51
|
Khatoon N, Chu MQ, Zhou CH. Nanoclay-based drug delivery systems and their therapeutic potentials. J Mater Chem B 2021; 8:7335-7351. [PMID: 32687134 DOI: 10.1039/d0tb01031f] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Safe, therapeutically effective, and patient-compliant drug delivery systems are needed to design novel tools and strategies to combat the deadliest of diseases such as cancer, SARS, H7N9 avian influenza, and dengue infection. The major challenges in drug delivery are cytotoxicity, poor biodistribution, insufficient functionality, ineffective drug incorporation in delivery devices, and subsequent drug release. Clay minerals are a class of nanolayered silicates that have good biocompatibility, high specific surface area, chemical inertness, colloid, and thixotropy, and are attractive practical and potential nanomaterials in medicine. These properties enable the usage of nanoclays as drug carriers for the delivery of antibiotics, antihypertensive drugs, anti-psychotic, and anticancer drugs. The review examines the latest advances in nanoclay-based drug delivery systems and related applications in gene therapy and tissue engineering. Clay minerals, particularly montmorillonite, kaolinite, and halloysite are used to delay and/or target drug release or even improve drug dissolution due to their surface charge. Chemical modification of clay minerals such as intercalation of ions into the interlayer space of clay minerals or surface modification of clay minerals is a strategy to tune the properties of nanoclays for the loading and release of a drug. The modified nanoclay can take up drugs by encapsulation, immobilization, ion exchange reaction, or electrostatic interactions. Controlled drug release from the drug-clay originates from the incorporation and interactions between the drug and inorganic layers, including electrostatic interactions and hydrogen bonding. Montmorillonite has proven non-toxic through hematological, biochemical, and histopathological analyses in rat. Montmorillonite can also act as a potent detoxifier. Halloysite nanotubes can bind synthetic and biological components such as chitosan, gelatin, and alginate innate nanocarriers for the improved loading and controlled release of drugs, proteins, and DNA. The peculiar properties of clay nanoparticles lead to promising applications in drug delivery, gene delivery, tissue engineering, cancer and stem cell isolation, and bioimaging.
Collapse
Affiliation(s)
- Nafeesa Khatoon
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | | | | |
Collapse
|
52
|
Gong M, Yue L, Kong J, Lin X, Zhang L, Wang J, Wang D. Knittable and Sewable Spandex Yarn with Nacre-Mimetic Composite Coating for Wearable Health Monitoring and Thermo- and Antibacterial Therapies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9053-9063. [PMID: 33583174 DOI: 10.1021/acsami.1c00864] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The emerging personal healthcare has significantly propelled the development of advanced wearable electronics with novel functions of providing diagnostic information and point-of-care therapies for specific diseases. However, it is still challenging to simultaneously achieve high sensitivity for health biomonitoring and multifunction integration for point-of-care therapies in a one single flexible, lightweight yet robust fiber-based device. Here, a knittable and sewable spandex yarn with conductive nacre-mimetic composite coating has been developed through an alternant dip-coating method employing MXene nanosheets as the "brick" and polydopamine (PDA)/Ni2+ as the "mortar". The resultant spandex yarn coating with MXene/PDA/Ni2+ (MPNi@Spandex) can be assembled as a strain sensor with high sensitivity (up to 5.7 × 104 for the gauge factor), wide sensing range (∼61.2%), and low detection limit (0.11%) to monitor the biological activities of the human body. Furthermore, MPNi@Spandex displays great potential to give on-demand thermotherapy by virtue of the fast response to near-infrared irradiation, controllable surface temperature, and applicability even under sewing conditions. In addition, MPNi@Spandex knitted textiles demonstrate a strong antibacterial effect due to the sharp edges, anionic, and hydrophilic nature of MXene nanosheets. Remarkably, near-infrared irradiation further improves the bacteria-killing efficiency of an MPNi@Spandex knitted textile to more than 99.9%. This work paves the way for the design of multifunctional wearable electronics with an all-in-one theranostic platform for personal healthcare.
Collapse
Affiliation(s)
- Min Gong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liancong Yue
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jingyi Kong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiang Lin
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liang Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiaping Wang
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Dongrui Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
53
|
Injectable chitosan-quince seed gum hydrogels encapsulated with curcumin loaded-halloysite nanotubes designed for tissue engineering application. Int J Biol Macromol 2021; 177:485-494. [PMID: 33621578 DOI: 10.1016/j.ijbiomac.2021.02.113] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 01/15/2023]
Abstract
The goal of tissue engineering is to assemble functional constructs that restore, maintain, or improve damaged tissues or organs. Hydrogels formed with natural polymers display high potential in artificial scaffolds for tissue repair as they can resemble the extracellular matrices. Thus, the aim of this study was to design nanocomposite hydrogels of chitosan/oxidized-modified quince seed gum/curcumin-loaded in halloysite nanotubes (CS/OX-QSG/CUR-HNTs) for tissue engineering applications. The produced hydrogels were analyzed for thermal stability, degradation, swelling ratio, gelling time and mechanical properties. The results showed that with increasing content of OX-QSG, thermal stability, swelling ratio, and degradation rate of hydrogels were improved. Notably, the optimal CS/OX-QSG hydrogel with ratio of 25:75 exhibited rapid gelation behavior (<50 s) and improved compressive strength (3.96 ± 0.64 MPa), representing the suitable hydrogel for application in tissue engineering. The MTT test showed that these hydrogels were non-toxic and any reduction or stop of NIH-3 T3 cells growth wasn't observed over time. In addition, CS/OX-QSG 25:75 hydrogels containing CUR-HNTs with 10 and 30% content was significantly (P < 0.05) enhanced cell growth and proliferation (around 150%). Obtained results illustrated that CS/OX-QSG hydrogels with ratio of 25:75 and the content of 30% CUR-HNTs can be an effective scaffold for application in tissue engineering.
Collapse
|
54
|
Yang Y, Wu X, Ma L, He C, Cao S, Long Y, Huang J, Rodriguez RD, Cheng C, Zhao C, Qiu L. Bioinspired Spiky Peroxidase-Mimics for Localized Bacterial Capture and Synergistic Catalytic Sterilization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005477. [PMID: 33475193 DOI: 10.1002/adma.202005477] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/18/2020] [Indexed: 02/05/2023]
Abstract
Besides the pandemic caused by the coronavirus outbreak, many other pathogenic microbes also pose a devastating threat to human health, for instance, pathogenic bacteria. Due to the lack of broad-spectrum antibiotics, it is urgent to develop nonantibiotic strategies to fight bacteria. Herein, inspired by the localized "capture and killing" action of bacteriophages, a virus-like peroxidase-mimic (V-POD-M) is synthesized for efficient bacterial capture (mesoporous spiky structures) and synergistic catalytic sterilization (metal-organic-framework-derived catalytic core). Experimental and theoretical calculations show that the active compound, MoO3 , can serve as a peroxo-complex-intermediate to reduce the free energy for catalyzing H2 O2 , which mainly benefits the generation of •OH radicals. The unique virus-like spikes endow the V-POD-M with fast bacterial capture and killing abilities (nearly 100% at 16 µg mL-1 ). Furthermore, the in vivo experiments show that V-POD-M possesses similar disinfection treatment and wound skin recovery efficiencies to vancomycin. It is suggested that this inexpensive, durable, and highly reactive oxygen species (ROS) catalytic active V-POD-M provides a promising broad-spectrum therapy for nonantibiotic disinfection.
