51
|
Tillemans V, Leponce I, Rausin G, Dispa L, Motte P. Insights into nuclear organization in plants as revealed by the dynamic distribution of Arabidopsis SR splicing factors. THE PLANT CELL 2006; 18:3218-34. [PMID: 17114353 PMCID: PMC1693954 DOI: 10.1105/tpc.106.044529] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Serine/arginine-rich (SR) proteins are splicing regulators that share a modular structure consisting of one or two N-terminal RNA recognition motif domains and a C-terminal RS-rich domain. We investigated the dynamic localization of the Arabidopsis thaliana SR protein RSZp22, which, as we showed previously, distributes in predominant speckle-like structures and in the nucleolus. To determine the role of RSZp22 diverse domains in its nucleolar distribution, we investigated the subnuclear localization of domain-deleted mutant proteins. Our results suggest that the nucleolar localization of RSZp22 does not depend on a single targeting signal but likely involves different domains/motifs. Photobleaching experiments demonstrated the unrestricted dynamics of RSZp22 between nuclear compartments. Selective inhibitor experiments of ongoing cellular phosphorylation influenced the rates of exchange of RSZp22 between the different nuclear territories, indicating that SR protein mobility is dependent on the phosphorylation state of the cell. Furthermore, based on a leptomycin B- and fluorescence loss in photobleaching-based sensitive assay, we suggest that RSZp22 is a nucleocytoplasmic shuttling protein. Finally, with electron microscopy, we confirmed that RSp31, a plant-specific SR protein, is dynamically distributed in nucleolar cap-like structures upon phosphorylation inhibition. Our findings emphasize the high mobility of Arabidopsis SR splicing factors and provide insights into the dynamic relationships between the different nuclear compartments.
Collapse
Affiliation(s)
- Vinciane Tillemans
- Laboratory of Plant Cell and Molecular Biology, Department of Life Sciences, Institute of Botany, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
52
|
Fung RWM, Wang CY, Smith DL, Gross KC, Tao Y, Tian M. Characterization of alternative oxidase (AOX) gene expression in response to methyl salicylate and methyl jasmonate pre-treatment and low temperature in tomatoes. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:1049-60. [PMID: 16376455 DOI: 10.1016/j.jplph.2005.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 11/09/2005] [Indexed: 05/05/2023]
Abstract
Methyl salicylate (MeSA) vapor increased resistance against chilling injury (CI) in freshly harvested pink tomatoes. The expression patterns of alternative oxidase (AOX) before and during the chilling period demonstrated that pre-treatment of tomato fruit with MeSA vapor increased the transcript levels of AOX. We used 4 EST tomato clones of AOX from the public database that belong to two distinctly related families, 1 and 2 defined in plants. Three clones were designated as LeAOX1a, 1b and 1c and the fourth clone as LeAOX2. Using RT-PCR, 1a and 1b genes were found to be expressed in leaf, root and fruit tissues, but 1c was expressed preferentially in roots. RNA transcript from LeAOX1a of AOX subfamily 1 was present in much greater abundance than 1b or 1c. The presence of longer AOX transcripts detected by RNA gel blot analysis in cold-stored tomato fruit was confirmed to be the un-spliced pre-mRNA transcripts of LeAOX1a and LeAOX1b genes. Intron splicing of LeAOX1c gene was also affected by cold storage when it was detected in roots. This alternative splicing event in AOX pre-mRNAs molecules occurred, preferentially at low temperature, regardless of mRNA abundance. Transcript levels of several key genes involved in RNA processing (splicing factors: 9G8-SR and SF2-SR, fibrillarin and DEAD box RNA helicase) were also affected by changes in storage temperature. The aberrant splicing event in AOX pre-mRNA and its possible association with the change in expression of genes involved in RNA processing in tomato fruit having chilling disorder was discussed.
