51
|
Lison D, Laloy J, Corazzari I, Muller J, Rabolli V, Panin N, Huaux F, Fenoglio I, Fubini B. Sintered indium-tin-oxide (ITO) particles: a new pneumotoxic entity. Toxicol Sci 2009; 108:472-81. [PMID: 19176593 DOI: 10.1093/toxsci/kfp014] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Indium-Tin-Oxide (ITO) is a sintered mixture of indium- (In(2)O(3)) and tin-oxide (SnO(2)) in a ratio of 90:10 (wt:wt) that is used for the manufacture of LCD screens and related high technology applications. Interstitial pulmonary diseases have recently been reported in workers from ITO producing plants. The present study was conducted to identify experimentally the exact chemical component responsible for this toxicity and to address possible mechanisms of action. The reactivity of respirable ITO particles was compared with that of its single components alone or their unsintered 90:10 mixture (MIX) both in vivo and in vitro. For all endpoints considered, ITO particles behaved as a specific toxic entity. In vivo, after a single pharyngeal administration (2-20 mg per rat), ITO particles induced a strong inflammatory reaction. At day 3, the inflammatory reaction (cell accumulation, LDH and protein in bronchoalveolar lavage fluid) appeared more marked with ITO particles than with each oxide separately or the MIX. This inflammatory reaction persisted and even worsened after 15 days. After 60 days, this inflammation was still present but no significant fibrotic response was observed. The cytotoxicity of ITO was assessed in vitro in lung epithelial cells (RLE) and macrophages (NR8383 cell line). While ITO particles (up to 200 microg/ml) did not affect epithelial cell integrity (LDH release), a strong cytotoxic response was found in macrophages exposed to ITO, but not to its components alone or mixed. ITO particles also induced an increased frequency of micronuclei in type II pneumocytes in vivo but not in RLE in vitro, suggesting the preponderance of a secondary genotoxic mechanism. To address the possible mechanism of ITO toxicity, reactive oxygen species production was assessed by electron paramagnetic resonance spectrometry in an acellular system. Carbon centered radicals (COO-.) and Fenton-like activity were detected in the presence of ITO particles, not with In(2)O(3), SnO(2) alone, or the MIX. Because the unsintered mixture of SnO(2) and In(2)O(3) particles was unable to reproduce the reactivity/toxicity of ITO particles, the sintering process through which SnO(2) molecules are introduced within the crystal structure of In(2)O(3) appears critical to explain the unique toxicological properties of ITO. The inflammatory and genotoxic activities of ITO dust indicate that a strict control of exposure is needed in industrial settings.
Collapse
Affiliation(s)
- Dominique Lison
- Industrial Toxicology and Occupational Medicine unit, Catholic University of Louvain, Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Broding HC, Michalke B, Göen T, Drexler H. Comparison between exhaled breath condensate analysis as a marker for cobalt and tungsten exposure and biomonitoring in workers of a hard metal alloy processing plant. Int Arch Occup Environ Health 2008; 82:565-73. [PMID: 19034487 DOI: 10.1007/s00420-008-0390-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Cobalt (Co), Tungsten (W) and Tungsten Carbides (WC) are major constituents of hard metal alloys. Whereas little is known about potential health hazards due to tungsten carbide exposure, occupational exposure to cobalt has been shown to induce a variety of respiratory diseases. Since the concentration of a potentially hazardous substance in the target organ is the most meaningful risk indicator in occupational medicine, the detection of hard metals in exhaled breath condensate (EBC) has been proposed to be a valuable instrument. The present study examines the correlation of Co and W concentrations in EBC and urine with one another and various spirometrical and clinical parameters to scrutinize this potential. METHODS A total of 62 subjects (90.3% males, age 40.6 +/- 9.2 years) were recruited from a hard metal processing plant in Germany. Examinations included the airborne workplace exposure, a complete spirometry, measurements of Co and W concentrations in EBC and urine with high resolution inductive coupled plasma mass spectrometry (HR ICP-MS) and graphite furnace atomic absorption spectrometry (GFAAS). RESULTS Air concentrations ranged between 0.0019 mg/m(3) and 0.074 mg/m(3) for Co and 0.012 mg/m(3) and 0.021 mg/m(3) for W. Median urine concentrations and interquartile ranges of the exposed subjects ranged from 0.81 (0.0-1.46) microg/l for Co and 30.5 (14.5-57.7) microg/l for W. Median breath condensate metal concentrations and interquartile ranges ranged from 8.4 (5.0-13.9) microg/l for Co and 8.8 (4.4-18.5) microg/l for W. Urine concentrations of Co and W were closely related to the airborne workplace exposure that had been assessed by air monitoring. EBC concentrations of Co and W showed no correlations to urinary W and Co concentrations and the ambient monitoring results of the individual workplace, respectively. Cobalt EBC concentration was elevated in subjects who reported to have suffered from respiratory disease; both Co and W concentrations in EBC, however, decreased with increasing spirometrical signs of obstruction. CONCLUSION According to our study, urinary concentrations of Co and W seem to be more reliable indicators of current workplace exposure than EBC concentrations. As far as new methods and exposure matrices for valid concentration measurements in respiratory organs and possible hazardous effects--especially of cobalt--in the lung are concerned, the present results are less clear-cut, and further research is required.