Collapse
Affiliation(s)
- Ye Yang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Xizheng Wu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Lang Ma
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Chao He
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Sujiao Cao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Yanping Long
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Jianbo Huang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | | | - Chong Cheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
- Department of Chemistry and Biochemistry Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Changsheng Zhao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
- College of Biomedical Engineering National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 China
- College of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Li Qiu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| |
Collapse
|
55
|
Wu M, Han Z, Liu W, Yao J, Zhao B, Shao Z, Chen X. Silk-based hybrid microfibrous mats as guided bone regeneration membranes. J Mater Chem B 2021; 9:2025-2032. [DOI: 10.1039/d0tb02687e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
LAPONITE® (LAP) nanoplatelets were incorporated within a regenerated silk fibroin (RSF) microfibrous mat via electrospinning, which exhibited better cell adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs) than the pristine RSF ones.
Collapse
Affiliation(s)
- Mi Wu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Shanghai Stomatological Hospital
- Laboratory of Advanced Materials
- Fudan University
| | - Zhengyi Han
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Shanghai Stomatological Hospital
- Laboratory of Advanced Materials
- Fudan University
| | - Wen Liu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Shanghai Stomatological Hospital
- Laboratory of Advanced Materials
- Fudan University
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Shanghai Stomatological Hospital
- Laboratory of Advanced Materials
- Fudan University
| | - Bingjiao Zhao
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Shanghai Stomatological Hospital
- Laboratory of Advanced Materials
- Fudan University
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Shanghai Stomatological Hospital
- Laboratory of Advanced Materials
- Fudan University
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Shanghai Stomatological Hospital
- Laboratory of Advanced Materials
- Fudan University
| |
Collapse
|
56
|
Gao S, Zhou A, Cao B, Wang J, Li F, Tang G, Jiang Z, Yang A, Xiong R, Lei J, Huang C. A tunable temperature-responsive and tough platform for controlled drug delivery. NEW J CHEM 2021. [DOI: 10.1039/d1nj01356d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A tunable temperature-responsive site-specific drug-delivery platform for tumor therapy.
Collapse
|
57
|
Abstract
The numerous biological applications of nanoparticles in general and nano-clays in particular are rooted in understanding and harnessing their dynamic nano-bio interface. Among clays, the intrinsically-mesoporous halloysite nanotubes (HNTs) have emerged in recent years as promising nanomaterials. The diverse interactions of these nanotubes with living cells, encompassing electrostatic, van der Waals, and ion exchange, along with cellular response, are crucial in determining the behaviour of HNTs in biological systems. Thus, rational engineering of the nanotube properties allows for vast applications ranging from bacteria encapsulation for bioremediation, through algae flocculation for aquaculture, to intracellular drug delivery. This review summarizes the many aspects of the nano-bio interface of HNTs with different cell types (bacteria, algae and fungi, and mammalian cells), highlighting biocompatibility/bio-adverse properties, interaction mechanisms, and the latest cutting-edge technologies.
Collapse
Affiliation(s)
- Ofer Prinz Setter
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel.
| | | |
Collapse
|
58
|
Lian M, Han Y, Sun B, Xu L, Wang X, Ni B, Jiang W, Qiao Z, Dai K, Zhang X. A multifunctional electrowritten bi-layered scaffold for guided bone regeneration. Acta Biomater 2020; 118:83-99. [PMID: 32853801 DOI: 10.1016/j.actbio.2020.08.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/21/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
Abstract
The guided bone regeneration (GBR) concept has been extensively utilized to treat maxillofacial bone defects in clinical practice. However, the repair efficacy of currently available GBR membranes is often compromised by their limited bone regeneration potential and deficient antibacterial activity. In this study, inspired by the bi-layered structure design of the commonly used Bio-GideⓇmembrane, we designed and fabricated a new kind of multifunctional bi-layered "GBR scaffold" combining solution electrospinning writing (SEW) and solution electrospinning (SES) techniques using a single SEW printer. Copper-loaded mesoporous silica nanoparticles (Cu@MSNs) were incorporated into the poly(lactic-co-glycolic acid)/gelatin (PLGA/Gel, denoted as PG) fiber matrix to construct a composite PG-Cu@MSNs fibrous scaffold. The obtained GBR scaffold consisted of a loose and porous SEW layer to support and facilitate bone ingrowth, and a dense and compact SES layer to resist non-osteoblast interference. The resulting enhanced mechanical properties, coordinated degradation profile, and facile preparation procedure imparted the composite scaffold with good clinical feasibility. In vitro biological experiments indicate that the PG-Cu@MSNs composite scaffold exhibited favorable osteogenic and antibacterial properties. Furthermore, an in vivo rat periodontal defect model further confirmed the promising bone regeneration efficacy of the PG-Cu@MSNs scaffold. In conclusion, the developed electrowritten Cu@MSNs-incorporated bi-layered scaffold with hierarchical architecture and concurrent osteogenic and antibacterial functions may hold great potential for application in GBR.
Collapse
Affiliation(s)
- Meifei Lian
- Department of Prosthodontics, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yu Han
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong university School of Medicine, Shanghai 200125, China
| | - Binbin Sun
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong university School of Medicine, Shanghai 200125, China
| | - Ling Xu
- Department of Prosthodontics, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaofeng Wang
- School of Environmental Science, Nanjing Xiaozhuang University, Excellent Science and Technology Innovation Group of Jiangsu Province, Nanjing, 211171, China
| | - Bing Ni
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Wenbo Jiang
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong university School of Medicine, Shanghai 200125, China
| | - Zhiguang Qiao
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong university School of Medicine, Shanghai 200125, China; Department of Orthopaedic Surgery, Renji Hospital, South Campus, Shanghai Jiao Tong University School of Medicine, Shanghai 201112, China.
| | - Kerong Dai
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong university School of Medicine, Shanghai 200125, China.
| | - Xiuyin Zhang
- Department of Prosthodontics, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
59
|
Wang Q, Feng Y, He M, Zhao W, Qiu L, Zhao C. A Hierarchical Janus Nanofibrous Membrane Combining Direct Osteogenesis and Osteoimmunomodulatory Functions for Advanced Bone Regeneration. ADVANCED FUNCTIONAL MATERIALS 2020. [DOI: 10.1002/adfm.202008906] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Qian Wang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Yunbo Feng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Min He
- State Key Laboratory of Oral Disease West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Weifeng Zhao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Li Qiu
- Department of Ultrasound West China School of Medicine/West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Changsheng Zhao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| |
Collapse
|
60
|
Cheng J, Li H, Zhou J, Lin Z, Wu D, Liu C, Cao Z. Laser induced porous electrospun fibers for enhanced filtration of xylene gas. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122976. [PMID: 32526437 DOI: 10.1016/j.jhazmat.2020.122976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/16/2020] [Accepted: 05/16/2020] [Indexed: 05/23/2023]
Abstract
With the development of industry, the harm caused by volatile organic compound (VOC) gases to the human body has received much attention. This study reveals as the first attempt to apply laser irradiation technique to the preparation of porous electrospun fibers with excellent low-concentration VOC gases adsorption properties. The laser-sensitive polycarbonate (PC) fibers prepared from electrospinning was treated in air by scanning with a neodymium-doped yttrium aluminum garnet (Nd: YAG) pulsed laser beam to achieve porous structure. During the laser irradiation process, a series of changes such as melting, thermal degradation, and carbonization of the polymer fibers can change the surface structure. The morphology of the porous structure is related to the degree of laser-induced carbonization, and the laser current is an important parameter for determining the degree of laser-induced carbonization of a particular polymer. The results indicate that porous carbon structures can be created on the surface of the fiber membrane by controlling the degree of laser-induced carbonization, and a highly xylene gas adsorption efficiency is exhibited. This study may provide useful insights for developing electrospun porous fibers with VOC adsorption by simple, effective and environmentally friendly laser post-processing process.