Collapse
Affiliation(s)
- Raymond W M Fung
- Produce Quality and Safety Laboratory, Plant Sciences Institute, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705-2350, USA
| | | | | | | | | | | |
Collapse
|
53
|
Kalyna M, Lopato S, Voronin V, Barta A. Evolutionary conservation and regulation of particular alternative splicing events in plant SR proteins. Nucleic Acids Res 2006; 34:4395-405. [PMID: 16936312 PMCID: PMC1636356 DOI: 10.1093/nar/gkl570] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing is an important mechanism for fine tuning of gene expression at the post-transcriptional level. SR proteins govern splice site selection and spliceosome assembly. The Arabidopsis genome encodes 19 SR proteins, several of which have no orthologues in metazoan. Three of the plant specific subfamilies are characterized by the presence of a relatively long alternatively spliced intron located in their first RNA recognition motif, which potentially results in an extremely truncated protein. In atRSZ33, a member of the RS2Z subfamily, this alternative splicing event was shown to be autoregulated. Here we show that atRSp31, a member of the RS subfamily, does not autoregulate alternative splicing of its similarily positioned intron. Interestingly, this alternative splicing event is regulated by atRSZ33. We demonstrate that the positions of these long introns and their capability for alternative splicing are conserved from green algae to flowering plants. Moreover, in particular alternative splicing events the splicing signals are embedded into highly conserved sequences. In different taxa, these conserved sequences occur in at least one gene within a subfamily. The evolutionary preservation of alternative splice forms together with highly conserved intron features argues for additional functions hidden in the genes of these plant-specific SR proteins.
Collapse
Affiliation(s)
- Maria Kalyna
- Correspondence may also be addressed to Maria Kalyna. Tel: +43 1 4277 61642; Fax: +43 1 4277 9616;
| | | | | | - Andrea Barta
- To whom correspondence should be addressed. Tel: +43 1 4277 61640; Fax: +43 1 4277 9616;
| |
Collapse
|
54
|
Wang BB, Brendel V. Genomewide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci U S A 2006; 103:7175-80. [PMID: 16632598 PMCID: PMC1459036 DOI: 10.1073/pnas.0602039103] [Citation(s) in RCA: 402] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Indexed: 11/18/2022] Open
Abstract
Alternative splicing (AS) has been extensively studied in mammalian systems but much less in plants. Here we report AS events deduced from EST/cDNA analysis in two model plants: Arabidopsis and rice. In Arabidopsis, 4,707 (21.8%) of the genes with EST/cDNA evidence show 8,264 AS events. Approximately 56% of these events are intron retention (IntronR), and only 8% are exon skipping. In rice, 6,568 (21.2%) of the expressed genes display 14,542 AS events, of which 53.5% are IntronR and 13.8% are exon skipping. The consistent high frequency of IntronR suggests prevalence of splice site recognition by intron definition in plants. Different AS events within a given gene occur, for the most part, independently. In total, 36-43% of the AS events produce transcripts that would be targets of the non-sense-mediated decay pathway, if that pathway were to operate in plants as in humans. Forty percent of Arabidopsis AS genes are alternatively spliced also in rice, with some examples strongly suggesting a role of the AS event as an evolutionary conserved mechanism of posttranscriptional regulation. We created a comprehensive web-interfaced database to compile and visualize the evidence for alternative splicing in plants (Alternative Splicing in Plants, available at www.plantgdb.org/ASIP).
Collapse
Affiliation(s)
- Bing-Bing Wang
- Departments of *Genetics, Development, and Cell Biology and
| | - Volker Brendel
- Departments of *Genetics, Development, and Cell Biology and
- Statistics, Iowa State University, Ames, IA 50011-3260
| |
Collapse
|
55
|
Isshiki M, Tsumoto A, Shimamoto K. The serine/arginine-rich protein family in rice plays important roles in constitutive and alternative splicing of pre-mRNA. THE PLANT CELL 2006; 18:146-58. [PMID: 16339852 PMCID: PMC1323490 DOI: 10.1105/tpc.105.037069] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ser/Arg-rich (SR) proteins play important roles in the constitutive and alternative splicing of pre-mRNA. We isolated 20 rice (Oryza sativa) genes encoding SR proteins, of which six contain plant-specific characteristics. To determine whether SR proteins modulate splicing efficiency and alternative splicing of pre-mRNA in rice, we used transient assays in rice protoplasts by cotransformation of SR protein genes with the rice Waxy(b) (Wx(b))-beta-glucuronidase fusion gene. The results showed that plant-specific RSp29 and RSZp23, an SR protein homologous to human 9G8, enhanced splicing and altered the alternative 5' splice sites of Wx(b) intron 1. The resulting splicing pattern was unique to each SR protein; RSp29 stimulated splicing at the distal site, and RSZp23 enhanced splicing at the proximal site. Results of domain-swapping experiments between plant-specific RSp29 and SCL26, which is a homolog of human SC35, showed the importance of RNA recognition motif 1 and the Arg/Ser-rich (RS) domain for the enhancement of splicing efficiencies. Overexpression of plant-specific RSZ36 and SRp33b, a homolog of human ASF/SF2, in transgenic rice changed the alternative splicing patterns of their own pre-mRNAs and those of other SR proteins. These results show that SR proteins play important roles in constitutive and alternative splicing of rice pre-mRNA.