Collapse
Affiliation(s)
- Horst Christoph Broding
- Institute and Outpatient Clinic for Occupational-, Social- and Environmental Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany.
| | | | | | | |
Collapse
|
53
|
Fenoglio I, Corazzari I, Francia C, Bodoardo S, Fubini B. The oxidation of glutathione by cobalt/tungsten carbide contributes to hard metal-induced oxidative stress. Free Radic Res 2008; 42:437-745. [PMID: 18712631 DOI: 10.1080/10715760802350904] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The occupational exposure to cobalt/tungsten carbide (Co/WC) dusts causes asthma and interstitial fibrosis. The International Agency for Research on Cancer (IARC) recently classified the mixture Co/WC as probably carcinogenic to humans (group 2A). The mechanism of action of Co/WC involves particle driven generation of Reactive Oxygen Species (ROS) with consequent oxidative damage. The present study evaluates the reactivity of Co/WC dust toward glutathione (GSH) and cysteine (Cys). Co/WC oxidized thiols through a mechanism involving the generation of sulphur-centred radicals. The results are consistent with the oxidation taking place at surface active sites, a part of which is accessible only to Cys S-H groups, but not to GSH ones. Such a reaction, with consequent irreversible depletion of antioxidant defenses of cells, will potentiate the oxidative stress caused by particle and cell generated ROS.
Collapse
Affiliation(s)
- Ivana Fenoglio
- Dipartimento di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali, Interdepartmental Center G Scansetti for Studies on Asbestos and Other Toxic Particulates, Universita degli Studi di Torino, Torino, Italy
| | | | | | | | | |
Collapse
|
54
|
Keegan GM, Learmonth ID, Case C. A Systematic Comparison of the Actual, Potential, and Theoretical Health Effects of Cobalt and Chromium Exposures from Industry and Surgical Implants. Crit Rev Toxicol 2008; 38:645-74. [DOI: 10.1080/10408440701845534] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
55
|
Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 2008; 82:493-512. [PMID: 18496671 DOI: 10.1007/s00204-008-0313-y] [Citation(s) in RCA: 693] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 04/30/2008] [Indexed: 02/07/2023]
Abstract
Mechanisms of carcinogenicity are discussed for metals and their compounds, classified as carcinogenic to humans or considered to be carcinogenic to humans: arsenic, antimony, beryllium, cadmium, chromium, cobalt, lead, nickel and vanadium. Physicochemical properties govern uptake, intracellular distribution and binding of metal compounds. Interactions with proteins (e.g., with zinc finger structures) appear to be more relevant for metal carcinogenicity than binding to DNA. In general, metal genotoxicity is caused by indirect mechanisms. In spite of diverse physicochemical properties of metal compounds, three predominant mechanisms emerge: (1) interference with cellular redox regulation and induction of oxidative stress, which may cause oxidative DNA damage or trigger signaling cascades leading to stimulation of cell growth; (2) inhibition of major DNA repair systems resulting in genomic instability and accumulation of critical mutations; (3) deregulation of cell proliferation by induction of signaling pathways or inactivation of growth controls such as tumor suppressor genes. In addition, specific metal compounds exhibit unique mechanisms such as interruption of cell-cell adhesion by cadmium, direct DNA binding of trivalent chromium, and interaction of vanadate with phosphate binding sites of protein phosphatases.
Collapse
|
56
|
Colognato R, Bonelli A, Ponti J, Farina M, Bergamaschi E, Sabbioni E, Migliore L. Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral leukocytes in vitro. Mutagenesis 2008; 23:377-82. [DOI: 10.1093/mutage/gen024] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
57
|
Muller J, Decordier I, Hoet PH, Lombaert N, Thomassen L, Huaux F, Lison D, Kirsch-Volders M. Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis 2008; 29:427-33. [DOI: 10.1093/carcin/bgm243] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
58
|
Stefaniak AB, Day GA, Harvey CJ, Leonard SS, Schwegler-Berry DE, Chipera SJ, Sahakian NM, Chisholm WP. Characteristics of dusts encountered during the production of cemented tungsten carbides. INDUSTRIAL HEALTH 2007; 45:793-803. [PMID: 18212475 DOI: 10.2486/indhealth.45.793] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Inhalation of cobalt (Co) and tungsten carbide (WC) particles, but not Co or WC alone, may cause hard metal disease, risk of which does not appear to be uniform across cemented tungsten carbide (CTC) production processes. Inhalation of Co alone or in the presence of WC may cause asthma. Hypothesizing that aerosol size, chemical content, heterogeneity, and constituent compaction may be important exposure factors, we characterized aerosols from representative CTC manufacturing processes. Six work areas were sampled to characterize aerosol size distributions (dust, Co) and 12 work areas were sampled to characterize physicochemical properties (using scanning electron microscopy with energy dispersive x-ray spectrometry [SEM-EDX]). Bulk feedstock and process-generated powders were characterized with SEM-EDX and x-ray diffraction. The dust mass median diameter was respirable and the cobalt respirable mass fraction was highest (37%) in grinding. Morphology of particles changed with processing: individual, agglomerate, or aggregates (pre-sintered materials), then mostly compacted particles (subsequent to sintering). Elemental composition of particles became increasingly heterogeneous: mostly discrete Co or W particles (prior to spray drying), then heterogeneous W/Co particles (subsequent work areas). Variability in aerosol respirability and chemical heterogeneity could translate into differences in toxicity and support detailed characterization of physicochemical properties during exposure assessments.