Collapse
Affiliation(s)
- Junfeng Cheng
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Hao Li
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Jun Zhou
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Zhixiong Lin
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Dun Wu
- National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University), Changzhou, 213164, China
| | - Chunlin Liu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, China; Changzhou University Huaide College, Changzhou, 213016, China.
| | - Zheng Cao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
61
|
Electrospun chitosan/polycaprolactone nanofibers containing chlorogenic acid-loaded halloysite nanotube for active food packaging. Carbohydr Polym 2020; 247:116711. [DOI: 10.1016/j.carbpol.2020.116711] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022]
|
62
|
Wu X, Li P, Cong L, Yu H, Zhang D, Yue Y, Xu H, Xu K, Zheng X, Wang X. Electrospun poly(vinyl alcohol) nanofiber films containing menthol/β-cyclodextrin inclusion complexes for smoke filtration and flavor retention. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
63
|
Barroso-Solares S, Cuadra-Rodriguez D, Rodriguez-Mendez ML, Rodriguez-Perez MA, Pinto J. A new generation of hollow polymeric microfibers produced by gas dissolution foaming. J Mater Chem B 2020; 8:8820-8829. [PMID: 33026393 DOI: 10.1039/d0tb01560a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A new and straightforward route to produce polymeric hollow microfibers has been proposed. Polycaprolactone (PCL) hollow fibers are obtained for the first time using an environmentally friendly gas dissolution foaming approach, overcoming its limitations to induce porosity on samples in the micrometric range. Different porous morphologies are achieved from solid PCL microfibers with a well-controlled diameter obtained by conventional electrospinning. The optimization of the foaming parameters provides two sets of well-defined hollow fibers, one showing smooth surfaces and the other presenting an enhanced surface porosity. Accordingly, gas dissolution foaming proves to be not only suitable for the production of hollow polymeric microfibers, but is also capable of providing diverse porous morphologies from the same precursor, solid fibers. Moreover, a preliminary study about the suitability of this new generation of foamed hollow polymeric fibers for drug delivery is carried out, aiming to take advantage of the enhanced surface area and tunable morphology obtained by using the proposed new production method. It is found that the foamed microfibers can be loaded with up to 15 wt% of ibuprofen while preserving the morphology of each kind of fiber. Then, foamed PCL fibers presenting a hollow structure and surface porosity show a remarkable constant release of ibuprofen for almost one and a half days. In contrast, the original solid fibers do not present such behavior, releasing all the ibuprofen in about seven hours.
Collapse
Affiliation(s)
- Suset Barroso-Solares
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics Department, University of Valladolid, 47011, Spain.
| | | | | | | | | |
Collapse
|
64
|
Xue J, Pisignano D, Xia Y. Maneuvering the Migration and Differentiation of Stem Cells with Electrospun Nanofibers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000735. [PMID: 32775158 PMCID: PMC7404157 DOI: 10.1002/advs.202000735] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/30/2020] [Indexed: 05/21/2023]
Abstract
Electrospun nanofibers have been extensively explored as a class of scaffolding materials for tissue regeneration, because of their unique capability to mimic some features and functions of the extracellular matrix, including the fibrous morphology and mechanical properties, and to a certain extent the chemical/biological cues. This work reviews recent progress in applying electrospun nanofibers to direct the migration of stem cells and control their differentiation into specific phenotypes. First, the physicochemical properties that make electrospun nanofibers well-suited as a supporting material to expand stem cells by controlling their migration and differentiation are introduced. Then various systems are analyzed in conjunction with mesenchymal, neuronal, and embryonic stem cells, as well as induced pluripotent stem cells. Finally, some perspectives on the challenges and future opportunities in combining electrospun nanofibers with stem cells are offered to address clinical issues.
Collapse
Affiliation(s)
- Jiajia Xue
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Dario Pisignano
- Dipartimento di FisicaUniversità di PisaLargo B. Pontecorvo 3PisaI‐56127Italy
- NESTIstituto Nanoscienze‐CNRPiazza S. Silvestro 12PisaI‐56127Italy
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
- School of Chemistry and BiochemistrySchool of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| |
Collapse
|
65
|
|
66
|
Mechanical on-off gates for regulation of drug release in cutaneous or musculoskeletal tissue repairs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111048. [PMID: 32600683 DOI: 10.1016/j.msec.2020.111048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/25/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
Abstract
Drug release synchronized with tissue motion is attractive to cutaneous or musculoskeletal tissue injury repair. Here, we have developed a method of regulating drug release by mechanical on-off gates for potential treatment of repeated injury in these tissues. The mechanical gates consisted of a multilayer structure: A brittle outmost layer adhered to an elastic middle layer, which wrapped an inmost drug carrier to form the composite multilayer structure. When it was stretched, cracks appeared as mechanical gates due to mechanical performance difference between the outmost layer and the middle layer, leading to the drug release. When the external force disappeared, it recovered to stop the drug release. The controlled drug release would therefore be achieved by changing the status (opening or closure) of mechanical gates through applying this on-off mechanical stretching. A prototype based on the composite multilayer structure of adhesive coating and electrospinning technique realized the controlled release of drug and effectively repaired the incision. More types of composite multilayer structures for mechanical drug release were expected to meet curing requirement in cutaneous or musculoskeletal tissues.
Collapse
|
67
|
Hierarchical porous nanofibers containing thymol/beta-cyclodextrin: Physico-chemical characterization and potential biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111155. [PMID: 32600736 DOI: 10.1016/j.msec.2020.111155] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 01/14/2023]
Abstract
As an effective natural antibacterial component, the low water solubility of thymol (THY) has stemmed its potential in biomedical application. Here, β-cyclodextrin (β-CD) and THY were self-assembled to form water-soluble inclusion complex (IC). The successful formation of IC was confirmed via 1H NMR. As an antibacterial agent, the resultant IC was then incorporated into cellulose acetate (CA) fibrous matrix with hierarchical structure (nanopores on porous fibrous webs) via electrospinning (CA/THY/β-CD), and the pure THY was also encapsulated into CA for comparison (CA/THY). In vitro dissolution tests demonstrated that CA/THY/β-CD fibrous membrane exhibited sustained drug release, which abided by non-Fickian diffusion. Besides, the CA/THY/β-CD fibrous membrane exhibited more effective and long-lasting antibacterial activity against S. aureus. Furthermore, the combination of hierarchical porous structure with sustained drug release endowed the CA/THY/β-CD fibrous membrane with good cytocompatibility. Taken together, the CA/THY/β-CD fibrous membrane could be an attractive candidate for wound dressing material.
Collapse
|
68
|
Lu L, Luo K, Yang W, Zhang S, Wang W, Xu H, Wu S. Insight into the anti-aging mechanisms of natural phenolic antioxidants in natural rubber composites using a screening strategy based on molecular simulation. RSC Adv 2020; 10:21318-21327. [PMID: 35518775 PMCID: PMC9054403 DOI: 10.1039/d0ra03425h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/19/2020] [Indexed: 12/05/2022] Open
Abstract
The failure of materials upon aging has led to the accumulation of waste and environmental pollution. Adding antioxidants (AOs) to the composites is one of the most effective ways to retard aging. However, traditional synthetic AOs are always detrimental to the environment and human health. The selection of antioxidants from streams by experiments will also definitely cost a lot of time and money. In addition, the complexity of thermo-oxidative aging factors along with the lack of quantitative tools significantly hampers its applications. So, building a screening strategy to quickly and easily find an appropriate and eco-friendly AO is imperative. In this study, we chose natural rubber (NR) as a matrix and provided a screening strategy based on diverse natural phenolic antioxidants to evaluate their ability in protecting NR composites. Thymol, α-tocopherol, and lipid-soluble epigallocatechin gallate (lsEGCG) were chosen from 18 natural phenolic antioxidants as potential alternative candidates. They were proved, indeed, to enhance the oxidative time in NR from experiments. Our results emphasized that thymol, α-tocopherol, and lsEGCG were promising alternatives for AOs in NR, and the in vitro toxicity test suggested that they are biocompatible. This study may develop a new strategy preference for screening the antioxidants by combining molecular simulation with the validation of experimental approaches, and therefore guide the AO molecular design with a more accurate theoretical prediction.