Collapse
Affiliation(s)
- Masayuki Isshiki
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | |
Collapse
|
56
|
Ner-Gaon H, Fluhr R. Whole-Genome Microarray in Arabidopsis Facilitates Global Analysis of Retained Introns. DNA Res 2006; 13:111-21. [PMID: 16980712 DOI: 10.1093/dnares/dsl003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alternative splicing (AS) is an important post-transcriptional regulatory mechanism that can increase protein diversity and affect mRNA stability. Different types of AS have been observed; these include exon skipping, alternative donor or acceptor site and intron retention. In humans, exon skipping is the most common type while intron retention is rare. In contrast, in Arabidopsis, intron retention is the most prevalent AS type (approximately 40%). Here we show that direct transcript expression analysis using high-density oligonucleotide-based whole-genome microarrays (WGAs) is particularly amenable for assessing global intron retention in Arabidopsis. By applying a novel algorithm retained introns are detected in 8% of the transcripts examined. A sampling of 14 transcripts showed that 86% can be confirmed by RT-PCR. This rate of detection predicts an overall total AS rate of 20% for Arabidopsis compared with 10-22% based on EST/cDNA-based analysis. These findings will facilitate monitoring constitutive and dynamic whole-genome splicing on the next generation WGA slides.
Collapse
Affiliation(s)
- Hadas Ner-Gaon
- Department of Plant Sciences, Weizmann Institute of Science Rehovot 76100, Israel
| | | |
Collapse
|
57
|
Xiao YL, Smith SR, Ishmael N, Redman JC, Kumar N, Monaghan EL, Ayele M, Haas BJ, Wu HC, Town CD. Analysis of the cDNAs of hypothetical genes on Arabidopsis chromosome 2 reveals numerous transcript variants. PLANT PHYSIOLOGY 2005; 139:1323-37. [PMID: 16244158 PMCID: PMC1283769 DOI: 10.1104/pp.105.063479] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 06/01/2005] [Accepted: 08/03/2005] [Indexed: 05/05/2023]
Abstract
In the fully sequenced Arabidopsis (Arabidopsis thaliana) genome, many gene models are annotated as "hypothetical protein," whose gene structures are predicted solely by computer algorithms with no support from either expressed sequence matches from Arabidopsis, or nucleic acid or protein homologs from other species. In order to confirm their existence and predicted gene structures, a high-throughput method of rapid amplification of cDNA ends (RACE) was used to obtain their cDNA sequences from 11 cDNA populations. Primers from all of the 797 hypothetical genes on chromosome 2 were designed, and, through 5' and 3' RACE, clones from 506 genes were sequenced and cDNA sequences from 399 target genes were recovered. The cDNA sequences were obtained by assembling their 5' and 3' RACE polymerase chain reaction products. These sequences revealed that (1) the structures of 151 hypothetical genes were different from their predictions; (2) 116 hypothetical genes had alternatively spliced transcripts and 187 genes displayed polyadenylation sites; and (3) there were transcripts arising from both strands, from the strand opposite to that of the prediction and possible dicistronic transcripts. Promoters from five randomly chosen hypothetical genes (At2g02540, At2g31270, At2g33640, At2g35550, and At2g36340) were cloned into report constructs, and their expressions are tissue or development stage specific. Our results indicate at least 50% of hypothetical genes on chromosome 2 are expressed in the cDNA populations with about 38% of the gene structures differing from their predictions. Thus, by using this targeted approach, high-throughput RACE, we revealed numerous transcripts including many uncharacterized variants from these hypothetical genes.