Collapse
Affiliation(s)
- Aleksandr B Stefaniak
- Division of Respiratory Disease Studies, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Lombaert N, Lison D, Van Hummelen P, Kirsch-Volders M. In vitro expression of hard metal dust (WC-Co)--responsive genes in human peripheral blood mononucleated cells. Toxicol Appl Pharmacol 2007; 227:299-312. [PMID: 18078969 DOI: 10.1016/j.taap.2007.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 10/26/2007] [Accepted: 11/05/2007] [Indexed: 01/18/2023]
Abstract
Hard metals consist of tungsten carbide (WC) and metallic cobalt (Co) particles and are important industrial materials produced for their extreme hardness and high wear resistance properties. While occupational exposure to metallic Co alone is apparently not associated with an increased risk of cancer, the WC-Co particle mixture was shown to be carcinogenic in exposed workers. The in vitro mutagenic/apoptogenic potential of WC-Co in human peripheral blood mononucleated cells was previously demonstrated by us. This study aimed at obtaining a broader view of the pathways responsible for WC-Co induced carcinogenicity, and in particular genotoxicity and apoptosis. We analyzed the profile of gene expression induced in vitro by WC-Co versus control (24 h treatment) in human PBMC and monocytes using microarrays. The most significantly up-regulated pathways for WC-Co treated PBMC were apoptosis and stress/defense response; the most down-regulated was immune response. For WC-Co treated monocytes the most significantly up- and down-regulated pathways were nucleosome/chromatin assembly and immune response respectively. Quantitative RT-PCR data for a selection of the most strongly modulated genes (HMOX1, HSPA1A, HSPA1L, BNIP3, BNIP3L, ADORA2B, MT3, PLA2G7, TNFAIP6), and some additionally chosen apoptosis related genes (BCL2, BAX, FAS, FASL, TNFalpha), confirmed the microarray data after WC-Co exposure and demonstrated limited differences between the Co-containing compounds. Overall, this study provides the first analysis of gene expression induced by the WC-Co mixture showing a large profile of gene modulation and giving a preliminary indication for a hypoxia mimicking environment induced by WC-Co exposure.
Collapse
Affiliation(s)
- Noömi Lombaert
- Vrije Universiteit Brussel, Laboratorium voor Cellulaire Genetica, Pleinlaan 2, B-1050 Brussel, Belgium.
| | | | | | | |
Collapse
|
60
|
Francia C, Bodoardo S, Penazzi N, Corazzari I, Fenoglio I. Characterization of the electrochemical process responsible for the free radical release in hard metals. Electrochim Acta 2007. [DOI: 10.1016/j.electacta.2007.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
61
|
|
62
|
Mateuca R, Aka PV, De Boeck M, Hauspie R, Kirsch-Volders M, Lison D. Influence of hOGG1, XRCC1 and XRCC3 genotypes on biomarkers of genotoxicity in workers exposed to cobalt or hard metal dusts. Toxicol Lett 2005; 156:277-88. [PMID: 15737490 DOI: 10.1016/j.toxlet.2004.12.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 12/02/2004] [Accepted: 12/02/2004] [Indexed: 11/24/2022]
Abstract
Identification of genetic polymorphisms responsible for reduced DNA repair capacity may allow better cancer prevention. We examined whether variations in genes involved in base-excision (hOGG1, XRCC1) and double strand break (XRCC3) DNA repair contribute to inter-individual differences in genotoxic effects induced in the lymphocytes of 21 cobalt (Co) exposed, 26 hard metal (WC-Co) exposed and 26 matched control male workers. Genotyping was performed by PCR-RFLP. DNA single strand breaks and alkali-labile sites were measured by the alkaline Comet assay. Chromosomal rearrangements resulting from chromosome loss or acentric fragments were assessed as micronucleated mononucleates (MNMC) and binucleates (MNCB) with the cytokinesis-block micronucleus test. Urinary 8-hydroxydeoxyguanosine (8-OHdG) levels were used as an indicator of systemic oxidative DNA damage. A significantly higher frequency of MNMC was observed in WC-Co exposed workers with variant hOGG1(326) genotype. Multivariate analysis performed with genotypes, age, exposure status, type of plant, smoking and their interaction terms as independent variables indicated that MNMC and Comet tail DNA (TD) were influenced by genetic polymorphisms. In the exposed and total populations, workers variant for both XRCC3 and hOGG1 had elevated MNMC frequencies. Further studies will demonstrate whether genotyping for hOGG1 and XRCC3 polymorphisms is useful for a better individual monitoring of workers.
Collapse
Affiliation(s)
- R Mateuca
- Vrije Universiteit Brussel, Laboratorium voor Cellulaire Genetica, Pleinlaan 2, B-1050 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
63
|
Lombaert N, De Boeck M, Decordier I, Cundari E, Lison D, Kirsch-Volders M. Evaluation of the apoptogenic potential of hard metal dust (WC–Co), tungsten carbide and metallic cobalt. Toxicol Lett 2004; 154:23-34. [PMID: 15475175 DOI: 10.1016/j.toxlet.2004.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 06/25/2004] [Accepted: 06/29/2004] [Indexed: 11/22/2022]
Abstract
The present study aimed at comparing in vitro the apoptogenic properties of metallic cobalt (Co), tungsten carbide (WC) and tungsten carbide-cobalt (WC-Co) in conditions known to cause genotoxicity. Human peripheral blood mononucleated cells were incubated with 2.0-6.0 microg/ml of Co alone or mixed with WC particles and 33.3-100.0 microg/ml WC alone for up to 24 h. Under these culture conditions the majority (60%) of the cobalt metal particles were almost immediately solubilised in the culture medium, while WC remained under the form of particles that were progressively phagocytosed by monocytes. Apoptosis was assessed by Annexin-V staining, flow cytometry and analysis of DNA fragmentation by ELISA. Metallic Co-particles induced apoptosis in vitro. Furthermore, although so far considered as biologically inert, WC particles also induced apoptosis. When compared with its individual components WC-Co displayed an additive apoptotic effect in the DNA fragmentation assay. Apoptosis induced by WC particles was found largely dependent on caspase-9 activation and occurred presumably in monocytes, while that induced by Co involved both caspase-9 and -8 activation. The data suggest that apoptosis induced by the tested WC-Co mixture results from the additive effects of WC apoptosis induced in monocytes and Co-specific apoptosis in both monocytes and lymphocytes. The apoptogenic properties of these metals may be important in the mechanism of lung pathologies induced by the cobalt-containing particles.