Collapse
Affiliation(s)
- Ling Lu
- State Key Laboratory of Organic-Inorganic composites, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Kaiqiang Luo
- State Key Laboratory of Organic-Inorganic composites, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Wei Yang
- Global Energy Interconnection Research Institute, State Key Laboratory of Advanced Power Transmission Technology Beijing 102211 P. R. China
| | - Sidian Zhang
- State Key Laboratory of Organic-Inorganic composites, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Wencai Wang
- State Key Laboratory of Organic-Inorganic composites, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Haiyan Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100005 P. R. China
| | - Sizhu Wu
- State Key Laboratory of Organic-Inorganic composites, Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
69
|
Bardoňová L, Mamulová Kutláková K, Kotzianová A, Kulhánek J, Židek O, Velebný V, Tokarský J. Electrospinning of Fibrous Layers Containing an Antibacterial Chlorhexidine/Kaolinite Composite. ACS APPLIED BIO MATERIALS 2020; 3:3028-3038. [DOI: 10.1021/acsabm.0c00088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lenka Bardoňová
- CONTIPRO a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
- Nanotechnology Centre, VŠB − Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic
| | - Kateřina Mamulová Kutláková
- Nanotechnology Centre, VŠB − Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic
- Center of Advanced Innovation Technologies, VŠB − Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic
| | - Adéla Kotzianová
- CONTIPRO a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Jaromír Kulhánek
- CONTIPRO a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Ondřej Židek
- CONTIPRO a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Vladimír Velebný
- CONTIPRO a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Jonáš Tokarský
- Nanotechnology Centre, VŠB − Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic
- IT4Innovations, VŠB − Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic
- Institute of Environmental Technology, VŠB − Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic
| |
Collapse
|
70
|
|
71
|
Chen Y, Qiu Y, Chen W, Wei Q. Electrospun thymol-loaded porous cellulose acetate fibers with potential biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110536. [DOI: 10.1016/j.msec.2019.110536] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 01/08/2023]
|
72
|
Halloysite nanotubes: a green resource for materials and life sciences. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2020. [DOI: 10.1007/s12210-020-00886-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
73
|
Feng Y, Wang Q, He M, Zhao W, Liu X, Zhao C. Nonadherent Zwitterionic Composite Nanofibrous Membrane with a Halloysite Nanocarrier for Sustained Wound Anti-Infection and Cutaneous Regeneration. ACS Biomater Sci Eng 2020; 6:621-633. [PMID: 33463235 DOI: 10.1021/acsbiomaterials.9b01547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Wound dressing synechia and sustained postoperative bacterial infection would cause serious secondary damage to nascent cutaneous tissue and impede normal regeneration of injured wound. Endowing wound dressings with nonadherent capability and long-lasting antibacterial property could optimize the postoperative wound healing conditions and promote wound tissue neogenesis, which have important clinical application value and demand. In this study, novel nanocarrier-embedded zwitterionic composite nanofibrous membranes are fabricated using the co-electrospinning/photo-cross-linking method for the purpose of painless removal and eliminating long-lasting antibacterial infection during postoperative wound therapy. The prepared membranes possess good biocompatibility, excellent antibiofouling ability against both bacteria and plasma proteins, and platelet and L929 cell adhesion. Furthermore, in vitro and in vivo antibacterial evaluations exhibit that the composite nanofibrous membranes with a sustained drug release profile could effectively inhibit bacterial proliferation for at least 16 days. Additionally, in vivo wound regeneration assessment indicates that the obtained membranes could better enhance skin regeneration than the commercial 3M Tegaderm film, which highlights the application prospect of such novel zwitterionic composite nanofibrous membranes for sustained postoperative wound anti-infection and cutaneous regeneration.
Collapse
Affiliation(s)
- Yunbo Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Qian Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Min He
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xiaoling Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
74
|
Mndlovu H, du Toit LC, Kumar P, Choonara YE, Marimuthu T, Kondiah PPD, Pillay V. Bioplatform Fabrication Approaches Affecting Chitosan-Based Interpolymer Complex Properties and Performance as Wound Dressings. Molecules 2020; 25:E222. [PMID: 31935794 PMCID: PMC6982769 DOI: 10.3390/molecules25010222] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/12/2019] [Accepted: 12/26/2019] [Indexed: 02/05/2023] Open
Abstract
Chitosan can form interpolymer complexes (IPCs) with anionic polymers to form biomedical platforms (BMPs) for wound dressing/healing applications. This has resulted in its application in various BMPs such as gauze, nano/microparticles, hydrogels, scaffolds, and films. Notably, wound healing has been highlighted as a noteworthy application due to the remarkable physical, chemical, and mechanical properties enabled though the interaction of these polyelectrolytes. The interaction of chitosan and anionic polymers can improve the properties and performance of BMPs. To this end, the approaches employed in fabricating wound dressings was evaluated for their effect on the property-performance factors contributing to BMP suitability in wound dressing. The use of chitosan in wound dressing applications has had much attention due to its compatible biological properties. Recent advancement includes the control of the degree of crosslinking and incorporation of bioactives in an attempt to enhance the physicochemical and physicomechanical properties of wound dressing BMPs. A critical issue with polyelectrolyte-based BMPs is that their effective translation to wound dressing platforms has yet to be realised due to the unmet challenges faced when mimicking the complex and dynamic wound environment. Novel BMPs stemming from the IPCs of chitosan are discussed in this review to offer new insight into the tailoring of physical, chemical, and mechanical properties via fabrication approaches to develop effective wound dressing candidates. These BMPs may pave the way to new therapeutic developments for improved patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (H.M.); (L.C.d.T.); (P.K.); (Y.E.C.); (T.M.); (P.P.D.K.)
| |
Collapse
|
75
|
Zhao X, Zhou C, Liu M. Self-assembled structures of halloysite nanotubes: towards the development of high-performance biomedical materials. J Mater Chem B 2019; 8:838-851. [PMID: 31830201 DOI: 10.1039/c9tb02460c] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Halloysite nanotubes (HNTs), 1D natural tubular nanoparticles, exhibit a high aspect ratio, empty lumen, high adsorption ability, good biocompatibility, and high biosafety, which have attracted researchers' attention in applications of the biomedical area. HNTs can be readily dispersed in water due to their negatively charged surface and good hydrophilicity. The unique rod-like structure and surface properties give HNTs assembly ability into ordered hierarchical structures. In this review, the self-assembly approaches of HNTs including evaporation induced self-assembly by a "coffee-ring" mechanism, shear force induced self-assembly, and electric field force induced self-assembly were introduced. In addition, HNT self-assembly on polymeric substrates and biological substrates including hair, cells, and zebrafish embryos was discussed. These assembly processes are related to noncovalent interactions such as electrostatic, hydrogen bonding, and van der Waals forces or electron-transfer reactions. Moreover, the applications of self-assembled HNT patterns in biomedical areas such as capture of circulating tumor cells, guiding oriented cell growth, controlling cell germination, and delivery of drugs or nutrients were discussed and highlighted. Finally, challenges and future directions of assembly of HNTs were introduced. This review will inspire researchers in the design and fabrication of functional biodevices based on HNTs for tissue engineering, cancer diagnosis/therapy, and personal healthcare products.