Collapse
MESH Headings
- Alternative Splicing/genetics
- Arabidopsis/anatomy & histology
- Arabidopsis/genetics
- Chromosomes, Plant/genetics
- Codon, Initiator/genetics
- Codon, Terminator/genetics
- DNA, Complementary/genetics
- Genes, Plant/genetics
- Genes, Reporter/genetics
- Genome, Plant
- Open Reading Frames/genetics
- Promoter Regions, Genetic/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Yong-Li Xiao
- The Institute for Genomic Research, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Colot HV, Loros JJ, Dunlap JC. Temperature-modulated alternative splicing and promoter use in the Circadian clock gene frequency. Mol Biol Cell 2005; 16:5563-71. [PMID: 16195340 PMCID: PMC1289402 DOI: 10.1091/mbc.e05-08-0756] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The expression of FREQUENCY, a central component of the circadian clock in Neurospora crassa, shows daily cycles that are exquisitely sensitive to the environment. Two forms of FRQ that differ in length by 99 amino acids, LFRQ and SFRQ, are synthesized from alternative initiation codons and the change in their ratio as a function of temperature contributes to robust rhythmicity across a range of temperatures. We have found frq expression to be surprisingly complex, despite our earlier prediction of a simple transcription unit based on limited cDNA sequencing. Two distinct environmentally regulated major promoters drive primary transcripts whose environmentally influenced alternative splicing gives rise to six different major mRNA species as well as minor forms. Temperature-sensitive alternative splicing determines AUG choice and, as a consequence, the ratio of LFRQ to SFRQ. Four of the six upstream ORFs are spliced out of the vast majority of frq mRNA species. Alternative splice site choice in the 5' UTR and relative use of two major promoters are also influenced by temperature, and the two promoters are differentially regulated by light. Evolutionary comparisons with the Sordariaceae reveal conservation of 5' UTR sequences, as well as significant conservation of the alternative splicing events, supporting their relevance to proper regulation of clock function.
Collapse
Affiliation(s)
- Hildur V Colot
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | |
Collapse
|
59
|
Haas BJ, Wortman JR, Ronning CM, Hannick LI, Smith RK, Maiti R, Chan AP, Yu C, Farzad M, Wu D, White O, Town CD. Complete reannotation of the Arabidopsis genome: methods, tools, protocols and the final release. BMC Biol 2005; 3:7. [PMID: 15784138 PMCID: PMC1082884 DOI: 10.1186/1741-7007-3-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 03/22/2005] [Indexed: 11/29/2022] Open
Abstract
Background Since the initial publication of its complete genome sequence, Arabidopsis thaliana has become more important than ever as a model for plant research. However, the initial genome annotation was submitted by multiple centers using inconsistent methods, making the data difficult to use for many applications. Results Over the course of three years, TIGR has completed its effort to standardize the structural and functional annotation of the Arabidopsis genome. Using both manual and automated methods, Arabidopsis gene structures were refined and gene products were renamed and assigned to Gene Ontology categories. We present an overview of the methods employed, tools developed, and protocols followed, summarizing the contents of each data release with special emphasis on our final annotation release (version 5). Conclusion Over the entire period, several thousand new genes and pseudogenes were added to the annotation. Approximately one third of the originally annotated gene models were significantly refined yielding improved gene structure annotations, and every protein-coding gene was manually inspected and classified using Gene Ontology terms.
Collapse
Affiliation(s)
- Brian J Haas
- The Institute for Genomic Research, 9172 Medical Center Drive, Rockville, Maryland, 20850, USA
| | - Jennifer R Wortman
- The Institute for Genomic Research, 9172 Medical Center Drive, Rockville, Maryland, 20850, USA
| | - Catherine M Ronning
- The Institute for Genomic Research, 9172 Medical Center Drive, Rockville, Maryland, 20850, USA
| | - Linda I Hannick
- The Institute for Genomic Research, 9172 Medical Center Drive, Rockville, Maryland, 20850, USA
| | - Roger K Smith
- The Institute for Genomic Research, 9172 Medical Center Drive, Rockville, Maryland, 20850, USA
| | - Rama Maiti
- The Institute for Genomic Research, 9172 Medical Center Drive, Rockville, Maryland, 20850, USA
| | - Agnes P Chan
- The Institute for Genomic Research, 9172 Medical Center Drive, Rockville, Maryland, 20850, USA
| | - Chunhui Yu
- The Institute for Genomic Research, 9172 Medical Center Drive, Rockville, Maryland, 20850, USA
| | - Maryam Farzad
- The Institute for Genomic Research, 9172 Medical Center Drive, Rockville, Maryland, 20850, USA
| | - Dongying Wu
- The Institute for Genomic Research, 9172 Medical Center Drive, Rockville, Maryland, 20850, USA
| | - Owen White
- The Institute for Genomic Research, 9172 Medical Center Drive, Rockville, Maryland, 20850, USA
| | - Christopher D Town
- The Institute for Genomic Research, 9172 Medical Center Drive, Rockville, Maryland, 20850, USA
| |
Collapse
|
60
|
Kalyna M, Barta A. A plethora of plant serine/arginine-rich proteins: redundancy or evolution of novel gene functions? Biochem Soc Trans 2005; 32:561-4. [PMID: 15270675 PMCID: PMC5362061 DOI: 10.1042/bst0320561] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Precursor-mRNA (pre-mRNA) processing is an important step in gene expression and its regulation leads to the expansion of the gene product repertoire. SR (serine-arginine)-rich proteins are key players in intron recognition and spliceosome assembly and significantly contribute to the alternative splicing process. Due to several duplication events, at least 19 SR proteins are present in the Arabidopsis genome, which is almost twice as many as in humans. They fall into seven different subfamilies, three of them homologous with metazoan splicing factors, whereas the other four seem to be specific for plants. The current results show that most of the duplicated genes have different spatiotemporal expression patterns indicating functional diversification. Interestingly, most of the SR protein genes are alternatively spliced and in some cases this process was shown to be under developmental and/or environmental control. This might greatly influence gene expression of target genes as also exemplified by ectopic expression studies of particular SR proteins.