Collapse
Affiliation(s)
- Noömi Lombaert
- Laboratorium voor Cellulaire Genetica, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium.
| | | | | | | | | | | |
Collapse
|
64
|
Miller AC, Brooks K, Smith J, Page N. Effect of the militarily-relevant heavy metals, depleted uranium and heavy metal tungsten-alloy on gene expression in human liver carcinoma cells (HepG2). Mol Cell Biochem 2004; 255:247-56. [PMID: 14971665 DOI: 10.1023/b:mcbi.0000007280.72510.96] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Depleted uranium (DU) and heavy-metal tungsten alloys (HMTAs) are dense heavy-metals used primarily in military applications. Chemically similar to natural uranium, but depleted of the higher activity 235U and 234U isotopes, DU is a low specific activity, high-density heavy metal. In contrast, the non-radioactive HMTAs are composed of a mixture of tungsten (91-93%), nickel (3-5%), and cobalt (2-4%) particles. The use of DU and HMTAs in military munitions could result in their internalization in humans. Limited data exist however, regarding the long-term health effects of internalized DU and HMTAs in humans. Both DU and HMTAs possess a tumorigenic transforming potential and are genotoxic and mutagenic in vitro. Using insoluble DU-UO2 and a reconstituted mixture of tungsten, nickel, cobalt (rWNiCo), we tested their ability to induce stress genes in thirteen different recombinant cell lines generated from human liver carcinoma cells (HepG2). The commercially available CAT-Tox (L) cellular assay consists of a panel of cell lines stably transfected with reporter genes consisting of a coding sequence for chloramphenicol acetyl transferase (CAT) under transcriptional control by mammalian stress gene regulatory sequences. DU, (5-50 microg/ml) produced a complex profile of activity demonstrating significant dose-dependent induction of the hMTIIA FOS, p53RE, Gadd153, Gadd45, NFkappaBRE, CRE, HSP70, RARE, and GRP78 promoters. The rWNiCo mixture (5-50 microg/ml) showed dose-related induction of the GSTYA, hMTIIA, p53RE, FOS, NFkappaBRE, HSP70, and CRE promoters. An examination of the pure metals, tungsten (W), nickel (Ni), and cobalt (Co), comprising the rWNiCo mixture, demonstrated that each metal exhibited a similar pattern of gene induction, but at a significantly decreased magnitude than that of the rWNiCo mixture. These data showed a synergistic activation of gene expression by the metals in the rWNiCo mixture. Our data show for the first time that DU and rWNiCo can activate gene expression through several signal transduction pathways that may be involved in the toxicity and tumorigenicity of both DU and HMTAs.
Collapse
Affiliation(s)
- Alexandra C Miller
- Applied Cellular Radiobiology Department, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5603, USA.
| | | | | | | |
Collapse
|
65
|
Goldoni M, Catalani S, De Palma G, Manini P, Acampa O, Corradi M, Bergonzi R, Apostoli P, Mutti A. Exhaled breath condensate as a suitable matrix to assess lung dose and effects in workers exposed to cobalt and tungsten. ENVIRONMENTAL HEALTH PERSPECTIVES 2004; 112:1293-8. [PMID: 15345342 PMCID: PMC1247519 DOI: 10.1289/ehp.7108] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 06/10/2004] [Indexed: 05/11/2023]
Abstract
The aim of the present study was to investigate whether exhaled breath condensate (EBC), a fluid formed by cooling exhaled air, can be used as a suitable matrix to assess target tissue dose and effects of inhaled cobalt and tungsten, using EBC malondialdehyde (MDA) as a biomarker of pulmonary oxidative stress. Thirty-three workers exposed to Co and W in workshops producing either diamond tools or hard-metal mechanical parts participated in this study. Two EBC and urinary samples were collected: one before and one at the end of the work shift. Controls were selected among nonexposed workers. Co, W, and MDA in EBC were analyzed with analytical methods based on mass spectrometric reference techniques. In the EBC from controls, Co was detectable at ultratrace levels, whereas W was undetectable. In exposed workers, EBC Co ranged from a few to several hundred nanomoles per liter. Corresponding W levels ranged from undetectable to several tens of nanomoles per liter. A parallel trend was observed for much higher urinary levels. Both Co and W in biological media were higher at the end of the work shift in comparison with preexposure values. In EBC, MDA levels were increased depending on Co concentration and were enhanced by coexposure to W. Such a correlation between EBC MDA and both Co and W levels was not observed with urinary concentration of either element. These results suggest the potential usefulness of EBC to complete and integrate biomonitoring and health surveillance procedures among workers exposed to mixtures of transition elements and hard metals. Key words: cobalt, exhaled breath condensate, hard metals, lung, malondialdehyde, oxidative stress, tungsten.