Collapse
Affiliation(s)
- Xiujuan Zhao
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China.
| | - Changren Zhou
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China.
| | - Mingxian Liu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
76
|
Manatunga DC, Godakanda VU, de Silva RM, de Silva KMN. Recent developments in the use of organic-inorganic nanohybrids for drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1605. [PMID: 31826328 DOI: 10.1002/wnan.1605] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 01/22/2023]
Abstract
Organic-inorganic nanohybrid (OINH) structures providing a versatile platform for drug delivery with improved characteristics are an area which has gained recent attention. Much effort has been taken to develop these structures to provide a viable treatment options for much alarming diseases such as cancer, bone destruction, neurological disorders, and so on. This review focuses on current work carried out in producing different types of hybrid drug carriers identifying their properties, fabrication techniques, and areas where they have been applied. A brief introduction on understating the requirement for blending organic-inorganic components into a nanohybrid drug carrier is followed with an elaboration given about the different types of OINHs developed currently highlighting their properties and applications. Then, different fabrication techniques are discussed given attention to surface functionalization, one-pot synthesis, wrapping, and electrospinning methods. Finally, it is concluded by briefing the challenges that are remaining to be addressed to obtain multipurpose nanohybrid drug carriers with wider applicability. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Danushika C Manatunga
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - V Umayangana Godakanda
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Rohini M de Silva
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - K M Nalin de Silva
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
77
|
Celebioglu A, Uyar T. Metronidazole/Hydroxypropyl-β-Cyclodextrin inclusion complex nanofibrous webs as fast-dissolving oral drug delivery system. Int J Pharm 2019; 572:118828. [DOI: 10.1016/j.ijpharm.2019.118828] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 12/19/2022]
|
78
|
Gao X, Han S, Zhang R, Liu G, Wu J. Progress in electrospun composite nanofibers: composition, performance and applications for tissue engineering. J Mater Chem B 2019; 7:7075-7089. [PMID: 31660575 DOI: 10.1039/c9tb01730e] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The discovery of novel methods to fabricate optimal scaffolds that mimic both mechanical and functional properties of the extracellular matrix (ECM) has always been the "holy grail" in tissue engineering. In recent years, electrospinning has emerged as an attractive material fabrication method and has been widely applied in tissue engineering due to its capability of producing non-woven and nanoscale fibers. However, from the perspective of biomimicry, it is difficult for single-component electrospun fiber membranes to achieve the biomimetic purposes of the multi-component extracellular matrix. Based on electrospinning, various functional components can be efficiently and expediently introduced into the membranes, and through the complementation and correlation of the properties of each component, composite materials with comprehensive and superior properties are obtained while maintaining the primitive merits of each component. In this review, we will provide an overview of the attempts made to fabricate electrospinning-based composite tissue engineering materials in the past few decades, which have been divided into organic additives, inorganic additives and organic-inorganic additives.
Collapse
Affiliation(s)
- Xize Gao
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, P. R. China.
| | - Shuyan Han
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, P. R. China.
| | - Ruhe Zhang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, P. R. China.
| | - Guiting Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, P. R. China.
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, P. R. China. and Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, P. R. China
| |
Collapse
|
79
|
Theerasilp M, Crespy D. pH-Responsive Nanofibers for Precise and Sequential Delivery of Multiple Payloads. ACS APPLIED BIO MATERIALS 2019; 2:4283-4290. [PMID: 35021443 DOI: 10.1021/acsabm.9b00551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Effective combination therapies can be achieved by programming materials for controlling release sequence, timing, and dose of multiple payloads. Herein, we synthesize dextran esters by coesterification of dextran, which display responsive properties at a precise pH threshold between 5.0 and 7.0. Multilayers electrospun nanofibers are prepared so that three different payloads are entrapped in three different dextran esters. The release of the three drugs can be sequentially and independently activated by a gradual increase of pH value. Because both pH threshold and release kinetics are matching conditions encountered by aliments along the gastrointestinal tract, these dextran ester multilayer nanofibers are promising for oral drug delivery.
Collapse
Affiliation(s)
- Man Theerasilp
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| |
Collapse
|
80
|
Sun Z, Yuan F, Zhang X, Zhu R, Shen X, Sun B, Wang B. Design and synthesis of organic rectorite-based composite nanofiber membrane with enhanced adsorption performance for bisphenol A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28860-28870. [PMID: 31385252 DOI: 10.1007/s11356-019-06069-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Nowadays, most of mineral-based adsorbents are powder form, which makes them inconvenient to collect and always easy to cause secondary pollution. In this work, an organic rectorite composite nanofiber membrane (SRt-PAN) was designed and prepared by electrospinning technique. The as-received composite nanofiber membranes were characterized by XRD and SEM analysis, proving the homodisperse and existence of SRt in PAN nanofiber membrane. A series of batch experiments for BPA adsorption were carried out to investigate the effect of different adsorption parameters, including initial concentration, pH, and temperature of pollutant solution. The influences of modifier dosage and adsorbent dosage on the adsorption performance were investigated as well. On the basis of the experiment results, the adsorption process could be well described by the pseudo-second-order model and the Langmuir isotherm. In addition, the thermodynamic parameters indicate that this adsorption process is exothermic and spontaneous. Moreover, compared with pure nanofiber membranes and organic rectorite powders, the resultant SRt-PAN adsorbents exhibited higher adsorption capacity, superior reusability, and adsorption stability. It is indicated that the hydrophobicity surface of organic rectorite should be the key factor to not only the intimate interfacial combination between the mineral and PAN, but also the enhancement of BPA adsorption capacity.
Collapse
Affiliation(s)
- Zhiming Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Fang Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Xinchao Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Rui Zhu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Xinyi Shen
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Bingyan Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Bin Wang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing, 100029, China.
| |
Collapse
|
81
|
Wali A, Gorain M, Inamdar S, Kundu G, Badiger M. In Vivo Wound Healing Performance of Halloysite Clay and Gentamicin-Incorporated Cellulose Ether-PVA Electrospun Nanofiber Mats. ACS APPLIED BIO MATERIALS 2019; 2:4324-4334. [DOI: 10.1021/acsabm.9b00589] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ashwini Wali
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Department of Chemical Engineering, Vishwakarma Institute of Technology, Bibwewadi, Pune, Maharashtra 411037, India
| | - Mahadeo Gorain
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Satish Inamdar
- Department of Chemical Engineering, Vishwakarma Institute of Technology, Bibwewadi, Pune, Maharashtra 411037, India
| | - Gopal Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Manohar Badiger
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
82
|
Maciejewska BM, Wychowaniec JK, Woźniak-Budych M, Popenda Ł, Warowicka A, Golba K, Litowczenko J, Fojud Z, Wereszczyńska B, Jurga S. UV cross-linked polyvinylpyrrolidone electrospun fibres as antibacterial surfaces. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:979-991. [PMID: 31692919 PMCID: PMC6818115 DOI: 10.1080/14686996.2019.1667737] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 05/08/2023]
Abstract
Many bacteria become progressively more resistant to antibiotics and it remains a challenging task to control their overall levels. Polymers combined with active biomolecules come to the forefront for the design of antibacterial materials that can address this encounter. In this work, we investigated the photo-crosslinking approach of UV-sensitive benzophenone molecule (BP) with polyvinylpyrrolidone (PVP) polymer within electrospun fibres. The BP and PVP solutions allowed fabricating polymer mats that were subsequently functionalised with antibacterial lysozyme. The physical properties of the crosslinked electrospun fibres were investigated by scanning electron microscopy and atomic force microscopy. The average diameter of the obtained fibres decreased from 290 ± 50 nm to 270 ± 70 nm upon the addition of the crosslinking molecules and then to 240 ± 80 nm and 180 ± 90 nm after subsequent crosslinking reaction at an increasing time: 3 and 5 h, respectively. The peak force quantitative nanomechanical mapping (PF-QNM) indicated the increase of DMT modulus of obtained cross-linked fibres from 4.1 ± 0.8 GPa to 7.2 ± 0.5 GPa. Furthermore, the successful crosslinking reaction of PVP and BP solution into hydrogels was investigated in terms of examining photo-crosslinking mechanism and was confirmed by rheology, Raman, Fourier transform infrared and nuclear magnetic resonance. Finally, lysozyme was successfully encapsulated within cross-linked PVP-BP hydrogels and these were successfully electrospun into mats which were found to be as effective antibacterial agents as pure lysozyme molecules. The dissolution rate of photo cross-linked PVP mats was observed to increase in comparison to pure PVP electrospun mats which opened a potential route for their use as antibacterial, on-demand, dissolvable coatings for various biomedical applications.
