that the effective antithrombotic dose of A-RGDV is 16700-fold lower than the nonresponsive dose of aspirin.
Collapse
Affiliation(s)
- Shaoming Jin
- College of Pharmaceutical Sciences, Capital Medical University , Beijing 100069, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|