Collapse
Affiliation(s)
- Matteo Goldoni
- National Institute of Occupational Safety and Prevention, Research Centre at the University of Parma, Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
De Boeck M, Lombaert N, De Backer S, Finsy R, Lison D, Kirsch-Volders M. In vitro genotoxic effects of different combinations of cobalt and metallic carbide particles. Mutagenesis 2003; 18:177-86. [PMID: 12621074 DOI: 10.1093/mutage/18.2.177] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Occupational exposure to hard metal dust, consisting of tungsten carbide (WC) and metallic cobalt particles (Co), is associated with an increased risk of lung cancer, while no increased risk was observed in workers exposed to Co alone. In vitro, in human peripheral blood mononucleated cells (PBMC), we previously demonstrated that WC-Co is more genotoxic than Co and WC alone. A possible mechanism underlying this higher genotoxicity is a specific physicochemical interaction between Co and WC particles leading to the enhanced short-term formation of active oxygen species. The aim of this study was to evaluate the in vitro genotoxicity of other combinations of Co with metal carbide particles in comparison with WC-Co. The ability of Cr(3)C(2), Mo(2)C and NbC and of their powder mixtures with Co to induce DNA strand breaks and alkali-labile sites was assessed by the alkaline Comet assay and their potential to induce chromosome(/genome) mutations by the cytokinesis-block micronucleus test on human PBMC from two donors. PBMC were treated in vitro for 15 min, 24 h after the onset of PHA stimulation. In the micronucleus test, while the metal carbides alone did not increase the micronucleus frequency, Co alone and the four tested carbide-Co mixtures induced a statistically significant concentration-dependent increase in micronucleated binucleates. In addition to WC, NbC and Cr(3)C(2) particles were able to interact with Co, producing a higher mutagenic effect than the individual metal particles. Mo(2)C particles did not display interactive mutagenicity with Co in the micronucleus test, possibly related to their small specific surface area, compactness and/or spherical shape. With the Comet assay, applied directly at the end of the treatment, less clear results, due to inter-experimental and inter-donor variation, were obtained. These data indicate that particular interaction of a metal carbide with Co leading to enhanced mutagenicity is not specific for WC.
Collapse
Affiliation(s)
- Marlies De Boeck
- Laboratorium voor Cellulaire Genetica and Eenheid Fysische Colloïdchemie, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | | | | | | | | | | |
Collapse
|
67
|
Tajima Y. The effects of tungstophosphate and tungstosilicate on various stress promoters transformed in Escherichia coli. J Inorg Biochem 2003; 94:155-60. [PMID: 12620686 DOI: 10.1016/s0162-0134(02)00595-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although tungsten is an important material in some industrial and chemical processes, the biological and biochemical effects, including the toxicity, of tungsten compounds are not known well. In this study, a reporter gene assay using special strains of Escherichia coli was performed to investigate the mode of action of two polyoxotungstates, i.e. undecatungstophosphate (PW(11)) and undecatungstosilicate (SiW(11)). When the bacterial cells were cultured with PW(11), osmY (a stress promoter gene sensitive to osmotic signals) was induced to some extent, while other stress promoters were expressed only slightly. SiW(11) gave similar results, but clpB (an analogue of human heat shock protein) was more strongly induced. It is possible that PW(11) and SiW(11) can produce an osmotic signal at lower concentrations without increasing ionic strength. Since the constituents of PW(11)/SiW(11) (i.e. HPO(4)(2-), SiO(3)(2-), WO(4)(2-)) showed almost no effect, a chemical feature unique to PW(11)/SiW(11) and originating from neither of their constituents, i.e. a polyanionic characteristic, may play an important role in their biological effects.
Collapse
Affiliation(s)
- Yutaka Tajima
- Clinical Laboratory, Saga Medical School Hospital, Nabeshima, 849-8501, Saga, Japan.
| |
Collapse
|
68
|
Lison D, De Boeck M, Verougstraete V, Kirsch-Volders M. Update on the genotoxicity and carcinogenicity of cobalt compounds. Occup Environ Med 2001; 58:619-25. [PMID: 11555681 PMCID: PMC1740056 DOI: 10.1136/oem.58.10.619] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To integrate recent understandings of the mechanisms of genotoxicity and carcinogenicity of the different cobalt compounds. METHOD A narrative review of the studies published since the last IARC assessment in 1991 (genotoxicity, experimental carcinogenesis, and epidemiology). RESULTS Two different mechanisms of genotoxicity, DNA breakage induced by cobalt metal and especially hard metal particles, and inhibition of DNA repair by cobalt (II) ions contribute to the carcinogenic potential of cobalt compounds. There is evidence that soluble cobalt (II) cations exert a genotoxic and carcinogenic activity in vitro and in vivo in experimental systems but evidence in humans is lacking. Experimental data indicate some evidence of a genotoxic potential for cobalt metal in vitro in human lymphocytes but there is no evidence available of a carcinogenic potential. There is evidence that hard metal particles exert a genotoxic and carcinogenic activity in vitro and in human studies, respectively. There is insufficient information for cobalt oxides and other compounds. CONCLUSION Although many areas of uncertainty remain, an assessment of the carcinogenicity of cobalt and its compounds requires a clear distinction between the different compounds of the element and needs to take into account the different mechanisms involved.