Collapse
Affiliation(s)
| | | | | | - Łukasz Popenda
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
| | - Alicja Warowicka
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Klaudia Golba
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
| | - Jagoda Litowczenko
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
- Department of Molecular Virology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Zbigniew Fojud
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - Beata Wereszczyńska
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
83
|
Gonzalez-Fernandez T, Sikorski P, Leach JK. Bio-instructive materials for musculoskeletal regeneration. Acta Biomater 2019; 96:20-34. [PMID: 31302298 PMCID: PMC6717669 DOI: 10.1016/j.actbio.2019.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/26/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023]
Abstract
The prevalence and cost of disorders affecting the musculoskeletal system are predicted to rise significantly in the coming years due to the aging global population and the increase of associated risk factors. Despite being the second largest cause of disability, the clinical options for therapeutic intervention remain limited. The clinical translation of cell-based therapies for the treatment of musculoskeletal disorders faces many challenges including maintenance of cell survival in the harsh in vivo environment and the lack of control over regulating cell phenotype upon implantation. In order to address these challenges, the development of bio-instructive materials to modulate cell behavior has taken center stage as a strategy to increase the therapeutic potential of various cell populations. However, the determination of the necessary cues for a specific application and how these signals should be presented from a biomaterial remains elusive. This review highlights recent biochemical and physical strategies used to engineer bio-instructive materials for the repair of musculoskeletal tissues. There is a particular emphasis on emerging efforts such as the engineering of immunomodulatory and antibacterial materials, as well as the incorporation of these strategies into biofabrication and organ-on-a-chip approaches. STATEMENT OF SIGNIFICANCE: Disorders affecting the musculoskeletal system affect individuals across the lifespan and have a profound effect on mobility and quality of life. While small defects in many tissues can heal successfully, larger defects are often unable to heal or instead heal with inferior quality fibrous tissue and require clinical intervention. Cell-based therapies are a promising option for clinical translation, yet challenges related to maintaining cell survival and instructing cell phenotype upon implantation have limited the success of this approach. Bio-instructive materials provide an exciting opportunity to modulate cell behavior and enhance the efficacy of cell-based approaches for musculoskeletal repair. However, the identification of critical instructive cues and how to present these stimuli is a focus of intense investigation. This review highlights recent biochemical and physical strategies used to engineer bio-instructive materials for the repair of musculoskeletal tissues, while also considering exciting progress in the engineering of immunomodulatory and antibacterial materials.
Collapse
Affiliation(s)
| | - Pawel Sikorski
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA; Department of Physics, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - J Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA; Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA, USA.
| |
Collapse
|
84
|
Santos AC, Pereira I, Reis S, Veiga F, Saleh M, Lvov Y. Biomedical potential of clay nanotube formulations and their toxicity assessment. Expert Opin Drug Deliv 2019; 16:1169-1182. [PMID: 31486344 DOI: 10.1080/17425247.2019.1665020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Halloysite clay nanotubes (HNTs) are a naturally abundant and biocompatible aluminosilicate material with a structure able to encapsulate 10-20% of drugs. These features are attractive toward the clinical application in controlled drug delivery, tissue engineering and regenerative medicine. Areas covered: We describe the application of HNTs as a viable method for clinical purposes, particularly developing formulations for prophylaxis, diagnosis and therapeutics, having a special attention to these nanotubes bio-safety. HNTs may be used for pharmaceuticals, biopharmaceuticals, wound healing, bone regeneration, dental repair, hair surface engineering and biomimetic applications. Expert opinion: HNTs are a versatile, safe and biocompatible nanomaterial used for drug encapsulation for numerous clinical applications. The studies here reviewed confirm the HNTs biocompatibility, describing their low toxicity. Further developments will be made regarding the long-term efficacy of halloysite-based treatments in humans, concentrating mostly on topical applications.
Collapse
Affiliation(s)
- Ana Cláudia Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra , Coimbra , Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra , Coimbra , Portugal
| | - Irina Pereira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra , Coimbra , Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra , Coimbra , Portugal
| | - Salette Reis
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto , Porto , Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra , Coimbra , Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra , Coimbra , Portugal
| | - Mahdi Saleh
- Institute for Micromanufacturing, Louisiana Tech University , Ruston , LA , USA
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University , Ruston , LA , USA.,Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology "MISiS" , Moscow , Russia
| |
Collapse
|
85
|
Controllable synthesis of six corner star-like Cu2O/PEDOT-MWCNT composites and their performance toward electrochemical glucose sensing. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.124] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
86
|
Liu J, Zhang Y, Zeng Q, Zeng H, Liu X, Wu P, Xie H, He L, Long Z, Lu X, Xiao M, Zhu Y, Bo H, Cao K. Delivery of RIPK4 small interfering RNA for bladder cancer therapy using natural halloysite nanotubes. SCIENCE ADVANCES 2019; 5:eaaw6499. [PMID: 31579820 PMCID: PMC6760933 DOI: 10.1126/sciadv.aaw6499] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 09/03/2019] [Indexed: 05/28/2023]
Abstract
RNA interference (RNAi) technology can specifically silence the expression of a target gene and has emerged as a promising therapeutic method to treat cancer. In the present study, we showed that natural halloysite nanotube (HNT)-assisted delivery of an active small interfering RNA (siRNA) targeting receptor-interacting protein kinase 4 ( RIPK4 ) efficiently silenced its expression to treat bladder cancer. The HNTs/siRNA complex increased the serum stability of the siRNA, increased its circulation lifetime in blood, and promoted the cellular uptake and tumor accumulation of the siRNA. The siRNA markedly down-regulated RIPK4 expression in bladder cancer cells and bladder tumors, thus inhibiting tumorigenesis and progression in three bladder tumor models (a subcutaneous model, an in situ bladder tumor model, and a lung metastasis model), with no adverse effects. Thus, we revealed a simple but effective method to inhibit bladder cancer using RIPK4 silencing, indicating a promising therapeutic method for bladder cancer.
Collapse
Affiliation(s)
- Jianye Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
- Institute of Prostate Disease of Central South University, Changsha 410013, China
| | - Yi Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Qinghai Zeng
- Department of Dermatology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Hongliang Zeng
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs, Changsha 410331, China
| | - Xiaoming Liu
- Department of Digestive, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Pei Wu
- Department of Operation Center, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Hongyi Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Leye He
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
- Institute of Prostate Disease of Central South University, Changsha 410013, China
| | - Zhi Long
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
- Institute of Prostate Disease of Central South University, Changsha 410013, China
| | - Xiaoyong Lu
- Department of Urology, Hunan Aerospace Hospital, Changsha 410205, China
| | - Mengqing Xiao
- Department of Onology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Yuxing Zhu
- Department of Onology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Hao Bo
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha 410008, China
| | - Ke Cao
- Department of Onology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| |
Collapse
|
87
|
|
88
|
Multi-walled carbon nanotube-incorporating electrospun composite fibrous mats for controlled drug release profile. Int J Pharm 2019; 568:118513. [DOI: 10.1016/j.ijpharm.2019.118513] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022]
|
89
|
Sun Y, Cheng S, Lu W, Wang Y, Zhang P, Yao Q. Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization. RSC Adv 2019; 9:25712-25729. [PMID: 35530076 PMCID: PMC9070372 DOI: 10.1039/c9ra05012d] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022] Open
Abstract
Electrospinning is a method of preparing microfibers or nanofibers by using an electrostatic force to stretch the electrospinning fluid. Electrospinning has gained considerable attention in many fields due to its ability to produce continuous fibers from a variety of polymers and composites in a simple way. Electrospun nanofibers have many merits such as diverse chemical composition, easily adjustable structure, adjustable diameter, high surface area, high porosity, and good pore connectivity, which give them broad application prospects in the biomedical field. This review systematically introduced the factors influencing electrospinning, the types of electrospun fibers, the types of electrospinning, and the detailed applications of electrospun fibers in controlled drug release, biological dressings, tissue repair and enzyme immobilization fields. The latest progress of using electrospun fibers in these fields was summarized, and the main challenges to be solved in electrospinning technology were put forward.