Collapse
Affiliation(s)
| | - Andrea Barta
- To whom correspondence should be addressed: Dr. Andrea Barta, Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Biochemistry, Medical University of Vienna, Dr. Bohrgasse 9/3, A-1030 Vienna, Austria, Tel. +43-1-427761640, Fax. +43-1-42779616,
| |
Collapse
|
61
|
Gupta S, Wang BB, Stryker GA, Zanetti ME, Lal SK. Two novel arginine/serine (SR) proteins in maize are differentially spliced and utilize non-canonical splice sites. ACTA ACUST UNITED AC 2005; 1728:105-14. [PMID: 15780972 DOI: 10.1016/j.bbaexp.2005.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 12/28/2004] [Accepted: 01/04/2005] [Indexed: 11/20/2022]
Abstract
The serine-arginine (SR)-rich splicing proteins are highly conserved RNA binding nuclear phosphor-proteins that play important roles in both regular and alternative splicing. Here we describe two novel putative SR genes from maize, designated zmRSp31A and zmRSp31B. Both genes contain characteristic RNA binding motifs RNP-1 and RNP-2, a serine/arginine-rich (RS) domain and share significant sequence similarity to the Arabidopsis atRSp31 family of SR proteins. Both zmRSp31A and zmRSp31B produce multiple transcripts by alternative splicing, of which majority of the alternatively spliced transcripts utilize non-canonical splice sites. zmRSp31A and zmRSp31B produce at least six and four transcripts, respectively, of which only one corresponds to the wild type proteins for each gene. All the alternatively spliced transcripts of both the genes, with one exception, are predicted to encode small truncated proteins containing only the RNP-2 domain of their first RNA recognition motif and completely lack the carboxyl terminal RS domain. We provide evidence that some of the alternatively spliced transcripts of both genes are associated with polysomes and interact with the translational machinery.
Collapse
Affiliation(s)
- Smriti Gupta
- Department of Biological Sciences, Oakland University, Rochester, MI 48309-4401, USA
| | | | | | | | | |
Collapse
|
62
|
The ASRG database: identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing. Genome Biol 2004; 5:R102. [PMID: 15575968 PMCID: PMC545797 DOI: 10.1186/gb-2004-5-12-r102] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 09/06/2004] [Accepted: 10/20/2004] [Indexed: 12/02/2022] Open
Abstract
The database of Arabidopsis splicing related genes includes classification of genes encoding snRNAs and other splicing related proteins, together with information on gene structure, alternative splicing, gene duplications and phylogenetic relationships. A total of 74 small nuclear RNA (snRNA) genes and 395 genes encoding splicing-related proteins were identified in the Arabidopsis genome by sequence comparison and motif searches, including the previously elusive U4atac snRNA gene. Most of the genes have not been studied experimentally. Classification of these genes and detailed information on gene structure, alternative splicing, gene duplications and phylogenetic relationships are made accessible as a comprehensive database of Arabidopsis Splicing Related Genes (ASRG) on our website.
Collapse
|
63
|
Iida K, Seki M, Sakurai T, Satou M, Akiyama K, Toyoda T, Konagaya A, Shinozaki K. Genome-wide analysis of alternative pre-mRNA splicing in Arabidopsis thaliana based on full-length cDNA sequences. Nucleic Acids Res 2004; 32:5096-103. [PMID: 15452276 PMCID: PMC521658 DOI: 10.1093/nar/gkh845] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We mapped RIKEN Arabidopsis full-length (RAFL) cDNAs to the Arabidopsis thaliana genome to search for alternative splicing events. We used 278,734 full-length and 3'/5' terminal reads of the sequences of 220,214 RAFL cDNA clones for the analysis. Eighty-nine percent of the cDNA sequences could be mapped to the genome and were clustered in 17,130 transcription units (TUs). Alternative splicing events were found in 1764 out of 15,214 TUs (11.6%) with multiple sequences. We collected full-length cDNA clones from plants grown under various environmental conditions or from various organs. We then analyzed the correlation between alternative splicing events and environmental stress conditions. Alternative splicing profiles changed according to environmental stress conditions and the various developmental stages of plant organs. In particular, cold-stress conditions affected alternative splicing profiles. The change in alternative splicing profiles under cold stress may be mediated by alternative splicing and transcriptional regulation of splicing factors.