Collapse
Affiliation(s)
- D Lison
- Industrial Toxicology and Occupational Medicine Unit, Université catholique de Louvain, Clos Chapelle-aux-Champs 3054, 1200 Bruxelles, Belgium.
| | | | | | | |
Collapse
|
69
|
Nemery B, Hoet P. Reply. Toxicol Appl Pharmacol 2000; 168:173-4. [PMID: 11032774 DOI: 10.1006/taap.2000.9022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- B Nemery
- Laboratory of Pneumology (Unit of Lung Toxicology), K. U. Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | | |
Collapse
|
70
|
Wild P, Perdrix A, Romazini S, Moulin JJ, Pellet F. Lung cancer mortality in a site producing hard metals. Occup Environ Med 2000; 57:568-73. [PMID: 10896965 PMCID: PMC1739997 DOI: 10.1136/oem.57.8.568] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To study the mortality from lung cancer from exposures to hard metal dust at an industrial site producing hard metals--pseudoalloys of cobalt and tungsten carbide--and other metallurgical products many of which contain cobalt. METHODS A historical cohort was set up of all subjects who had worked for at least 3 months on the site since its opening date in the late 1940s. A full job history could be obtained for 95% of the subjects. The cohort was followed up from January 1968 to December 1992. The exposure was assessed by an industry specific job exposure matrix (JEM) characterising exposure to hard metal dust from 1 to 9 and other possibly carcinogenic exposures as present or absent. Smoking information was obtained by interview of former workers. Standard lifetable methods and Poisson regression were used for the statistical analysis of the data. RESULTS Mortality from all causes was close to the expected (standardised mortality ratio (SMR) 1.02, 399 deaths) whereas mortality from lung cancer was significantly increased among men (SMR 1.70; 46 deaths, 95% confidence interval (95% CI) 1.24 to 2.26). By workshop, lung cancer mortality was significantly higher than expected in hard metal production before sintering (SMR 2.42; nine deaths; 95%CI 1.10 to 4.59) and among maintenance workers (SMR 2.56; 11 deaths; 95%CI 1.28 to 4.59), whereas after sintering the SMR was lower (SMR 1.28; five deaths; 95%CI 0.41 to 2.98). The SMR for all exposures to hard metal dust at a level >1 in the JEM was in significant excess (SMR 2.02; 26 deaths; 95%CI 1.32 to 2.96). The risks increased with exposure scores, duration of exposure, and cumulative dose reaching significance for duration of exposure to hard metal dust before sintering, after adjustment for smoking and known or suspected carcinogens. CONCLUSION Excess mortality from lung cancer was found among hard metal production workers which cannot be attributed to smoking alone. This excess occurred mostly in subjects exposed to unsintered hard metal dust.
Collapse
Affiliation(s)
- P Wild
- Institut National de Recherche et de Sécurité, Service Epidémiologie, BP 27, 54501 Vandoeuvre Cedex, France.
| | | | | | | | | |
Collapse
|
71
|
Roesems G, Hoet PH, Dinsdale D, Demedts M, Nemery B. In vitro cytotoxicity of various forms of cobalt for rat alveolar macrophages and type II pneumocytes. Toxicol Appl Pharmacol 2000; 162:2-9. [PMID: 10631122 DOI: 10.1006/taap.1999.8824] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been shown that cobalt (Co) and the mixture cobalt-tungsten carbide (CoWC) are cytotoxic for alveolar macrophages (AM) and alveolar type II cells (AT-II), but the exact mechanisms of toxicity are not entirely elucidated. In this study, we exposed primary cultures of AT-II and AM, in vitro, to different forms of Co (Co particles, CoWC particles, CoCl(2)) and assessed cell damage using the dimethylthiazol diphenyl tetrazolium bromide test. In some experiments, inserts were used to separate the particles from the cells. The results show that AT-II are twice as sensitive to the effects of 100 microg Co particles/well (1.88 cm(2)) than AM. For this latter cell type, the presence of WC almost doubled (at 25 microg Co/well) the toxic effects compared to pure Co, but this synergy between Co and WC only occurred if the particles were in close contact with the cells. Lactalbumin and, to a lesser degree, EDTA were able to reduce the toxicity of Co, CoWC, and CoCl(2) for AT-II and AM. CoCl(2) showed a similar toxicity for AT-II and AM. The use of Co-conditioned medium revealed that Co particles are "aged" after having been incubated for 24 h in an aqueous medium and are then no longer able to cause the same degree of cell damage as fresh Co particles (71 versus 15% viability for 100 microg Co/well). The time course of the toxicity of the different forms of Co for AT-II and AM showed different patterns in causing cell damage, suggesting different action mechanisms. Evaluation of cell damage by electron microscopy was consistent with biochemical indices. Overall, our results indicate that the Co ion does play a role in the toxicity of both Co particles and CoWC particles.