Collapse
Affiliation(s)
- Yue Sun
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China +86-0531-82919706 +86-0531-82919706
| | - Shihong Cheng
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China +86-0531-82919706 +86-0531-82919706
| | - Wenjuan Lu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China +86-0531-82919706 +86-0531-82919706
| | - Yanfeng Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China +86-0531-82919706 +86-0531-82919706
| | - Pingping Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China +86-0531-82919706 +86-0531-82919706
| | - Qingqiang Yao
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China +86-0531-82919706 +86-0531-82919706
| |
Collapse
|
90
|
Feng Y, Wang Q, He M, Zhang X, Liu X, Zhao C. Antibiofouling Zwitterionic Gradational Membranes with Moisture Retention Capability and Sustained Antimicrobial Property for Chronic Wound Infection and Skin Regeneration. Biomacromolecules 2019; 20:3057-3069. [DOI: 10.1021/acs.biomac.9b00629] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yunbo Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Qian Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Min He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Xiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Xiaoling Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| |
Collapse
|
91
|
Wang B, Sun Z, Sun Q, Wang J, Du Z, Li C, Li X. The preparation of bifunctional electrospun air filtration membranes by introducing attapulgite for the efficient capturing of ultrafine PMs and hazardous heavy metal ions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:851-859. [PMID: 30954833 DOI: 10.1016/j.envpol.2019.03.122] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 05/29/2023]
Abstract
The comprehensive sources of particulate matter (PM) require air purification materials to possess both high filtration efficiencies and low air resistances in an effort to provide healthcare. However, the assembly of multiple-layered filters with different functions leads to high pressure drop and high operating cost. Therefore, a multifunctional air filter that can provide excellent air filtration capacity and healthcare is highly desired. Here, a novel bifunctional polyacrylonitrile/attapulgite hierarchical-structured filter with low air resistance and high adsorption capacity was designed and fabricated by embedding attapulgite nanorods during a facile electrospinning process. The hierarchical polyacrylonitrile/attapulgite membranes showed only a ∼64 Pa resistance for 0.1 μm PM. Another benefit of using the attapulgite nanorods is an adsorption effect for hazardous heavy metal ions that accompany airborne ultrafine PMs. Thereby this hierarchical membrane simultaneously exhibits an enhanced filtration performance and hazardous protection ability. Furthermore, due to the electret effect of the attapulgite nanorods, the surface potential of the membrane remains at above 2.2 kV after 600 min of continuous use, which could improve the air filtration efficiency and ensure the long-term service life of the filters. This work may provide a new approach for the design and development of multifunctional air filters for simultaneously capturing ultrafine PMs and any other accompanying hazardous chemicals.
Collapse
Affiliation(s)
- Bin Wang
- School of Materials Science & Engineering, Beijing Institute of Fashion Technology, Beijing, 100029, China; Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing, 100029, China
| | - Zhiming Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Qing Sun
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jie Wang
- School of Materials Science & Engineering, Beijing Institute of Fashion Technology, Beijing, 100029, China
| | - Zongxi Du
- School of Materials Science & Engineering, Beijing Institute of Fashion Technology, Beijing, 100029, China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiuyan Li
- School of Materials Science & Engineering, Beijing Institute of Fashion Technology, Beijing, 100029, China.
| |
Collapse
|
92
|
Parthiban P, Doyle PS, Hashimoto M. Self-assembly of droplets in three-dimensional microchannels. SOFT MATTER 2019; 15:4244-4254. [PMID: 31016319 DOI: 10.1039/c8sm02305k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Self-assembly of droplets guided by microfluidic channels have potential applications ranging from high throughput assays to materials synthesis, but such demonstrations have been limited primarily to two-dimensional (2D) assembly of droplets in planar microfluidic devices. We demonstrated the use of three-dimensional (3D) microchannels to self-assemble droplets into ordered 2D and 3D arrays by designing microchannels with axial gradients in height and controlling the volume fraction of the droplets in the channel. In contrast to previous demonstrations, ordered 2D arrays of droplets were assembled at low volume fractions of the dispersed phase. Interestingly, we found that the self-assembly of droplets in microchannels was highly path dependent. The assembly of droplets was governed by transitions in the cross-sectional shapes of the microchannel, not the final geometry of the chamber for the assembly of droplet, which is a hitherto rarely explored phenomenon. The assembled droplets were used as templates for the fabrication of millimeter scale, anisotropic hydrogel fibers with ordered pore sizes (∼250 μm). These demonstrations suggested that 3D microchannels would be a viable platform for the manipulation of droplets, and applicable for the continuous synthesis of complex materials with 3D morphologies.
Collapse
Affiliation(s)
- Pravien Parthiban
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| | | | | |
Collapse
|
93
|
Stavitskaya A, Batasheva S, Vinokurov V, Fakhrullina G, Sangarov V, Lvov Y, Fakhrullin R. Antimicrobial Applications of Clay Nanotube-Based Composites. NANOMATERIALS 2019; 9:nano9050708. [PMID: 31067741 PMCID: PMC6567215 DOI: 10.3390/nano9050708] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 12/25/2022]
Abstract
Halloysite nanotubes with different outer surface/inner lumen chemistry (SiO2/Al2O3) are natural objects with a 50 nm diameter hollow cylindrical structure, which are able to carry functional compounds both inside and outside. They are promising for biological applications where their drug loading capacity combined with a low toxicity ensures the safe interaction of these nanomaterials with living cells. In this paper, the antimicrobial properties of the clay nanotube-based composites are reviewed, including applications in microbe-resistant biocidal textile, paints, filters, and medical formulations (wound dressings, drug delivery systems, antiseptic sprays, and tissue engineering scaffolds). Though halloysite-based antimicrobial materials have been widely investigated, their application in medicine needs clinical studies. This review suggests the scalable antimicrobial nano/micro composites based on natural tubule clays and outlines research and development perspectives in the field.
Collapse
Affiliation(s)
- Anna Stavitskaya
- Functional Aluminosilicate Nanomaterials Lab, Gubkin University, 119991 Moscow, Russia.
| | - Svetlana Batasheva
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.
| | - Vladimir Vinokurov
- Functional Aluminosilicate Nanomaterials Lab, Gubkin University, 119991 Moscow, Russia.
| | - Gölnur Fakhrullina
- Functional Aluminosilicate Nanomaterials Lab, Gubkin University, 119991 Moscow, Russia.
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.
| | - Vadim Sangarov
- Functional Aluminosilicate Nanomaterials Lab, Gubkin University, 119991 Moscow, Russia.
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71270, USA.
| | - Rawil Fakhrullin
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.
| |
Collapse
|
94
|
Charge-Dependent Regulation in DNA Adsorption on 2D Clay Minerals. Sci Rep 2019; 9:6808. [PMID: 31048707 PMCID: PMC6497631 DOI: 10.1038/s41598-019-41093-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/27/2019] [Indexed: 01/22/2023] Open
Abstract
DNA purification is essential for the detection of human clinical specimens. A non-destructive, controllable, and low reagent consuming DNA extraction method is described. Negatively charged DNA is absorbed onto a negatively charged montmorillonite to achieve non-destructive DNA extraction based on cation bridge construction and electric double layer formation. Different valence cation modified montmorillonite forms were used to validate the charge-dependent nature of DNA adsorption on montmorillonite. Electric double layer thickness thinning/thickening with the high/lower valence cations exists, and the minerals tended to be sedimentation-stable due to the Van der Waals attraction/electrostatic repulsion. Li-modified montmorillonite with the lowest charge states showed the best DNA adsorption efficiency of 8–10 ng/μg. Charge-dependent regulating research provides a new perspective for controllable DNA extraction and a deep analysis of interface engineering mechanisms.