Collapse
Affiliation(s)
- Kei Iida
- Plant Mutation Exploration Team, Plant Functional Genomics Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Gao H, Gordon-Kamm WJ, Lyznik LA. ASF/SF2-like maize pre-mRNA splicing factors affect splice site utilization and their transcripts are alternatively spliced. Gene 2004; 339:25-37. [PMID: 15363843 DOI: 10.1016/j.gene.2004.06.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 05/26/2004] [Accepted: 06/17/2004] [Indexed: 10/26/2022]
Abstract
Three ASF/SF2-like alternative splicing genes from maize were identified, cloned, and analyzed. Each of these genes (zmSRp30, zmSRp31, and zmSRp32) contains two RNA binding domains, a signature sequence SWQDLKD, and a characteristic serine/ariginine-rich domain. There is a strong structural similarity to the human ASF/SF2 splicing factor and to the Arabidopsis atSRp34/p30 proteins. Similar to ASF/SF2-like genes in other organisms, the maize pre-mRNA messages are alternatively spliced. They are differentially expressed in maize tissues with relatively uniform levels of zmSRp30 and zmSRp31 messages being observed throughout the plant, while zmSRp32 messages preferentially accumulated in the meristematic regions. Overexpression of zmSRp32 in maize cells leads to the enhanced selection of weak 5' intron splice sites during the processing of pre-mRNA molecules. Overexpression of the zmSRp31 or zmSRp32 gene affects regulation of wheat dwarf virus rep gene pre-mRNA splicing, presumably by interacting with the weak 5' splice site, CCGU. Our results suggest that the described genes are functional homologues of the human ASF/SF2 alternative splicing factor and they indicate a diversity of the ASF/SF2-like alternative splicing factors in monocot plant cells.
Collapse
Affiliation(s)
- Huirong Gao
- Pioneer Hi-Bred International (a DuPont company), Johnston, IA, USA
| | | | | |
Collapse
|
65
|
Salvucci ME, Crafts-Brandner SJ. Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. PHYSIOLOGIA PLANTARUM 2004; 120:179-186. [PMID: 15032851 DOI: 10.1111/j.0031-9317.2004.0173.x] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Although the catalytic activity of Rubisco increases with temperature, the low affinity of the enzyme for CO(2) and its dual nature as an oxygenase limit the possible increase in net photosynthesis with temperature. For cotton, comparisons of measured rates of net photosynthesis with predicted rates that take into account limitations imposed by the kinetic properties of Rubisco indicate that direct inhibition of photosynthesis occurs at temperatures higher than about 30 degrees C. Inhibition of photosynthesis by moderate heat stress (i.e. 30-42 degrees C) is generally attributed to reduced rates of RuBP regeneration caused by disruption of electron transport activity, and specifically inactivation of the oxygen evolving enzymes of photosystem II. However, measurements of chlorophyll fluorescence and metabolite levels at air-levels of CO(2) indicate that electron transport activity is not limiting at temperatures that inhibit CO(2) fixation. Instead, recent evidence shows that inhibition of net photosynthesis correlates with a decrease in the activation state of Rubisco in both C(3) and C(4) plants and that this decrease in the amount of active Rubisco can fully account for the temperature response of net photosynthesis. Biochemically, the decrease in Rubisco activation can be attributed to: (1) more rapid de-activation of Rubisco caused by a faster rate of dead-end product formation; and (2) slower re-activation of Rubisco by activase. The net result is that as temperature increases activase becomes less effective in keeping Rubisco catalytically competent. In this opinionated review, we discuss how these processes limit photosynthetic performance under moderate heat stress.