Collapse
Affiliation(s)
- G Roesems
- Laboratory of Pneumology (Unit of Lung Toxicology), K.U.Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | | | | | | | | |
Collapse
|
72
|
Tleugabulova D, Falcón V, Pentón E, Sewer M, Fleitas Y. Aggregation of recombinant hepatitis B surface antigen induced in vitro by oxidative stress. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1999; 736:153-66. [PMID: 10676995 DOI: 10.1016/s0378-4347(99)00453-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In order to examine whether oxygen radicals could be responsible for aggregation of recombinant hepatitis B surface antigen (HBsAg) during its assembly in yeast, purified HBsAg was oxidized with ammonium peroxodisulphate (AP) and analyzed by non-denaturing and denaturing size exclusion chromatography, immunoassay and immunoelectron microscopy. As a result, peroxodisulphate radicals induced a reproducible aggregation of HBsAg. At 44 mM AP, the aggregation process took a few hours and the resulting structures were large, branched and non-antigenic. During more gentle oxidation with 9 mM AP and 20-80 microM Cu2+, a continuous structural modification to HBsAg delaying for tens of hours preceded the aggregation event. During this pre-aggregation period, peroxidation of HBsAg lipids and covalent cross-linking of S protein chains occurred that led a complete loss of antigenicity of oxidized particles. In contrast, yeast-derived HBsAg aggregate is decomposed to S monomers under reducing conditions and recognized by anti-HBsAg polyclonal and monoclonal antibodies, suggesting that is has been assembled in vivo from antigenic and reversibly cross-linked particles. Based on these observations, we conclude that oxidation, at least with respect to the specific molecular sites oxidized by AP, is not a primary event in HBsAg aggregate formation in vivo. Since oxidized HBsAg was shown to be irreversibly cross-linked and non-antigenic, there are no suitable techniques for detection HBsAg oxidation in biological samples. Hence, at present, the magnitude of the in-vivo oxidative damage to HBsAg cannot be evaluated and thus, whether the plasma-derived HBsAg undergoes radical-induced oxidation in the course of viral hepatitis remains to be established. If this occurs, this process is expected to contribute to low HBsAg levels in chronic hepatitis B carriers, failure of the currently available immunoassays to identify HBsAg-positive blood donors and inconsistency in the results provided by HBsAg- and anti-HBsAg-based tests in several recent reports.
Collapse
Affiliation(s)
- D Tleugabulova
- Quality Control Department, National Center for Bioproducts, Havana, Cuba
| | | | | | | | | |
Collapse
|
73
|
Bondy SC, Guo-Ross SX, Truong AT. Promotion of transition metal-induced reactive oxygen species formation by beta-amyloid. Brain Res 1998; 799:91-6. [PMID: 9666089 DOI: 10.1016/s0006-8993(98)00461-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
beta-amyloid protein appears to be involved in the neural degeneration associated with Alzheimer's disease. However, its mechanism of action is poorly understood. The ability of the neurotoxic peptide fragment (25-35) derived from beta-amyloid, to promote the generation of reactive oxygen species (ROS) by a postmitochondrial fraction (P2) derived from rat cerebrocortex, has been examined. The peptide fragment, when incubated together with P2, did not cause excess ROS formation. However, 10 microM FeSO4 or 10 microM CuSO4 were able to enhance ROS production in the P2 fraction and this was increased further in the concurrent presence of the 25-35 fragment. The corresponding inverse sequence non-neurotoxic peptide (35-25) had no parallel ability to augment iron-stimulated ROS production suggesting a degree of specificity for the observed effect. There was no formation of excess ROS when the 25-35 peptide and 0.5 mM Al2(SO4)3 were incubated with the P2 fraction. However in the presence of both aluminum and iron salts together with the 25-35 peptide, ROS production was augmented to a level significantly higher than that in the absence of aluminum. Polyglutamate, a peptide reported to mitigate aluminum toxicity had no effect on iron-related ROS generation but completely prevented its further potentiation by aluminum. The results indicate that beta-amyloid is able to potentiate the free-radical promoting capacity of metal ions such as iron, copper and aluminum. Such potentiation may be a relevant mechanism underlying beta-amyloid-induced degeneration of nerve cells.
Collapse
Affiliation(s)
- S C Bondy
- Center for Occupational and Environmental Health, Department of Community and Environmental Medicine, University of California Irvine, Irvine, CA 92697-1820, USA
| | | | | |
Collapse
|
74
|
Leonard S, Gannett PM, Rojanasakul Y, Schwegler-Berry D, Castranova V, Vallyathan V, Shi X. Cobalt-mediated generation of reactive oxygen species and its possible mechanism. J Inorg Biochem 1998; 70:239-44. [PMID: 9720310 DOI: 10.1016/s0162-0134(98)10022-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron spin resonance spin trapping was utilized to investigate free radical generation from cobalt (Co) mediated reactions using 5,5-dimethyl-1-pyrroline (DMPO) as a spin trap. A mixture of Co with water in the presence of DMPO generated 5,5-dimethylpyrroline-(2)-oxy(1) DMPOX, indicating the production of strong oxidants. Addition of superoxide dismutase (SOD) to the mixture produced hydroxyl radical (.OH). Catalase eliminated the generation of this radical and metal chelators, such as desferoxamine, diethylenetriaminepentaacetic acid or 1,10-phenanthroline, decreased it. Addition of Fe(II) resulted in a several fold increase in the .OH generation. UV and O2 consumption measurements showed that the reaction of Co with water consumed molecular oxygen and generated Co(II). Since reaction of Co(II) with H2O2 did not generate any significant amount of .OH radicals, a Co(I) mediated Fenton-like reaction [Co(I) + H2O2-->Co(II) + .OH + OH-] seems responsible for .OH generation. H2O2 is produced from O2.- via dismutation, O2.- is produced by one-electron reduction of molecular oxygen catalyzed by Co. Chelation of Co(II) by biological chelators, such as glutathione or beta-ananyl-3-methyl-L-histidine alters, its oxidation-reduction potential and makes Co(II) capable of generating .OH via a Co(II)-mediated Fenton-like reaction [Co(II) + H2O2-->Co(III) + .OH + OH-]. Thus, the reaction of Co with water, especially in the presence of biological chelators, glutathione, glycylglycylhistidine and beta-ananyl-3-methyl-L-histidine, is capable of generating a whole spectrum of reactive oxygen species, which may be responsible for Co-induced cell injury.