Collapse
|
95
|
Udangawa RN, Mikael PE, Mancinelli C, Chapman C, Willard CF, Simmons TJ, Linhardt RJ. Novel Cellulose-Halloysite Hemostatic Nanocomposite Fibers with a Dramatic Reduction in Human Plasma Coagulation Time. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15447-15456. [PMID: 30977359 DOI: 10.1021/acsami.9b04615] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High-performance cellulose-halloysite hemostatic nanocomposite fibers (CHNFs) are fabricated using a one-step wet-wet electrospinning process and evaluated for human plasma coagulation by activated partial thromboplastin time. These novel biocompatible CHNFs exhibit 2.4 times faster plasma coagulation time compared with the industry gold standard QuikClot Combat Gauze (QCG). The CHNFs have superior antileaching property of clay with 3 times higher post-wetting clotting activity compared to QCG. The CHNFs also coagulate whole blood 1.3 times faster than the QCG and retain twice the clotting performance after washing. Halloysite clay is also more effective in plasma coagulation than commercial kaolin clay. The physical and thermal properties of the CHNFs were evaluated using scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller surface area analysis, and thermogravimetric analysis. CHNFs show a 7-fold greater clay loading than QCG and their small average diameter of 450 ± 260 nm affords a greater specific surface area (33.6 m2 g-1) compared with the larger average diameter of 12.6 ± 0.9 μm for QCG with a specific surface area of 1.6 m2 g-1. The CHNFs were shown to be noncytotoxic and human primary fibroblasts proliferated on the composite material. The drastic reduction in coagulation time makes this novel nanocomposite a potential lifesaving material for victims of rapid blood loss such as military personnel and patients undergoing major surgical procedures or to aid in the treatment of unexpected bleeding episodes of patients suffering from hereditary blood clotting disorders. Since a person can die within minutes of heavy bleeding, every second counts for stopping traumatic hemorrhaging.
Collapse
|
96
|
Gürsoy M, Özcan F, Karaman M. Improvement of carbon nanotube dispersion in electrospun polyacrylonitrile fiber through plasma surface modification. J Appl Polym Sci 2019. [DOI: 10.1002/app.47768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mehmet Gürsoy
- Department of Chemical EngineeringKonya Technical University Konya 42075 Turkey
| | - Fatih Özcan
- Advanced Technology Research & Application CenterSelcuk University Konya 42075 Turkey
- Department of Chemistry, Faculty of ScienceSelcuk University Konya 42075 Turkey
| | - Mustafa Karaman
- Department of Chemical EngineeringKonya Technical University Konya 42075 Turkey
- Advanced Technology Research & Application CenterSelcuk University Konya 42075 Turkey
| |
Collapse
|
97
|
P. S, C.R. R, Sundaran SP, Binoy A, Mishra N, A. S. In-vitro evaluation on drug release kinetics and antibacterial activity of dextran modified polyurethane fibrous membrane. Int J Biol Macromol 2019; 126:717-730. [DOI: 10.1016/j.ijbiomac.2018.12.155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022]
|
98
|
Purushothaman AE, Thakur K, Kandasubramanian B. Development of highly porous, Electrostatic force assisted nanofiber fabrication for biological applications. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1581197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Kirti Thakur
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Materials Engineering, DIAT(DU), Ministry of Defence, Rapid Prototyping Lab, Girinagar, Pune, India
| |
Collapse
|
99
|
Shi R, Ye J, Li W, Zhang J, Li J, Wu C, Xue J, Zhang L. Infection-responsive electrospun nanofiber mat for antibacterial guided tissue regeneration membrane. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:523-534. [PMID: 30948089 DOI: 10.1016/j.msec.2019.03.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/08/2019] [Accepted: 03/10/2019] [Indexed: 01/18/2023]
Abstract
The release of anti-infection drugs in a targeted and efficient manner in response to the attack time and degree of severity of infection is a requirement of new generation implants. Herein, we design an infection-responsive guided tissue regeneration (GTR)/guided bone regeneration (GBR) membrane based on electrospun nanofibers. Polycaprolactone (PCL) nanofiber mats are coated with polydopamine to endow hydroxyl groups on the surface and then functionalized with siloxane to introduce amino groups. Metronidazole (MNA), an antibiotic drug, is esterified and then grafted onto the surface of the modified PCL nanofiber mats via ester linkages. The ester bonds can be selectively hydrolyzed by cholesterol esterase (CE), an enzyme secreted by macrophagocytes accumulated at the site of infection, whose concentration is positively related to the severity of the infection. The drug can be triggered to release from the nanofiber membranes in responsive to the CE. With the increase of the CE concentration, a higher amount of MNA is released from the nanofiber mat, resulting in the enhancement of the antibacterial capability of the MNA-grafted nanofiber mat. The nanofiber mat has good cytocompatibility. This CE-responsive drug delivery system based on the electrospun nanofiber mat is promising as an optimal choice for antibacterial GTR/GBR membrane.
Collapse
Affiliation(s)
- Rui Shi
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing 100035, PR China
| | - Jingjing Ye
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Weiyang Li
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing 100035, PR China
| | - Jingshuang Zhang
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing 100035, PR China
| | - Jie Li
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chengai Wu
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing 100035, PR China
| | - Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, United States.
| | - Liqun Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
100
|
Chi M, Qi M, A L, Wang P, Weir MD, Melo MA, Sun X, Dong B, Li C, Wu J, Wang L, Xu HHK. Novel Bioactive and Therapeutic Dental Polymeric Materials to Inhibit Periodontal Pathogens and Biofilms. Int J Mol Sci 2019; 20:E278. [PMID: 30641958 PMCID: PMC6359151 DOI: 10.3390/ijms20020278] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is a common infectious disease characterized by loss of tooth-supporting structures, which eventually leads to tooth loss. The heavy burden of periodontal disease and its negative consequence on the patient's quality of life indicate a strong need for developing effective therapies. According to the World Health Organization, 10⁻15% of the global population suffers from severe periodontitis. Advances in understanding the etiology, epidemiology and microbiology of periodontal pocket flora have called for antibacterial therapeutic strategies for periodontitis treatment. Currently, antimicrobial strategies combining with polymer science have attracted tremendous interest in the last decade. This review focuses on the state of the art of antibacterial polymer application against periodontal pathogens and biofilms. The first part focuses on the different polymeric materials serving as antibacterial agents, drug carriers and periodontal barrier membranes to inhibit periodontal pathogens. The second part reviews cutting-edge research on the synthesis and evaluation of a new generation of bioactive dental polymers for Class-V restorations with therapeutic effects. They possess antibacterial, acid-reduction, protein-repellent, and remineralization capabilities. In addition, the antibacterial photodynamic therapy with polymeric materials against periodontal pathogens and biofilms is also briefly described in the third part. These novel bioactive and therapeutic polymeric materials and treatment methods have great potential to inhibit periodontitis and protect tooth structures.
Collapse
Affiliation(s)
- Minghan Chi
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun 130021, China.
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun 130021, China.
| | - Manlin Qi
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun 130021, China.
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun 130021, China.
| | - Lan A
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun 130021, China.
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun 130021, China.
| | - Ping Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
| | - Mary Anne Melo
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
| | - Xiaolin Sun
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun 130021, China.
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun 130021, China.
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Chunyan Li
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun 130021, China.
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun 130021, China.
| | - Junling Wu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Prosthodontics, School of Stomatology, Shandong University, Jinan 250012, China.
| | - Lin Wang
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun 130021, China.
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun 130021, China.
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|