Collapse
Affiliation(s)
- Michael E. Salvucci
- US Department of Agriculture, Agricultural Research Service, Western Cotton Research Laboratory, 4135 E. Broadway Road, Phoenix, AZ 85040, USA
| | | |
Collapse
|
66
|
Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK, Hannick LI, Maiti R, Ronning CM, Rusch DB, Town CD, Salzberg SL, White O. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res 2003; 31:5654-66. [PMID: 14500829 PMCID: PMC206470 DOI: 10.1093/nar/gkg770] [Citation(s) in RCA: 1309] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The spliced alignment of expressed sequence data to genomic sequence has proven a key tool in the comprehensive annotation of genes in eukaryotic genomes. A novel algorithm was developed to assemble clusters of overlapping transcript alignments (ESTs and full-length cDNAs) into maximal alignment assemblies, thereby comprehensively incorporating all available transcript data and capturing subtle splicing variations. Complete and partial gene structures identified by this method were used to improve The Institute for Genomic Research Arabidopsis genome annotation (TIGR release v.4.0). The alignment assemblies permitted the automated modeling of several novel genes and >1000 alternative splicing variations as well as updates (including UTR annotations) to nearly half of the approximately 27 000 annotated protein coding genes. The algorithm of the Program to Assemble Spliced Alignments (PASA) tool is described, as well as the results of automated updates to Arabidopsis gene annotations.
Collapse
Affiliation(s)
- Brian J Haas
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Kalyna M, Lopato S, Barta A. Ectopic expression of atRSZ33 reveals its function in splicing and causes pleiotropic changes in development. Mol Biol Cell 2003; 14:3565-77. [PMID: 12972547 PMCID: PMC196550 DOI: 10.1091/mbc.e03-02-0109] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Splicing provides an additional level in the regulation of gene expression and contributes to proteome diversity. Herein, we report the functional characterization of a recently described plant-specific protein, atRSZ33, which has characteristic features of a serine/arginine-rich protein and the ability to interact with other splicing factors, implying that this protein might be involved in constitutive and/or alternative splicing. Overexpression of atRSZ33 leads to alteration of splicing patterns of atSRp30 and atSRp34/SR1, indicating that atRSZ33 is indeed a splicing factor. Moreover, atRSZ33 is a regulator of its own expression, as splicing of its pre-mRNA is changed in transgenic plants. Investigations by promoter-beta-glucuronidase (GUS) fusion and in situ hybridization revealed that atRSZ33 is expressed during embryogenesis and early stages of seedling formation, as well as in flower and root development. Ectopic expression of atRSZ33 caused pleiotropic changes in plant development resulting in increased cell expansion and changed polarization of cell elongation and division. In addition, changes in activity of an auxin-responsive promoter suggest that auxin signaling is disturbed in these transgenic plants.
Collapse
Affiliation(s)
- Maria Kalyna
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Institut für Med. Biochemie, University of Vienna, A-1030 Vienna, Austria
| | | | | |
Collapse
|
68
|
Xiao YL, Malik M, Whitelaw CA, Town CD. Cloning and sequencing of cDNAs for hypothetical genes from chromosome 2 of Arabidopsis. PLANT PHYSIOLOGY 2002; 130:2118-28. [PMID: 12481096 PMCID: PMC166724 DOI: 10.1104/pp.010207] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2002] [Revised: 08/25/2002] [Accepted: 09/09/2002] [Indexed: 05/19/2023]
Abstract
About 25% of the genes in the fully sequenced and annotated Arabidopsis genome have structures that are predicted solely by computer algorithms with no support from either nucleic acid or protein homologs from other species or expressed sequence matches from Arabidopsis. These are referred to as "hypothetical genes." On chromosome 2, sequenced by The Institute for Genomic Research, there are approximately 800 hypothetical genes among a total of approximately 4,100 genes. To test their expression under various growth conditions and in specific tissues, we used six cDNA populations prepared from cold-treated, heat-treated, and pathogen (Xanthomonas campestris pv campestris)-infected plants, callus, roots, and young seedlings. To date, 169 hypothetical genes were tested, and 138 of them are found to be expressed in one or more of the six cDNA populations. By sequencing multiple clones from each 5'- and 3'-rapid amplification of cDNA ends (RACE) product and assembling the sequences, we generated full-length sequences for 16 of these genes. For 14 genes, there was one full-length assembly that precisely supported the intron-exon boundaries of their gene predictions, adding only 5'- and 3'-untranslated region sequences. However, for three of these genes, the other assemblies represent additional exons and alternatively spliced or unspliced introns. For the remaining two genes, the cDNA sequences reveal major differences with predicted gene structures. In addition, a total of six genes displayed more than one polyadenylation site. These data will be used to update gene models in The Institute for Genomic Research annotation database ATH1.