Collapse
Affiliation(s)
- S Leonard
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Roesems G, Hoet PH, Demedts M, Nemery B. In vitro toxicity of cobalt and hard metal dust in rat and human type II pneumocytes. PHARMACOLOGY & TOXICOLOGY 1997; 81:74-80. [PMID: 9298503 DOI: 10.1111/j.1600-0773.1997.tb00034.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has been demonstrated that hard metal dust, which consists of a mixture of cobalt and tungsten carbide, is more toxic toward mouse peritoneal and rat alveolar macrophages than pure cobalt (Co) or tungsten carbide (WC). The aim of this study was to investigate the toxic effects of Co and hard metal dust on alveolar epithelial type II cells (AT-II), and to compare these with alveolar macrophages. Freshly isolated rat and human AT-II and rat alveolar macrophages were exposed for 18 hr to particles of Co, WC or Co/WC. As an index for cell toxicity, release of lactate dehydrogenase was measured. For rat AT-II, TD50 values per 10(5) cells were 672 micrograms (95% C.I. = 264-1706 micrograms) for pure Co and 101 micrograms (95% C.I. = 59-172 micrograms) for Co in Co/WC mixture. For rat alveolar macrophages, TD50 values per 10(5) cells were 18 micrograms (95% C.I. = 15-24 micrograms) for pure Co and 5 micrograms (95% C.I. = 5-6 micrograms) for Co in Co/WC mixture. WC only caused an increase in lactate dehydrogenase at high concentrations. No toxicity was found in human AT-II for either Co, WC or Co/WC. These results indicate that 1) rat AT-II are less sensitive to Co than rat alveolar macrophages, 2) human AT are less sensitive to Co than rat AT-II, 3) the toxicity of Co is increased by the presence of WC.
Collapse
Affiliation(s)
- G Roesems
- Laboratory of Pneumology (Unit of Lung Toxicology), K.U.Leuven, Belgium
| | | | | | | |
Collapse
|
76
|
Van Goethem F, Lison D, Kirsch-Volders M. Comparative evaluation of the in vitro micronucleus test and the alkaline single cell gel electrophoresis assay for the detection of DNA damaging agents: genotoxic effects of cobalt powder, tungsten carbide and cobalt-tungsten carbide. Mutat Res 1997; 392:31-43. [PMID: 9269329 DOI: 10.1016/s0165-1218(97)00043-8] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although it is well known that micronuclei may arise from either DNA breakage leading to acentric chromosome fragments or from chromosome/chromatid lagging in anaphase, the ratio between the amount of DNA breakage induced and the frequency of micronuclei expressed in the following interphase is unclear. With the development of the alkaline single cell gel electrophoresis assay, which measures single strand and/or double strand breaks in a cell by cell approach, it is new possible to address this question at the cellular level. We therefore compared the genotoxic potential of pure cobalt powder (Co) and a cobalt-containing alloy, cobalt-tungsten carbide (WC-Co), involved in specific lung disorders, in parallel with the alkaline single cell gel electrophoresis (SCGE) assay (comet assay) and the cytokinesis-blocked micronucleus (MN) test, both carried out in vitro on isolated human leukocytes. The comet assay indicated that the WC-Co mixture produced a higher level of DNA damage than Co alone; WC alone was not able to induce a dose-dependent DNA breakage effect as was seen for Co and WC-Co. Results from the MN test confirmed these observations. It was clear that the clastogenic property of Co-containing dust is significantly enhanced when the Co metal is mixed with WC and suggested that their physicochemical characteristics may act as one of the important parameters responsible for the increased incidence of lung cancers observed in the population of hard metal workers. In agreement with data obtained in the same laboratory on liposoluble chemicals (PCBs and chlorinated aliphatic hydrocarbons) and from the literature, the results indicate that both the comet assay and the micronucleus test were able to detect differences in the genotoxic potential of the compounds studied. Although the micronucleus test seemed to be less sensitive to assess a synergistic DNA damaging potential of the mixture involved, it detects chromosomal aberrations (chromosome/genome mutations) and not just repairable DNA breakage or alkali-labile sites. Combination of the comet assay and the in vitro MN test might therefore be recommended for genotoxins to understand the mechanisms underlying mutagenicity and to assess the lowest efficient dose.
Collapse
Affiliation(s)
- F Van Goethem
- Laboratory of Antropogenetics, Faculty of Science, Free University Brussels (VUB), Belgium.
| | | | | |
Collapse
|
77
|
|
78
|
Lison D. Human toxicity of cobalt-containing dust and experimental studies on the mechanism of interstitial lung disease (hard metal disease). Crit Rev Toxicol 1996; 26:585-616. [PMID: 8958466 DOI: 10.3109/10408449609037478] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the industry, the potential for exposure to cobalt metal dust is particularly important during the production of cobalt powder and the processing and use of hard metals and other cobalt-containing alloys. The different adverse health effects reported in these workers are reviewed. One of the main target organs is the respiratory tract, and this article concentrates on the lung parenchymal reactions induced by cobalt-containing dust. Clinical and epidemiological data indicate that this manifestation is rarely, if ever, induced by pure cobalt metal dust alone, but requires the concomitant inhalation of other compounds such as tungsten carbide in the hard metal industry (hard metal disease). Experimental studies demonstrate that cobalt metal and metallic carbides interact to produce an elective lung toxicity. Recent work on the mechanism of this interaction, which is based on the production of activated oxygen species, is reviewed. A practical implication in industrial hygiene should be that permissible exposure levels to Co dust might have to be different when exposure is to pure Co particles or an association with carbides.
Collapse
Affiliation(s)
- D Lison
- Industrial Toxicology and Occupational Medicine Unit, Catholic University of Louvain, Brussels, Belgium
| |
Collapse
|