Collapse
Affiliation(s)
- Yong-Li Xiao
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, Maryland 20850, USA.
| | | | | | | |
Collapse
|
69
|
Haas BJ, Volfovsky N, Town CD, Troukhan M, Alexandrov N, Feldmann KA, Flavell RB, White O, Salzberg SL. Full-length messenger RNA sequences greatly improve genome annotation. Genome Biol 2002; 3:RESEARCH0029. [PMID: 12093376 PMCID: PMC116726 DOI: 10.1186/gb-2002-3-6-research0029] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2001] [Revised: 03/14/2002] [Accepted: 04/19/2002] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Annotation of eukaryotic genomes is a complex endeavor that requires the integration of evidence from multiple, often contradictory, sources. With the ever-increasing amount of genome sequence data now available, methods for accurate identification of large numbers of genes have become urgently needed. In an effort to create a set of very high-quality gene models, we used the sequence of 5,000 full-length gene transcripts from Arabidopsis to re-annotate its genome. We have mapped these transcripts to their exact chromosomal locations and, using alignment programs, have created gene models that provide a reference set for this organism. RESULTS Approximately 35% of the transcripts indicated that previously annotated genes needed modification, and 5% of the transcripts represented newly discovered genes. We also discovered that multiple transcription initiation sites appear to be much more common than previously known, and we report numerous cases of alternative mRNA splicing. We include a comparison of different alignment software and an analysis of how the transcript data improved the previously published annotation. CONCLUSIONS Our results demonstrate that sequencing of large numbers of full-length transcripts followed by computational mapping greatly improves identification of the complete exon structures of eukaryotic genes. In addition, we are able to find numerous introns in the untranslated regions of the genes.
Collapse
Affiliation(s)
- Brian J Haas
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Salanoubat M, Lemcke K, Rieger M, Ansorge W, Unseld M, Fartmann B, Valle G, Blöcker H, Perez-Alonso M, Obermaier B, Delseny M, Boutry M, Grivell LA, Mache R, Puigdomènech P, De Simone V, Choisne N, Artiguenave F, Robert C, Brottier P, Wincker P, Cattolico L, Weissenbach J, Saurin W, Quétier F, Schäfer M, Müller-Auer S, Gabel C, Fuchs M, Benes V, Wurmbach E, Drzonek H, Erfle H, Jordan N, Bangert S, Wiedelmann R, Kranz H, Voss H, Holland R, Brandt P, Nyakatura G, Vezzi A, D'Angelo M, Pallavicini A, Toppo S, Simionati B, Conrad A, Hornischer K, Kauer G, Löhnert TH, Nordsiek G, Reichelt J, Scharfe M, Schön O, Bargues M, Terol J, Climent J, Navarro P, Collado C, Perez-Perez A, Ottenwälder B, Duchemin D, Cooke R, Laudie M, Berger-Llauro C, Purnelle B, Masuy D, de Haan M, Maarse AC, Alcaraz JP, Cottet A, Casacuberta E, Monfort A, Argiriou A, flores M, Liguori R, Vitale D, Mannhaupt G, Haase D, Schoof H, Rudd S, Zaccaria P, Mewes HW, Mayer KF, Kaul S, Town CD, Koo HL, Tallon LJ, Jenkins J, Rooney T, Rizzo M, Walts A, Utterback T, Fujii CY, Shea TP, Creasy TH, Haas B, Maiti R, Wu D, Peterson J, Van Aken S, Pai G, Militscher J, Sellers P, Gill JE, Feldblyum TV, Preuss D, Lin X, Nierman WC, Salzberg SL, White O, Venter JC, Fraser CM, Kaneko T, Nakamura Y, Sato S, Kato T, Asamizu E, Sasamoto S, Kimura T, Idesawa K, Kawashima K, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakayama S, Nakazaki N, Shinpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S. Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana. Nature 2000; 408:820-2. [PMID: 11130713 DOI: 10.1038/35048706] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Arabidopsis thaliana is an important model system for plant biologists. In 1996 an international collaboration (the Arabidopsis Genome Initiative) was formed to sequence the whole genome of Arabidopsis and in 1999 the sequence of the first two chromosomes was reported. The sequence of the last three chromosomes and an analysis of the whole genome are reported in this issue. Here we present the sequence of chromosome 3, organized into four sequence segments (contigs). The two largest (13.5 and 9.2 Mb) correspond to the top (long) and the bottom (short) arms of chromosome 3, and the two small contigs are located in the genetically defined centromere. This chromosome encodes 5,220 of the roughly 25,500 predicted protein-coding genes in the genome. About 20% of the predicted proteins have significant homology to proteins in eukaryotic genomes for which the complete sequence is available, pointing to important conserved cellular functions among eukaryotes.
Collapse
Affiliation(s)
- M Salanoubat
- Genoscope and CNRS FRE2231, Evry, France. salanou@genoscope. cns.fr
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|